1
|
Yang S, Liu X, Chen Y, Wang X, Zhang Z, Wang L. NNSFMDA: Lightweight Transformer Model with Bounded Nuclear Norm Minimization for Microbe-Drug Association Prediction. J Mol Biol 2025; 437:169086. [PMID: 40139309 DOI: 10.1016/j.jmb.2025.169086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
Identifying potential connections between microbe-drug pairs play an important role in drug discovery and clinical treatment. Techniques like graph neural networks effectively derive accurate node representations from sparse topologies,however, they struggle with over-smoothing and over-compression, and their interpretability is relatively poor. Conversely, mathematical methods with low-rank approximations are interpretable but often get trapped in local optima. To address these issues, we propose a new prediction model named NNSFMDA, in which, the bounded nuclear norm minimization and the simplified transformer were combined to infer possible drug-microbe associations. In NNSFMDA, we first constructed a heterogeneous microbe-drug network by integrating multiple microbe and drug similarity metrics, according to which, we subsequently transformed the prediction problem to a matrix filling problem, and then, iteratively approximated the matrix by minimizing the number of bounded nuclear norm. Finally, based on the newly-filled matrix, we introduced a simplified transformer to estimate possible scores of microbe-drug pairs. Results showed that NNSFMDA could achieve reliable AUC value of 0.98, which outperformed existing state-of-the-art competitive methods. In the experimental section, ablation experiments and modular analyses further demonstrate the superiority of the model, and case studies of microbe-drug associations confirm the validity of the model. These tests have all highlighted the potential of the NNSFMDA to predict latent microbe-drug associations in the future.
Collapse
Affiliation(s)
- Shuyuan Yang
- School of Mathematics, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022, China
| | - Xin Liu
- School of Computer Science & Computer Engineering, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022, China.
| | - Yiming Chen
- School of Computer Science & Computer Engineering, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022, China
| | - Xiangyi Wang
- School of Artificial Intelligence, The University of New South Wales, Sydney, Australia
| | - Zhen Zhang
- School of Computer Science & Computer Engineering, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022, China
| | - Lei Wang
- School of Computer Science & Computer Engineering, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022, China
| |
Collapse
|
2
|
Huang W, Jiang T, He J, Ruan J, Wu B, Tao R, Xu P, Wang Y, Chen R, Wang H, Yang Q, Zhang K, Jin L, Sun D, You J. Modulation of Intestinal Flora: a Novel Immunotherapeutic Approach for Enhancing Thyroid Cancer Treatment. Probiotics Antimicrob Proteins 2025; 17:1038-1063. [PMID: 39890752 DOI: 10.1007/s12602-025-10471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Over the past 3 years, there has been a growing interest in clinical research regarding the potential involvement of intestinal flora in thyroid cancer (TC). This review delves into the intricate connection between intestinal flora and TC, focusing on the particular intestinal flora that is directly linked to the disease and identifying which may be able to predict potential microbial markers of TC. In order to shed light on the inflammatory pathways connected to the onset of TC, we investigated the impact of intestinal flora on immune modulation and the connection between chronic inflammation when investigating the role of intestinal flora in the pathogenesis of TC. Furthermore, the potential role of intestinal flora metabolites in the regulation of thyroid function was clarified by exploring the effects of short-chain fatty acids and lipopolysaccharide on thyroid hormone synthesis and metabolism. Based on these findings, we further explore the effects of probiotics, prebiotics, postbiotics, vitamins, and trace elements.
Collapse
Affiliation(s)
- Weiqiang Huang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Tao Jiang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Baihui Wu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yongpan Wang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Hanbing Wang
- The University of Hong Kong School of Biomedical Sciences, Hong Kong, 999077, SAR, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
3
|
Chaudhary P, Singha B, Abdel-Hafiz HA, Velegraki M, Sundi D, Satturwar S, Parwani AV, Grivennikov SI, You S, Goodridge HS, Ma Q, Chang Y, Ma A, Zheng B, Theodorescu D, Li Z, Li X. Sex differences in bladder cancer: understanding biological and clinical implications. Biol Sex Differ 2025; 16:31. [PMID: 40361239 PMCID: PMC12070554 DOI: 10.1186/s13293-025-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Bladder cancer (BC) remains a significant global health concern, with substantial sex and racial disparities in incidence, progression, and outcomes. BC is the sixth most common cancer among males and the seventeenth most common among females worldwide. Over 90% of BC cases are urothelial carcinoma (UC) with high degrees of pathological heterogeneity. Molecular subtyping of BC has also revealed distinct luminal, basal, and neuroendocrine subtypes, each with unique genetic and immune signatures. Emerging research uncovers the biasing effects of the sex hormones with androgens increasing BC risk through both tumor cell intrinsic and extrinsic mechanisms. The sex chromosomes, including both the X and Y chromosomes, also contribute to the sex differences in BC. The effect of sex chromosome is both independent from and synergistic with the effects of sex hormones. Loss of the Y chromosome is frequently observed in BC patients, while an extra copy of the X chromosome confers better protection against BC in females than in males. Advent of advanced technologies such as multiomics and artificial intelligence will likely further improve the understanding of sex differences in BC, which may ultimately lead to personalized preventative and treatment strategies depending on the biological sex of patients. This review delves into the impacts of biology of sex on BC, emphasizing the importance of further research into sex-specific biology to improve cancer prevention and care.
Collapse
Affiliation(s)
- Prakash Chaudhary
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Biplab Singha
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hany A Abdel-Hafiz
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno‑Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University, Comprehensive Cancer Center Board of Governors, Columbus, OH, USA
| | - Swati Satturwar
- Department of Pathology, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Anil V Parwani
- Department of Pathology, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Sergei I Grivennikov
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Helen S Goodridge
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yuzhou Chang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Bin Zheng
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno‑Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Xue Li
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Yu Y, Wu K, Song H, Wang K. Charting the landscape of intratumoral microbiota in lung cancer: From bench to bedside. Biochim Biophys Acta Rev Cancer 2025; 1880:189348. [PMID: 40339666 DOI: 10.1016/j.bbcan.2025.189348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
The intratumoral microbiota plays a critical role in lung cancer development, metastasis, and treatment response, offering valuable insights into the tumor microenvironment (TME) and revealing new therapeutic opportunities. Lung cancer remains the leading cause of cancer-related deaths worldwide, with the intratumoral microbiota exhibiting unique characteristics and functions within this disease. In this review, we summarized the origin of the intratumoral microbiota, its entry into the tumor, its detailed composition, functions, and its potential clinical applications in lung cancer. For the first time, we estimate the absolute abundance of different microbes in lung cancer, highlight the specific differences in microorganisms, and track their dynamic changes from health to disease. We also describe the overall landscape of intratumoral microbiota. Finally, we discuss the challenges and implications of this emerging field, offering insights for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Yixuan Yu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu 322000, China
| | - Kuntan Wu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu 322000, China
| | - Hai Song
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu 322000, China.
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu 322000, China.
| |
Collapse
|
5
|
Charalambous H, Brown C, Vogazianos P, Katsaounou K, Nikolaou E, Stylianou I, Papageorgiou E, Vraxnos D, Aristodimou A, Chi J, Costeas P, Shammas C, Apidianakis Y, Antoniades A. Dysbiosis in the Gut Microbiome of Pembrolizumab-Treated Non-Small Lung Cancer Patients Compared to Healthy Controls Characterized Through Opportunistic Sampling. Thorac Cancer 2025; 16:e70075. [PMID: 40356191 PMCID: PMC12069221 DOI: 10.1111/1759-7714.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The gut microbiome influences the host immune system, cancer development and progression, as well as the response to immunotherapy during cancer treatment. Here, we analyse the composition of the gut bacteriome in metastatic Non-Small Cell Lung Cancer (NSCLC) patients receiving Pembrolizumab immunotherapy within a prospective maintenance trial through opportunistic sampling during treatment. METHODS The gut microbiome profiles of NSCLC patients were obtained from stool samples collected during Pembrolizumab treatment and analysed with 16S rRNA metagenomics sequencing. Patient profiles were compared to a group of healthy individuals of matching ethnic group, age, sex, BMI and comorbidities. RESULTS A significant decrease in the treated patients was observed in two prominent bacterial families of the phylum Firmicutes, Lachnospiraceae and Ruminoccocaceae, which comprised 31.6% and 21.8% of the bacteriome in the healthy group but only 10.9% and 14.2% in the treated patient group, respectively. Species within the Lachnospiraceae and Ruminococcaceae families are known to break down undigested carbohydrates generating short chain fatty acids (SCFA), such as butyrate, acetate and propionate as their major fermentation end-products, which have been implicated in modifying host immune responses. In addition, a significant increase of the Bacteroidacaeae family (Bacteroidetes phylum) was observed from 10.7% in the healthy group to 23.3% in the treated patient group. Moreover, and in agreement with previous studies, a decrease in the Firmicutes to Bacteroidetes ratio in the metastatic NSCLC Pembrolizumab-treated patients was observed. CONCLUSION The observed differences indicate dysbiosis and a compromised intestinal health status in the metastatic NSCLC Pembrolizumab-treated patients. This data could inform future studies of immunotherapy treatment responses and modulation of the gut microbiome to minimise dysbiosis prior or concurrent to treatment. TRIAL REGISTRATION SWIPE Trial (NCT02705820).
Collapse
MESH Headings
- Humans
- Gastrointestinal Microbiome/drug effects
- Dysbiosis/chemically induced
- Dysbiosis/microbiology
- Dysbiosis/pathology
- Male
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/microbiology
- Female
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/microbiology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/adverse effects
- Middle Aged
- Aged
- Prospective Studies
- Case-Control Studies
- Antineoplastic Agents, Immunological/therapeutic use
Collapse
Affiliation(s)
| | | | - Paris Vogazianos
- Stremble Ventures LtdLimassolCyprus
- European University CyprusEngomiCyprus
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ye Z, Gao L, Guo Z, Wang Q. Oral and intestinal flora translocation and tumor development. J Cancer Res Ther 2025; 21:323-333. [PMID: 40317136 DOI: 10.4103/jcrt.jcrt_50_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/07/2025] [Indexed: 05/07/2025]
Abstract
ABSTRACT Cancer metastasis is the leading cause of death in patients. In recent years, there has been a growing recognition of the role of tumor-associated microflora in tumor metastasis. The connection between oral and gut microflora and the tumor microenvironment has also been extensively studied. The migration of oral and gut microflora is closely associated with tumor development. Although there is awareness regarding the significant impact of microbial communities on human health, the focus on their relationship with host organisms, particularly those related to tumor-associated microflora, remains inadequate. As an integral part of the body, the host microflora is crucial for regulating the cancer risk and preventing tumor recurrence. The oral-gut axis plays an indispensable role in human immunity, and many types of cancers, such as colorectal, pancreatic, and breast, are significantly influenced by their internal microbial communities. However, further exploration into the mechanisms underlying the role of the intratumoral microflora in cancer is necessary to achieve a comprehensive understanding. We have summarized and analyzed related articles in PubMed. This article reviews the impact of the oral-gut axis on the human immune system, explores the relationship between the translocation of the oral and intestinal flora and the tumor microenvironment, analyzes the specific mechanisms involved in the translocation of the oral and intestinal microflora during the evolution and progression of tumors, and elaborates on the correlations between the occurrence and development of tumors and the changes in the microflora. Finally, a summary of these abovementioned points is provided.
Collapse
Affiliation(s)
- Zhiyuan Ye
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Linglin Gao
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, The 6 Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Wang Z, Mou R, Jin S, Wang Q, Ju Y, Sun P, Xie R, Wang K. Streptococcus anginosus promotes gastric cancer progression via GSDME-mediated pyroptosis pathway: Molecular mechanisms of action of GSDME, cleaved caspase-3, and NLRP3 proteins. Int J Biol Macromol 2025; 307:142341. [PMID: 40118413 DOI: 10.1016/j.ijbiomac.2025.142341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Streptococcus vasculosus is a common oral and intestinal symbiotic bacteria, but it can transform into a pathogen under certain conditions, affecting the host's immune response. Studies have shown that Streptococcus vasculosus may promote tumor growth and metastasis by activating host inflammatory responses. This study simulated the environment of Streptococcus vascularis infection through in vitro cell culture experiment, and observed the influence of streptococcus vascularis at different time points and different concentrations on cancer cells. The expression and activity of GSDME, cleaved caspase-3 and NLRP3 proteins were detected by Western blot, immunofluorescence and flow cytometry. By constructing gene knockout and overexpression cell models, the role of these protein molecules in promoting cancer progression of Streptococcus vascularis was further verified. It was found that GSDME activation is a key step in Pyroptosis occurrence, and cleaved caspase-3 plays an important role in GSDME cleavage activation. The activation of NLRP3 inflammatome is closely related to the inflammatory response induced by Streptococcus vasculosus, and thus affects the tumor microenvironment.
Collapse
Affiliation(s)
- Zeshen Wang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Ruishu Mou
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Shiyang Jin
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Qiancheng Wang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Yuming Ju
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Pengcheng Sun
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Rui Xie
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China.
| | - Kuan Wang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China.
| |
Collapse
|
8
|
Khan ZA, Song SS, Xu H, Ahmad M, Wang A, Abdullah A, Jiang L, Ding X. Elimination of intracellular microbes using drug combination therapy and unveiling survival mechanism of host cells upon microbial invasion. Int J Antimicrob Agents 2025; 65:107471. [PMID: 39986398 DOI: 10.1016/j.ijantimicag.2025.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/16/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Intracellular microbes are actively present in various tumor types in low biomass and play a major role in metastasis. Eliminating intracellular microbes on a cellular level with precision remains a challenge. To address this issue, we designed a screening pipeline to characterize intracellular microbes and their interaction with host cells. We used host and microbial in vitro lab-based constant and reproducible model, host as (mammalian cancer HeLa), and microbial strain as (Escherichia coli 25922). To study the pharmacological impact on intracellular bacterial load, we used antibiotics (ampicillin, roxithromycin, and ciprofloxacin) and chemotherapy drugs (doxorubicin and cisplatin) as external stimuli for both host and microbes. We found that increasing pharmacological stress does not increase microbial load inside the host cells. Eliminations of intracellular bacteria was done by using permutation orthogonal arrays (POA), whereby we acquired optimal drug combination in particular sequence of drugs, which reduced 90%-95% of the intracellular microbial load. Proteomic analysis revealed that upon invasion of Escherichia coli 25922, HeLa cells enriched ATP production pathways to activate intermediate filaments, which should be investigated closely via in vivo models.
Collapse
Affiliation(s)
- Zara Ahmad Khan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China
| | - Sha-Sha Song
- Pathology Department, Yantai Fushan People's Hospital, Yantai, China
| | - Hongquan Xu
- Department of Statistics and Data Science, University of California, Los Angeles, California, USA
| | - Mashaal Ahmad
- Department of Anatomy, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China
| | - Aynur Abdullah
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China.
| |
Collapse
|
9
|
Saeidpour Masouleh S, Nasiri K, Ostovar Ravari A, Saligheh Rad M, Kiani K, Sharifi Sultani A, Nejati ST, Nabi Afjadi M. Advances and challenges in CAR-T cell therapy for head and neck squamous cell carcinoma. Biomark Res 2025; 13:69. [PMID: 40312353 PMCID: PMC12044960 DOI: 10.1186/s40364-025-00783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains among the most aggressive malignancies with limited treatment options, especially in recurrent and metastatic cases. Despite advances in surgery, radiotherapy, chemotherapy, and immune checkpoint inhibitors, survival rates remain suboptimal due to tumor heterogeneity, immune evasion, and treatment resistance. In recent years, Chimeric Antigen Receptor (CAR) T-cell therapy has revolutionized hematologic cancer treatment by genetically modifying T cells to target tumor-specific antigens like CD19, CD70, BCMA, EGFR, and HER2, leading to high remission rates. Its success is attributed to precise antigen recognition, sustained immune response, and long-term immunological memory, though challenges like cytokine release syndrome and antigen loss remain. Notably, its translation to solid tumors, including HNSCC, faces significant challenges, such as tumor microenvironment (TME)-induced immunosuppression, antigen heterogeneity, and limited CAR T-cell infiltration. To address these barriers, several tumor-associated antigens (TAAs), including EGFR, HER2 (ErbB2), B7-H3, CD44v6, CD70, CD98, and MUC1, have been identified as potential CAR T-cell targets in HNSCC. Moreover, innovative approaches, such as dual-targeted CAR T-cells, armored CARs, and CRISPR-engineered modifications, aim to enhance efficacy and overcome resistance. Notably, combination therapies integrating CAR T-cells with immune checkpoint inhibitors (e.g., PD-1/CTLA-4 blockade) and TGF-β-resistant CAR T designs are being explored to improve therapeutic outcomes. This review aimed to elucidate the current landscape of CAR T-cell therapy in HNSCC, by exploring its mechanisms, targeted antigens, challenges, emerging strategies, and future therapeutic potential.
Collapse
Affiliation(s)
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ava Ostovar Ravari
- Faculty of Dentistry, Haybusak University of Medical Sciences, Yerevan, Armenia
| | - Mona Saligheh Rad
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Kiarash Kiani
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Cui X, Li C, Zhong J, Liu Y, Xiao P, Liu C, Zhao M, Yang W. Gut microbiota - bidirectional modulator: role in inflammatory bowel disease and colorectal cancer. Front Immunol 2025; 16:1523584. [PMID: 40370465 PMCID: PMC12075242 DOI: 10.3389/fimmu.2025.1523584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
The gut microbiota is a diverse ecosystem that significantly impacts human health and disease. This article focuses on how the gut microbiota interacts with inflammatory bowel diseases and colorectal tumors, especially through immune regulation. The gut microbiota plays a role in immune system development and regulation, while the body's immune status can also affect the composition of the microbiota. These microorganisms exert pathogenic effects or correct disease states in gastrointestinal diseases through the actions of toxins and secretions, inhibition of immune responses, DNA damage, regulation of gene expression, and protein synthesis. The microbiota and its metabolites are essential in the development and progression of inflammatory bowel diseases and colorectal tumors. The complexity and bidirectionality of this connection with tumors and inflammation might render it a new therapeutic target. Hence, we explore therapeutic strategies for the gut microbiota, highlighting the potential of probiotics and fecal microbiota transplantation to restore or adjust the microbial community. Additionally, we address the challenges and future research directions in this area concerning inflammatory bowel diseases and colorectal tumors.
Collapse
Affiliation(s)
- Xilun Cui
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Zhong
- Department of Medical Imaging, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mengwei Zhao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
11
|
Dai H, Yang H, Wang R, Wang X, Zhang X. Modulating Gut Microbiota with Dietary Components: A Novel Strategy for Cancer-Depression Comorbidity Management. Nutrients 2025; 17:1505. [PMID: 40362814 PMCID: PMC12073834 DOI: 10.3390/nu17091505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Gut microbiota play a critical role in mediating the bidirectional association between cancer and depression. Emerging evidence indicates that adjusting the dietary component intake can significantly alter gut microbiota composition, thereby influencing the host's metabolism and immune function. Changes in gut microbiota and their metabolites may represent key factors in preventing cancer-depression comorbidity. METHODS English publications were searched in databases including the Web of Science, Scopus, and PubMed using a series of keywords: "cancer", "depression", "gut microbiota", "dietary components", and related terms, individually or in combination. The search focused on preclinical and clinical studies describing the regulatory effects of dietary component interventions. RESULTS This narrative review summarizes the associations among gut microbiota, cancer, and depression, and synthesizes current evidence on the modulatory effects and mechanisms of specific dietary component interventions, including dietary patterns, probiotics, prebiotics, and diet-derived phytochemicals, on gut microbiota. On the one hand, these interventions inhibit abnormal proliferation signals in the tumor microenvironment and enhance anticancer immune responses; on the other hand, they modulate neurotransmitter homeostasis, suppress neuroinflammation, and improve mood behaviors through the gut-brain axis interactions mediated by microbial metabolites. CONCLUSIONS The complex associations among cancer, depression, and gut microbiota require further clarification. Modulating gut microbiota composition through dietary components represents a novel therapeutic strategy for improving cancer-depression comorbidity. Regulated gut microbiota enhance immune homeostasis and intestinal barrier function, while their metabolites bidirectionally modulate one another via systemic circulation and the gut-brain axis, thereby improving both the tumor microenvironment and depressive-like behaviors in cancer patients while reducing the adverse effects of cancer.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Haiyi Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuanpeng Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
12
|
Xie J, Zhu N, Xu W. Integrative multi-omics analysis of the microbiome and metabolome in bronchoalveolar lavage fluid from patients with early-stage lung cancer. Front Cell Infect Microbiol 2025; 15:1513270. [PMID: 40357400 PMCID: PMC12066597 DOI: 10.3389/fcimb.2025.1513270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Lung cancer is a significant health concern that poses a considerable threat to human health and quality of life. In order to enhance the prognosis of patients with lung cancer, we conducted a combined analysis of 16S rDNA gene sequencing of alveolar lavage fluid and LC-MS metabolomics research, with the objective of identifying biomarkers in patients with early-stage lung cancer presenting as SPN. A comparison of the benign nodule group and the early-stage lung cancer patients revealed that the phylum-level Bacteroidetes and the genus-level Chryseobacterium and Delftia were more abundant in the latter group. Additionally, the Fusobacteriales might serve as a predictive marker for the diagnosis of early-stage lung cancer. In the context of metabolomics, the early-stage lung cancer was found to be characterised by elevated levels of specific metabolites, including Alternariol, dTMP, Oxymatrine, Gedunin, PC 36:4. Conversely, reductions in other metabolites, such as LPC O-24:0, PC 18:2_18:3, PC 19:2_19:2, Cholecalciferol and T-2 Triol, were also observed. Correlation analyses demonstrated that alveolar lavage microorganisms were closely associated with differential metabolites. Specifically, reductions in Cholecalciferol were associated with a variety of high-abundance flora and involved in vitamin digestion and absorption pathways. Furthermore, reductions in cholecalciferol may serve as a robust predictor of early-stage lung cancer. These findings provide new predictive biomarkers for early-stage lung cancer manifested by SPN, which is clinically important and requires further study of the potential mechanisms of action and function of the targets.
Collapse
Affiliation(s)
| | | | - Weiguo Xu
- Department of Respiratory and Critical Care Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
13
|
Wang Y, Liu W, Liu L, He Y, Luo H, Fang C. Causal effect of gut microbiota on the risk of cancer and potential mediation by inflammatory proteins. World J Surg Oncol 2025; 23:163. [PMID: 40287752 PMCID: PMC12032672 DOI: 10.1186/s12957-025-03822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND While growing evidence highlights the role of gut microbiota and inflammatory proteins in cancer, with cancer-related inflammation now considered the seventh hallmark of cancer, the direct causal relationships between specific microbiota, cancer, and the potential mediating effects of inflammatory proteins have not been fully established. METHODS We employed Mendelian randomization (MR) to assess the causal relationships between gut microbiota, inflammatory proteins, and eighteen distinct cancers using data from extensive genome-wide association studies (GWAS). The primary statistical method utilized was inverse variance weighting (IVW). We also investigated whether inflammatory proteins could mediate the effects of gut microbiota on cancer development. RESULTS Our findings revealed 42 positive and 49 inverse causal impacts of gut microbiota on cancer risk (P < 0.05). Additionally, we identified 32 positive and 28 inverse causal relationships between inflammatory proteins and cancer risk. Moreover, genus Collinsella decreased the risk of lung cancer by decreasing levels of T-cell surface glycoprotein CD5 (mediating effect = 16.667%), while genus Ruminococcaceae UCG005 increased the risk of mesothelioma by increasing levels of CCL4 (mediating effect = 5.134%). CONCLUSIONS Our study provides evidence for a causal association between gut microbiota, inflammatory proteins, and eighteen different cancer types. Notably, the T-cell surface glycoprotein CD5 and CCL4 were identified as mediators linking the genus Collinsella with lung cancer and the genus Ruminococcaceae UCG005 with mesothelioma, respectively.
Collapse
Affiliation(s)
- Yao Wang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong Province, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wanli Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Liwen Liu
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong Province, China
| | - Yanli He
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| | - Huanhuan Luo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong Province, China.
| | - Cantu Fang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong Province, China.
| |
Collapse
|
14
|
Ghogare SS, Pathan EK. Intratumor fungi specific mechanisms to influence cell death pathways and trigger tumor cell apoptosis. Cell Death Discov 2025; 11:188. [PMID: 40258837 PMCID: PMC12012188 DOI: 10.1038/s41420-025-02483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/29/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
Cancer, uncontrolled cell growth due to the loss of cell cycle regulation, is often found to be associated with viral infections and, as recent studies show, with bacterial infections as well. Emerging reports also suggest a strong link between fungi and cancer. The crucial virulence trait of fungi, the switch from yeast (Y) to hyphal (H) form, is found to be associated with carcinogenesis. The physicochemical properties and signal transduction pathways involved in the switch to the hyphal form overlap with those of tumor cell formation. Inhibiting differentiation causes apoptosis in fungi, whereas preventing apoptosis leads to cancer in multicellular organisms. Literature on the fungi-cancer linkage, though limited, is increasing rapidly. This review examines cancer-specific fungal communities, the impact of fungal microbiome on cancer cell progression, similarities between fungal differentiation and cells turning cancerous at biochemical and molecular levels, including the overlaps in signal transduction pathways between fungi and cancer. Based on the available evidence, we suggest that molecules inhibiting the yeast-hyphal transition in fungi can be combined with those targeting tumor cell apoptosis for effective cancer treatment. The review points out fertile research areas where mycologists and cancer researchers can collaborate to unravel common molecular mechanisms. Moreover, antibodies targeting fungal-specific chitin and glucan can be used for the selective neutralization of tumor cells. These new combinations of potential therapies are expected to facilitate the development of target-specific, less harmful and commercially feasible anticancer therapies. We bring together available evidence to argue that fungal infections could either trigger cancer or have a significant role in the development and progression of cancer. Hence, cancer-associated fungal populations could be utilized as a target for a combination therapy involving the integration of anticancer and antifungal drugs as well as inhibitors of fungal morphogenesis to develop more effective anticancer therapies.
Collapse
Affiliation(s)
- Simran S Ghogare
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) Lavale, Pune, 412115, Maharashtra, India
| | - Ejaj K Pathan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
15
|
Gao J, Tang L, Fu C, Cao Y, Liu H, Yin Y, Li Z, Zhu Y, Shu W, Zhang Y, Ru X, Wang W. A Nano-Strategy for Advanced Triple-Negative Breast Cancer Therapy by Regulating Intratumoral Microbiota. NANO LETTERS 2025; 25:6134-6144. [PMID: 40177896 DOI: 10.1021/acs.nanolett.5c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Intratumoral microbiota have been identified as a component of the tumor microenvironment that regulates the metastatic behavior of tumors. They serve not only as indicators of tumor pathology but also as potential drug targets in cancer therapy. Herein, a multifunctional nanoplatform (DD@FEL) is prepared by combining antibiotic doxycycline (DOXY) that can combat intratumoral microbiota and the chemotherapeutic drug doxorubicin (DOX) in ergosterol-originated liposome. Specially, ergosterol is utilized as a substitute for cholesterol in liposomes to exert pharmacological activity. Mechanistically, DD@FEL leveraged DOXY to inhibit cancer metastasis based on the regulation of intratumoral microbiota, which synergizes with the chemotherapeutic effect of DOX, eventually inhibiting the progression of triple-negative breast cancer (TNBC). Verified both in vitro and in vivo, DD@FEL effectively exerts a cytotoxic effect on TNBC cells, delays the growth of primary TNBC, and attenuates the development of its lung metastasis, providing a promising therapeutic strategy to control both orthotopic and metastatic TNBC.
Collapse
Affiliation(s)
- Jifan Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn 53127, Germany
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zixuan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuanbo Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weijie Shu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xinrong Ru
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
16
|
Gao L, Jiang F. Streptococcus pneumoniae infection is associated with Matrix Metalloproteinase-9 in Lung Cancer Progression and Brain Metastases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.15.25325903. [PMID: 40321254 PMCID: PMC12047908 DOI: 10.1101/2025.04.15.25325903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Matrix metalloproteinases (MMPs) are critical mediators of extracellular matrix remodeling, playing a pivotal role in the progression and metastasis of lung cancer. Emerging evidence indicates that bacterial pathogens, such as Streptococcus pneumoniae (SP), can modulate MMP activity and contribute to tumor progression. This study quantified SP abundance in lung cancer tissues and investigated its relationship with MMP-9 and MMP-2 expression, as well as its impact on clinical outcomes. SP DNA levels were assessed using droplet digital PCR, and MMP-9 and MMP-2 protein expression were evaluated by immunohistochemistry in 120 lung cancer samples. Elevated SP abundance was significantly associated with increased MMP-9 expression, advanced lung cancer stages, greater brain metastases burden, and reduced overall survival (P < 0.05). However, SP abundance showed no correlation with MMP-2 expression. These findings highlight a direct link between SP infection and lung cancer progression through MMP-9-mediated extracellular matrix degradation and metastatic spread. Targeting the SP-MMP-9 axis may represent a novel therapeutic approach to mitigate metastasis and improve patient outcomes in lung cancer.
Collapse
Affiliation(s)
- Lu Gao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- BIOTARGET DX LLC, 7193 Somerton Ct, Hanover, Maryland 21076, USA
| |
Collapse
|
17
|
Liu S, Qi L, Dong L, Sun W, Liu S, Li P, Zhang N. Prognostic implications of the interaction between intratumoral microbiome and immune response in gastric cancer. Microbiol Spectr 2025; 13:e0283024. [PMID: 40202312 PMCID: PMC12054076 DOI: 10.1128/spectrum.02830-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/08/2025] [Indexed: 04/10/2025] Open
Abstract
Gastric cancer (GC) prognosis is significantly influenced by intratumoral microbiomes, which modulate host-immune interactions. This study analyzed data from the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to identify immune genes associated with GC prognosis and conducted prognostic immune subtypes. GC patients were classified into two distinct prognostic immune phenotypes C1 and C2 based on the non-negative matrix factorization consensus clusters. Phenotype C2 exhibited a better prognosis and distinct immune characteristics, including enhanced presence of Th2 and Th17 cells and improved response to chemotherapy. In contrast, phenotype C1 showed higher expression levels of PDCD1LG2 and TLR9, which were critical immune factors involved in immune regulation. Both phenotypes were linked to immune genes influencing intratumoral microbiomes and GC immunotherapy responses. A prediction risk model was constructed using the LASSO regression analysis and showed great prognostic value for GC patients. The key genes were correlated with immune cells and suppressed the function of the host immune system. The intratumoral microbiomes were strongly associated with the hosts' immune infiltration and significantly interacted with host immune genes to influence GC outcomes. Candidatus Nitrosotenuis plays a significant role in predicting the prognosis of GC patients. This research underscores the pivotal role of intratumoral microbiomes in GC prognosis and supports the development of future personalized therapeutic approaches.IMPORTANCEIncreasing evidence confirms the presence of intratumoral microbiomes. However, the role of the intratumoral microbiomes in the progression of gastric cancer and their relationship with the immune microenvironment remain unclear. Our study classified gastric cancer patients into two immune prognostic subtypes, C1 and C2, using non-negative matrix factorization consensus clusters. The C2 subtype exhibited a better prognosis and more pronounced immune characteristics. Microbiome analyses revealed associations between both subtypes and immune genes that affect intratumoral microbiomes and their responses to immunotherapy. The intratumoral microbiomes were closely linked with host immune infiltration and significantly interacted with immune genes, which influence the prognosis of gastric cancer. Notably, Candidatus Nitrosotenuis showed a significant prognostic value in gastric cancer patients. Our findings highlight the critical role of the intratumoral microbiomes in affecting gastric cancer prognosis and its interaction with the immune microenvironment, supporting future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sifan Liu
- Department of Gastroenterology, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesions of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lingyu Qi
- Department of Gastroenterology, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesions of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lu Dong
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Wenjing Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Siying Liu
- Department of Gastroenterology, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesions of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Li
- Department of Gastroenterology, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesions of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nan Zhang
- Department of Gastroenterology, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesions of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Zouiouich S, Wan Y, Vogtmann E, Porras C, Abnet CC, Shi J, Sinha R. Sample Size Estimations Based on Human Microbiome Temporal Stability Over 6 Months: A Shallow Shotgun Metagenome Sequencing Analysis. Cancer Epidemiol Biomarkers Prev 2025; 34:588-597. [PMID: 39927868 DOI: 10.1158/1055-9965.epi-24-0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Biological factors affect the human microbiome, highlighting the need for reasonably estimating sample sizes in future population studies. METHODS We assessed the temporal stability of fecal microbiome diversity, species composition, and genes and functional pathways through shallow shotgun metagenome sequencing. Using intraclass correlation coefficients (ICC), we measured biological variability over 6 months. We estimated case numbers for 1:1 or 1:3 matched case-control studies, considering significance levels of 0.05 and 0.001 with 80% power, based on the collected fecal specimens per participant. RESULTS The fecal microbiome's temporal stability over 6 months varied (ICC < 0.6) for most alpha and beta diversity metrics. Heterogeneity was seen in species, genes, and pathways stability (ICC, 0.0-0.9). Detecting an OR of 1.5 per SD required 1,000 to 5,000 cases (0.05 significance for alpha and beta; 0.001 for species, genes, and pathways) with equal cases and controls. Low-prevalence species needed 15,102 cases, and high-prevalence species required 3,527. Similar needs applied to genes and pathways. In a 1:3 matched case-control study with one fecal specimen, 10,068 cases were needed for low-prevalence species and 2,351 for high-prevalence species. For ORs of 1.5 with multiple specimens, cases needed for low-prevalence species were 15,102 (one specimen), 8,267 (two specimens), and 5,989 (three specimens). CONCLUSIONS Detecting disease associations requires a large number of cases. Repeating prediagnostic samples and matching cases to more controls could decrease the needed number of cases for such detections. IMPACT Our results will help future epidemiologic study designs and implement well-powered microbiome studies.
Collapse
Affiliation(s)
- Semi Zouiouich
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Yunhu Wan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Carolina Porras
- Costa Rican Agency for Biomedical Research-INCIENSA Foundation, San José, Costa Rica
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
19
|
Wang R, Wang Z, Zhang M, Zhong D, Zhou M. Application of photosensitive microalgae in targeted tumor therapy. Adv Drug Deliv Rev 2025; 219:115519. [PMID: 39955076 DOI: 10.1016/j.addr.2025.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 02/17/2025]
Abstract
Microalgae present a novel and multifaceted approach to cancer therapy by modulating the tumor-associated microbiome (TAM) and the tumor microenvironment (TME). Through their ability to restore gut microbiota balance, reduce inflammation, and enhance immune responses, microalgae contribute to improved cancer treatment outcomes. As photosynthetic microorganisms, microalgae exhibit inherent anti-tumor, antioxidant, and immune-regulating properties, making them valuable in photodynamic therapy and tumor imaging due to their capacity to generate reactive oxygen species. Additionally, microalgae serve as effective drug delivery vehicles, leveraging their biocompatibility and unique structural properties to target the TME more precisely. Microalgae-based microrobots further expand their therapeutic potential by autonomously navigating complex biological environments, offering a promising future for precision-targeted cancer treatments. We position microalgae as a multifunctional agent capable of modulating TAM, offering novel strategies to enhance TME and improve the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Ruoxi Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Haining 314400, China
| | - Zhouyue Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Min Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Danni Zhong
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Haining 314400, China.
| |
Collapse
|
20
|
Yang H, Jin C, Li J, Zhang Z, Zhao K, Yin X, Wang Z, Zhu G, Yan X, Jiang Z, Qi Y, Ma X, Wang K. Causal relationship between bladder cancer and gut microbiota contributes to the gut-bladder axis: A two-sample Mendelian randomization study. Urol Oncol 2025; 43:267.e9-267.e18. [PMID: 39489648 DOI: 10.1016/j.urolonc.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/22/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Recent studies have underscored a potential link between gut microbiota and urological tumors, yet the causal relationship with bladder cancer (BCa) and the role of metabolic pathways remain unclear. METHODS Instrumental variables (IVs) for gut microbiota were obtained from genome-wide association studies (GWAS) conducted by the MiBioGen consortium (n = 18,340). GWAS data for BCa were sourced from a comprehensive genome-wide meta-analysis encompassing 23 cohorts. Mendelian randomization (MR) was employed to investigate the causal relationship between gut microbiota and BCa, utilizing inverse variance weighted (IVW) as the primary MR method. Additionally, metabolic pathways associated with these microbiota were analyzed to understand their functional roles in BCa pathogenesis. Sensitivity analyses were conducted to validate all MR results. RESULTS The MR analysis identified five gut microbiota taxa with a causal association with BCa, with the genus Bilophila notably promoting BCa. Metabolic pathway analysis revealed significant associations between specific pathways and BCa, suggesting that changes in amino acid and NAD metabolism might influence BCa development. Sensitivity analyses indicated no significant heterogeneity or horizontal pleiotropy among the IVs. CONCLUSION This study revealed the significant causal relationship between gut microbiota and BCa, particularly identifying Bilophila as a key pathogenic initiator. These findings elucidated the potential impact of metabolic pathways, especially amino acid and NAD metabolism, on the pathogenesis of BCa. They not only laid the foundation for innovative therapeutic strategies but also highlighted the immense potential of microbiota-based interventions in the prevention and treatment of BCa, paving the way for new directions in precision medicine.
Collapse
Affiliation(s)
- Han Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Jin
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Li
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Zongliang Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kai Zhao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinbao Yin
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenlin Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanqun Zhu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuechuan Yan
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zaiqing Jiang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yixin Qi
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China.
| | - Ke Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
21
|
Chae S, Chae S, Kang TG, Kim SJ, Choi A. Optimization-Incorporated Deep Learning Strategy to Automate L3 Slice Detection and Abdominal Segmentation in Computed Tomography. Bioengineering (Basel) 2025; 12:367. [PMID: 40281727 PMCID: PMC12025211 DOI: 10.3390/bioengineering12040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
This study introduces a deep learning-based strategy to automatically detect the L3 slice and segment abdominal tissues from computed tomography (CT) images. Accurate measurement of muscle and fat composition at the L3 level is critical as it can serve as a prognostic biomarker for cancer diagnosis and treatment. However, current manual approaches are time-consuming and prone to class imbalance, since L3 slices constitute only a small fraction of the entire CT dataset. In this study, we propose an optimization-incorporated strategy that integrates augmentation ratio and class weight adjustment as correction design variables within deep learning models. In this retrospective study, the CT dataset was privately collected from 150 prostate cancer and bladder cancer patients at the Department of Urology of Gangneung Asan Hospital. A ResNet50 classifier was used to detect the L3 slice, while standard Unet, Swin-Unet, and SegFormer models were employed to segment abdominal tissues. Bayesian optimization determines optimal augmentation ratios and class weights, mitigating the imbalanced distribution of L3 slices and abdominal tissues. Evaluation of CT data from 150 prostate and bladder cancer patients showed that the optimized models reduced the slice detection error to approximately 0.68 ± 1.26 slices and achieved a Dice coefficient of up to 0.987 ± 0.001 for abdominal tissue segmentation-improvements over the models that did not consider correction design variables. This study confirms that balancing class distribution and properly tuning model parameters enhances performance. The proposed approach may provide reliable and automated biomarkers for early cancer diagnosis and personalized treatment planning.
Collapse
Affiliation(s)
- Seungheon Chae
- Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Seongwon Chae
- Department of Biomedical Engineering, College of Medical Convergence, Catholic Kwandong University, Gangneung 25601, Republic of Korea;
| | - Tae Geon Kang
- Institute for Trauma Research, College of Medicine, Korea University, Seoul 02708, Republic of Korea;
| | - Sung Jin Kim
- Department of Urology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung 25440, Republic of Korea
| | - Ahnryul Choi
- Department of Biomedical Engineering, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
22
|
Chen Y, Wu J, Cai K, Xiao X, Chen Y, Zhang X, Deng S, Pei C, Chen Y, Xie Z, Li P, Liao Q. Bifidobacterium longum subsp. longum XZ01 delays the progression of colon cancer in mice through the interaction between the microbial spatial distribution and tumour immunity. Int Immunopharmacol 2025; 150:114283. [PMID: 39955918 DOI: 10.1016/j.intimp.2025.114283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/25/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Studies have shown that the colonisation of active microorganisms is more conducive to the development of tumour immunotherapy, but intuitive evidence regarding shaping of the tumour immune microenvironment is lacking. In this study, we used Bifidobacterium longum subsp. longum (XZ01) to intervene in a colon cancer mouse model and found that its mechanism may be related to the interaction between the spatial distribution of microorganisms and tumour immunity. Through the visualisation method we established, for the first time, we showed that harmful active bacteria such as Streptococcus and Rhodococcus specifically accumulate in the middle and upper layers of tumour tissue. These bacteria likely participate in signalling pathways that affect macrophages by directly contacting or invading the macrophages, leading to a nondifferentiated state in macrophages and the loss of some immune functions. Furthermore, the accumulation of Streptococcus and Rhodococcus fragments in the deep layer of tumour tissue likely upregulates the expression of IL-10 in tumour tissue and inhibits other immune cells, such as CD8+ T cells, DC and NK cells. In contrast, XZ01 can specifically compete for the growth sites of Streptococcus and Rhodococcus in the middle and upper layers of tumour tissue and probably protects macrophages from being invaded by harmful bacteria. XZ01 directly regulates the polarisation of M0 macrophages towards the M1 phenotype by upregulating IFN-γ, thus activating tumour immunity to inhibit the growth of tumour cells. This study revealed that the influence of active microorganisms on the tumour immune microenvironment is crucial for effective immunotherapy intervention, potentially offering new targets for improving patient prognosis.
Collapse
Affiliation(s)
- Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangdong Yunfu Vocational College of Chinese Medicine, Yunfu 527300, China
| | - Jinyun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Song Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
23
|
Chen Y, Huang Y, Li W, Zhu T, Cheng M, Wu C, Zhang L, Peng H, Wang K. Intratumoral microbiota-aided fusion radiomics model for predicting tumor response to neoadjuvant chemoimmunotherapy in triple-negative breast cancer. J Transl Med 2025; 23:352. [PMID: 40114207 PMCID: PMC11924647 DOI: 10.1186/s12967-025-06369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Neoadjuvant chemoimmunotherapy (NACI) has emerged as the standard treatment for early-stage triple-negative breast cancer (TNBC). However, reliable biomarkers for identifying patients who are likely to benefit from NACI are lacking. This study aims to develop an intratumoral microbiota-aided radiomics model for predicting pathological complete response (pCR) in patients with TNBC. METHODS Intratumoral microbiota are characterized by 16S rDNA sequencing and quantified through experimental assays. Single-cell RNA sequencing is performed to analyze the tumor microenvironment of tumors with various responses to NACI. Radiomics features are extracted from tumor regions on longitudinal magnetic resonance images (MRIs) scanned before and after NACI in the training set. On the basis of treatment response (pCR or non-pCR) and intratumoral microbiota scoring, we select key radiomics features and construct a fusion model integrating multi-timepoint (pre-NACI and post-NACI) MRI to predict the efficacy of immunotherapy, followed by independent external validation. RESULTS A total of 124 patients are enrolled, with 88 in the training set and 36 in the validation set. Tumors from patients who achieves pCR present a significantly greater intratumoral microbiota load than tumors from patients who achieve non-pCR (p < 0.05). Additionally, tumors in non-pCR group exhibit greater infiltration of tumor-associated SPP1+ macrophages, which is negatively correlated with the microbiota load. On the basis of intratumoral microbiota scoring, we select 17 radiomics features and use them to construct the fusion radiomics model. The fusion model achieves the highest AUC of 0.945 in the training set, outperforming pre-NACI (AUC = 0.875) and post-NACI (AUC = 0.917) models. In the validation set, this model maintains a superior AUC of 0.873, surpassing those of pre-NACI (AUC = 0.769) and post-NACI (AUC = 0.802) models. Clinically, the fusion model distinguishes patients who achieve pCR from those who do not with an accuracy of 77.8%. Decision curve analysis demonstrates the superior net clinical benefit of this model across varying risk thresholds. CONCLUSIONS Our intratumoral microbiota-aided radiomics model could serve as a powerful and noninvasive tool for predicting the response of patients with early-stage TNBC to NACI.
Collapse
Affiliation(s)
- Yilin Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, People's Republic of China
| | - Yuhong Huang
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, People's Republic of China
| | - Wei Li
- Department of Breast Cancer, The First People's Hospital of Foshan, 81 Lingnan Road North, Chancheng District, Foshan, 528000, People's Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Teng Zhu
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, People's Republic of China
| | - Minyi Cheng
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, People's Republic of China
| | - Cangui Wu
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, People's Republic of China
| | - Liulu Zhang
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, People's Republic of China
| | - Hao Peng
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, People's Republic of China.
| | - Kun Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
24
|
Gu C, Sha G, Zeng B, Cao H, Cao Y, Tang D. Therapeutic potential of fecal microbiota transplantation in colorectal cancer based on gut microbiota regulation: from pathogenesis to efficacy. Therap Adv Gastroenterol 2025; 18:17562848251327167. [PMID: 40104324 PMCID: PMC11915259 DOI: 10.1177/17562848251327167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide, with its progression intricately linked to gut microbiota dysbiosis. Disruptions in microbial homeostasis contribute to tumor initiation, immune suppression, and inflammation, establishing the microbiota as a key therapeutic target. Fecal microbiota transplantation (FMT) has emerged as a transformative approach to restore microbial balance, enhance immune responses, and reshape the tumor microenvironment. This review explores the mechanisms underlying FMT's therapeutic potential, evaluates its advantages over other microbiota-based interventions, and addresses challenges such as donor selection, safety concerns, and treatment standardization. Looking forward, the integration of FMT into personalized CRC therapies requires robust clinical trials and the identification of predictive biomarkers to optimize its efficacy and safety.
Collapse
Affiliation(s)
- Chen Gu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binbin Zeng
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Herong Cao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yibo Cao
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Tang
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou 225000, China
- The Yangzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221000, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, 225000, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| |
Collapse
|
25
|
Yang Y, Meng Y, Xu Z, Zhang Q, Li M, Kong F, Zhang S, Li X, Zhu Y. Leveraging microbiome signatures to predict tumor immune microenvironment and prognosis of patients with endometrial carcinoma. Discov Oncol 2025; 16:299. [PMID: 40069468 PMCID: PMC11896907 DOI: 10.1007/s12672-025-02038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Recent studies suggest that the human microbiome influence tumor development. Endometrial carcinoma (EC) is the sixth most common malignancy in women. Recent research has demonstrated the microbes play a critical role in the development and metastasis of EC. However, it remains unclear whether intratumoral microbes are associated with tumor microenvironment (TME) and prognosis of EC. In this study, we collected the EC microbiome data from cBioPortal and constructed a prognostic model based on Resident Microbiome of Endometrium (RME). We then examined the relationship between the RME score, immune cell infiltration, immunotherapy-related signature, and prognosis. The findings demonstrated the independent prognostic value of the RME score for EC. The group with low RME scores had higher enrichment of immune cells. Drug sensitivity analysis revealed that the RME score may serve as a potential predictor of chemotherapy efficacy. In conclusion, our research offers new perspectives on the relationships between tumor immunity and microbes.
Collapse
Affiliation(s)
- Yuting Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yuchen Meng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Ziyang Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Qin Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Miaomiao Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Fanbing Kong
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Suping Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xinling Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| | - Yihua Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
26
|
Jin X, Gu Y, Song X. Research status of the relationship between microecological imbalance and lung cancer. Front Microbiol 2025; 16:1558379. [PMID: 40130240 PMCID: PMC11931131 DOI: 10.3389/fmicb.2025.1558379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Microecology refers to the ecosystem formed by human and microbial communities in the process of co-evolution, the microecological imbalance is associated with occurrence and development of multiple diseases, including lung cancer. In this review, we detailedly summarized the concept and roles of microecology, the relationship between microecology and human diseases, and related techniques in microecology studies. Importantly, we specially analyzed the correlations between microecology and lung cancer by focusing on gut microbiota, oral microbiota and lower respiratory tract microbiota, and further evaluated the effects of microbiota dysbiosis on chemotherapy and immunotherapy efficacy in lung cancer. At last, we discussed the potential mechanisms by which dysregulated microbiota promotes the genesis and development of lung cancer. Microecology-centered detection and intervention will improve the early diagnosis of lung cancer and provide new targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xin Jin
- Department of Clinical Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yangang Gu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaojie Song
- Department of Respiratory and Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
27
|
Chen P, Liu Q, Shi H, Liu Z, Yang X. Choline metabolism disorder induced by Prevotella is a risk factor for endometrial cancer in women with polycystic ovary syndrome. Mol Biol Rep 2025; 52:285. [PMID: 40047940 DOI: 10.1007/s11033-025-10392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine disorder associated with an increased risk of endometrial cancer, potentially mediated by vaginal microbiota dysbiosis and hormonal disturbances. This study investigates how hormonal imbalances in PCOS patients affect the vaginal microbiome and choline metabolism, thereby influencing endometrial cancer risk. METHODS In this observational study, 70 women were enrolled, including 36 with PCOS and 34 controls. We analyzed their vaginal microbiota, lipid metabolism, and endometrial transcriptome using 16S rRNA sequencing, untargeted lipidomics, and transcriptomic sequencing. RESULTS The PCOS group showed significant differences in vaginal microbiota composition, notably an increase in LPS-producing Prevotella spp. Functional analyses indicated activation of LPS biosynthesis and inflammatory signaling pathways. Lipidomics revealed disrupted choline metabolism, with alterations in phosphocholine and total choline levels. Transcriptomic data highlighted the up-regulation of inflammatory and metabolic dysregulation pathways. CONCLUSIONS Hormonal imbalances in PCOS contribute to significant changes in the vaginal microbiome and metabolic pathways, increasing the risk of endometrial cancer. These findings suggest potential therapeutic targets for reducing cancer risk in this population.
Collapse
Affiliation(s)
- Peigen Chen
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianru Liu
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Shi
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyu Liu
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Yang
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Shi Z, Li M, Zhang C, Li H, Zhang Y, Zhang L, Li X, Li L, Wang X, Fu X, Sun Z, Zhang X, Tian L, Zhang M, Chen WH, Li Z. Butyrate-producing Faecalibacterium prausnitzii suppresses natural killer/T-cell lymphoma by dampening the JAK-STAT pathway. Gut 2025; 74:557-570. [PMID: 39653411 PMCID: PMC12013593 DOI: 10.1136/gutjnl-2024-333530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Natural killer/T-cell lymphoma (NKTCL) is a highly aggressive malignancy with a dismal prognosis, and gaps remain in understanding the determinants influencing disease outcomes. OBJECTIVE To characterise the gut microbiota feature and identify potential probiotics that could ameliorate the development of NKTCL. DESIGN This cross-sectional study employed shotgun metagenomic sequencing to profile the gut microbiota in two Chinese NKTCL cohorts, with validation conducted in an independent Korean cohort. Univariable and multivariable Cox proportional hazards analyses were applied to assess associations between identified marker species and patient outcomes. Tumour-suppressing effects were investigated using comprehensive in vivo and in vitro models. In addition, metabolomics, RNA sequencing, chromatin immunoprecipitation sequencing, Western blot analysis, immunohistochemistry and lentiviral-mediated gene knockdown system were used to elucidate the underlying mechanisms. RESULTS We first unveiled significant gut microbiota dysbiosis in NKTCL patients, prominently marked by a notable reduction in Faecalibacterium prausnitzii which correlated strongly with shorter survival among patients. Subsequently, we substantiated the antitumour properties of F. prausnitzii in NKTCL mouse models. Furthermore, F. prausnitzii culture supernatant demonstrated significant efficacy in inhibiting NKTCL cell growth. Metabolomics analysis revealed butyrate as a critical metabolite underlying these tumour-suppressing effects, validated in three human NKTCL cell lines and multiple tumour-bearing mouse models. Mechanistically, butyrate suppressed the activation of Janus kinase-signal transducer and activator of transcription pathway through enhancing histone acetylation, promoting the expression of suppressor of cytokine signalling 1. CONCLUSION These findings uncover a distinctive gut microbiota profile in NKTCL and provide a novel perspective on leveraging the therapeutic potential of F. prausnitzii to ameliorate this malignancy.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Min Li
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
- Chinese PLA General Hospital and Medical School, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongwen Li
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Li Tian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan, China
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Han X, Song K. TphPMF: A microbiome data imputation method using hierarchical Bayesian Probabilistic Matrix Factorization. PLoS Comput Biol 2025; 21:e1012858. [PMID: 40067818 PMCID: PMC11957397 DOI: 10.1371/journal.pcbi.1012858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/31/2025] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
In microbiome research, data sparsity represents a prevalent and formidable challenge. Sparse data not only compromises the accuracy of statistical analyses but also conceals critical biological relationships, thereby undermining the reliability of the conclusions. To tackle this issue, we introduce a machine learning approach for microbiome data imputation, termed TphPMF. This technique leverages Probabilistic Matrix Factorization, incorporating phylogenetic relationships among microorganisms to establish Bayesian prior distributions. These priors facilitate posterior predictions of potential non-biological zeros. We demonstrate that TphPMF outperforms existing microbiome data imputation methods in accurately recovering missing taxon abundances. Furthermore, TphPMF enhances the efficacy of certain differential abundance analysis methods in detecting differentially abundant (DA) taxa, particularly showing advantages when used in conjunction with DESeq2-phyloseq. Additionally, TphPMF significantly improves the precision of cross-predicting disease conditions in microbiome datasets pertaining to type 2 diabetes and colorectal cancer.
Collapse
Affiliation(s)
- Xinyu Han
- School of Mathematics and Statistics, Qingdao University, Qingdao, China
| | - Kai Song
- School of Mathematics and Statistics, Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Zhang S, Peng L, Goswami S, Li Y, Dang H, Xing S, Feng P, Nigro G, Liu Y, Ma Y, Liu T, Yang J, Jiang T, Yang Y, Barker N, Sansonetti P, Kundu P. Intestinal crypt microbiota modulates intestinal stem cell turnover and tumorigenesis via indole acetic acid. Nat Microbiol 2025; 10:765-783. [PMID: 39972061 DOI: 10.1038/s41564-025-01937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025]
Abstract
Intestinal crypts harbour a specific microbiota but whether and how these bacteria regulate intestinal stem cells (ISCs) or influence colorectal cancer (CRC) development is unclear. Here we screened crypt-resident bacteria in organoids and found that indole acetic acid (IAA) secreted by Acinetobacter radioresistens inhibits ISC turnover. A. radioresistens inhibited cellular proliferation in tumour slices from CRC patients and inhibited intestinal tumorigenesis and spheroid initiation in APCMin/+ mice. Targeted clearance of A. radioresistens from colonic crypts using bacteriophage increased EphB2 expression and consequently promoted cellular proliferation, ISC turnover and tumorigenesis in mouse models of CRC. The protective effects of A. radioresistens were abrogated upon deletion of trpC to prevent IAA production, or upon intestine-specific aryl hydrocarbon receptor (AhR) knockout, identifying an IAA-AhR-Wnt-β-catenin signalling axis that promotes ISC homeostasis. Our findings reveal a protective role for an intestinal crypt-resident microbiota member in tumorigenesis.
Collapse
Affiliation(s)
- Shuning Zhang
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Peng
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
| | - Shyamal Goswami
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
| | - Yuchen Li
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
| | - Haiyue Dang
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuli Xing
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
| | - Panpan Feng
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
| | - Giulia Nigro
- Microenvironment and Immunity Unit, INSERM U1224, Institut Pasteur, Paris, France
| | - Yingying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yingfei Ma
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tianhao Liu
- Affiliated Hospital of Jiangnan University and Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Jiahua Yang
- Department of General Surgery, Putuo Hospital, Shanghai, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yingnan Yang
- Luodian Hospital in Baoshan District, Shanghai, China
| | - Nick Barker
- Institute of Molecular and Cell Biology, Singapore and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Parag Kundu
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Xie Y, Liu F, Wu Y, Zhu Y, Jiang Y, Wu Q, Dong Z, Liu K. Inflammation in cancer: therapeutic opportunities from new insights. Mol Cancer 2025; 24:51. [PMID: 39994787 PMCID: PMC11849313 DOI: 10.1186/s12943-025-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
As one part of the innate immune response to external stimuli, chronic inflammation increases the risk of various cancers, and tumor-promoting inflammation is considered one of the enabling characteristics of cancer development. Recently, there has been growing evidence on the role of anti-inflammation therapy in cancer prevention and treatment. And researchers have already achieved several noteworthy outcomes. In the review, we explored the underlying mechanisms by which inflammation affects the occurrence and development of cancer. The pro- or anti-tumor effects of these inflammatory factors such as interleukin, interferon, chemokine, inflammasome, and extracellular matrix are discussed. Since FDA-approved anti-inflammation drugs like aspirin show obvious anti-tumor effects, these drugs have unique advantages due to their relatively fewer side effects with long-term use compared to chemotherapy drugs. The characteristics make them promising candidates for cancer chemoprevention. Overall, this review discusses the role of these inflammatory molecules in carcinogenesis of cancer and new inflammation molecules-directed therapeutic opportunities, ranging from cytokine inhibitors/agonists, inflammasome inhibitors, some inhibitors that have already been or are expected to be applied in clinical practice, as well as recent discoveries of the anti-tumor effect of non-steroidal anti-inflammatory drugs and steroidal anti-inflammatory drugs. The advantages and disadvantages of their application in cancer chemoprevention are also discussed.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Yunfei Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yuer Zhu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanan Jiang
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
32
|
Guo W, Xu Z, Hu S, Shen Y. Exploring Microbial Signatures in Endometrial Tissues with Endometriosis. Int Immunopharmacol 2025; 148:114072. [PMID: 39854873 DOI: 10.1016/j.intimp.2025.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/05/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
OBJECTIVE The endometrial microbiota exerts a crucial role in maintaining the health of the female reproductive system. As such, in this study, we have examined the composition of the microbiota in endometrium tissues with and without endometriosis, with the objective of identifying key species that may potentially contribute to the progression of endometriosis. METHODS We obtained endometrial tissues from 43 women diagnosed as either having endometriosis or not. Subsequently, we utilized a diverse array of techniques, including fluorescence in situ hybridization (FISH), immunohistochemistry (utilizing anti-LPS and anti-LTA antibodies), transmission electron microscopy (TEM), and 16S rRNA sequencing, to undertake a comprehensive examination of the presence of microorganisms in the endometrium and their potential role in endometriosis. RESULTS Our findings consistently indicated the existence of bacteria in both normal endometrium tissues and those affected by endometriosis. By employing the fluorescent co-staining technique, we observed the colocalization of macrophages and bacteria in both tissue types. Notably, we discovered a significant increase in microbial diversity in endometrial tissue from women with endometriosis compared to normal endometrial tissues. Additionally, we identified 13 species that were more abundant in the normal group, such as Acinetobacter guillouiae. In contrast, seven species were prominent in the endometriosis group, with Faecalibacterium prausnitzii being a notable one. Finally, our results suggest that Faecalibacterium prausnitzii may play an essential role in the progression of endometriosis. CONCLUSION We carried out a comprehensive analysis of the endometrial microbial landscape in endometriosis tissue and revealed that Faecalibacterium prausnitzii is a pivotal species that may potentially play a crucial role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Ziying Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Sijian Hu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China.
| |
Collapse
|
33
|
Wen Q, Wang S, Min Y, Liu X, Fang J, Lang J, Chen M. Associations of the gut, cervical, and vaginal microbiota with cervical cancer: a systematic review and meta-analysis. BMC Womens Health 2025; 25:65. [PMID: 39955550 PMCID: PMC11829412 DOI: 10.1186/s12905-025-03599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND An increasing number of studies indicate that the gut, cervical, and vaginal microbiota may play crucial roles in the development of cervical cancer (CC). However, the interactions between the microbiota and the host are yet unknown. To address this gap, a systematic review and meta-analysis were conducted to assess the microbiota alterations in a variety of body locations, including the gut and genital tract. METHODS Electronic searches of PubMed, Embase, Web of Science, and the Cochrane Library were conducted to retrieve eligible papers published from January 1, 2014, to January 1, 2024 (PROSPERO: CRD42024554433). This study was restricted to English-language studies reporting on alpha diversity, beta diversity, and relative abundance, as well as on patients with CC whose microbiota had been analyzed via next-generation sequencing technologies. To assess the risk of bias (RoB), we utilized the Newcastle‒Ottawa Quality Assessment Scale (NOS) and the ROBINS-I tool. For the meta-analysis, we employed Review Manager 5.4. RESULTS Thirty-six eligible studies were included in this review. The Chao1 index (SMD = 0.96, [95% CI: 0.71, 1.21], I2 = 0%) and the Shannon index (SMD = 1.02, [95% CI: 0.53, 1.50], I2 = 85%) values from vaginal samples were significantly greater in patients than in the controls. In the cervical samples, the Shannon index value (SMD = 1.29, [95% CI: 0.61, 1.97], I2 = 93%) significantly increased, whereas the Chao1 index value did not significantly differ (SMD = 0.50, [95% CI: -0.46, 1.46], I2 = 89%). The Shannon index value (SMD = 0.25, [95% CI: -0.22, 0.72], I2 = 38%) did not significantly differ across the gut samples. The majority of studies (19/25) indicated that the patients and noncancer controls differed significantly in terms of beta diversity. Cancer-associated changes were observed, with a dramatic decrease in the Lactobacillus genus and significant increases in pathogenic bacteria, including the Anaerococcus, Peptostreptococcus, Porphyromonas, Prevotella, and Sneathia genera. Additionally, the impact of antineoplastic therapies on microbial diversity was inconsistently reported across several studies. CONCLUSION This systematic review elucidates the microbiota alterations associated with the prevalence of CC and its response to anti-tumor therapies, aiming to provide insights for future research directions and precision medicine strategies to enhance women's quality of life. PROSPERO REGISTRATION CRD42024554433.
Collapse
Affiliation(s)
- Qin Wen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Shubin Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Yalan Min
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Xinyi Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Jian Fang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
- Southwest Medical University, Luzhou, 646000, China
| | - Jinyi Lang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China.
| | - Meihua Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
34
|
Du CC, Sun DQ, Chen YX, Li JS, Hong-Meng, Li CH, Kong FL. Study of the microenvironment of the lung flora in female lung adenocarcinoma patients: from benign lesions to invasive lung adenocarcinomas. BMC Cancer 2025; 25:252. [PMID: 39948548 PMCID: PMC11827470 DOI: 10.1186/s12885-024-13385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/23/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND The number of female lung adenocarcinoma patients is increasing annually, but these patients are difficult to diagnose in the early stage without obvious clinical symptoms, leading to late-stage diagnoses and poor outcomes. Recent studies have shown that the lung microbiota is closely related to the occurrence and development of lung cancer, especially the characteristic changes in the lung microbiota of lung cancer patients, which opens a new research direction for the diagnosis and treatment of lung cancer. This study aimed to analyze the characteristics of the lung flora in different stages of female lung adenocarcinoma. METHODS 16 S rRNA sequencing technology was used to analyze the alpha diversity, beta diversity, composition, and function of the pulmonary flora in female patients with benign lesions (n = 7), adenocarcinoma in situ (n = 16), microinvasive adenocarcinoma (n = 31), and invasive adenocarcinoma (n = 25). RESULTS Progression to invasive lung adenocarcinoma is correlated with reduced alpha diversity in the lung flora. Compared with the other stages, only the invasive adenocarcinoma stage had significant differences in the beta diversity of the lung flora. At the phylum and genus levels, the abundance of major flora species decreased significantly as the disease progressed to the invasive adenocarcinoma stage, whereas the abundance of Bacillus spp. increased significantly. The abundance of phenotypes with mobile elements, biofilm-forming ability, oxidative stress tolerance, parthenogenetic anaerobic properties, and pathogenicity was significantly greater in invasive adenocarcinomas. The abundance of metabolic pathways was significantly lower in invasive adenocarcinomas. CONCLUSIONS Invasive adenocarcinoma has a unique flora structure characterized by decreased flora diversity and abundance and an increase in specific flora (e.g., Bacillus). In terms of bacterial function, adaptability and pathogenicity increased, and metabolic pathway activity decreased.
Collapse
Affiliation(s)
- Cheng-Cheng Du
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Da-Qian Sun
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yu-Xian Chen
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jing-Shuo Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Hong-Meng
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chun-Hai Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Fan-Lei Kong
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
35
|
Yang C, Qin LH, Li L, Wei QY, Long L, Liao JY. The causal relationship between the gut microbiota and endometrial cancer: a mendelian randomization study. BMC Cancer 2025; 25:248. [PMID: 39939905 PMCID: PMC11823214 DOI: 10.1186/s12885-025-13656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Gut microbiota is associated with endometrial cancer (EC); however, the causal relationship remains unexplored. This study attempted to explore the relationship between gut microbiota and EC using Mendelian randomization (MR) methods. METHODS In this two-sample MR analysis, we used MiBioGen's gut microbiota data as the exposure and three datasets from European populations with EC as the outcome. The EC datasets included general EC, endometrioid histology, and non-endometrioid histology. Single nucleotide polymorphism (SNP) was used as the instrumental variable. Inverse variance weighted (IVW), multiplicative random effects IVW (MRE-IVW), Maximum likelihood (ML), MR Egger, MR-PRESSO, and the weighted median were used to perform MR analysis. Sensitivity analysis was conducted to assess the reliability of the results. RESULTS In this MR analysis of three EC datasets, specific gut microbiota were identified as potentially associated with different pathological types of EC. For general EC (ID: ebi-a-GCST006464), Family.Acidaminococcaceae (OR = 1.23, 95%CI: 1.02-1.48) and genus.Butyrivibrio (OR = 1.08, 95%CI: 1.01-1.16) were identified as risk factors, while genus.Ruminococcaceae UCG014 (OR = 0.82, 95%CI: 0.69-0.98) and genus.Turicibacter (OR = 0.84, 95%CI: 0.73-0.97) appeared to have protective effects. For endometrioid histology EC (ID: ebi-a-GCST006465), Family.Acidaminococcaceae (OR = 1.27, 95%CI: 1.01-1.59) and genus.Butyrivibrio (OR = 1.10, 95%CI: 1.01-1.19) were identified as risk factors, while several microbiota, including Family.Lactobacillaceae, genus.Coprococcus3, genus.Dorea, genus.Flavonifractor, genus.Lactobacillus, genus.Paraprevotella, and genus.Turicibacter, were identified as protective factors. For non-endometrioid histology EC (ID: ebi-a-GCST006466), Family.Rhodospirillaceae (OR = 1.41, 95%CI: 1.01-1.96) and genus.Peptococcus (OR = 1.43, 95%CI: 1.07-1.91) were identified as risk factors, while no significant protective factors were identified. CONCLUSIONS This two-sample MR study has identified gut microbiota with potential causal relationships with EC, varying by pathological type. These findings provide new insights into the pathogenesis of EC and suggest directions for future research on diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Chongze Yang
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lan-Hui Qin
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liwei Li
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qiu-Ying Wei
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liling Long
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Jin-Yuan Liao
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
| |
Collapse
|
36
|
Bian K, Yang C, Zhang F, Huang L. A Novel Prognostic Signature of Mitophagy-Related E3 Ubiquitin Ligases in Breast Cancer. Int J Mol Sci 2025; 26:1551. [PMID: 40004017 PMCID: PMC11855622 DOI: 10.3390/ijms26041551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Mitophagy plays a critical role in maintaining mitochondrial quality and cellular homeostasis. But the specific contribution of mitophagy-related E3 ubiquitin ligases to prognoses remains largely unexplored. In this study, we identified a novel mitophagy-related E3 ubiquitin ligase prognostic signature using least absolute shrinkage and selector operator (LASSO) and multivariate Cox regression analyses in breast cancer. Based on median risk scores, patients were divided into high-risk and low-risk groups. Functional enrichment analyses were conducted to explore the biological differences between the two groups. Immune infiltration, drug sensitivity, and mitochondrial-related phenotypes were also analyzed to evaluate the clinical implications of the model. A four-gene signature (ARIH1, SIAH2, UBR5, and WWP2) was identified, and Kaplan-Meier analysis demonstrated that the high-risk group had significantly worse overall survival (OS). The high-risk patients exhibited disrupted mitochondrial metabolism and immune dysregulation with upregulated immune checkpoint molecules. Additionally, the high-risk group exhibited higher sensitivity to several drugs targeting the Akt/PI3K/mTORC1 signaling axis. Accompanying mitochondrial metabolic dysregulation, mtDNA stress was elevated, contributing to activation of the senescence-associated secretory phenotype (SASP) in the high-risk group. In conclusion, the identified signature provides a robust tool for risk stratification and offers insights into the interplay between mitophagy, immune modulation, and therapeutic responses for breast cancer.
Collapse
Affiliation(s)
| | | | - Feng Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
37
|
Zhang S, Huang J, Jiang Z, Tong H, Ma X, Liu Y. Tumor microbiome: roles in tumor initiation, progression, and therapy. MOLECULAR BIOMEDICINE 2025; 6:9. [PMID: 39921821 PMCID: PMC11807048 DOI: 10.1186/s43556-025-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025] Open
Abstract
Over the past few years, the tumor microbiome is increasingly recognized for its multifaceted involvement in cancer initiation, progression, and metastasis. With the application of 16S ribosomal ribonucleic acid (16S rRNA) sequencing, the intratumoral microbiome, also referred to as tumor-intrinsic or tumor-resident microbiome, has also been found to play a significant role in the tumor microenvironment (TME). Understanding their complex functions is critical for identifying new therapeutic avenues and improving treatment outcomes. This review first summarizes the origins and composition of these microbial communities, emphasizing their adapted diversity across a diverse range of tumor types and stages. Moreover, we outline the general mechanisms by which specific microbes induce tumor initiation, including the activation of carcinogenic pathways, deoxyribonucleic acid (DNA) damage, epigenetic modifications, and chronic inflammation. We further propose the tumor microbiome may evade immunity and promote angiogenesis to support tumor progression, while uncovering specific microbial influences on each step of the metastatic cascade, such as invasion, circulation, and seeding in secondary sites. Additionally, tumor microbiome is closely associated with drug resistance and influences therapeutic efficacy by modulating immune responses, drug metabolism, and apoptotic pathways. Furthermore, we explore innovative microbe-based therapeutic strategies, such as engineered bacteria, oncolytic virotherapy, and other modalities aimed at enhancing immunotherapeutic efficacy, paving the way for microbiome-centered cancer treatment frameworks.
Collapse
Affiliation(s)
- Shengxin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
38
|
Nemzer BV, Al-Taher F, Kalita D, Yashin AY, Yashin YI. Health-Improving Effects of Polyphenols on the Human Intestinal Microbiota: A Review. Int J Mol Sci 2025; 26:1335. [PMID: 39941107 PMCID: PMC11818678 DOI: 10.3390/ijms26031335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Dietary polyphenols are garnering attention in the scientific community due to their potential health-beneficial properties and preventative effects against chronic diseases, viz. cardiovascular diseases, diabetes, obesity, and neurodegenerative diseases. Polyphenols are antioxidants that change microbial composition by suppressing pathogenic bacteria and stimulating beneficial bacteria. The interaction of polyphenols with dietary fibers affects their bioaccessibility in the upper and lower parts of the digestive tract. Dietary fibers, polyphenols, their conjugates, and their metabolites modulate microbiome population and diversity. Consuming polyphenol-rich dietary fibers such as pomegranate, cranberry, berries, and tea improves gut health. A complex relationship exists between polyphenol-rich diets and gut microbiota for functioning in human health. In this review, we provide an overview of the interactions of dietary polyphenols, fibers, and gut microbiota, improving the understanding of the functional properties of dietary polyphenols.
Collapse
Affiliation(s)
- Boris V. Nemzer
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA; (F.A.-T.); (D.K.)
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fadwa Al-Taher
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA; (F.A.-T.); (D.K.)
| | - Diganta Kalita
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA; (F.A.-T.); (D.K.)
| | - Alexander Y. Yashin
- International Analytical Center of Zelinsky Institute of Organic Chemistry of Russian Academy of Science, Moscow 119991, Russia; (A.Y.Y.); (Y.I.Y.)
| | - Yakov I. Yashin
- International Analytical Center of Zelinsky Institute of Organic Chemistry of Russian Academy of Science, Moscow 119991, Russia; (A.Y.Y.); (Y.I.Y.)
| |
Collapse
|
39
|
Nezhadi J, Kafil HS, Sadrkabir M, Mahdavi F, Moaddab SY, Nouri R, Mohammadzadeh-Asl Y, Sattarpour S, Rezaee MA. The relationship between pathogenic bacteria and different stages of colorectal cancer. Lett Appl Microbiol 2025; 78:ovaf017. [PMID: 39924170 DOI: 10.1093/lambio/ovaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Colorectal cancer (CRC) involves uncontrolled cell growth in the colon and rectum. This study aims to explore the prevalence of key pathogenic bacteria and their role in the progression of CRC, focusing on microbial dysbiosis. This study analyzed 52 stool and tissue samples through polymerase chain reaction (PCR), real-time PCR, and bioinformatics to identify associations between pathogenic bacteria and CRC progression. PCR results revealed a significant association between the Bacteroides fragilis toxin (bft) gene and CRC progression (P = 0.001, r = 0.570). Furthermore, Real-time PCR showed significant differences in the frequency of pks+Escherichia coli in CRC stages 1 (P = 0.03), 2 (P = 0.004), and 3 (P = 0.0002) compared to the control group. Additionally, the frequency of Fusobacterium nucleatum in stage 3 CRC patients was significantly higher than in the control group (P = 0.004) and stage 1 patients (P = 0.01). Furthermore, Streptococcus gallolyticus showed similar significant differences in stage 3 patients (P = 0.004). Bioinformatics analyses using KEGG, Reactome, STRING, and dbSNP highlighted bacteria's roles in colorectal carcinogenesis, emphasizing the need for early identification and management in CRC treatment and prevention strategies. Finally, due to the limitations of the study, the use of more advanced methods and the validation of results through more reliable techniques are essential for future research.
Collapse
Affiliation(s)
- Javad Nezhadi
- Student Research Committee, Tabriz University of Medical Sciences, 5165665931, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5165665931, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, 5165665931, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, 5165665931, Tabriz, Iran
| | - Mohammad Sadrkabir
- Department of Internal Medicine, Islamic Azad University, Tabriz Branch, 5158913791, Tabriz, Iran
| | - Farshad Mahdavi
- Department of General Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, 5165665931, Tabriz, Iran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, 5165665931, Tabriz, Iran
| | - Roghayeh Nouri
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, 5165665931, Tabriz, Iran
| | - Yalda Mohammadzadeh-Asl
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, 5165665931, Tabriz, Iran
| | - Simin Sattarpour
- Department of Basic Sciences, Faculty of Allied Medical Sciences, Tabriz University of Medical Sciences, 5165665931, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5165665931, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, 5165665931, Tabriz, Iran
| |
Collapse
|
40
|
Vaziri Y. Dietary influence on cancer progression: Gut health and genomic profiles. Curr Probl Cancer 2025; 54:101159. [PMID: 39615199 DOI: 10.1016/j.currproblcancer.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 01/20/2025]
Abstract
This scholarly review comprehensively examines the connection between dietary habits, gut health, cancer prognosis, and genomic profiles. It emphasizes the crucial role of gut microbiota in mediating genomic changes and oncogenic processes through metabolic derivatives.It advocatеs for pеrsonalizеd nutrition stratеgiеs based on individual microbiomе and gеnomic profilеs and proposеs that customized diеtary intеrvеntions could play a crucial rolе in cancеr prеvеntion thеrapy. Thе article highlights thе influеncе of spеcific nutriеnts and such as diеtary fibеr and polyphеnols found in cеrtain foods and dеmonstrating thеir potеntial to altеr gеnе еxprеssions associatеd with inflammation and tumorigеnеsis. Thе rеviеw citеs rеcеnt studiеs that support thе idеa that diеtary modifications can influеncе gеnе rеgulation and thеrеby potеntially altеring cancеr progrеssion. Nevertheless, it calls for morе rigorous rеsеarch including longitudinal and randomizеd studies, to substantiatе thе еvidеncе nеcеssary for developing diеtary guidеlinеs tailorеd for cancеr patiеnts. Thе rеviеw еmphasizеs thе nееd for a multidisciplinary approach and highlight thе importancе of collaboration across thе fiеlds of nutrition gеnomics microbiology and oncology to improve cancеr trеatmеnts and patiеnt quality of lifе. It posits thе rеviеw as a cornеrstonе for a divеrsе audiеncе within thе scientific and mеdical communitimphasizing thе nеcеssity for ongoing rеsеarch in nutritional gеnomics which it dеpicts as a fiеld full of opportunitiеs to transform cancеr carе.
Collapse
Affiliation(s)
- Yashar Vaziri
- Department of Nutrition and Dietetics, Sarab branch, Islamic Azad University, Sarab, Iran.
| |
Collapse
|
41
|
Sahin TK, Sonmezer MC. The role of the microbiome in head and neck squamous cell cancers. Eur Arch Otorhinolaryngol 2025; 282:623-637. [PMID: 39306588 DOI: 10.1007/s00405-024-08966-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/02/2024] [Indexed: 02/09/2025]
Abstract
The human microbiome has garnered tremendous interest in the field of oncology, and microbiota studies in head and neck oncology has also flourished. Given the increasing incidence and mortality of HNSCC, as well as the suboptimal outcomes of available treatments, there is an urgent need for innovative approaches involving the microbiome. This review evaluates the intricate relationship between the microbiome and HNSCC, highlighting the potential of the microbiome as a marker for cancer detection, its role in malignancy, and its impact on the efficacy of conventional treatments like chemotherapy and radiotherapy. The review also explores the effects of treatment modalities on the microbiome and discusses the potential of microbiome alterations to predict and influence treatment toxicities such as mucositis and xerostomia. Further research is warranted to characterize the microbiome-HNSCC association, which holds promise for advancing early diagnosis, enhancing prognostic accuracy, and personalizing treatment strategies to improve patient outcomes. The exploration of the microbiome in clinical trials indicates a burgeoning subject of microbiome-focused therapies, heralding a new frontier in most cancer care.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine and Medical Oncology Department, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06100, Turkey.
| | - Meliha Cagla Sonmezer
- Department of Infectious Diseases and Clinical Microbiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
42
|
Lei Y, Li M, Zhang H, Deng Y, Dong X, Chen P, Li Y, Zhang S, Li C, Wang S, Tao R. Comparative analysis of the human microbiome from four different regions of China and machine learning-based geographical inference. mSphere 2025; 10:e0067224. [PMID: 39699186 PMCID: PMC11774049 DOI: 10.1128/msphere.00672-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
The human microbiome, the community of microorganisms that reside on and inside the human body, is critically important for health and disease. However, it is influenced by various factors and may vary among individuals residing in distinct geographic regions. In this study, 220 samples, consisting of sterile swabs from palmar skin and oral and nasal cavities were collected from Chinese Han individuals living in Shanghai, Chifeng, Kunming, and Urumqi, representing the geographic regions of east, northeast, southwest, and northwest China. The full-length 16S rRNA gene of the microbiota in each sample was sequenced using the PacBio single-molecule real-time sequencing platform, followed by clustering the sequences into operational taxonomic units (OTUs). The analysis revealed significant differences in microbial communities among the four regions. Cutibacterium was the most abundant bacterium in palmar samples from Shanghai and Kunming, Psychrobacter in Chifeng samples, and Psychrobacillus in Urumqi samples. Additionally, Streptococcus and Staphylococcus were the dominant bacteria in the oral and nasal cavities. Individuals from the four regions could be distinguished and predicted based on a model constructed using the random forest algorithm, with the predictive effect of palmar microbiota being better than that of oral and nasal cavities. The prediction accuracy using hypervariable regions (V3-V4 and V4-V5) was comparable with that of using the entire 16S rRNA. Overall, our study highlights the distinctiveness of the human microbiome in individuals living in these four regions. Furthermore, the microbiome can serve as a biomarker for geographic origin inference, which has immense application value in forensic science.IMPORTANCEMicrobial communities in human hosts play a significant role in health and disease, varying in species, quantity, and composition due to factors such as gender, ethnicity, health status, lifestyle, and living environment. The characteristics of microbial composition at various body sites of individuals from different regions remain largely unexplored. This study utilized single-molecule real-time sequencing technology to detect the entire 16S rRNA gene of bacteria residing in the palmar skin, oral, and nasal cavities of Han individuals from four regions in China. The composition and structure of the bacteria at these three body sites were well characterized and found to differ regionally. The results elucidate the differences in bacterial communities colonizing these body sites across different regions and reveal the influence of geographical factors on human bacteria. These findings not only contribute to a deeper understanding of the diversity and geographical distribution of human bacteria but also enrich the microbiome data of the Asian population for further studies.
Collapse
Affiliation(s)
- Yinlei Lei
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
- Department of Forensic Medicine, Zunyi Medical University, Zunyi, China
| | - Min Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Han Zhang
- Institute of Forensic Science, Fudan University, Shanghai, China
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yu Deng
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
- Department of Forensic Medicine, Zunyi Medical University, Zunyi, China
| | - Xinyu Dong
- Minhang Branch of Shanghai Public Security Bureau, Shanghai, China
| | - Pengyu Chen
- Department of Forensic Medicine, Zunyi Medical University, Zunyi, China
| | - Ye Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Suhua Zhang
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Shouyu Wang
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| |
Collapse
|
43
|
Guo H. Interactions between the tumor microbiota and breast cancer. Front Cell Infect Microbiol 2025; 14:1499203. [PMID: 39926112 PMCID: PMC11802574 DOI: 10.3389/fcimb.2024.1499203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/11/2024] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Changes in the microbiota and their metabolites affect the occurrence and development of breast cancer; however, the specific mechanisms are not clear. Gut microbes and their metabolites influence the development of breast cancer by regulating the tumor immune response, estrogen metabolism, chemotherapy, and immunotherapy effects. It was previously thought that there were no microorganisms in breast tissue, but it is now thought that there are microorganisms in breast cancer that can affect the outcome of the disease. This review builds on existing research to comprehensively analyze the role of gut and intratumoral microbiota and their metabolites in the development and metastasis of breast cancer. We also explore the potential function of the microbiota as biomarkers for prognosis and therapeutic response, highlighting the need for further research to clarify the causal relationship between the microbiota and breast cancer. We hope to provide new ideas and directions for the development of new methods for breast cancer treatment.
Collapse
Affiliation(s)
- Hua Guo
- The Nursing Department, Shaanxi Provincial People’s Hospital,
Xi’an, Shaanxi, China
| |
Collapse
|
44
|
Wang X, Li Z, Zhou H, Liu Q, Zhang X, Hu F. Periodontitis Exacerbates Colorectal Cancer by Altering Gut Microbiota-Derived Metabolomics in Mice. J Periodontal Res 2025. [PMID: 39843386 DOI: 10.1111/jre.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
AIM The correlation between periodontitis and colorectal cancer (CRC) has drawn widespread attention. However, how periodontitis affects CRC progression remains unclear. METHODS C57BL/6 mice were used to establish experimental periodontitis and CRC model. Histological alterations of periodontium and colon were observed by hematoxylin and eosin staining. Micro-computed tomography (micro-CT) was applied to evaluate alveolar bone loss (ABL). Tumor growth was detected by immunofluorescence. Gut bacteria were analyzed using 16S rRNA sequencing. Gas chromatography-mass spectrometry (GC-MS) was performed to observe the alterations of gut microbial metabolites. The detection of associated pathways was carried out using quantitative real-time PCR (qRT-PCR). RESULTS Experimental periodontitis significantly induced increases in tumor number in mice with CRC. Double immunofluorescence for Ki67 and β-catenin, as well as Cyclin D1 and β-catenin, indicated that experimental periodontitis observably promoted tumor growth. 16S rRNA sequencing and untargeted metabolomics analysis displayed that experimental periodontitis altered gut microbial community and metabolite profiles in CRC mice. Notably, we found that experimental periodontitis dramatically increased the level of three oncometabolites (serotonin, adenosine, and spermine) in mice with CRC. CONCLUSION Alterations of gut microbial community and metabolites might be relevant in experimental periodontitis deteriorating CRC.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Zhichao Li
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Haiquan Zhou
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Qianyi Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Xueyang Zhang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fei Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
45
|
Song Y, Tian S, Li Z, Miao J, Wu M, Xu T, Wu X, Qiao J, Zhang X, Zhao H, Kang L, Cao L, Zhu P, Miao M. Progress in the Study of Intratumoral Microorganisms in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2025; 12:59-76. [PMID: 39845367 PMCID: PMC11752873 DOI: 10.2147/jhc.s496964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025] Open
Abstract
The intratumoral microbiota, an integral part of liver tumors, has garnered significant attention from researchers due to its role in tumor development regulation and impact on cancer treatment. Intratumoral microorganism not only influences tumorigenesis and progression, but also serves as potential biomarkers and targets for tumor therapy. Targeted manipulation of these microorganisms holds great promise for personalized liver cancer treatment. However, there is a lack of systematic summaries and reports on the study of intratumoral microorganism in hepatocellular carcinoma. This comprehensive review aims to address this gap by summarizing research progress related to in the field of hepatocellular carcinoma intratumoral bacteria, including their sources, types, distribution characteristics within tumors, impact on tumor development, underlying mechanisms, and application prospects. Through the analysis, it is proposed that intratumor organisms can be used as markers for liver cancer diagnosis and treatment, drug carrier materials for targeting liver cancer tissues, and the research prospects of developing new combination therapies based on the in-depth understanding of the interactions between intratumor microorganisms and the tumor microenvironment, immune cells, liver cancer cells, etc. as well as exploring the prospects of developing new combination therapies based on these interactions. It is hoped that from the perspective of intratumoral microbiota, potential theoretical support can be provided for future research on targeted cancer therapy for liver cancer intratumoral microbiota, and new insights and ideas can be provided for targeting points and research methods in tumor research.
Collapse
Affiliation(s)
- Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Shuo Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Zhanzhan Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Mingming Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Tingli Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Xiangxiang Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Jingyi Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Xialei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Hui Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Le Kang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Lihua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Pingsheng Zhu
- College of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| |
Collapse
|
46
|
Timmis K, Karahan ZC, Ramos JL, Koren O, Pérez‐Cobas AE, Steward K, de Lorenzo V, Caselli E, Douglas M, Schwab C, Rivero V, Giraldo R, Garmendia J, Turner RJ, Perlmutter J, Borrero de Acuña JM, Nikel PI, Bonnet J, Sessitsch A, Timmis JK, Pruzzo C, Prieto MA, Isazadeh S, Huang WE, Clarke G, Ercolini D, Häggblom M. Microbes Saving Lives and Reducing Suffering. Microb Biotechnol 2025; 18:e70068. [PMID: 39844583 PMCID: PMC11754571 DOI: 10.1111/1751-7915.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Affiliation(s)
- Kenneth Timmis
- Institute of MicrobiologyTechnical University BraunschweigBraunschweigGermany
| | - Zeynep Ceren Karahan
- Department of Medical Microbiology and Ibn‐i Sina Hospital Central Microbiology LaboratoryAnkara University School of MedicineAnkaraTurkey
| | - Juan Luis Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del ZaidínGranadaSpain
| | - Omry Koren
- Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Ana Elena Pérez‐Cobas
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS)Ramón y Cajal University HospitalMadridSpain
- CIBER in Infectious Diseases (CIBERINFEC)MadridSpain
| | | | - Victor de Lorenzo
- Department of Systems BiologyNational Centre of Biotechnology CSICMadridSpain
| | - Elisabetta Caselli
- Section of Microbiology, Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| | - Margaret Douglas
- Usher InstituteUniversity of Edinburgh Medical School, and Public Health ScotlandEdinburghUK
| | - Clarissa Schwab
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | - Virginia Rivero
- Polymer Biotechnology Lab, Biological Research Center Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
| | - Rafael Giraldo
- Department of Microbial BiotechnologyNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Junkal Garmendia
- Instituto de AgrobiotecnologíaConsejo Superior de Investigaciones Científicas (IdAB‐CSIC)‐Gobierno de Navarra, MutilvaMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Raymond J. Turner
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | | | | | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Jerome Bonnet
- Centre de Biochimie Structurale, INSERM/CNRSUniversity of MontpellierMontpellierFrance
| | - Angela Sessitsch
- Bioresources UnitAIT Austrian Institute of TechnologyViennaAustria
| | - James K. Timmis
- Department of Political ScienceUniversity of FreiburgFreiburgGermany
- Athena Institute for Research on Innovation and Communication in Health and Life SciencesVrije UniversiteitAmsterdamThe Netherlands
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenovaItaly
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Center Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
| | - Siavash Isazadeh
- Corporate Technical & PerformanceVeolia North AmericaParamusNew JerseyUSA
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry & Neurobehavioral SciencesUniversity College CorkCorkIreland
| | - Danilo Ercolini
- Department of Agricultural SciencesUniversity of Naples Federico IINaplesItaly
| | - Max Häggblom
- Department of Biochemistry and Microbiology, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| |
Collapse
|
47
|
Yu X, Mankia K, Do T, Meade J. Oral Microbiome Dysbiosis and Citrullination in Rheumatoid Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:185-199. [PMID: 40111693 DOI: 10.1007/978-3-031-79146-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Rheumatoid arthritis and periodontal diseases, both characterized by chronic inflammation, share many common risk factors, sparking interest in understanding their established association. Emerging research has shed light on the link between these two diseases potentially occurring through the intricate interactions within the oral microbiome. The enrichment of pathogenic strains and species in this microbial community disrupts the delicate balance of both ecological and immunological homeostasis with the host. Particular attention has been paid to the role of key pathogens, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, known for their immunomodulatory abilities. The generation of an autoimmune response against proteins modified by citrullination is known to be a key step in the pathogenesis of RA. Importantly, the bidirectional citrullination mediated by both host innate immune cells and oral bacteria generates citrullinated peptide neoepitopes, which may serve as potential triggers for the loss of tolerance and subsequent autoimmunity in susceptible individuals. This review highlights the importance of understanding the mechanisms through which oral microbiome dysbiosis and citrullination contribute to the onset and progression of RA. Insights into these mechanisms not only advance pathobiological understanding but also offer potential therapeutic targets. Furthermore, we discuss the potential impact of nonsurgical periodontal treatment in modifying disease progression or mitigating RA, underscoring the critical role of periodontal health in managing systemic inflammatory conditions.
Collapse
Affiliation(s)
- Xia Yu
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Kulveer Mankia
- Leeds Biomedical Centre-NIHR, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Josephine Meade
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK.
| |
Collapse
|
48
|
Palkovsky M, Modrackova N, Neuzil-Bunesova V, Liberko M, Soumarova R. The Bidirectional Impact of Cancer Radiotherapy and Human Microbiome: Microbiome as Potential Anti-tumor Treatment Efficacy and Toxicity Modulator. In Vivo 2025; 39:37-54. [PMID: 39740900 PMCID: PMC11705129 DOI: 10.21873/invivo.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 01/02/2025]
Abstract
Microbiome and radiotherapy represent bidirectionally interacting entities. The human microbiome has emerged as a pivotal modulator of the efficacy and toxicity of radiotherapy; however, a reciprocal effect of radiotherapy on microbiome composition alterations has also been observed. This review explores the relationship between the microbiome and extracranial solid tumors, particularly focusing on the bidirectional impact of radiotherapy on organ-specific microbiome. This article aims to provide a systematic review on the radiotherapy-induced microbial alteration in-field as well as in distant microbiomes. In this review, particular focus is directed to the oral and gut microbiome, its role in the development and progression of cancer, and how it is altered throughout radiotherapy. This review concludes with recommendations for future research, such as exploring microbiome modification to optimize radiotherapy-induced toxicities or enhance its anti-cancer effects.
Collapse
Affiliation(s)
- Martin Palkovsky
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic;
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Nikol Modrackova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Vera Neuzil-Bunesova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Marian Liberko
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Renata Soumarova
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| |
Collapse
|
49
|
Zhang J, Feng Y, Li D, Shi D. Fungal influence on immune cells and inflammatory responses in the tumor microenvironment (Review). Oncol Lett 2025; 29:50. [PMID: 39564373 PMCID: PMC11574707 DOI: 10.3892/ol.2024.14796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/25/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, a growing body of research has highlighted the significant influence of the microbiota on tumor immunity within the tumor microenvironment (TME). While much attention has been given to bacteria, emerging evidence suggests that fungi also play crucial roles in tumor development. The present review aimed to consolidate the latest findings on the mechanisms governing the interactions between fungi and the immune system or TME. By elucidating these intricate mechanisms, novel insights into the modulation of tumor immunity and therapeutic strategies may be uncovered. Ultimately, a deeper understanding of the interplay between fungi and the TME holds promise for the development of innovative management strategies and targeted drugs to enhance tumor therapy efficacy.
Collapse
Affiliation(s)
- Jinke Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Yahui Feng
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| |
Collapse
|
50
|
Zong Z, Zeng W, Li Y, Wang M, Cao Y, Cheng X, Jin Z, Mao S, Zhu X. Intratumor microbiota and colorectal cancer: Comprehensive and lucid review. Chin J Cancer Res 2024; 36:683-699. [PMID: 39802896 PMCID: PMC11724182 DOI: 10.21147/j.issn.1000-9604.2024.06.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
As a key component of tumor microenvironment, the microbiota has gradually played a key role in cancer research. Particularly in colorectal cancer, the specific population of microbiota within the tumor shows a strong association with the tumor type. Although the existence and potential role of microbiota in tumors have been recognized, the specific associations between the microbiota and tumor tissue and the mechanism of action still need to be further explored. This paper reviews the discovery, origin, and emerging role of the intratumor microbiota in the immune microenvironment and systematically outlines the oncogenic and metastasis-promoting strategies of the intratumor microbiota. Moreover, it comprehensively and holistically evaluates therapeutic strategies and prognostic performance on the basis of the intratumor microbiota, with the goal of providing strong support for future research and clinical practice.
Collapse
Affiliation(s)
- Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Wenjuan Zeng
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yin Li
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Menghui Wang
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuke Cao
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zhenhua Jin
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xingen Zhu
- Department of Neurosurgey, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, China
- Jiangxi Provincial Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, China
| |
Collapse
|