1
|
Wu X, Zhu Z, Zhang J, Tian M, Zhao P. Progress in understanding the regulatory mechanisms of immune checkpoint proteins PD-1 and PD-L1 expression. Clin Transl Oncol 2025:10.1007/s12094-024-03835-4. [PMID: 39776397 DOI: 10.1007/s12094-024-03835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Programmed Death Protein-1 (PD-1) is a cell surface receptor that serves as a checkpoint for T cells, playing a pivotal role in regulating T-cell apoptosis. The binding of PD-1 to its ligand, Programmed Death Ligand 1 (PD-L1), inhibits anti-tumor immunity by suppressing T-cell activation signals. Indeed, the PD-1/PD-L1 pathway governs the induction and maintenance of immune tolerance within the tumor microenvironment. Consequently, the regulation of PD-1/PD-L1 immune checkpoint expression is of paramount importance. This review summarizes the mechanisms governing PD1/PD-L1 expression at various stages, including transcription, post-transcription (mRNA processing), and post-translation (protein modifications), as well as immunotherapy targeting PD1/PD-L1, aiming to further explore novel strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Xuanxuan Wu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Zengjun Zhu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Jian Zhang
- Center of Translational Medicine, Zibo Central Hospital, Shandong Second Medical University, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China
| | - Maojin Tian
- Department of Critical Care Medicine, Zibo Central Hospital, Shandong Second Medical University, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China.
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital, Shandong Second Medical University, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China.
| |
Collapse
|
2
|
Zhang M, Huang H, Wei M, Sun M, Deng G, Hu S, Wang H, Gong Y. Overexpression of BRD4 in Gastric Cancer and its Clinical Significance as a Novel Therapeutic Target. Curr Cancer Drug Targets 2024; 24:167-177. [PMID: 37282642 DOI: 10.2174/1568009623666230606164030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND BRD4 is a member of the bromodomain and extra terminal domain (BET) family of proteins, containing two bromodomains and one extra terminal domain, and is overexpressed in several human malignancies. However, its expression in gastric cancer has not yet been well illustrated. OBJECTIVE This study aimed to elucidate the overexpression of BRD4 in gastric cancer and its clinical significance as a novel therapeutic target. METHODS Fresh gastric cancer tissues and paraffin-embedded specimens of gastric cancer patients were collected, and the BRD4 expression was examined by Western Blot Analysis (WB) and Immunohistochemistry Analysis (IHC), respectively. The possible relationship between BRD4 expression and the clinicopathological features as well as survival in gastric cancer patients was analyzed. The effect of BRD4 silencing on human gastric cancer cell lines was investigated by MTT assay, WB, wound healing assay, and Transwell invasion. RESULTS The results showed that the expression level in tumor tissues and adjacent tissues was significantly higher than that in normal tissues, respectively (P < 0.01). BRD4 expression level in gastric cancer tissues was strongly correlated with the degree of tumor differentiated degree (P = 0.033), regional lymph nodes metastasis (P = 0.038), clinical staging (P = 0.002), and survival situation (P = 0.000), while the gender (P = 0.564), age (P = 0.926) and infiltrating depth (P = 0.619) of patients were not associated. Increased BRD4 expression resulted in poor overall survival (P = 0.003). In in vitro assays, BRD4 small interfering RNA resulted in significantly decreased BRD4 protein expression, therefore inhibiting proliferation, migration, and invasion of gastric cancer cells. CONCLUSION BRD4 might be a novel biomarker for the early diagnosis, prognosis, and therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Mengying Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hong Huang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meijiao Wei
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Mengjia Sun
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Guojin Deng
- Department of Gastrointestinal Surgery, the People's Hospital of Jimo, Qingdao, China
| | - Shuiqing Hu
- Department of Gastrointestinal Surgery, the People's Hospital of Jimo, Qingdao, China
| | - Hongbo Wang
- Department of Gastrointestinal Surgery, the People's Hospital of Jimo, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Cheng M, Li JJ, Niu XN, Zhu L, Liu JY, Jia PC, Zhu S, Meng HW, Lv XW, Huang C, Li J. BRD4 promotes hepatic stellate cells activation and hepatic fibrosis via mediating P300/H3K27ac/PLK1 axis. Biochem Pharmacol 2023; 210:115497. [PMID: 36907496 DOI: 10.1016/j.bcp.2023.115497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Hepatic fibrosis (HF) is a reversible wound-healing response characterized by excessive extracellular matrix (ECM) deposition and secondary to persistent chronic injury. Bromodomain protein 4 (BRD4) commonly functions as a "reader" to regulate epigenetic modifications involved in various biological and pathological events, but the mechanism of HF remains unclear. In this study, we established a CCl4-induced HF model and spontaneous recovery model in mice and found aberrant BRD4 expression, which was consistent with the results in human hepatic stellate cells (HSCs)- LX2 cells in vitro. Subsequently, we found that distriction and inhibition of BRD4 restrained TGFβ-induced trans-differentiation of LX2 cells into activated, proliferative myofibroblasts and accelerated apoptosis, and BRD4 overexpression blocked MDI-induced LX2 cells inactivation and promoted the proliferation and inhibited apoptosis of inactivated cells. Additionally, adeno-associated virus serotype 8-loaded short hairpin RNA-mediated BRD4 knockdown in mice significantly attenuated CCl4-induced fibrotic responses including HSCs activation and collagen deposition. Mechanistically, BRD4 deficiency inhibited PLK1 expression in activated LX2 cells, and ChIP and Co-IP assays revealed that BRD4 regulation of PLK1 was dependent on P300-mediated acetylation modification for H3K27 on the PLK1 promoter. In conclusion, BRD4 deficiency in the liver alleviates CCl4-induced HF in mice, and BRD4 participates in the activation and reversal of HSCs through positively regulating the P300/H3K27ac/PLK1 axis, providing a potential insight for HF therapy.
Collapse
Affiliation(s)
- Miao Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xue-Ni Niu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lin Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jin-Yu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Peng-Cheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hong-Wu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Sun HY, Du ST, Li YY, Deng GT, Zeng FR. Bromodomain and extra-terminal inhibitors emerge as potential therapeutic avenues for gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:75-89. [PMID: 35116104 PMCID: PMC8790409 DOI: 10.4251/wjgo.v14.i1.75] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/11/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers, including colorectal cancer, pancreatic cancer, liver cancer and gastric cancer, are severe social burdens due to high incidence and mortality rates. Bromodomain and extra-terminal (BET) proteins are epigenetic readers consisting of four conserved members (BRD2, BRD3, BRD4 and BRDT). BET family perform pivotal roles in tumorigenesis through transcriptional regulation, thereby emerging as potential therapeutic targets. BET inhibitors, disrupting the interaction between BET proteins and acetylated lysines, have been reported to suppress tumor initiation and progression in most of GI cancers. In this review, we will demonstrate how BET proteins participate in the GI cancers progression and highlight the therapeutic potential of targeting BET proteins for GI cancers treatment.
Collapse
Affiliation(s)
- Hui-Yan Sun
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Song-Tao Du
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Colorectal Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Ya-Yun Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guang-Tong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Fu-Rong Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|