1
|
Kumar A, Aravind N, Gillani T, Kumar D. Artificial intelligence breakthrough in diagnosis, treatment, and prevention of colorectal cancer – A comprehensive review. Biomed Signal Process Control 2025; 101:107205. [DOI: 10.1016/j.bspc.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
|
2
|
El Alaoui Y, Elomri A, Qaraqe M, Padmanabhan R, Yasin Taha R, El Omri H, El Omri A, Aboumarzouk O. A Review of Artificial Intelligence Applications in Hematology Management: Current Practices and Future Prospects. J Med Internet Res 2022; 24:e36490. [PMID: 35819826 PMCID: PMC9328784 DOI: 10.2196/36490] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/14/2022] [Accepted: 05/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Machine learning (ML) and deep learning (DL) methods have recently garnered a great deal of attention in the field of cancer research by making a noticeable contribution to the growth of predictive medicine and modern oncological practices. Considerable focus has been particularly directed toward hematologic malignancies because of the complexity in detecting early symptoms. Many patients with blood cancer do not get properly diagnosed until their cancer has reached an advanced stage with limited treatment prospects. Hence, the state-of-the-art revolves around the latest artificial intelligence (AI) applications in hematology management. Objective This comprehensive review provides an in-depth analysis of the current AI practices in the field of hematology. Our objective is to explore the ML and DL applications in blood cancer research, with a special focus on the type of hematologic malignancies and the patient’s cancer stage to determine future research directions in blood cancer. Methods We searched a set of recognized databases (Scopus, Springer, and Web of Science) using a selected number of keywords. We included studies written in English and published between 2015 and 2021. For each study, we identified the ML and DL techniques used and highlighted the performance of each model. Results Using the aforementioned inclusion criteria, the search resulted in 567 papers, of which 144 were selected for review. Conclusions The current literature suggests that the application of AI in the field of hematology has generated impressive results in the screening, diagnosis, and treatment stages. Nevertheless, optimizing the patient’s pathway to treatment requires a prior prediction of the malignancy based on the patient’s symptoms or blood records, which is an area that has still not been properly investigated.
Collapse
Affiliation(s)
- Yousra El Alaoui
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Adel Elomri
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Marwa Qaraqe
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Regina Padmanabhan
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Ruba Yasin Taha
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Halima El Omri
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdelfatteh El Omri
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Omar Aboumarzouk
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar.,College of Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Liang F, Wang S, Zhang K, Liu TJ, Li JN. Development of artificial intelligence technology in diagnosis, treatment, and prognosis of colorectal cancer. World J Gastrointest Oncol 2022; 14:124-152. [PMID: 35116107 PMCID: PMC8790413 DOI: 10.4251/wjgo.v14.i1.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) technology has made leaps and bounds since its invention. AI technology can be subdivided into many technologies such as machine learning and deep learning. The application scope and prospect of different technologies are also totally different. Currently, AI technologies play a pivotal role in the highly complex and wide-ranging medical field, such as medical image recognition, biotechnology, auxiliary diagnosis, drug research and development, and nutrition. Colorectal cancer (CRC) is a common gastrointestinal cancer that has a high mortality, posing a serious threat to human health. Many CRCs are caused by the malignant transformation of colorectal polyps. Therefore, early diagnosis and treatment are crucial to CRC prognosis. The methods of diagnosing CRC are divided into imaging diagnosis, endoscopy, and pathology diagnosis. Treatment methods are divided into endoscopic treatment, surgical treatment, and drug treatment. AI technology is in the weak era and does not have communication capabilities. Therefore, the current AI technology is mainly used for image recognition and auxiliary analysis without in-depth communication with patients. This article reviews the application of AI in the diagnosis, treatment, and prognosis of CRC and provides the prospects for the broader application of AI in CRC.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Shu Wang
- Department of Radiotherapy, Jilin University Second Hospital, Changchun 130041, Jilin Province, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Tong-Jun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Jian-Nan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
4
|
Pathan N, Govardhane S, Shende P. Stem Cell Progression for Transplantation. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Salman OH, Taha Z, Alsabah MQ, Hussein YS, Mohammed AS, Aal-Nouman M. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 209:106357. [PMID: 34438223 DOI: 10.1016/j.cmpb.2021.106357] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND With the remarkable increasing in the numbers of patients, the triaging and prioritizing patients into multi-emergency level is required to accommodate all the patients, save more lives, and manage the medical resources effectively. Triaging and prioritizing patients becomes particularly challenging especially for the patients who are far from hospital and use telemedicine system. To this end, the researchers exploiting the useful tool of machine learning to address this challenge. Hence, carrying out an intensive investigation and in-depth study in the field of using machine learning in E-triage and patient priority are essential and required. OBJECTIVES This research aims to (1) provide a literature review and an in-depth study on the roles of machine learning in the fields of electronic emergency triage (E-triage) and prioritize patients for fast healthcare services in telemedicine applications. (2) highlight the effectiveness of machine learning methods in terms of algorithms, medical input data, output results, and machine learning goals in remote healthcare telemedicine systems. (3) present the relationship between machine learning goals and the electronic triage processes specifically on the: triage levels, medical features for input, outcome results as outputs, and the relevant diseases. (4), the outcomes of our analyses are subjected to organize and propose a cross-over taxonomy between machine learning algorithms and telemedicine structure. (5) present lists of motivations, open research challenges and recommendations for future intelligent work for both academic and industrial sectors in telemedicine and remote healthcare applications. METHODS An intensive research is carried out by reviewing all articles related to the field of E-triage and remote priority systems that utilise machine learning algorithms and sensors. We have searched all related keywords to investigate the databases of Science Direct, IEEE Xplore, Web of Science, PubMed, and Medline for the articles, which have been published from January 2012 up to date. RESULTS A new crossover matching between machine learning methods and telemedicine taxonomy is proposed. The crossover-taxonomy is developed in this study to identify the relationship between machine learning algorithm and the equivalent telemedicine categories whereas the machine learning algorithm has been utilized. The impact of utilizing machine learning is composed in proposing the telemedicine architecture based on synchronous (real-time/ online) and asynchronous (store-and-forward / offline) structure. In addition to that, list of machine learning algorithms, list of the performance metrics, list of inputs data and outputs results are presented. Moreover, open research challenges, the benefits of utilizing machine learning and the recommendations for new research opportunities that need to be addressed for the synergistic integration of multidisciplinary works are organized and presented accordingly. DISCUSSION The state-of-the-art studies on the E-triage and priority systems that utilise machine learning algorithms in telemedicine architecture are discussed. This approach allows the researchers to understand the modernisation of healthcare systems and the efficient use of artificial intelligence and machine learning. In particular, the growing worldwide population and various chronic diseases such as heart chronic diseases, blood pressure and diabetes, require smart health monitoring systems in E-triage and priority systems, in which machine learning algorithms could be greatly beneficial. CONCLUSIONS Although research directions on E-triage and priority systems that use machine learning algorithms in telemedicine vary, they are equally essential and should be considered. Hence, we provide a comprehensive review to emphasise the advantages of the existing research in multidisciplinary works of artificial intelligence, machine learning and healthcare services.
Collapse
Affiliation(s)
- Omar H Salman
- Network Department, Faculty of Engineering, AL Iraqia University, Baghdad, Iraq.
| | - Zahraa Taha
- Network Department, Faculty of Engineering, AL Iraqia University, Baghdad, Iraq
| | - Muntadher Q Alsabah
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4ET, United Kingdom
| | - Yaseein S Hussein
- Information Systems and Computer Science Department, Ahmed Bin Mohammed Military College (ABMMC), P.O. Box: 22988, Doha Qatar
| | - Ahmed S Mohammed
- Information Systems and Computer Science Department, Ahmed Bin Mohammed Military College (ABMMC), P.O. Box: 22988, Doha Qatar
| | | |
Collapse
|
6
|
Pathan N, Govardhane S, Shende P. Stem Cell Progression for Transplantation. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
De Bruyne S, Speeckaert MM, Van Biesen W, Delanghe JR. Recent evolutions of machine learning applications in clinical laboratory medicine. Crit Rev Clin Lab Sci 2020; 58:131-152. [PMID: 33045173 DOI: 10.1080/10408363.2020.1828811] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Machine learning (ML) is gaining increased interest in clinical laboratory medicine, mainly triggered by the decreased cost of generating and storing data using laboratory automation and computational power, and the widespread accessibility of open source tools. Nevertheless, only a handful of ML-based products are currently commercially available for routine clinical laboratory practice. In this review, we start with an introduction to ML by providing an overview of the ML landscape, its general workflow, and the most commonly used algorithms for clinical laboratory applications. Furthermore, we aim to illustrate recent evolutions (2018 to mid-2020) of the techniques used in the clinical laboratory setting and discuss the associated challenges and opportunities. In the field of clinical chemistry, the reviewed applications of ML algorithms include quality review of lab results, automated urine sediment analysis, disease or outcome prediction from routine laboratory parameters, and interpretation of complex biochemical data. In the hematology subdiscipline, we discuss the concepts of automated blood film reporting and malaria diagnosis. At last, we handle a broad range of clinical microbiology applications, such as the reduction of diagnostic workload by laboratory automation, the detection and identification of clinically relevant microorganisms, and the detection of antimicrobial resistance.
Collapse
Affiliation(s)
- Sander De Bruyne
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Wim Van Biesen
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Radakovich N, Cortese M, Nazha A. Acute myeloid leukemia and artificial intelligence, algorithms and new scores. Best Pract Res Clin Haematol 2020; 33:101192. [PMID: 33038981 PMCID: PMC7548395 DOI: 10.1016/j.beha.2020.101192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Artificial intelligence, and more narrowly machine-learning, is beginning to expand humanity's capacity to analyze increasingly large and complex datasets. Advances in computer hardware and software have led to breakthroughs in multiple sectors of our society, including a burgeoning role in medical research and clinical practice. As the volume of medical data grows at an apparently exponential rate, particularly since the human genome project laid the foundation for modern genetic inquiry, informatics tools like machine learning are becoming crucial in analyzing these data to provide meaningful tools for diagnostic, prognostic, and therapeutic purposes. Within medicine, hematologic diseases can be particularly challenging to understand and treat given the increasingly complex and intercalated genetic, epigenetic, immunologic, and regulatory pathways that must be understood to optimize patient outcomes. In acute myeloid leukemia (AML), new developments in machine learning algorithms have enabled a deeper understanding of disease biology and the development of better prognostic and predictive tools. Ongoing work in the field brings these developments incrementally closer to clinical implementation.
Collapse
Affiliation(s)
- Nathan Radakovich
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, United States
| | - Matthew Cortese
- Department of Hematology and Medical Oncology, Cleveland Clinic, United States
| | - Aziz Nazha
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, United States; Department of Hematology and Medical Oncology, Cleveland Clinic, United States; Center for Clinical Artificial Intelligence, Cleveland Clinic, United States.
| |
Collapse
|
9
|
Machine learning in haematological malignancies. LANCET HAEMATOLOGY 2020; 7:e541-e550. [PMID: 32589980 DOI: 10.1016/s2352-3026(20)30121-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Machine learning is a branch of computer science and statistics that generates predictive or descriptive models by learning from training data rather than by being rigidly programmed. It has attracted substantial attention for its many applications in medicine, both as a catalyst for research and as a means of improving clinical care across the cycle of diagnosis, prognosis, and treatment of disease. These applications include the management of haematological malignancy, in which machine learning has created inroads in pathology, radiology, genomics, and the analysis of electronic health record data. As computational power becomes cheaper and the tools for implementing machine learning become increasingly democratised, it is likely to become increasingly integrated into the research and practice landscape of haematology. As such, machine learning merits understanding and attention from researchers and clinicians alike. This narrative Review describes important concepts in machine learning for unfamiliar readers, details machine learning's current applications in haematological malignancy, and summarises important concepts for clinicians to be aware of when appraising research that uses machine learning.
Collapse
|