1
|
Diógenes EM, Pereira VC, de Souza PRH, Dos Santos PVC, de Sousa PCP, da Silva EL, Mesquita FP, Montenegro RC, de Souza PFN, Rocha MFG, Sidrim JJC, de Aguiar Cordeiro R, de Melo Guedes GM, de Souza Collares Maia Castelo-Branco D. Effect of 5-Fluorouracil on Escherichia coli and Enterococcus spp.: insights into the selective pressures caused by this cytotoxic drug. Microb Pathog 2025:107701. [PMID: 40368067 DOI: 10.1016/j.micpath.2025.107701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic agent that disrupts pyrimidine metabolism, which can interact with gut microbiota, potentially causing dysbiosis and promoting antibiotic resistance. This study analyzed its antimicrobial and antibiofilm effects on Escherichia coli and Enterococcus spp. The Minimum Inhibitory Concentrations (MIC) and Minimum Biofilm Eradication Concentrations (MBEC) of 5-FU were determined against 17 clinical isolates, including resistant and susceptible strains. Biofilm formation and viability were assessed using crystal violet staining and resazurin assays, respectively. Growth curves were generated by exposing selected strains to increasing concentrations of 5-FU and monitoring Optical Density (OD) at 630 nm over 24 hours. Flow cytometry was used to evaluate membrane integrity, using Propidium Iodide (PI), and Reactive Oxygen Species (ROS) production, with DCFH-DA, while Scanning Electron Microscopy (SEM) was used to show the structural alterations in bacterial cells. 5-FU MIC values ranged from 128-512 μM against E. coli and 1-32 μM against Enterococcus spp., with higher MICs observed against resistant strains. MBEC values exceeded planktonic MICs by up to 16-fold for E. coli and 64-fold for Enterococcus spp., ranging from 128 to >2048 μM. At MIC concentrations, membrane damage was increased in both species, while at subinhibitory concentrations, ROS production was exclusively detected in Enterococcus faecalis strains. SEM revealed severe structural alterations, including pore formation, cell shrinkage, cytoplasmic leakage, and cell disintegration highlighting the impact of 5-FU on bacterial morphology. These findings highlight the antibacterial effect of 5-FU, underscoring its potential impact on gut microbial dynamics and the selective pressures it exerts during chemotherapy.
Collapse
Affiliation(s)
- Expedito Maia Diógenes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Vinicius Carvalho Pereira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Paulo Roberto Honório de Souza
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Pedro Victor Coelho Dos Santos
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | | | - Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Rua Coronel Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Rua Coronel Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Rua Coronel Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil.
| | - Pedro Filho Noronha de Souza
- Laboratory of Bioinformatics Applied to Health, Drug Research and Development Center (NPDM), Federal University of Ceará, Rua Coronel Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil; Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, 60714-903, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Gláucia Morgana de Melo Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil; Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil; Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| |
Collapse
|
2
|
Liu G, Cao S, Liu X, Tian Y, Yu W, Chai J, Li L, Wang X, Chu X, Duan Q, Qu J, Wang H, Zhang H, Wang X, Hui X, Yang D, Zhou S, Ding Y, Wang H, Zhou F, Hu B, Guo P, Jiang L, Zhang G, Pan Q, Zhou X, Zhou Y. Effect of perioperative probiotic supplements on the short-term clinical outcomes of patients undergoing laparoscopic or robotic radical gastrectomy after neoadjuvant chemotherapy: Study protocol for a multicenter randomized controlled trial (GISSG2023 - 01 Study). BMC Cancer 2025; 25:776. [PMID: 40281451 PMCID: PMC12023430 DOI: 10.1186/s12885-025-14115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Gastric cancer is a common malignant tumor, and radical gastrectomy can markedly improve the prognosis of gastric cancer patients. However, some patients are diagnosed with advanced gastric cancer before receiving any antitumor therapy and need to receive neoadjuvant chemotherapy (NACT). Previous studies have shown that NACT may cause gut barrier dysfunction and intestinal dysbacteriosis which may further lead to infections. Probiotics have the potential to reduce postoperative infections and improve short-term outcomes after abdominal surgery; however, no large-sample, multicenter, randomized clinical trials have been conducted to explore the effectiveness of probiotics in gastric cancer patients receiving NACT. So we proposed a hypothesis that probiotics can improve short-term outcomes after minimally invasive radical gastrectomy in gastric cancer patients receiving NACT and designed this multicenter randomized controlled trial with the objective to verify this hypothesis. METHODS/DESIGN The GISSG 2023-01 study will be a prospective, open-label, multicenter RCT to verify whether perioperatively probiotic supplementation (begin from the end of the last cycle of NACT to postoperative day 7 or the discharge day) can reduce postoperative infections and improve recovery of gastrointestinal function and other short-term outcomes after minimally invasive radical gastrectomy in gastric cancer patients receiving NACT. A total of 318 patients who meet the inclusion criteria will be enrolled in this study and randomly divided into two groups in a 1:1 ratio: the probiotic group (n = 159) and the control group (n = 159). The participants in the probiotic group will receive perioperative probiotic supplementation, and those in the control group will receive blank control management. The other perioperative management protocols will be the same between the two groups. The primary outcome is postoperative infection compared between the two groups, and the secondary outcomes are postoperative recovery of gastrointestinal function, quality of life, laboratory parameters of systemic inflammation and other short-term outcomes. DISCUSSION The results of this RCT should clarify whether perioperative probiotic supplementation would reduce postoperative infection, promote recovery of gastrointestinal function, reduce laboratory parameters of systemic inflammation and improve symptoms and quality of life after minimally invasive radical gastrectomy in gastric cancer patients receiving NACT. It is hoped that our data will provide evidence that probiotic supplementation improves short-term outcomes in gastric cancer patients receiving NACT. TRIAL REGISTRATION This trial has been registered on https://clinicaltrials.gov/(NCT05901779 ).
Collapse
Affiliation(s)
- Gan Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
| | - Shougen Cao
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
| | - Xiaodong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
| | - Yulong Tian
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
| | - Wenbin Yu
- Qilu Hospital of Shandong University, Jinan, China
| | - Jie Chai
- Shandong Cancer Hospital, Jinan, China
| | - Leping Li
- Shandong Provincial Hospital, Jinan, China
| | - Xixun Wang
- Yantai Yuhuangding Hospital, Yantai, China
| | - Xianqun Chu
- Shandong Jining No.1 People's Hospital, Jining, China
| | - Quanhong Duan
- Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jianjun Qu
- Weifang People's Hospital, Weifang, China
| | - Hao Wang
- Dongying People's Hospital, Dongying, China
| | | | | | | | - Daogui Yang
- Liaocheng People's Hospital, Liaocheng, China
| | | | - Yinlu Ding
- The Second Hospital of Shandong University, Jinan, China
| | - Hongbo Wang
- The People's Hospital of Jimo, Qingdao, China
| | | | - Baoguang Hu
- Binzhou Medical University Hospital, Yantai, China
| | | | | | | | - Qiang Pan
- Rushan People's Hospital, Weihai, China
| | - Xiaobin Zhou
- Department of Epidemiology and Health Statistics, School of Public Health of Qingdao University, Qingdao, China
| | - Yanbing Zhou
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China.
| |
Collapse
|
3
|
Kenneth MJ, Wu CC, Fang CY, Hsu TK, Lin IC, Huang SW, Chiu YC, Hsu BM. Exploring the Impact of Chemotherapy on the Emergence of Antibiotic Resistance in the Gut Microbiota of Colorectal Cancer Patients. Antibiotics (Basel) 2025; 14:264. [PMID: 40149075 PMCID: PMC11939702 DOI: 10.3390/antibiotics14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
With nearly half of colorectal cancer (CRC) patients diagnosed at advanced stages where surgery alone is insufficient, chemotherapy remains a cornerstone for this cancer treatment. To prevent infections and improve outcomes, antibiotics are often co-administered. However, chemotherapeutic interactions with the gut microbiota cause significant non-selective toxicity, affecting not only tumor and normal epithelial cells but also the gut microbiota. This toxicity triggers the bacterial SOS response and loss of microbial diversity, leading to bacterial mutations and dysbiosis. Consequently, pathogenic overgrowth and systemic infections increase, necessitating broad-spectrum antibiotics intervention. This review underscores how prolonged antibiotic use during chemotherapy, combined with chemotherapy-induced bacterial mutations, creates selective pressures that drive de novo antimicrobial resistance (AMR), allowing resistant bacteria to dominate the gut. This compromises the treatment efficacy and elevates the mortality risk. Restoring gut microbial diversity may mitigate chemotherapy-induced toxicity and improve therapeutic outcomes, and emerging strategies, such as fecal microbiota transplantation (FMT), probiotics, and prebiotics, show considerable promise. Given the global threat posed by antibiotic resistance to cancer treatment, prioritizing antimicrobial stewardship is essential for optimizing antibiotic use and preventing resistance in CRC patients undergoing chemotherapy. Future research should aim to minimize chemotherapy's impact on the gut microbiota and develop targeted interventions to restore microbial diversity affected during chemotherapy.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi 621, Taiwan
| | - Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
- College of Medicine, Tzu Chi University, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Tsui-Kang Hsu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - I-Ching Lin
- Department of Family Medicine, Asia University Hospital, Taichung 413, Taiwan
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Changhua 500, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|
4
|
Lan Y, Song Y, Zhang W, Zhao S, Wang X, Wang L, Wang Y, Yang X, Wu H, Liu X. Quinoa Ethanol Extract Ameliorates Cognitive Impairments Induced by Hypoxia in Mice: Insights into Antioxidant Defense and Gut Microbiome Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3427-3443. [PMID: 39873455 DOI: 10.1021/acs.jafc.4c07530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels. Furthermore, QEE enhanced antioxidant defense mechanisms, alleviated neuroinflammation in brain regions associated with memory, and improved HH-induced cognitive impairments by modulating the cyclic adenosine monophosphate response element-binding protein/brain-derived neurotrophic factor signaling pathway. Higher doses generally yielded more effective outcomes than lower doses. QEE also significantly reshaped the gut microbiome structure of HH mice, inhibited gut barrier damage, and reduced lipopolysaccharide migration, thereby increasing short-chain fatty acids (SCFAs) levels. Our findings suggest that QEE may be a promising strategy for preventing hypoxia-induced cognitive impairments by maintaining gut microbiome stability and increasing SCFAs levels.
Collapse
Affiliation(s)
- Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yujie Song
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wengang Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Shiyang Zhao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinze Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xijuan Yang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Hao Wu
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Zhang X, Wang L, Khan AI, Rehman AU, Khinsar KH, Xin Y. Lentinan's effect on gut microbiota and inflammatory cytokines in 5-FU-induced mucositis mice. AMB Express 2025; 15:11. [PMID: 39843881 PMCID: PMC11754778 DOI: 10.1186/s13568-024-01796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/22/2024] [Indexed: 01/24/2025] Open
Abstract
Chemotherapeutic therapies for cancer are frequently associated with cytotoxic side effects that can be harmful to human health, including the development of intestinal mucositis (IM). It mostly affects the gastrointestinal tract, causing ulceration, inflammation, and the formation of lesions in the colon. Surprisingly, despite the frequency of IM, therapeutic choices remain restricted. In our search for new intestinal mucositis therapies, we wanted to see how Lentinan (LT), derived from Lentinus edodes, would fare in mouse models of intestinal mucositis. To create the intestinal mucositis model in mice, we gave them intra-peritoneal doses of 5-fluorouracil (5-FU) (50 mg/kg) and then tested the effects of Lentinan on intestinal mucositis. This examination required constant monitoring of several factors, such as body weight fluctuations, food consumption, and diarrhea. In addition, we measured the levels of certain inflammatory cytokines (Tumour Necrosis Factor-alpha (TNF-α), Interleukin-1 (IL-1), Interleukin-6 (IL-6), and Interleukin-10 (IL-10), looked at the expression of tight junction proteins (Zonula Occludens-1(ZO-1), Claudin-1), measured mucin-2 levels, and looked into changes in the gut flora. In the mouse model of intestinal mucositis, our findings showed that LT effectively reduced weight loss, increased food intake, and relieved diarrhea. Concurrently, we saw a decrease in the expression of inflammatory cytokines such as TNF-α, IL-1, and IL-6, as well as a considerable increase in the concentration of IL-10. Furthermore, LT reduced intestinal mucositis by increasing the length and structural integrity of the colon. Furthermore, increased expression of tight junction proteins (ZO-1, Claudin-1), mucin-2, and an increase in the number of goblet cells all confirmed our previous findings. Notably, the makeup of beneficial bacteria in the stomach increased as well. Finally, our findings suggest that LT can effectively prevent 5-fluorouracil-induced intestinal mucositis in mice by improving immune function, restoring intestinal barrier integrity, and rebalancing gut microbial flora.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Liang Wang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
- Dow Institute of Medical Technology, Dow University of Health Sciences, Karachi, Pakistan
| | - Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Kavish Hasnain Khinsar
- Department of Meat Sciences and Animal Biologics, University of Wisconsin-Madison, Madison, 53705, USA
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
6
|
Anwer EKE, Ajagbe M, Sherif M, Musaibah AS, Mahmoud S, ElBanbi A, Abdelnaser A. Gut Microbiota Secondary Metabolites: Key Roles in GI Tract Cancers and Infectious Diseases. Biomedicines 2025; 13:100. [PMID: 39857684 PMCID: PMC11762448 DOI: 10.3390/biomedicines13010100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The gut microbiota, a dynamic ecosystem of trillions of microorganisms, produces secondary metabolites that profoundly influence host health. Recent research has highlighted the significant role of these metabolites, particularly short-chain fatty acids, indoles, and bile acids, in modulating immune responses, impacting epigenetic mechanisms, and contributing to disease processes. In gastrointestinal (GI) cancers such as colorectal, liver, and gastric cancer, microbial metabolites can drive tumorigenesis by promoting inflammation, DNA damage, and immune evasion. Conversely, these same metabolites hold therapeutic promise, potentially enhancing responses to chemotherapy and immunotherapy and even directly suppressing tumor growth. In addition, gut microbial metabolites play crucial roles in infectious disease susceptibility and resilience, mediating immune pathways that impact pathogen resistance. By consolidating recent insights into the gut microbiota's role in shaping disease and health, this review underscores the therapeutic potential of targeting microbiome-derived metabolites for treating GI cancers and infectious diseases and calls for further research into microbiome-based interventions.
Collapse
Affiliation(s)
- Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Muhammad Ajagbe
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Moustafa Sherif
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Abobaker S. Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Shuaib Mahmoud
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Ali ElBanbi
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| |
Collapse
|
7
|
Qin D, Fu W, Sun Y, Zhao L, Liu H, Fan D, Tan D, Ji X, Wang S. Protective Effects of Cereal-Based Fermented Beverages Against 5-Fluorouracil-Induced Intestinal Damage in Mice. Nutrients 2024; 16:4332. [PMID: 39770954 PMCID: PMC11679319 DOI: 10.3390/nu16244332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) is a common chemotherapeutic medication used to treat cancer. However, the intestinal tract may sustain oxidative damage as a result. OBJECTIVES The purpose of this study was to clarify the underlying molecular mechanisms and examine the preventive benefits of cereal-based fermented drinks (CFBs) against intestinal injury in mice caused by 5-FU. METHODS The mice were injected intraperitoneally with 5-FU to induce intestinal mucosal and treated with CFB. The factors for intestinal barrier integrity, oxidative stress and inflammation were measured. RESULTS The findings demonstrated that CFBs had high levels of polyphenol, flavonoids, and peptides and had in vitro high free radical scavenging capacity. Furthermore, CFBs effectively ameliorated 5-FU-induced intestinal epithelium damage, characterized by increasing intestinal tight junctions and reducing apoptosis in intestinal cells. These protective effects may attribute to the increased activity of antioxidant-related enzymes (SOD, CAT, and GSH) as well as decreased amounts of inflammatory and oxidative damage markers (IL-1β, TNF-α, and MDA) in the intestinal tract. CONCLUSIONS Overall, these results show that CFBs can mitigate intestinal damage caused by 5-FU by reducing oxidative stress, suggesting the potential utility of CFBs for therapeutic treatment against intestinal mucositis.
Collapse
Affiliation(s)
- Dongze Qin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Wenhui Fu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Yi Sun
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Lingda Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Haiwei Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Dongfei Tan
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences (TAAS), Tianjin 300192, China;
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| |
Collapse
|
8
|
Leung HKM, Lo EKK, Chen C, Zhang F, Felicianna, Ismaiah MJ, El-Nezami H. Probiotic Mixture Attenuates Colorectal Tumorigenesis in Murine AOM/DSS Model by Suppressing STAT3, Inducing Apoptotic p53 and Modulating Gut Microbiota. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10405-1. [PMID: 39641861 DOI: 10.1007/s12602-024-10405-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The standard CRC chemo drug, 5-Fluorouracil (5-FU), has a poor response rate and chemoresistance, prompting the need for a more effective and affordable treatment. In this study, we aimed to evaluate whether Prohep, a novel probiotic mixture, would alleviate azoxymethane/dextran sodium sulfate (AOM/DSS)-induced colorectal tumorigenesis and enhance 5-FU efficacy and its mechanism. Our results suggested that Prohep showed stronger anti-tumorigenesis effects than 5-FU alone or when combined in the AOM/DSS model. Prohep significantly reduced the total tumor count, total tumor size, caecum weight, colonic crypt depth, colonic inflammation, and collagen fibrosis. Prohep downregulated pro-inflammatory TNF-α and proliferative p-STAT3 and upregulated apoptotic p53. Metagenomics analysis indicated that Prohep-enriched Helicobacter ganmani, Desulfovibrio porci, Helicobacter hepaticus, and Candidatus Borkfalkia ceftriaxoniphila were inversely correlated to the total tumor count. In addition, Prohep-enriched Prevotella sp. PTAC and Desulfovibrio porci were negatively correlated to AOM/DSS enriched bacteria, while forming a co-existing community with other beneficial bacteria. From KEGG analysis, Prohep downregulated CRC-related pathways and enhanced pathways related to metabolites suppressing CRC like menaquinone, tetrapyrrole, aminolevulinic acid, and tetrahydrofolate. From Metacyc analysis, Prohep downregulated CRC-related peptidoglycan, LPS, and uric acid biosynthesis, and conversion. Prohep elevated the biosynthesis of the beneficial L-lysine, lipoic acid, pyrimidine, and palmitate. Prohep also elevated metabolic pathways related to energy utilization of lactic acid-producing bacteria (LAB) and acetate producers. Similarly, fecal acetate concentration was upregulated by Prohep. To sum up, Prohep demonstrated exceptional anti-tumorigenesis effects in the AOM/DSS model, which revealed its potential to develop into a novel CRC therapeutic in the future.
Collapse
Affiliation(s)
- Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, 999077, China.
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
9
|
Xu Y, Du H, Chen Y, Ma C, Zhang Q, Li H, Xie Z, Hong Y. Targeting the gut microbiota to alleviate chemotherapy-induced toxicity in cancer. Crit Rev Microbiol 2024; 50:564-580. [PMID: 37439132 DOI: 10.1080/1040841x.2023.2233605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/22/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Despite ongoing breakthroughs in novel anticancer therapies, chemotherapy remains a mainstream therapeutic modality in different types of cancer. Unfortunately, chemotherapy-related toxicity (CRT) often leads to dose limitation, and even results in treatment termination. Over the past few years, accumulating evidence has indicated that the gut microbiota is extensively engaged in various toxicities initiated by chemotherapeutic drugs, either directly or indirectly. The gut microbiota can now be targeted to reduce the toxicity of chemotherapy. In the current review, we summarized the clinical relationship between the gut microbiota and CRT, as well as the critical role of the gut microbiota in the occurrence and development of CRT. We then summarized the key mechanisms by which the gut microbiota modulates CRT. Furthermore, currently available strategies to mitigate CRT by targeting the gut microbiota were summarized and discussed. This review offers a novel perspective for the mitigation of diverse chemotherapy-associated toxic reactions in cancer patients and the future development of innovative drugs or functional supplements to alleviate CRT via targeting the gut microbiota.
Collapse
Affiliation(s)
- Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuchun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
10
|
Yan ZW, Liu YN, Xu Q, Yuan Y. Current trends and hotspots of depressive disorders with colorectal cancer: A bibliometric and visual study. World J Gastrointest Oncol 2024; 16:3687-3704. [PMID: 39171183 PMCID: PMC11334043 DOI: 10.4251/wjgo.v16.i8.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Depression is strongly associated with colorectal cancer (CRC). Few bibliometric analyses have systematically summarized the research focus and recent progress in this field. AIM To determine the research status and hotspots by bibliometric analysis of relevant publications on the relationship between CRC and depression. METHODS Articles on depression in CRC patients were collected from the Web of Science Core Collection. CiteSpace and VOSviewer software were used to visualize bibliometric networks. RESULTS From 2001 to 2022, Supportive Care in Cancer, the United States, Tilburg University, and Mols were the most productive and influential journal, country, institution, and author name. Co-occurrence cluster analysis of keywords placed quality of life, anxiety, and psychological stress in the center of the visual network diagram. Further clustering was performed for the clusters with studies of the relevant mechanism of action, which showed that: (1) Cytokines have a role essential for the occurrence and development of depressive disorders in CRC; (2) MicroRNAs have a role essential for the development of depressive disorders in CRC; (3) Some anticancer drugs have pro-depressant activity; and (4) Selective serotonin reuptake inhibitors have both antitumor and antidepressant activity. CONCLUSION Life quality and psychological nursing of the cancer population were key topics. The roles of cytokines and microRNAs, the pro-depression activity of anticancer drugs and their antitumor properties deserve in-depth study.
Collapse
Affiliation(s)
- Zi-Wei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ying-Nan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
11
|
He Y, Li F, Zhang Y, Zhu X, Lin Z, Li L, Nawaz S, Kulyar MFEA, Iqbal M, Li J. Pediococcus pentosaceus PP34 Ameliorates 5-Fluorouracil-Induced Intestinal Mucositis via Inhibiting Oxidative Stress and Restoring the Gut Microbiota. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10324-1. [PMID: 39046671 DOI: 10.1007/s12602-024-10324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Chemotherapy-induced intestinal mucositis based on 5-fluorouracil (5-FU) slows down the progress of cancer treatment and causes significant suffering to patients. Pediococcus pentosaceus (P. pentosaceus), as a type of LAB, has a range of probiotic properties, including antioxidant, immune benefits, and cholesterol-lowering effects, which are attracting increasing attention. However, studies on the protective effect of P. pentosaceus against chemotherapeutic-induced intestinal mucositis caused by 5-FU remain unclear. Therefore, this study aimed to investigate the potential relieving effects of P. pentosaceus PP34 on 5-FU-induced intestinal mucositis and its mechanism. In the present study, a P. pentosaceus PP34 solution (2 × 109 CFU/mL) was administered daily by gavage followed by intraperitoneal injection of 5-FU to model intestinal mucositis. The body weight, serum biochemical indices, jejunal pathological organization, and expression levels of inflammatory cytokines in the jejunum were examined. The results indicated that the mice induced with 5-FU developed typical intestinal mucositis symptoms and histopathological changes with intense inflammatory and oxidative responses. Moreover, the gut microbiota was disturbed, while PP34 effectively decreased the oxidative reactions and the expression levels of inflammatory mediators and regulated the gut microbiota in 5-FU-exposed mice. Taken together, the study indicated that P. pentosaceus PP34 ameliorates 5-Fluorouracil-induced intestinal mucositis via inhibiting oxidative stress and restoring the gut microbiota.
Collapse
Affiliation(s)
- Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feiran Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaohui Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Linxiao Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China.
| |
Collapse
|
12
|
Zhang Y, Zhao X, Zhang J, Zhang Y, Wei Y. Advancements in the impact of human microbiota and probiotics on leukemia. Front Microbiol 2024; 15:1423838. [PMID: 39021626 PMCID: PMC11251910 DOI: 10.3389/fmicb.2024.1423838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The human gut microbiota is a complex ecosystem that plays a crucial role in promoting the interaction between the body and its environment. It has been increasingly recognized that the gut microbiota has diverse physiological functions. Recent studies have shown a close association between the gut microbiota and the development of certain tumors, including leukemia. Leukemia is a malignant clonal disease characterized by the uncontrolled growth of one or more types of blood cells, which is the most common cancer in children. The imbalance of gut microbiota is linked to the pathological mechanisms of leukemia. Probiotics, which are beneficial microorganisms that help maintain the balance of the host microbiome, play a role in regulating gut microbiota. Probiotics have the potential to assist in the treatment of leukemia and improve the clinical prognosis of leukemia patients. This study reviews the relationship between gut microbiota, probiotics, and the progression of leukemia based on current research. In addition, utilizing zebrafish leukemia models in future studies might reveal the specific mechanisms of their interactions, thereby providing new insights into the clinical treatment of leukemia. In conclusion, further investigation is still needed to fully understand the accurate role of microbes in leukemia.
Collapse
Affiliation(s)
| | | | | | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, School of Pharmaceutical Sciences, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wei
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, School of Pharmaceutical Sciences, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Wang JL, Chen YS, Huang KC, Yeh CH, Chen MCM, Wu LSH, Chiu YH. Resistant Starch-Encapsulated Probiotics Attenuate Colorectal Cancer Cachexia and 5-Fluorouracil-Induced Microbial Dysbiosis. Biomedicines 2024; 12:1450. [PMID: 39062024 PMCID: PMC11274618 DOI: 10.3390/biomedicines12071450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
5-Fluorouracil (5-FU) is commonly used as the primary chemotherapy for colorectal cancer (CRC). However, it can lead to unwanted chemoresistance. Resistant starch (RS), which functions similarly to fermentable dietary fiber, has the potential to reduce the risk of CRC. The effects of RS on improving CRC-associated cachectic symptoms and 5-FU chemotherapy-induced microbial dysbiosis remain unknown. Female BALB/cByJNarl mice were randomly divided into four groups: one tumor group (with CT26 colonic carcinoma but no treatment) and three CT26 colonic carcinoma-bearing groups that were administered 20 mg/kg 5-FU (T+5-FU group), a probiotic cocktail (4 × 108 CFUs) plus chemotherapy (T+5-FU+Pro), or resistant-starch-encapsulated probiotics plus chemotherapy (T+5-FU+RS-Pro). T+5-FU and T+5-FU+RS-Pro administration significantly suppressed tumor growth and activated apoptotic cell death in CT26-bearing mice. 5-FU-induced increases in inflammatory cytokines and NF-κB signaling were mitigated by the Pro or RS-Pro supplementation. A gut microbial composition comparison indicated that the abundance of intestinal bacteria in the T and T+5-FU groups decreased significantly, while the groups receiving Pro or RS-Pro maintained a greater abundance and healthy gut microbiota composition, suggesting that RS can reduce the microbial dysbiosis that occurs during 5-FU chemotherapy. The use of RS-Pro before chemotherapy should be considered for the regulation of chemotherapy-associated cachectic symptoms, inflammation, and chemotherapy-induced microbial dysbiosis.
Collapse
Affiliation(s)
- Jui-Ling Wang
- Animal Testing Division, National Laboratory Animal Center, National Applied Research Laboratories, Tainan 744, Taiwan;
| | - Yu-Siang Chen
- Department of Microbiology, Soochow University, Taipei 111, Taiwan;
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Kuo-Chin Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Chin-Hsing Yeh
- Fecula Biotech Co., Ltd., Tainan 744, Taiwan; (C.-H.Y.); (M.C.-M.C.)
| | | | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 111, Taiwan;
| |
Collapse
|
14
|
Li Y, He P, Chen Y, Hu J, Deng B, Liu C, Yu B, Dong W. Microbial metabolite sodium butyrate enhances the anti-tumor efficacy of 5-fluorouracil against colorectal cancer by modulating PINK1/Parkin signaling and intestinal flora. Sci Rep 2024; 14:13063. [PMID: 38844824 PMCID: PMC11156851 DOI: 10.1038/s41598-024-63993-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal cancer (CRC) is a prevalent global health issue, with 5-fluorouracil (5-FU) being a commonly used chemotherapeutic agent for its treatment. However, the efficacy of 5-FU is often hindered by drug tolerance. Sodium butyrate (NaB), a derivative of intestinal flora, has demonstrated anti-cancer properties both in vitro and in vivo through pro-apoptotic effects and has shown promise in improving outcomes when used in conjunction with traditional chemotherapy agents. This study seeks to evaluate the impact and potential mechanisms of NaB in combination with 5-FU on CRC. We employed a comprehensive set of assays, including CCK-8, EdU staining, Hoechst 33258 staining, flow cytometry, ROS assay, MMP assay, immunofluorescence, and mitophagy assay, to detect the effect of NaB on the biological function of CRC cells in vitro. Western blotting and immunohistochemistry were used to verify the above experimental results. The xenograft tumor model was established to evaluate the in vivo anti-CRC activity of NaB. Subsequently, 16S rRNA gene sequencing was used to analyze the intestinal flora. The findings of our study demonstrate that sodium butyrate (NaB) exerts inhibitory effects on tumor cell proliferation and promotes tumor cell apoptosis in vitro, while also impeding tumor progression in vivo through the enhancement of the mitophagy pathway. Furthermore, the combined treatment of NaB and 5-fluorouracil (5-FU) yielded superior therapeutic outcomes compared to monotherapy with either agent. Moreover, this combination therapy resulted in the specific enrichment of Bacteroides, LigiLactobacillus, butyric acid-producing bacteria, and acetic acid-producing bacteria in the intestinal microbiota. The improvement in the intestinal microbiota contributed to enhanced therapeutic outcomes and reduced the adverse effects of 5-FU. Taken together, these findings indicate that NaB, a histone acetylation inhibitor synthesized through intestinal flora fermentation, has the potential to significantly enhance the therapeutic efficacy of 5-FU in CRC treatment and improve the prognosis of CRC patients.
Collapse
Affiliation(s)
- Yangbo Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ying Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jiaming Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
15
|
Kuo YR, Lin CH, Lin WS, Pan MH. L-Glutamine Substantially Improves 5-Fluorouracil-Induced Intestinal Mucositis by Modulating Gut Microbiota and Maintaining the Integrity of the Gut Barrier in Mice. Mol Nutr Food Res 2024; 68:e2300704. [PMID: 38656560 DOI: 10.1002/mnfr.202300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/26/2024] [Indexed: 04/26/2024]
Abstract
SCOPE This study investigates the potential of glutamine to mitigate intestinal mucositis and dysbiosis caused by the chemotherapeutic agent 5-fluorouracil (5-FU). METHODS AND RESULTS Over twelve days, Institute of Cancer Research (ICR) mice are given low (0.5 mg kg-1) or high (2 mg kg-1) doses of L-Glutamine daily, with 5-FU (50 mg kg-1) administered between days six and nine. Mice receiving only 5-FU exhibited weight loss, diarrhea, abnormal cell growth, and colonic inflammation, correlated with decreased mucin proteins, increased endotoxins, reduced fecal short-chain fatty acids, and altered gut microbiota. Glutamine supplementation counteracted these effects by inhibiting the Toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) pathway, modulating nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) oxidative stress proteins, and increasing mammalian target of rapamycin (mTOR) levels, thereby enhancing microbial diversity and protecting intestinal mucosa. CONCLUSIONS These findings underscore glutamine's potential in preventing 5-FU-induced mucositis by modulating gut microbiota and inflammation pathways.
Collapse
Affiliation(s)
- Ya-Ru Kuo
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Hung Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Department of Food Science, National Quemoy University, Quemoy County, 89250, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, 41354, Taiwan
| |
Collapse
|
16
|
Reis SK, Socca EAR, de Souza BR, Genaro SC, Durán N, Fávaro WJ. Effects of probiotic supplementation on chronic inflammatory process modulation in colorectal carcinogenesis. Tissue Cell 2024; 87:102293. [PMID: 38244400 DOI: 10.1016/j.tice.2023.102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
The current study investigated the potential effects of probiotic supplementation on colorectal carcinogenesis chemically induced with 1,2-dimethylhydrazine (DMH) and treated with 5-fluorouracil (5FU)-based chemotherapy in mice. Animals were randomly allocated in five different groups: Control: which not receive any treatment throughout the experimental course; Colitis model group (DMH): treated with DMH; DMH+ 5FU: animals received I.P. (intraperitoneal) dose of chemotherapy on a weekly basis; DMH+PROB: animals received daily administrations (via gavage) of probiotics (Lactobacillus: acidophilus and paracasei, Bifidobacterium lactis and bifidum); and DMH+ PROB+ 5FU: animals received the same treatment as the previous groups. After ten-week treatment, mice's large intestine was collected and subjected to colon length, histopathological, periodic acid-schiff (PAS) staining and immunohistochemistry (TLR2, MyD88, NF-κB, IL-6, TLR4, TRIF, IRF-3, IFN-γ, Ki-67, KRAS, p53, IL-10, and TGF-β) analyzes. Variance (ANOVA) and Kruskal-Wallis tests were used for statistical analysis, at significance level p 0.05. Probiotics' supplementation has increased the production of Ki-67 cell-proliferation marker, reduced body weight, and colon shortening, as well as modulated the chronic inflammatory process in colorectal carcinogenesis by inhibiting NF-κB expression and mitigating mucin depletion. Thus, these findings lay a basis for guide future studies focused on probiotics' action mechanisms in tumor microenvironment which might have implications in clinical practice.
Collapse
Affiliation(s)
- Sabrina Karen Reis
- Faculty Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Eduardo Augusto Rabelo Socca
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bianca Ribeiro de Souza
- British Columbia's Gynecological Cancer Research (OVCARE) Program and Department of Obstetrics and Gynecology, University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada.
| | | | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Wagner José Fávaro
- Faculty Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
17
|
Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes 2024; 16:2320280. [PMID: 38411395 PMCID: PMC10900280 DOI: 10.1080/19490976.2024.2320280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis. This is due to the fact that most cases are only diagnosed at an advanced and palliative disease stage, and there is a high incidence of therapy resistance. Despite ongoing efforts, to date, the mechanisms underlying PDAC oncogenesis and its poor responses to treatment are still largely unclear. As the study of the microbiome in cancer progresses, growing evidence suggests that bacteria or fungi might be key players both in PDAC oncogenesis as well as in its resistance to chemo- and immunotherapy, for instance through modulation of the tumor microenvironment and reshaping of the host immune response. Here, we review how the microbiota exerts these effects directly or indirectly via microbial-derived metabolites. Finally, we further discuss the potential of modulating the microbiota composition as a therapy in PDAC.
Collapse
Affiliation(s)
- Mariana Santos Cruz
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Zünd JN, Plüss S, Mujezinovic D, Menzi C, von Bieberstein PR, de Wouters T, Lacroix C, Leventhal GE, Pugin B. A flexible high-throughput cultivation protocol to assess the response of individuals' gut microbiota to diet-, drug-, and host-related factors. ISME COMMUNICATIONS 2024; 4:ycae035. [PMID: 38562261 PMCID: PMC10982853 DOI: 10.1093/ismeco/ycae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The anaerobic cultivation of fecal microbiota is a promising approach to investigating how gut microbial communities respond to specific intestinal conditions and perturbations. Here, we describe a flexible protocol using 96-deepwell plates to cultivate stool-derived gut microbiota. Our protocol aims to address gaps in high-throughput culturing in an anaerobic chamber. We characterized the influence of the gas phase on the medium chemistry and microbial physiology and introduced a modular medium preparation process to enable the testing of several conditions simultaneously. Furthermore, we identified a medium formulation that maximized the compositional similarity of ex vivo cultures and donor microbiota while limiting the bloom of Enterobacteriaceae. Lastly, we validated the protocol by demonstrating that cultivated fecal microbiota responded similarly to dietary fibers (resistant dextrin, soluble starch) and drugs (ciprofloxacin, 5-fluorouracil) as reported in vivo. This high-throughput cultivation protocol has the potential to facilitate culture-dependent studies, accelerate the discovery of gut microbiota-diet-drug-host interactions, and pave the way to personalized microbiota-centered interventions.
Collapse
Affiliation(s)
- Janina N Zünd
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Serafina Plüss
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Denisa Mujezinovic
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Carmen Menzi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- PharmaBiome AG, 8952 Schlieren, Switzerland
| | - Philipp R von Bieberstein
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- PharmaBiome AG, 8952 Schlieren, Switzerland
| | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Benoit Pugin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
19
|
Huang G, Khan R, Zheng Y, Lee PC, Li Q, Khan I. Exploring the role of gut microbiota in advancing personalized medicine. Front Microbiol 2023; 14:1274925. [PMID: 38098666 PMCID: PMC10720646 DOI: 10.3389/fmicb.2023.1274925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Ongoing extensive research in the field of gut microbiota (GM) has highlighted the crucial role of gut-dwelling microbes in human health. These microbes possess 100 times more genes than the human genome and offer significant biochemical advantages to the host in nutrient and drug absorption, metabolism, and excretion. It is increasingly clear that GM modulates the efficacy and toxicity of drugs, especially those taken orally. In addition, intra-individual variability of GM has been shown to contribute to drug response biases for certain therapeutics. For instance, the efficacy of cyclophosphamide depends on the presence of Enterococcus hirae and Barnesiella intestinihominis in the host intestine. Conversely, the presence of inappropriate or unwanted gut bacteria can inactivate a drug. For example, dehydroxylase of Enterococcus faecalis and Eggerthella lenta A2 can metabolize L-dopa before it converts into the active form (dopamine) and crosses the blood-brain barrier to treat Parkinson's disease patients. Moreover, GM is emerging as a new player in personalized medicine, and various methods are being developed to treat diseases by remodeling patients' GM composition, such as prebiotic and probiotic interventions, microbiota transplants, and the introduction of synthetic GM. This review aims to highlight how the host's GM can improve drug efficacy and discuss how an unwanted bug can cause the inactivation of medicine.
Collapse
Affiliation(s)
- Gouxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Qingnan Li
- Clinical Research Center, Shantou Central Hospital, Shantou, China
- Department of Pharmacy, Shantou Central Hospital, Shantou, China
| | - Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
20
|
Jenvrin A, Perret A, Palmieri LJ, Soularue E, Broudin C, Rance B, Taieb J, Gallois C. Chemotherapy-induced ileitis associated or not with colitis in digestive oncology patients: An AGEO multicentre study. Dig Liver Dis 2023; 55:1426-1433. [PMID: 37045619 DOI: 10.1016/j.dld.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND The characteristics and management of ileitis induced by chemotherapy in cancer patients are poorly described in the literature. METHODS This retrospective multicentre study enroled patients hospitalized in a digestive oncology unit for a symptomatic chemotherapy-induced ileitis. RESULTS Forty-three patients were included, with a regimen based on fluoropyrimidine and/or irinotecan in 95% of cases. Five patients were excluded due to the diagnosis of infectious ileitis (Clostridium difficile in 3 patients, Campylobacter jejuni in 1 patient and cytomegalovirus in 1 patient). The most frequently described symptoms were diarrhoea (77% including 54% of grade 3-4 diarrhoea), abdominal pain (58%), fever (51%) and vomiting (56%). An ileo-colonoscopy was performed in 35% of patients and did not show any specific results or severity criteria. The ileitis was complicated by bowel perforation and/or obstruction in 3 patients. Disease progression was favourable in 1-2 weeks in the vast majority of cases, on symptomatic treatment, allowing resumption of the chemotherapy regimen involved in 67% of patients. CONCLUSION Chemotherapy-induced ileitis is a rare complication that most often involves fluoropyri-midine- and/or irinotecan-based regimens. In most cases, endoscopic examinations were not contributory and do not seem useful in the event of non-severe symptomatology which most often develops favourably on symptomatic therapy, allowing resumption of the chemotherapy involved.
Collapse
Affiliation(s)
- Anaïs Jenvrin
- Assistance Publique-Hôpitaux de Paris, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Audrey Perret
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lola-Jade Palmieri
- Assistance Publique-Hôpitaux de Paris, Gastroenterology and Digestive Oncology Department, Cochin Hospital, Paris, France
| | - Emilie Soularue
- Institut Mutualiste Montsoutris, Department of Medical Oncology, Paris, France
| | - Chloé Broudin
- Paris University; Assistance Publique-Hôpitaux de Paris, Department of Pathology, Hôpital Européen Georges Pompidou, Paris, France
| | - Bastien Rance
- Université Paris Cité, Inserm, Centre de Recherche des Cordeliers; Assistance Publique-Hôpitaux de Paris, Department of Medical Bioinformatics, Hôpital Européen Georges Pompidou, Paris, France
| | - Julien Taieb
- Paris Cité University; Siric CARPEM; Assistance Publique-Hôpitaux de Paris, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Claire Gallois
- Paris Cité University; Siric CARPEM; Assistance Publique-Hôpitaux de Paris, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
21
|
Luisa Valerio de Mello Braga L, Simão G, Silva Schiebel C, Caroline Dos Santos Maia A, Mulinari Turin de Oliveira N, Barbosa da Luz B, Rita Corso C, Soares Fernandes E, Maria Ferreira D. Rodent models for anticancer toxicity studies: contributions to drug development and future perspectives. Drug Discov Today 2023:103626. [PMID: 37224998 DOI: 10.1016/j.drudis.2023.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Antineoplastic treatment induces a type of gastrointestinal toxicity known as mucositis. Findings in animal models are usually easily reproducible, and standardized treatment regimens are often used, thus supporting translational science. Essential characteristics of mucositis, including intestinal permeability, inflammation, immune and oxidative responses, and tissue repair mechanisms, can be easily investigated in these models. Given the effects of mucositis on the quality of life of patients with cancer, and the importance of experimental models in the development of more effective new therapeutic alternatives, this review discusses progress and current challenges in using experimental models of mucositis in translational pharmacology research. Teaser Experimental models for studying gastrointestinal mucositis have provided a wealth of information improving the understanding of antineoplastic toxicity.
Collapse
Affiliation(s)
- Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Carolina Silva Schiebel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Andressa Caroline Dos Santos Maia
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Daniele Maria Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
22
|
Kawasaki Y, Kakimoto K, Tanaka Y, Shimizu H, Nishida K, Numa K, Kinoshita N, Tatsumi Y, Nakazawa K, Koshiba R, Hirata Y, Ota K, Sakiyama N, Terazawa T, Takeuchi T, Miyazaki T, Goto M, Yokota H, Makizaki Y, Tanaka Y, Nakajima S, Ohno H, Higuchi K, Nakamura S, Nishikawa H. Relationship between Chemotherapy-Induced Diarrhea and Intestinal Microbiome Composition. Digestion 2023; 104:357-369. [PMID: 37231829 PMCID: PMC10614279 DOI: 10.1159/000528282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIM Fluoropyrimidines (FPs) are key drugs in many chemotherapy regimens; however, recipients are often prone to diarrhea due to gastrointestinal toxicity. Disruption of the intestinal epithelial barrier function by FPs leads to dysbiosis, which may exacerbate intestinal epithelial cell damage as a secondary effect and trigger diarrhea. However, despite studies on chemotherapy-induced changes in the intestinal microbiome of humans, the relationship between dysbiosis and diarrhea is unclear. In this study, we aimed to investigate the relationship between chemotherapy-induced diarrhea and the intestinal microbiome. METHODS We conducted a single-center prospective observational study. Twenty-three patients who received chemotherapy, including FPs as first-line chemotherapy for colorectal cancer, were included. Stool samples were collected before the start of chemotherapy and after one cycle of treatment to analyze intestinal microbiome composition and perform PICRUSt predictive metagenomic analysis. RESULTS Gastrointestinal toxicity was observed in 7 of 23 patients (30.4%), diarrhea was observed in 4 (17.4%), and nausea and anorexia were observed in 3 (13.0%). In 19 patients treated with oral FPs, the α diversity of the microbial community decreased significantly following chemotherapy only in the diarrheal group. At the phylum level, the diarrheal group showed a significant decrease in the abundance of Firmicutes and a significant increase in the abundance of Bacteroidetes with chemotherapy (p = 0.013 and 0.011, respectively). In the same groups, at the genus level, Bifidobacterium abundance was significantly decreased (p = 0.019). In contrast, in the non-diarrheal group, Actinobacteria abundance increased significantly with chemotherapy at the phylum level (p = 0.011). Further, Bifidobacterium, Fusicatenibacter, and Dorea abundance significantly increased at the genus level (p = 0.006, 0.019, and 0.011, respectively). The PICRUSt predictive metagenomic analysis revealed that chemotherapy caused significant differences in membrane transport in KEGG pathway level 2 and in 8 KEGG pathway level 3, including transporters and oxidative phosphorylation in the diarrhea group. CONCLUSION Organic-acid-producing bacteria seem to be involved in diarrhea associated with chemotherapy, including FPs.
Collapse
Affiliation(s)
- Yuka Kawasaki
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kazuki Kakimoto
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yasuyoshi Tanaka
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Hikaru Shimizu
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Koji Nishida
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Keijiro Numa
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Naohiko Kinoshita
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yoshihiro Tatsumi
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kei Nakazawa
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Ryoji Koshiba
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yuki Hirata
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kazuhiro Ota
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Naokuni Sakiyama
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Tetsuji Terazawa
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Toshihisa Takeuchi
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takako Miyazaki
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Masahiro Goto
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Haruka Yokota
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Japan
| | | | - Yoshiki Tanaka
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Japan
| | | | - Hiroshi Ohno
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Japan
| | - Kazuhide Higuchi
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Shiro Nakamura
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Hiroki Nishikawa
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
23
|
Trindade LM, Torres L, Matos ID, Miranda VC, de Jesus LCL, Cavalcante G, de Souza Oliveira JJ, Cassali GD, Mancha-Agresti P, de Carvalho Azevedo VA, Maioli TU, Cardoso VN, Martins FDS, de Vasconcelos Generoso S. Paraprobiotic Lacticaseibacillus rhamnosus Protects Intestinal Damage in an Experimental Murine Model of Mucositis. Probiotics Antimicrob Proteins 2023; 15:338-350. [PMID: 34524605 DOI: 10.1007/s12602-021-09842-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
Intestinal mucositis (IM) is a common side effect resulting from cancer treatment. However, the management so far has not been very effective. In the last years, the role of the gut microbiota in the development and severity of mucositis has been studied. Therefore, the use of probiotics and paraprobiotics could have a potential therapeutic effect on IM. The aim of our study was to investigate the impact of the administration of Lacticaseibacillus rhamnosus (L. rhamnosus) CGMCC1.3724 and the paraprobiotic on IM in mice. For 13 days, male Balb/c mice were divided into six groups: control (CTL) and mucositis (MUC)/0.1 mL of saline; CTL LrV and MUC LrV/0.1 mL of 108 CFU of viable Lr; CTL LrI and MUC LrI/0.1 mL of 108 CFU of inactivated Lr. On the 10th day, mice from the MUC, MUC LrV, and MUC LrI groups received an intraperitoneal injection (300 mg/kg) of 5-fluorouracil to induce mucositis. The results showed that the administration of the chemotherapeutic agent increased the weight loss and intestinal permeability of the animals in the MUC and MUC LrV groups. However, administration of paraprobiotic reduced weight loss and maintained PI at physiological levels. The paraprobiotic also preserved the villi and intestinal crypts, reduced the inflammatory infiltrate, and increased the mucus secretion, Muc2 gene expression, and Treg cells frequency.
Collapse
Affiliation(s)
- Luísa Martins Trindade
- Programa de Pós-Graduação Em Ciência de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lícia Torres
- Programa de Pós-Graduação Em Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabel David Matos
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Correia Miranda
- Programa de Pós-Graduação Em Microbiologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gregório Cavalcante
- Programa de Pós-Graduação Em Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Geovanni Dantas Cassali
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviano Dos Santos Martins
- Programa de Pós-Graduação Em Microbiologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Simone de Vasconcelos Generoso
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
24
|
Jiang Z, Zhang W, Zhang Z, Sha G, Wang D, Tang D. Intratumoral microbiota: A new force in diagnosing and treating pancreatic cancer. Cancer Lett 2023; 554:216031. [PMID: 36481214 DOI: 10.1016/j.canlet.2022.216031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is an increasingly growing source of cancer-related deaths and is often diagnosed at advanced stages. Its treatment is difficult because of the poor results of conventional treatments, such as surgery, chemotherapy, and radiotherapy. Microbiota and their products can regulate the microenvironment of pancreatic tumors, the biological behavior of pancreatic cancer cells, and the functionality of the immune system. Promising results have been achieved in treating pancreatic cancer by regulating microbiota. However, intratumoral microbiota is still in its infancy as a new field of discovery for pancreatic cancer. This review summarizes the mechanisms by which intratumoral microbiota causes pancreatic cancer tumorigenesis, progression, and metastasis and demonstrates their significant potential in diagnosing and treating pancreatic cancer. Additionally, we present an outlook on the future of intratumoral microbiota in treating pancreatic cancer.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
25
|
Zheng X, Mai L, Xu Y, Wu M, Chen L, Chen B, Su Z, Chen J, Chen H, Lai Z, Xie Y. Brucea javanica oil alleviates intestinal mucosal injury induced by chemotherapeutic agent 5-fluorouracil in mice. Front Pharmacol 2023; 14:1136076. [PMID: 36895947 PMCID: PMC9990700 DOI: 10.3389/fphar.2023.1136076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Background: Brucea javanica (L.) Merr, has a long history to be an anti-dysentery medicine for thousand of years, which is commonly called "Ya-Dan-Zi" in Chinese. The common liquid preparation of its seed, B. javanica oil (BJO) exerts anti-inflammatory action in gastrointestinal diseases and is popularly used as an antitumor adjuvant in Asia. However, there is no report that BJO has the potential to treat 5-Fluorouracil (5-FU)-induced chemotherapeutic intestinal mucosal injury (CIM). Aim of the study: To test the hypothesis that BJO has potential intestinal protection on intestinal mucosal injury caused by 5-FU in mice and to explore the mechanisms. Materials and methods: Kunming mice (half male and female), were randomly divided into six groups: normal group, 5-FU group (5-FU, 60 mg/kg), LO group (loperamide, 4.0 mg/kg), BJO group (0.125, 0.25, 0.50 g/kg). CIM was induced by intraperitoneal injection of 5-FU at a dose of 60 mg/kg/day for 5 days (from day 1 to day 5). BJO and LO were given orally 30 min prior to 5-FU administration for 7 days (from day 1 to day 7). The ameliorative effects of BJO were assessed by body weight, diarrhea assessment, and H&E staining of the intestine. Furthermore, the changes in oxidative stress level, inflammatory level, intestinal epithelial cell apoptosis, and proliferation, as well as the amount of intestinal tight junction proteins were evaluated. Finally, the involvements of the Nrf2/HO-1 pathway were tested by western blot. Results: BJO effectively alleviated 5-FU-induced CIM, as represented by the improvement of body weight, diarrhea syndrome, and histopathological changes in the ileum. BJO not only attenuated oxidative stress by upregulating SOD and downregulating MDA in the serum, but also reduced the intestinal level of COX-2 and inflammatory cytokines, and repressed CXCL1/2 and NLRP3 inflammasome activation. Moreover, BJO ameliorated 5-FU-induced epithelial apoptosis as evidenced by the downregulation of Bax and caspase-3 and the upregulation of Bcl-2, but enhanced mucosal epithelial cell proliferation as implied by the increase of crypt-localized proliferating cell nuclear antigen (PCNA) level. Furthermore, BJO contributed to the mucosal barrier by raising the level of tight junction proteins (ZO-1, occludin, and claudin-1). Mechanistically, these anti-intestinal mucositis pharmacological effects of BJO were relevant for the activation of Nrf2/HO-1 in the intestinal tissues. Conclusion: The present study provides new insights into the protective effects of BJO against CIM and suggests that BJO deserves to be applied as a potential therapeutic agent for the prevention of CIM.
Collapse
Affiliation(s)
- Xinghan Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China.,Pharmacy Department, Quanzhou Hospital of Traditional Chinese Medicine, Quanzhou, China
| | - Liting Mai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Medical Insurance Office, Zhaoqing Hospital, Sun Yat-sen University, Zhaoqing, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Ying Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Minghui Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Li Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Hongying Chen
- Guangzhou Baiyunshan Mingxing Pharmaceutical Co. Ltd, Guangzhou, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Youliang Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| |
Collapse
|
26
|
Américo MF, Freitas ADS, da Silva TF, de Jesus LCL, Barroso FAL, Campos GM, Santos RCV, Gomes GC, Assis R, Ferreira Ê, Mancha-Agresti P, Laguna JG, Chatel JM, Carvalho RDDO, Azevedo V. Growth differentiation factor 11 delivered by dairy Lactococcus lactis strains modulates inflammation and prevents mucosal damage in a mice model of intestinal mucositis. Front Microbiol 2023; 14:1157544. [PMID: 37138633 PMCID: PMC10149842 DOI: 10.3389/fmicb.2023.1157544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Mucositis is an inflammation of the gastrointestinal mucosa that debilitate the quality of life of patients undergoing chemotherapy treatments. In this context, antineoplastic drugs, such as 5-fluorouracil, provokes ulcerations in the intestinal mucosa that lead to the secretion of pro-inflammatory cytokines by activating the NF-κB pathway. Alternative approaches to treat the disease using probiotic strains show promising results, and thereafter, treatments that target the site of inflammation could be further explored. Recently, studies reported that the protein GDF11 has an anti-inflammatory role in several diseases, including in vitro and in vivo results in different experimental models. Hence, this study evaluated the anti-inflammatory effect of GDF11 delivered by Lactococcus lactis strains NCDO2118 and MG1363 in a murine model of intestinal mucositis induced by 5-FU. Our results showed that mice treated with the recombinant lactococci strains presented improved histopathological scores of intestinal damage and a reduction of goblet cell degeneration in the mucosa. It was also observed a significant reduction of neutrophil infiltration in the tissue in comparison to positive control group. Moreover, we observed immunomodulation of inflammatory markers Nfkb1, Nlrp3, Tnf, and upregulation of Il10 in mRNA expression levels in groups treated with recombinant strains that help to partially explain the ameliorative effect in the mucosa. Therefore, the results found in this study suggest that the use of recombinant L. lactis (pExu:gdf11) could offer a potential gene therapy for intestinal mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- INRAE, Institut Agro Rennes-Angers, STLO, Rennes, France
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rhayane Cristina Viegas Santos
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Camargos Gomes
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Assis
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ênio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Marc Chatel
- INRAE, AgroParisTech, MICALIS, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rodrigo Dias de Oliveira Carvalho
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Vasco Azevedo,
| |
Collapse
|
27
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
28
|
Xia J, Chen J, Vashisth MK, Ge Y, Dai Q, He S, Shi YL, Wang XB. Metformin ameliorates 5-fluorouracil-induced intestinal injury by inhibiting cellular senescence, inflammation, and oxidative stress. Int Immunopharmacol 2022; 113:109342. [DOI: 10.1016/j.intimp.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
29
|
Dahlgren D, Rosenqvist E, Hellström PM, Nygren P, Kullenberg F, Peters K, Sjöblom M, Lennernäs H. Evaluation and validation of chemotherapy-specific diarrhoea and histopathology in rats. Basic Clin Pharmacol Toxicol 2022; 131:536-546. [PMID: 36124882 PMCID: PMC9828157 DOI: 10.1111/bcpt.13790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Chemotherapy-induced mucositis is characterized by diarrhoea and villous atrophy. However, it is not well-understood why diarrhoea arises, why it only occurs with some chemotherapeutics and how it is related to villus atrophy. The objectives in this study were to determine (i) the relationship between chemotherapy-induced diarrhoea and villus atrophy and to (ii) establish and validate a rat diarrhoea model with clinically relevant endpoints. Male Wistar Han IGS rats were treated with saline, doxorubicin, idarubicin, methotrexate, 5-fluorouracil, irinotecan or 5-fluorouracil+irinotecan. After 72 h, jejunal tissue was taken for morphological, apoptotic and proliferative analyses, and faecal water content and change in body weight were determined. All treatments except methotrexate caused a similar reduction (≈42%) in villus height, but none of them altered mucosal crypt cell proliferation or apoptosis. Doxorubicin, idarubicin, irinotecan and 5-fluorouracil+irinotecan caused body weight reduction, but only irinotecan and idarubicin caused diarrhoea. No direct correlation between diarrhoea and villus height or body weight loss was observed. Therefore, studies of the mechanisms for chemotherapy-induced diarrhoea should focus on functional factors. Finally, the irinotecan and idarubicin diarrhoea models established in this study will be useful in developing supportive treatments of this common and serious adverse effect in patients undergoing chemotherapy.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and DevelopmentUppsala UniversityUppsalaSweden
| | - Evelina Rosenqvist
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and DevelopmentUppsala UniversityUppsalaSweden
| | - Per M. Hellström
- Department of Medical Sciences, Gastroenterology/HepatologyUppsala UniversityUppsalaSweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Experimental and Clinical OncologyUppsala UniversityUppsalaSweden
| | - Fredrik Kullenberg
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and DevelopmentUppsala UniversityUppsalaSweden
| | - Karsten Peters
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and DevelopmentUppsala UniversityUppsalaSweden,Department of Medical Cell Biology, Gastrointestinal PhysiologyUppsala UniversityUppsalaSweden
| | - Markus Sjöblom
- Department of Medical Cell Biology, Gastrointestinal PhysiologyUppsala UniversityUppsalaSweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and DevelopmentUppsala UniversityUppsalaSweden
| |
Collapse
|
30
|
Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. Eur J Pharmacol 2022; 936:175379. [PMID: 36356927 DOI: 10.1016/j.ejphar.2022.175379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
31
|
Yin L, Huang G, Khan I, Su L, Xia W, Law BYK, Wong VKW, Wu Q, Wang J, Leong WK, Hsiao WLW. Poria cocos polysaccharides exert prebiotic function to attenuate the adverse effects and improve the therapeutic outcome of 5-FU in Apc Min/+ mice. Chin Med 2022; 17:116. [PMID: 36192796 PMCID: PMC9531437 DOI: 10.1186/s13020-022-00667-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a first-line chemotherapeutic agent, 5-fluorouracil (5-FU) exhibits many side effects, weakening its efficacy in cancer treatment. In this study, we hypothesize that Poria cocos polysaccharides (PCP), a traditional Chinese herbal medicine with various bioactivities and prebiotic effects, might improve the therapeutic effect of 5-FU by restoring the homeostasis of the gut microenvironment and the commensal gut microflora. METHODS ApcMin/+ mice were employed to evaluate the anti-cancer effect of 5-FU in conjunction with PCP treatment. Body weight and food consumption were monitored weekly. Polyp count was used to assess the anti-cancer effect of PCP and 5-FU. Expressions of mucosal cytokines and gut epithelial junction molecules were measured using qRT-PCR. 16S rRNA gene sequencing of fecal DNAs was used to evaluate the compositional changes of gut microbiota (GM). Transplantation of Lactobacillus johnsonii and Bifidobacterium animalis were performed to verify the prebiotic effects of PCP in improving the efficacy of 5-FU. RESULTS The results showed that PCP treatment alleviated the weight loss caused by 5-FU treatment and reduced the polyp burden in ApcMin/+ mice. Additionally, PCP treatment eased the cytotoxic effects of 5-FU by reducing the expressions of pro-inflammatory cytokines, increasing the anti-inflammatory cytokines; and significantly improving the gut barriers by enhancing the tight junction proteins and associated adhesion molecules. Furthermore, 16S rRNA gene sequencing data showed that PCP alone or with 5-FU could stimulate the growth of probiotic bacteria (Bacteroides acidifaciens, Bacteroides intestinihominis, Butyricicoccus pullicaecorum, and the genera Lactobacillus, Bifidobacterium, Eubacterium). At the same time, it inhibited the growth of potential pathogens (e.g., Alistipes finegoldii, Alistipes massiliensis, Alistipes putredinis., Citrobacter spp., Desulfovibrio spp., and Desulfovibrio desulfuricans). Moreover, the results showed that transplantation of L.johnsonii and B.animalis effectively reduced the polyp burden in ApcMin/+ mice being treated with 5-FU. CONCLUSION Our study showed that PCP could effectively improve the anti-cancer effect of 5-FU by attenuating its side effects, modulating intestinal inflammation, improving the gut epithelial barrier, and modulating the gut microbiota of ApcMin/+ mice.
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China.,Clinical Research Center, Shantou Central Hospital, Shantou, China.,Zhuhai MUST Science and Technology Research Institute, Zhuhai, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Lu Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Jingyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China. .,Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China.
| |
Collapse
|
32
|
Wu Y, Tang X, Hu F, Zhu T, Liu H, Xiong Y, Zuo X, Xu A, Zhuang X. Long-term use of broad-spectrum antibiotics affects Ly6C hi monocyte recruitment and IL-17A and IL-22 production through the gut microbiota in tumor-bearing mice treated with chemotherapy. Immunol Res 2022; 70:829-843. [PMID: 36149530 DOI: 10.1007/s12026-022-09313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
The protective effects of antibiotics against infection in cancer patients treated with chemotherapy remains unclear and related studies have been performed in healthy or pathogen-infected animal models. Here, we aimed to study the effects of antibiotic use on intestinal infection in tumor-bearing mice treated with chemotherapy and to determine the underlying mechanisms. Subcutaneous CT26 tumor-bearing mice were assigned to four groups: the control (Ctrl) group without any treatment, the antibiotic (ATB) group treated with a mixture of ampicillin, streptomycin, and colistin, the 5-fluorouracil (FU) group treated with four cycles of intraperitoneal injections of FU, and the ATB + FU group treated with the combination of ATB and FU. Gut microbial composition was determined and mesenteric lymph nodes (mLNs) were isolated for bacterial culturing. Intestinal permeability and integrity were assessed and the expression of cytokines was analyzed by quantitative PCR, ELISA, or flow cytometry (FCM). Monocytes in the colonic lamina propria (LP) were measured by FCM. Compared with the Ctrl and FU groups, the numbers of positive bacterial culturing results for mLNs were higher, and gut bacterial compositions were altered in the ATB and ATB + FU groups, with significantly decreased alpha diversity in the ATB + FU group. Intestinal integrity regarding the expression of tight junction proteins and intestinal permeability were not impaired significantly after treatments, but the colons were shorter in the ATB + FU group. The expression levels of intestinal IL-17A and IL-22, as well as the percentages of IL-17A+ cells in the colonic LP of the ATB + FU group, were lower than those in the FU group. The percentages of Ly6Chi monocytes in the colonic LP were lower, but those in the spleen were higher in the ATB + FU group than in the FU group. The mRNA levels of colonic CCL8 were reduced in the ATB + FU group. Antibiotic use is associated with an increased incidence of intestinal infections in tumor-bearing mice treated with chemotherapy, which might in turn be associated with a dysregulated gut microbiota that inhibits colonic monocyte recruitment and IL-17A and IL-22 production.
Collapse
Affiliation(s)
- Yanhong Wu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Xiaolei Tang
- Basic Medical Laboratory, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Feng Hu
- Department of Blood Transfusion, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Tao Zhu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Hui Liu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Yanjing Xiong
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Xiaoxuan Zuo
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Aiping Xu
- The Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China.
| | - Xiufen Zhuang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
33
|
Interaction between gut microbiota and tumour chemotherapy. Clin Transl Oncol 2022; 24:2330-2341. [DOI: 10.1007/s12094-022-02919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
|
34
|
Santana AB, Souto BS, Santos NCDM, Pereira JA, Tagliati CA, Novaes RD, Corsetti PP, de Almeida LA. Murine response to the opportunistic bacterium Pseudomonas aeruginosa infection in gut dysbiosis caused by 5-fluorouracil chemotherapy-induced mucositis. Life Sci 2022; 307:120890. [PMID: 35988752 DOI: 10.1016/j.lfs.2022.120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
AIMS This manuscript aims to explain the relationship between mucositis caused by 5-FU over gut bacterial species and susceptibility to opportunistic infection caused by P. aeruginosa. MAIN METHODS BALB/c mice were intraperitoneally treated with PBS or 5-FU. Bodyweight and faecal consistency were checked daily. Mice faecal DNA was extracted, and bacterial phylogenetic groups were analysed using qPCR or high-throughput sequencing. Immunofluorescence was used to evaluate BMDM activation by mice-treated faecal content. Mice were challenged intratracheally with virulent P. aeruginosa, and the CFU and histology were analysed. Faecal microbiota were transplanted to evaluate the gut microbiota and resistance to pulmonary P. aeruginosa recovery. KEY FINDINGS The animals treated with 5-FU presented mucositis with great weight loss, altered faecal consistency, bacterial gut dysbiosis and histological changes in the intestinal mucosa. Mice under 5-FU treatment were more susceptible to lung infection by the bacteria P. aeruginosa and had more extensive tissue damage during their lung infection with greater pro-inflammatory gene expression. It was observed that the mucositis remained in the groups with 5-FU even with the FMT. The results caused by mucositis in animals that received allogeneic FMT were reversed, however, with a decrease in P. aeruginosa susceptibility in animals treated with 5-FU and allogeneic FMT compared to animals treated with 5-FU and autologous FMT. SIGNIFICANCE Treatment with 5-FU in a murine model makes it more susceptible to pulmonary infection by the bacterium P. aeruginosa, FMT offers an opportunity to protect against this susceptibility to infection.
Collapse
Affiliation(s)
- Aleksander Brandão Santana
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Bianca Silva Souto
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Natália Cristina de Melo Santos
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Jéssica Assis Pereira
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Carlos Alberto Tagliati
- Laboratory of Toxicology (LabTox), Department of Clinical and Toxicological Analysis, Pharmacy Faculty, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, Brazil
| | - Patrícia Paiva Corsetti
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Leonardo Augusto de Almeida
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil.
| |
Collapse
|
35
|
Chen KJ, Huang YL, Kuo LM, Chen YT, Hung CF, Hsieh PW. Protective role of casuarinin from Melastoma malabathricum against a mouse model of 5-fluorouracil-induced intestinal mucositis: Impact on inflammation and gut microbiota dysbiosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154092. [PMID: 35430483 DOI: 10.1016/j.phymed.2022.154092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND 5-FU-induced intestinal mucositis (FUIIM) is a common gastrointestinal side effect of chemotherapy, leading to gastric pain in clinical cancer patients. In a previous study, we demonstrated that neutrophil elastase (NE) inhibitors could alleviate FUIIM and manipulate the homeostasis of the gut microbiota. The root of Melastoma malabathricum, also called Ye-Mu-Dan, has been used as a traditional Chinese medicine for gastrointestinal disease. Water extract of the roots of M. malabathricum exhibits an inhibitory effect on NE, with an IC50 value of 9.13 μg/ml. PURPOSE In this study, we aimed to isolate an anti-NE compound from the root of M. malabathricum and to determine the protective effect of the bioactive component on a mouse model of FUIIM with respect to tissue damage, inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. METHODS A water extract of the roots of M. malabathricum was prepared and its major bioactive compound, was identified using bioactivity-guided fractionation. The effects of samples on the inhibition of NE activity were evaluated using enzymatic assays. To evaluate the effects of the bioactive compound in an FUIIM animal model, male C57BL/6 mice treated with or without casuarinin (50 and 100 mg/kg/day, p.o.), and then received of 5-fluorouracil (50 mg/kg/day) intraperitoneally for 5 days to induce FUIIM. Histopathological staining was used to monitor the tissue damage, proliferation of intestinal crypts, and expression of tight junction proteins. The inflammation score was estimated by determining the levels of oxidative stress, neutrophil-related proteases, and proinflammatory cytokines in tissue and serum. The ecology of the gut microbiota was evaluated using 16S rRNA gene sequencing. RESULTS Casuarinin had the most potent and selective effect against NE, with an IC50 value of 2.79 ± 0.07 μM. Casuarinin (100 mg/kg/day, p.o.) significantly improved 5-FU-induced body weight loss together with food intake reduction, and it also significantly reversed villus atrophy, restored the proliferative activity of the intestinal crypts, and suppressed inflammation and intestinal barrier dysfunction in the mouse model of FUIIM. Casuarinin also reversed 5-FU-induced gut microbiota dysbiosis, particularly the abundance of Actinobacteria, Candidatus Arthromitus, and Lactobacillus murinus, and the Firmicutes-to-Bacteroidetes ratio. CONCLUSION This study firstly showed that casuarinin isolated from the root part of M. malabathricum could be used as a NE inhibitor, whereas it could improve FUIIM by modulating inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. In summary, exploring anti-NE natural product may provide a way to find candidate for improvement of FUIIM.
Collapse
Affiliation(s)
- Kung-Ju Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Yu-Ling Huang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Liang-Mou Kuo
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan; Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
36
|
Zhang Q, Zhou S, Lim PE, Wei B, Xue C, Xue Y, Tang Q. Kappaphycus Alvarezii Compound Powder Prevents Chemotherapy-Induced Intestinal Mucositis in BALB/c Mice. Nutr Cancer 2022; 74:3735-3746. [PMID: 35758096 DOI: 10.1080/01635581.2022.2089699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study aimed to formulate Kappaphycus alvarezii compound powder containing Kappaphycus alvarezii powder (KP), cooked sorghum powder (SP), and longan powder (LP); which was evaluated for its therapeutic effects against chemotherapy-induced intestinal mucosal injury (CIMI). Based on rheological properties, sensory evaluation, and antioxidant activity and using single factor and response surface methodology, the optimal formula to develop the compound powder was determined to be 35% KP, 30% SP, 5% LP, and 30% xylitol. Thereafter, the efficacy of the compound powder was tested by feeding BALB/c mice with diets supplemented with the Kappaphycus alvarezii compound powder (3% and 5%) for 14 consecutive days. The chemotherapeutic drug 5-fluorouracil was intraperitoneally injected (50 mg/kg) in the mice to induce CIMI for the last three consecutive days. Compared to the CIMI mice, those fed 5% Kappaphycus alvarezii compound powder (HC) showed significantly improved the intestinal injury, increased mucin-2 secretion, and reduced TNF-α, IL-1β, IL-6, LT, and COX-2 levels. Furthermore, HC intake significantly reduced the Firmicutes-to-Bacteroidetes ratio, promoted the growth of beneficial bacteria, such as Alloprevotella, and inhibited the growth of harmful bacteria, such as Clostridium. In conclusion, HC has a protective effect against CIMI and provides a novel dietary strategy for patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Qing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Sainan Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Phaik Eem Lim
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Biqian Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Pilot National Laboratory for Marine Science and Technology, Laboratory for Marine Drugs and Bioproducts, Qingdao, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
37
|
Tamura H, Nakashima K, Uchiyama N, Ogawa S, Hatada H, Yoshida N, Uchida K, Ozono Y, Tanaka H, Yamamto K, Kawakami H. Hematochezia Due to Panitumumab-induced Colitis with Vitamin K Deficiency. Intern Med 2022; 61:1503-1509. [PMID: 34744108 PMCID: PMC9177360 DOI: 10.2169/internalmedicine.8254-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Panitumumab, a fully human anti-epidermal growth factor receptor (EGFR) monoclonal antibody, has been shown to be useful in treating either advanced or recurrent KRAS/NRAS/BRAF wild-type colorectal cancer. We herein report the case of a 60-year-old man with short bowel syndrome who developed hematochezia due to panitumumab-induced colitis with vitamin K deficiency during third-line chemotherapy. The cause of vitamin K deficiency was the lack of intravenous vitamin K supplementation following a change from central venous nutrition to peripheral venous nutrition. We advise clinicians to carefully check for colitis and manage the infusions of chemotherapy patients with short bowel syndrome.
Collapse
Affiliation(s)
- Hotaka Tamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Koji Nakashima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Naomi Uchiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Souichiro Ogawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Hiroshi Hatada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Naoki Yoshida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Keisuke Uchida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Yoshinori Ozono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Hiroyuki Tanaka
- Division of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Japan
| | - Koji Yamamto
- Division of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Japan
| | - Hiroshi Kawakami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
38
|
Ji Y, Zhou W, Tan W, Chen Z, Lu H, You Y, Tian C, Zhou X, Zhou L, Luo R, Zhao X. Protective effect of polysaccharides isolated from the seeds of Cuscuta chinensis Lam. on 5-fluorouracil-induced intestinal mucositis in mice. Acta Cir Bras 2022; 37:e370204. [PMID: 35507968 PMCID: PMC9064182 DOI: 10.1590/acb370204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose: To evaluate the protective effect of Cuscuta chinensis Lam. polysaccharides (PCCL) on 5-fluorouracil-(5-FU)-induced intestinal mucositis (IM) in mice. Methods: PCCL was orally administered at a dose of 20 mg·kg–1 for 7 days and its protective effect on 5-FU-induced IM (5-FU, 50 mg·kg–1 for 5 days) was evaluated by monitoring changes in body weight, degree of diarrhea, levels of tissue inflammatory factors (tumor necrosis factor α, interleukin 6, and interleukin 1β levels), apoptosis rates, and the expression levels of caspase-3, Bax and Bcl-2. Results: The severity of mucosal injury (as reflected by body weight changes, degree of diarrhea, height of villi, and damage to crypts) was significantly attenuated by PCCL administration. PCCL also reduced the levels of tissue inflammatory factors, the apoptosis rate, and the expression of caspase-3 and Bax, and increased Bcl-2 expression. Conclusions: PCCL administration may be significantly protective against 5-FU-induced IM by inhibiting apoptosis and regulating the abnormal inflammation associated with it.
Collapse
Affiliation(s)
- Yanzhao Ji
- Shanxi Academy of Medical Sciences, China
| | | | - Wei Tan
- Guangdong Academy of Medical Sciences, China
| | | | - Hanqi Lu
- Southern Medical University, China
| | | | | | | | - Lin Zhou
- Southern Medical University, China
| | - Ren Luo
- Southern Medical University, China
| | | |
Collapse
|
39
|
Anti-inflammatory mouthwashes for the prevention of oral mucositis in cancer therapy: an integrative review and meta-analysis. Support Care Cancer 2022; 30:7205-7218. [PMID: 35486227 DOI: 10.1007/s00520-022-07068-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Mucositis is severely painful and often reported as one of the most distressing adverse effects of cancer therapy; it is a significant threat to quality of life as well as life itself. Anti-inflammatory agents may modulate physiologic mechanisms that perpetuate mucositis and be useful in prevention efforts. Because systemic anti-inflammatory agents are not appropriate for many patients, locally acting agents (mouthwashes) may be more feasible for use. This review and meta-analysis evaluates the role that anti-inflammatory mouthwashes have in preventing or reducing oral mucositis associated with chemotherapy and radiation therapy. METHODS A systematic literature review was conducted to identify studies evaluating the efficacy of anti-inflammatory mouthwashes to prevent therapy-associated mucositis. Meta-analysis was conducted to determine efficacy in preventing any mucositis and dose-limiting mucositis. RESULTS Eight peer-reviewed publications were identified; corticosteroid and nonsteroidal anti-inflammatory mouthwashes are effective in reducing overall incidence of mucositis and are associated with lower severity of mucositis. Meta-analysis reveals significant reduction in symptomatic mucositis incidence (OR 6.00, 95% CI 4.39-8.20, p < 0.0001) and reduction of dose-limiting mucositis (OR 2.12, 95% CI 1.07-4.28, p = 0.032). CONCLUSION Mouthwashes containing anti-inflammatory agents are a potential effective means to prevent or reduce mucositis associated with cancer therapy. There are limited adverse effects from these agents, and adherence is high, indicating safety and feasibility of use. Anti-inflammatory mouthwashes should be considered for supportive care in persons at risk for mucositis and must be further evaluated to investigate efficacy across multiple chemotherapy agents, adverse effects, and impacts on symptoms, pain, and quality of life.
Collapse
|
40
|
Li W, Zhang L, Xu Q, Yang W, Zhao J, Ren Y, Yu Z, Ma L. Taxifolin Alleviates DSS-Induced Ulcerative Colitis by Acting on Gut Microbiome to Produce Butyric Acid. Nutrients 2022; 14:nu14051069. [PMID: 35268045 PMCID: PMC8912346 DOI: 10.3390/nu14051069] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Taxifolin is a bioflavonoid which has been used to treat Inflammatory Bowel Disease. However, taxifolin on DSS-induced colitis and gut health is still unclear. Here, we studied the effect of taxifolin on DSS-induced intestinal mucositis in mice. We measured the degree of intestinal mucosal injury and inflammatory response in DSS treated mice with or without taxifolin administration and studied the changes of fecal metabolites and intestinal microflora using 16S rRNA. The mechanism was further explored by fecal microbiota transplantation. The results showed that the weight loss and diarrhea score of the mice treated with taxifolin decreased in DSS-induced mice and longer colon length was displayed after taxifolin supplementation. Meanwhile, the expression of GPR41 and GPR43 in the colon was significantly increased by taxifolin treatment. Moreover, the expression of TNF-α, IL-1β, and IL-6 in colon tissue was inhibited by taxifolin treatment. The fecal metabolism pattern changed significantly after DSS treatment, which was reversed by taxifolin treatment. Importantly, taxifolin significantly increased the levels of butyric acid and isobutyric acid in the feces of DSS-treated mice. In terms of gut flora, taxifolin reversed the changes of Akkermansia, and further decreased uncultured_bacterium_f_Muribaculaceae. Fecal transplantation from taxifolin-treated mice showed a lower diarrhea score, reduced inflammatory response in the colon, and reduced intestinal mucosal damage, which may be related to the increased level of butyric acid in fecal metabolites. In conclusion, this study provides evidence that taxifolin can ameliorate DSS-induced colitis by altering gut microbiota to increase the production of SCFAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Libao Ma
- Correspondence: ; Tel.: +86-13317192322
| |
Collapse
|
41
|
Chemotherapeutics Combined with Luminal Irritants: Effects on Small-Intestinal Mannitol Permeability and Villus Length in Rats. Int J Mol Sci 2022; 23:ijms23031021. [PMID: 35162944 PMCID: PMC8834916 DOI: 10.3390/ijms23031021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Chemotherapy causes intestinal mucositis, which includes villous atrophy and altered mucosal barrier function. However, there is an uncertainty regarding how the reduced small-intestinal surface area affects the mucosal permeability of the small marker probe mannitol (MW 188), and how the mucosa responds to luminal irritants after chemotherapy. The aims in this study were to determine (i) the relationship between chemotherapy-induced villus atrophy and the intestinal permeability of mannitol and (ii) how the mucosa regulate this permeability in response to luminal ethanol and sodium dodecyl sulfate (SDS). This was investigated by treating rats with a single intraperitoneal dose of doxorubicin, irinotecan, or 5-fluorouracil. After 72 h, jejunum was single-pass perfused and mannitol permeability determined at baseline and after 15 min luminal exposure to 15% ethanol or 5 mg/mL SDS. Tissue samples for morphological analyses were sampled from the perfused segment. All three chemotherapeutics caused a similar 30% reduction in villus length. Mannitol permeability increased with irinotecan (1.3-fold) and 5-fluorouracil (2.5-fold) and was reduced with doxorubicin (0.5-fold), suggesting that it is not epithelial surface area alone that regulates intestinal permeability to mannitol. There was no additional increase in mannitol permeability induced by luminal ethanol or SDS in the chemotherapy-treated rats compared to controls, which may be related to the relatively high basal permeability of mannitol compared to other common low-permeability probes. We therefore suggest that future studies should focus on elucidating the complex interplay between chemotherapy in combination with luminal irritants on the intestinal permeability of other probes.
Collapse
|
42
|
Lotfi M, Kazemi S, Shirafkan F, Hosseinzadeh R, Ebrahimpour A, Barary M, Sio TT, Hosseini SM, Moghadamnia AA. The protective effects of quercetin nano-emulsion on intestinal mucositis induced by 5-fluorouracil in mice. Biochem Biophys Res Commun 2021; 585:75-81. [PMID: 34800883 DOI: 10.1016/j.bbrc.2021.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Intestinal mucositis is one of chemotherapeutics' most common adverse effects, such as 5-fluorouracil (5-FU). Quercetin (QRC), a naturally occurring flavonoid, has approved antioxidant and anti-inflammatory properties. Thus, in this article, the preventive and curative effects of emulsion and nano-emulsion formulations of QRC were investigated in a model of 5-FU-induced intestinal mucositis using biochemical, histopathological, and molecular approaches. METHOD Thirty-six mice were divided into six different groups: Control (normal saline), 5-FU (a single dose of 5-FU 300 mg/kg), pre-treatment groups (pre-QRC, and pre-QRC-nano, receiving QRC 5 mg/kg emulsion and nano-emulsion before the induction of mucositis, respectively), and post-treatment groups (post-QRC, and post-QRC-nano, receiving QRC 5 mg/kg emulsion and nano-emulsion after the induction of mucositis, respectively). FINDING The administration of quercetin emulsion and nano-emulsion could significantly alleviate the oxidant-antioxidant balance of mice serum samples and reverse the destructive histopathologic changes induced by 5-FU in the intestine tissue. Nevertheless, although the expression of both pro-inflammatory genes, NF-κB and HIF-1α, was decreased when quercetin was administered to mice, this reduction was not statistically significant. CONCLUSION The administration of quercetin emulsion and nano-emulsion formulations could ameliorate the oxidative damage induced by chemotherapeutics, such as the 5-FU. Therefore, if confirmed in further studies, it could be used in clinical settings as a preventive and curative agent to decrease such catastrophic adverse events in chemotherapy patients.
Collapse
Affiliation(s)
- Mandana Lotfi
- Student Research Committee, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Shirafkan
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Anahita Ebrahimpour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Barary
- Student Research Committee, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
43
|
Wei LY, Zhang JK, Zheng L, Chen Y. The functional role of sulforaphane in intestinal inflammation: a review. Food Funct 2021; 13:514-529. [PMID: 34935814 DOI: 10.1039/d1fo03398k] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intestinal inflammation represented by inflammatory bowel disease (IBD) has become a global epidemic disease and the number of patients with IBD continues to increase. This digestive tract disease not only affects the absorption of food components by destroying the intestinal epithelial structure, but also can induce diseases in remote organs via the gut-organ axis, seriously harming human health. Nowadays, increasing attention is being paid to the nutritional and medicinal value of food components with increasing awareness among the general public regarding health. As an important member of the isothiocyanates, sulforaphane (SFN) is abundant in cruciferous plants and is famous for its excellent anti-cancer effects. With the development of clinical research, more physiological activities of SFN, such as antidepressant, hypoglycemic and anti-inflammatory activities, have been discovered, supporting the fact that SFN and SFN-rich sources have great potential to be dietary supplements that are beneficial to health. This review summarizes the characteristics of intestinal inflammation, the anti-inflammatory mechanism of SFN and its various protective effects on intestinal inflammation, and the possible future applications of SFN for promoting intestinal health have also been discussed.
Collapse
Affiliation(s)
- Li-Yang Wei
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, People's Republic of China. .,School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jiu-Kai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, People's Republic of China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, People's Republic of China.
| |
Collapse
|
44
|
Deng S, Wu D, Li L, Li J, Xu Y. TBHQ attenuates ferroptosis against 5-fluorouracil-induced intestinal epithelial cell injury and intestinal mucositis via activation of Nrf2. Cell Mol Biol Lett 2021; 26:48. [PMID: 34794379 PMCID: PMC8600870 DOI: 10.1186/s11658-021-00294-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Intestinal mucositis is a common side effect of chemotherapy and radiotherapy. Very few drugs can efficiently ameliorate it. Tertiary butylhydroquinone (TBHQ) is a widely used food preservative with known immunomodulatory activity. Whether it has an effect on intestinal mucositis remains unknown. In this study, we investigated the role and mechanism of action of TBHQ on 5-fluorouracil-induced (5-FU-induced) human intestinal epithelial cell (HIEC) injury and intestinal mucositis in mice. METHODS We established a cell model of HIEC injury and a mouse model of intestinal mucositis via treatment with 5-FU. Cell death, Cell Counting Kit-8, and lactate dehydrogenase (LDH) release were assessed for the HIECs. Diarrhea, body weight, intestinal length, mucosal damage, and the levels of IL-6, TNF-α, IL-1β, glutathione, reactive oxygen species, and malondialdehyde were determined for the mice. Additionally, we performed immunohistochemical analysis, immunofluorescence, western blotting, quantitative real-time PCR, and ELISA to examine the effects of TBHQ. Finally, HIECs were transfected with an Nrf2 gene silencer to verify its role in ferroptosis. All data were analyzed using one-way analysis of variance or paired t-tests. RESULTS TBHQ markedly decreased LDH release and cell death and improved the proliferative ability of 5-FU-treated HIECs. The TBHQ-treated mice showed reduced weight loss, a lower diarrhea score, and longer colons than the 5-FU-treated mice. The in vivo expressions of IL-1β, IL-6, and TNF-α were suppressed by TBHQ treatment. Ferroptosis was shown to be involved in 5-FU-induced intestinal mucositis, and TBHQ markedly hampered its activation. Mechanistically, TBHQ activated Nrf2 effectively and selective Nrf2 knockdown significantly reduced the anti-ferroptotic functions of TBHQ in 5-FU-treated HIECs. CONCLUSIONS TBHQ attenuates ferroptosis in 5-FU-induced intestinal mucositis, making it a potential novel protective agent against intestinal mucositis.
Collapse
Affiliation(s)
- Shihua Deng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.,The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Dongming Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.,The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Li Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.,The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Jin Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.,The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Ying Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China. .,The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China. .,School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|
45
|
Wang L, Song B, Hu Y, Chen J, Zhang S, Chen D, Wang J. Puerarin Ameliorates 5-Fluorouracil-Induced Intestinal Mucositis in Mice by Inhibiting JAKs. J Pharmacol Exp Ther 2021; 379:147-155. [PMID: 34400527 DOI: 10.1124/jpet.121.000677] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/06/2021] [Indexed: 01/05/2023] Open
Abstract
Intestinal mucositis resulting from 5-fluorouracil (5-FU)-based chemotherapy subjects patients to great pain and hampers cancer treatment progress. Puerarin, the major active ingredient in Pueraria lobata, exerts anti-inflammatory and antioxidative effects. However, whether puerarin has an effect on 5-FU-induced intestinal mucositis remains unknown. We established a mice model of intestinal mucositis through the intraperitoneal injection of 5-FU and then injected puerarin (50 and 100 mg/kg) intraperitoneally for 7 consecutive days. Routine parameters, such as body weight, food intake, and diarrheal incidence, were examined to evaluate the effects of puerarin on intestinal mucositis in mice. The intestinal barrier's functions were also evaluated by measuring the serum recovery of fluorescein isothiocyanate-4kD dextran in this study. The expression levels of inflammatory cytokines, inflammatory mediators, oxidative reactions, as well as apoptotic marker proteins were determined to elucidate the underlying mechanisms of puerarin on intestinal mucositis. The model mice presented symptoms and histopathological changes typical of 5-FU-induced intestinal mucositis. In addition to vigorous inflammatory reactions, oxidative reactions, and cell apoptosis, Janus kinase (JAK) was markedly activated. Puerarin decreased the expression levels of those of inflammatory mediators, oxidative reactions, and apoptosis-related proteins in 5-FU-induced mucositis by blocking the activation of JAK. Puerarin decreased inflammation, oxidative reactions, and apoptosis and protected intestinal barrier functions to ameliorate 5-FU-induced intestinal mucositis by inhibiting the activation of JAK. This study provides novel insights into the pathologic mechanisms of (and treatment alternatives for) 5-FU-induced intestinal mucositis. SIGNIFICANCE STATEMENT: This study reveals the mechanism responsible for the protective effects of puerarin in 5-fluorouracil-induced intestinal mucositis. Puerarin inhibits the activation of JAK, thereby suppressing inflammation, oxidative reactions, cell apoptosis, and protected intestinal barrier functions to ameliorate 5-FU-induced intestinal mucositis. Overall, our results suggest that puerarin can serve as a potential natural JAK inhibitor in the treatment of 5-FU-induced intestinal mucositis.
Collapse
Affiliation(s)
- Liang Wang
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Baohui Song
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Yan Hu
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Jun Chen
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Shuaishuai Zhang
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Dapeng Chen
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| | - Jingyu Wang
- Research and Teaching Department of Comparative Medicine (L.W., B.S., Y.H., J.C., D.P.) and College of Basic Medical Science (S.Z.), Dalian Medical University, Dalian 116044, China
| |
Collapse
|
46
|
Chen G, Zeng H, Li X, Liu J, Li Z, Xu R, Ma Y, Liu C, Xue B. Activation of G protein coupled estrogen receptor prevents chemotherapy-induced intestinal mucositis by inhibiting the DNA damage in crypt cell in an extracellular signal-regulated kinase 1- and 2- dependent manner. Cell Death Dis 2021; 12:1034. [PMID: 34718327 PMCID: PMC8557214 DOI: 10.1038/s41419-021-04325-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a common adverse reaction to antineoplastic treatment with few appropriate, specific interventions. We aimed to identify the role of the G protein coupled estrogen receptor (GPER) in CIM and its mechanism. Adult male C57BL/6 mice were intraperitoneally injected with 5-fluorouracil to establish the CIM model. The selective GPER agonist G-1 significantly inhibited weight loss and histological damage in CIM mice and restored mucosal barrier dysfunction, including improving the expression of ZO-1, increasing the number of goblet cells, and decreasing mucosal permeability. Moreover, G-1 treatment did not alter the antitumor effect of 5-fluorouracil. In the CIM model, G-1 therapy reduced the expression of proapoptotic protein and cyclin D1 and cyclin B1, reversed the changes in the number of TUNEL+ cells, Ki67+ and bromodeoxyuridine+ cells in crypts. The selective GPER antagonist G15 eliminated all of the above effects caused by G-1 on CIM, and application of G15 alone increased the severity of CIM. GPER was predominantly expressed in ileal crypts, and G-1 inhibited the DNA damage induced by 5-fluorouracil in vivo and vitro, as confirmed by the decrease in the number of γH2AX+ cells in the crypts and the comet assay results. Referring to the data from GEO dataset we verified GPER activation restored ERK1/2 activity in CIM and 5-fluorouracil-treated IEC-6 cells. Once the effects of G-1 on ERK1/2 activity were abolished with the ERK1/2 inhibitor PD0325901, the effects of G-1 on DNA damage both in vivo and in vitro were eliminated. Correspondingly, all of the manifestations of G-1 protection against CIM were inhibited by PD0325901, such as body weight and histological changes, the mucosal barrier, the apoptosis and proliferation of crypt cells. In conclusion, GPER activation prevents CIM by inhibiting crypt cell DNA damage in an ERK1/2-dependent manner, suggesting GPER might be a target preventing CIM.
Collapse
Affiliation(s)
- Guanyu Chen
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Honghui Zeng
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyun Li
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jianbo Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhao Li
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Runze Xu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuntao Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Xue
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
47
|
Novaes VCN, Ervolino E, Fernandes GL, Cunha CP, Theodoro LH, Garcia VG, de Almeida JM. Influence of the treatment with the antineoplastic agents 5-fluorouracil and cisplatin on the severity of experimental periodontitis in rats. Support Care Cancer 2021; 30:1967-1980. [PMID: 34633539 DOI: 10.1007/s00520-021-06586-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The determination on how antineoplastic agents interfere on the progression of periodontitis is critical for improvement and even development of novel therapeutic approaches for periodontal management. This study evaluated the influence of chemotherapy with 5-fluorouracil (5-FU) or cisplatin (CIS) on healthy periodontal tissues and on the progression of experimental periodontitis (EP). METHODS One hundred forty-four male rats were divided into six groups (n = 24). Each group was treated with physiological saline solution (PSS) 0.9%, 5-FU, or CIS. Experimental periodontitis (EP) was induced by ligature placement. Animals were euthanized at 7, 15, and 30 days after treatment. Data were statistically analyzed (p ≤ 0.05). RESULTS The groups with EP and treated with 5-FU or CIS showed lower percentage of bone volume in the furcation region and higher percentage of alveolar bone loss, higher number of TRAP-positive cells, and lower number of PCNA-positive cells when compared group with EP and treated with PSS (p ≤ 0.05). Groups with EP and treated with 5-FU or CIS showed high immunolabelling pattern of RANKL, TNF-α, and IL-1β, moderate of BAX, and low of HIF-1α. Histological analysis showed severe tissue breakdown in the groups with EP and treated with 5-FU or CIS. CONCLUSIONS Chemotherapy with antineoplastic agents 5-FU and CIS increased the intensity and duration of the inflammation and compromised tissue repair by reduction in cellular and vascular turnover. The more severe periodontal breakdown was caused by 5-FU.
Collapse
Affiliation(s)
- Vivian Cristina Noronha Novaes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Edilson Ervolino
- Department of Basic Science, Histology Division, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Giovani Lopes Fernandes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Clara Possarle Cunha
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Leticia Helena Theodoro
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Valdir Gouveia Garcia
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil.
| |
Collapse
|
48
|
da Silva Ferreira AR, Märtson AG, de Boer A, Wardill HR, Alffenaar JW, Harmsen HJM, Tissing WJE. Does Chemotherapy-Induced Gastrointestinal Mucositis Affect the Bioavailability and Efficacy of Anti-Infective Drugs? Biomedicines 2021; 9:biomedicines9101389. [PMID: 34680506 PMCID: PMC8533339 DOI: 10.3390/biomedicines9101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial prophylaxis is increasingly being used in patients with hematological malignancies receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT). However, few studies have focused on the potential impact of gastrointestinal mucositis (GI-M), a frequently observed side effect of chemotherapy in patients with cancer that affects the gastrointestinal microenvironment, on drug absorption. In this review, we discuss how chemotherapy leads to an overall loss of mucosal surface area and consequently to uncontrolled transport across the barrier. The barrier function is depending on intestinal luminal pH, intestinal motility, and diet. Another factor contributing to drug absorption is the gut microbiota, as it modulates the bioavailability of orally administrated drugs by altering the gastrointestinal properties. To better understand the complex interplay of factors in GI-M and drug absorption we suggest: (i) the longitudinal characterization of the impact of GI-M severity on drug exposure in patients, (ii) the development of tools to predict drug absorption, and (iii) strategies that allow the support of the gut microbiota. These studies will provide relevant data to better design strategies to reduce the severity and impact of GI-M in patients with cancer.
Collapse
Affiliation(s)
- Ana Rita da Silva Ferreira
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, NL-9713-GZ-1 Groningen, The Netherlands; (A.R.d.S.F.); (A.d.B.)
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, NL-9713-GZ-1 Groningen, The Netherlands;
| | - Alyse de Boer
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, NL-9713-GZ-1 Groningen, The Netherlands; (A.R.d.S.F.); (A.d.B.)
| | - Hannah R. Wardill
- Department of Pediatrics, The University of Groningen, University Medical Center Groningen, NL-9713-GZ-1 Groningen, The Netherlands; (H.R.W.); (W.J.E.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
- Precision Medicine (Cancer), South Australian Health and Medical Research Institute, Adelaide, NSW 5005, Australia
| | - Jan-Willem Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
- Marie Bahshir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW 2006, Australia
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, NL-9713-GZ-1 Groningen, The Netherlands; (A.R.d.S.F.); (A.d.B.)
- Correspondence: ; Tel.: +31-50-3615186
| | - Wim J. E. Tissing
- Department of Pediatrics, The University of Groningen, University Medical Center Groningen, NL-9713-GZ-1 Groningen, The Netherlands; (H.R.W.); (W.J.E.T.)
- Princes Maxima Centre for Pediatric Oncology, NL-3584-CS-25 Utrecht, The Netherlands
| |
Collapse
|
49
|
Zhang Q, Yang R, Lim PE, Chin Y, Zhou S, Gao Y, Tang Q. Sun-Dried and Air-Dried Kappaphycus alvarezii Attenuates 5-Fluorouracil-Induced Intestinal Mucositis in Mice. Nutr Cancer 2021; 74:2113-2121. [PMID: 34555987 DOI: 10.1080/01635581.2021.1981403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
5-fluorouracil (5-FU)-induced intestinal mucositis (IM) often makes chemotherapy patients suffer from physical and psychological suffering. Kappaphycus alvarezii (KA) is known for its potent multiple biological activities from decades. In the current study, we explored the effect of sun-dried and air-dried Kappaphycus alvarezii as a whole food supplement on 5-FU-induced IM. Diets supplemented with sun-dried Kappaphycus alvarezii (SKA, 3%), air-dried Kappaphycus alvarezii (AKA, 3%), and 5-aminosalicylic acid (0.005%) for consecutive14 days. While intraperitoneal injection of 5-FU (50 mg/kg) induced IM for last three consecutive days, and IM was assessed by the disease activity index (DAI) and inflammatory cytokine levels. Pretreatment of KA could alleviate phenotypic index, inhibit the increase of DAI, and reverse villus/crypt ratio. On the 14th day, AKA significantly increased the weight growth rate of the mice. The intervention of SKA significantly reduced the level of TNF-α and IL-1β (P < 0.01, P < 0.01), while the intervention of AKA significantly inhibited the level of TNF-α, IL-1β, and LT (P < 0.01, P < 0.01, P < 0.001). Therefore, these results showed that KA as a whole food supplement might be prevent the 5-FU-induced IM. For the first time suggest that the use of AKA might be more effective than SKA despite exact mechanism still needs further study.
Collapse
Affiliation(s)
- Qing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ruzhen Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Phaik Eem Lim
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Yaoxian Chin
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Sainan Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
50
|
Yuan X, Xue J, Tan Y, Yang Q, Qin Z, Bao X, Li S, Pan L, Jiang Z, Wang Y, Lou Y, Jiang L, Du J. Albuca Bracteate Polysaccharides Synergistically Enhance the Anti-Tumor Efficacy of 5-Fluorouracil Against Colorectal Cancer by Modulating β-Catenin Signaling and Intestinal Flora. Front Pharmacol 2021; 12:736627. [PMID: 34552494 PMCID: PMC8450769 DOI: 10.3389/fphar.2021.736627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023] Open
Abstract
The first-line treatment for colorectal cancer (CRC) is 5-fluorouracil (5-FU). However, the efficacy of this treatment is sometimes limited owing to chemoresistance as well as treatment-associated intestinal mucositis and other adverse events. Growing evidence suggests that certain phytochemicals have therapeutic and cancer-preventing properties. Further, the synergistic interactions between many such plant-derived products and chemotherapeutic drugs have been linked to improved therapeutic efficacy. Polysaccharides extracted from Albuca bracteata (Thunb.) J.C.Manning and Goldblatt (ABP) have been reported to exhibit anti-oxidant, anti-inflammatory, and anti-tumor properties. In this study, murine CRC cells (CT26) and a murine model of CRC were used to examine the anti-tumor properties of ABP and explore the mechanism underlying the synergistic interactions between ABP and 5-FU. Our results revealed that ABP could inhibit tumor cell proliferation, invasion, and migratory activity in vitro and inhibited tumor progression in vivo by suppressing β-catenin signaling. Additionally, treatment with a combination of ABP and 5-FU resulted in better outcomes than treatment with either agent alone. Moreover, this combination therapy resulted in the specific enrichment of Ruminococcus, Anaerostipes, and Oscillospira in the intestinal microbiota and increased fecal short-chain fatty acid (SCFA) levels (acetic acid, propionic acid, and butyric acid). The improvement in the intestinal microbiota and the increase in beneficial SCFAs contributed to enhanced therapeutic outcomes and reduced the adverse effects of 5-FU. Together, these data suggest that ABP exhibits anti-neoplastic activity and can effectively enhance the efficacy of 5-FU in CRC treatment. Therefore, further research on the application of ABP in the development of novel anti-tumor drugs and adjuvant compounds is warranted and could improve the outcomes of CRC patients.
Collapse
Affiliation(s)
- Xinyu Yuan
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiao Xue
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yingxia Tan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingguo Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ziyan Qin
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Bao
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengkai Li
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liangliang Pan
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ziqing Jiang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jimei Du
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|