1
|
Grillo E, Romani C, Ettorre VM, Santin AD, Mitola S. The VEGF/VEGFR2 system in ovarian cancer: From functional to pharmacological significance. Biochim Biophys Acta Rev Cancer 2025; 1880:189374. [PMID: 40516635 DOI: 10.1016/j.bbcan.2025.189374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 06/10/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
The vascular endothelial growth factor receptor 2 (VEGFR2) is a tyrosine kinase receptor regulating a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis and cancer. VEGFR2 is activated by canonical VEGFs and non-canonical ligands, triggering intracellular signaling cascades that mediate its biological activity. Preclinical studies show that VEGFR2 plays a complex yet pivotal role in the progression of ovarian cancer (OC), a deadly disease with a global burden of more than 320,000 women in 2022. Several inhibitors of the VEGF/VEGFR2 axis have been developed and are currently approved or included in clinical trials/preclinical studies for the therapy of different types of OC. Originally developed as anti-angiogenics, anti-VEGF/VEGFR2 drugs are now well-known to also affect tumor cells, immune cells and cancer-associated fibroblasts (CAFs), also in OC. In this review we address the specific role of the VEGF/VEGFR2 axis in OC cells, and, from this perspective, we discuss the therapeutic significance of VEGFR2 targeting. Dissection of the molecular landscape modulated by the VEGF/VEGFR2 system in tumor cells in addition to stromal ones will facilitate ongoing translational efforts directed toward OC therapy. SIGNIFICANCE STATEMENT: Anti-angiogenics blocking the VEGF/VEGFR2 axis are widely used to treat ovarian cancer, although resistance and poor response occur. Recent advances reveal that anti-VEGF/VEGFR2 drugs act on multiple compartments, including ovarian cancer cells. This review discusses the functional and pharmacological significance of the VEGF/VEGFR2 axis in ovarian cancer cells highlighting insights from preclinical and clinical studies. A deeper understanding of this pathway is essential for a safe/efficacious usage of anti-angiogenics targeting the VEGFR2 pathway in ovarian cancer.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, 25123 Brescia, Italy.
| | - Chiara Romani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Victoria M Ettorre
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Yale University School of Medicine, New Haven, CT 06520, United States of America
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Yale University School of Medicine, New Haven, CT 06520, United States of America
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, 25123 Brescia, Italy.
| |
Collapse
|
2
|
Laborante M, Micera A, Gaudenzi D, De Luca A, De Gregorio C, Cutrupi F, Esposito G, Balzamino BO, Laborante A, Coassin M, Di Zazzo A. VEGFR3 pathway in corneal transplantation. Acta Ophthalmol 2025; 103:e220-e230. [PMID: 39912615 DOI: 10.1111/aos.17457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
PURPOSE Corneal transplantation, a common procedure in ophthalmology, faces challenges in high-risk (HR) cases due to inflammation and vascularization of the host bed, leading to graft rejection. Despite advancements in surgical techniques and therapeutics, preventing rejection in HR cases remains elusive. This study investigates the role of the vascular endothelial-derived growth factor (VEGF)-C/D-VEGFR3 pathway in corneal transplantation, focusing on its impact on inflammation and immune response. METHODS In this study, 42 eyes of 42 patients were evaluated, 24 of whom underwent corneal transplantation, with follow-up visits at 90, 180 and 360 days post-transplantation. Clinical assessments included visual acuity, corneal oedema, endothelial cell count and vascularization. Molecular analyses were performed to measure VEGFR3, VEGF-C, VEGF-D, VEGF-A and inflammatory markers. RESULTS Results revealed a distinct pattern of VEGF-C/D and VEGFR3 expression in HR versus low-risk (LR) transplants, correlating with inflammatory markers and clinical outcomes. In HR cases, elevated VEGFR3 expression was associated with increased inflammatory markers (Intercellular Adhesion Molecule 1 (ICAM-1) and Human Leukocyte Antigen - DR isotype (HLA-DR)) and graft rejection risk. CONCLUSION These findings underscore the importance of understanding the VEGF-C/D-VEGFR3 pathway in modulating immune responses and inflammation in corneal transplantation, particularly in HR cases. Targeting this pathway could offer novel therapeutic avenues to mitigate inflammation and improve graft survival. Further research is warranted to elucidate the underlying mechanisms and validate these findings, potentially enhancing transplant outcomes, especially in HR patients.
Collapse
Affiliation(s)
- Mariateresa Laborante
- Ophthalmology Campus Bio-Medico University, Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Daniele Gaudenzi
- Ophthalmology Campus Bio-Medico University, Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Andrea De Luca
- Ophthalmology Campus Bio-Medico University, Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Chiara De Gregorio
- Ophthalmology Campus Bio-Medico University, Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Francesco Cutrupi
- Ophthalmology Campus Bio-Medico University, Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Graziana Esposito
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Antonio Laborante
- Ophthalmology Operative Complex Unit, IRCCS Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Marco Coassin
- Ophthalmology Campus Bio-Medico University, Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
- Rare Corneal Diseases Center, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Antonio Di Zazzo
- Ophthalmology Campus Bio-Medico University, Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
- Rare Corneal Diseases Center, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| |
Collapse
|
3
|
Odio-Herrera M, Orozco-Loaiza G, Wu L. Gene Therapy in Diabetic Retinopathy and Diabetic Macular Edema: An Update. J Clin Med 2025; 14:3205. [PMID: 40364236 PMCID: PMC12072420 DOI: 10.3390/jcm14093205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of preventable blindness worldwide. It is characterized by a spectrum of disease that spans mild non-proliferative diabetic retinopathy (NPDR) all the way to neovascular glaucoma and tractional retinal detachment secondary to proliferative diabetic retinopathy (PDR). Most eyes with DR remain asymptomatic unless vision-threatening complications, such as diabetic macular edema (DME) and/or PDR, develop. Current treatment options include laser photocoagulation and/or anti-VEGF intravitreal injections. Patients under treatment with anti-VEGF agents usually require constant monitoring and multiple injections to optimize outcomes. This treatment burden plays a key role in suboptimal adherence to treatment in many patients, compromising their outcomes. Gene therapy has emerged as a promising therapeutic option for DR. The mechanism for current trials evaluating gene therapies for DR consists of delivering transgenes to the retina that express anti-angiogenic proteins that inhibit VEGF. Preliminary results from the SPECTRA (4D-150) and ALTITUDE (ABBV-RGX-314) studies are promising, demonstrating an improvement in the diabetic retinopathy severity score and a reduction in the treatment burden. In contrast, the INFINITY (ADVM-022) trial was complicated by several cases of severe inflammation and hypotony that led the sponsor to discontinue further development of this product for DME.
Collapse
Affiliation(s)
| | | | - Lihteh Wu
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica; (M.O.-H.); (G.O.-L.)
| |
Collapse
|
4
|
Shah FH, Nam YS, Bang JY, Hwang IS, Kim DH, Ki M, Lee HW. Targeting vascular endothelial growth receptor-2 (VEGFR-2): structural biology, functional insights, and therapeutic resistance. Arch Pharm Res 2025; 48:404-425. [PMID: 40341988 DOI: 10.1007/s12272-025-01545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Angiogenesis, the process of new blood vessel formation, is a fundamental physiological process implicated in several pathological disorders. The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are crucial for angiogenesis and vasculogenesis. Among them, the tyrosine kinase receptor VEGFR-2 is primarily expressed in endothelial cells (ECs). These cells regulate various physiological responses, including differentiation, cell proliferation, migration, and survival, by binding to VEGF mitogens. Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2) is a key regulator of this process, making it a prime target for therapeutic intervention. Several drugs targeting VEGFR-2 have been approved and are currently utilized to halt the pathological axis of VEGF-VEGFR. This review will focus on the recent developments in the molecular structure and function of VEGFR-2, the molecular mechanism of VEGFR-2 activation, and its downstream signaling pathway. It will also discuss therapies and experimental drugs approved to inhibit the function of VEGFR-2 and the resistance mechanism.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Yoon Seok Nam
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Jun Young Bang
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - In Seo Hwang
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Dae Hong Kim
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Minkyoung Ki
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Heon-Woo Lee
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea.
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea.
| |
Collapse
|
5
|
Habibi MA, Rashidi F, Hajikarimloo B, Karami S, Fathi Tavani S, Zare A, Mirjani MS, Allahdadi A, Didehvar K, Mohammadzadeh I, Kaviari MA. The safety and efficacy of VEGFR tyrosine kinase inhibitors for patients with gliomas: a systematic review, meta-analysis, and a specific analysis on glioblastoma. Neurosurg Rev 2025; 48:390. [PMID: 40285944 DOI: 10.1007/s10143-025-03536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Gliomas account for 24.5% of all primary brain tumors and 80% of all malignant tumors in adults. Vascular endothelial growth factor receptors (VEGFR) tyrosine kinase inhibitors (TKIs) play an important role in disrupting angiogenesis, tumor growth, and invasion. This study evaluates the outcomes of VEGFR TKIs in patients with glioma, with a specific analysis on glioblastoma (GBM). Electronic databases of PubMed/Medline, Embase, Scopus, and Web of Science were conducted until 23 July 2024. Studies that evaluated the survival of patients with glioma treated with VEGFR TKI were included. All statistical analyses were conducted using the R program. A total of 24 studies, including 1,146 glioma patients with a median age range of 5.8 to 62 years were recruited. Regarding progression-free survival (PFS), the six-month PFS rate was reported with a pooled value of 21% [95% CI: 15% to 28%]. The 12-month PFS rate was evaluated in three studies, ranging from 5 to 38% with a pooled rate of 15% [95% CI: 8% to 27%]. Considering the radiological response, the pooled overall response rate (ORR) was 21% [95% CI: 15%-28%]. Evaluation of the subgroups based on drug type at the six-month follow-up showed no significant difference in overall survival (OS) rates among patients (p = 0.06). Our results revealed that VEGFR TKIs in patients with glioma, were associated with limited efficacy. The long-term effectiveness of these treatments remains controversial and requires longer follow-up, which is challenging in cancer cases.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farhang Rashidi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bardia Hajikarimloo
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Zare
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Allahdadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Didehvar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ibrahim Mohammadzadeh
- Skull Base Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Kaviari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Gaydarski L, Petrova K, Stanchev S, Pelinkov D, Iliev A, Dimitrova IN, Kirkov V, Landzhov B, Stamenov N. Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications. Int J Mol Sci 2025; 26:4022. [PMID: 40362262 PMCID: PMC12071960 DOI: 10.3390/ijms26094022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Hypertension-induced cardiac remodeling is a complex process driven by interconnected molecular and cellular mechanisms that culminate in hypertensive myocardium, characterized by ventricular hypertrophy, fibrosis, impaired angiogenesis, and myocardial dysfunction. This review discusses the histomorphometric changes in capillary density, fibrosis, and mast cells in the hypertensive myocardium and delves into the roles of key regulatory systems, including the apelinergic system, vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathways, and nitric oxide (NO)/nitric oxide synthase (NOS) signaling in the pathogenesis of hypertensive heart disease (HHD). Capillary rarefaction, a hallmark of HHD, contributes to myocardial ischemia and fibrosis, underscoring the importance of maintaining vascular integrity. Targeting capillary density (CD) through antihypertensive therapy or angiogenic interventions could significantly improve cardiac outcomes. Myocardial fibrosis, mediated by excessive collagen deposition and influenced by fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-β), plays a pivotal role in the structural remodeling of hypertensive myocardium. While renin-angiotensin-aldosterone system (RAAS) inhibitors show anti-fibrotic effects, more targeted therapies are needed to address fibrosis directly. Mast cells, though less studied in humans, emerge as critical regulators of cardiac remodeling through their release of pro-fibrotic mediators such as histamine, tryptase, and FGF-2. The apelinergic system emerges as a promising therapeutic target due to its vasodilatory, anti-fibrotic, and cardioprotective properties. The system counteracts the deleterious effects of the RAAS and has demonstrated efficacy in preclinical models of hypertension-induced cardiac damage. Despite its potential, human studies on apelin analogs remain limited, warranting further exploration to evaluate their clinical utility. VEGF signaling plays a dual role, facilitating angiogenesis and compensatory remodeling during the early stages of arterial hypertension (AH) but contributing to maladaptive changes when dysregulated. Modulating VEGF signaling through exercise or pharmacological interventions has shown promise in improving CD and mitigating hypertensive cardiac damage. However, VEGF inhibitors, commonly used in oncology, can exacerbate AH and endothelial dysfunction, highlighting the need for therapeutic caution. The NO/NOS pathway is essential for vascular homeostasis and the prevention of oxidative stress. Dysregulation of this pathway, particularly endothelial NOS (eNOS) uncoupling and inducible NOS (iNOS) overexpression, leads to endothelial dysfunction and nitrosative stress in hypertensive myocardium. Strategies to restore NO bioavailability, such as tetrahydrobiopterin (BH4) supplementation and antioxidants, hold potential for therapeutic application but require further validation. Future studies should adopt a multidisciplinary approach to integrate molecular insights with clinical applications, paving the way for more personalized and effective treatments for HHD. Addressing these challenges will not only enhance the understanding of hypertensive myocardium but also improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Kristina Petrova
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Dimitar Pelinkov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Iva N. Dimitrova
- Department of Cardiology, University Hospital “St. Ekaterina”, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health ‘Prof. Dr. Tzekomir Vodenicharov’, Medical University of Sofia, 1527 Sofia, Bulgaria;
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Nikola Stamenov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| |
Collapse
|
7
|
Xu X, Yang G, Shi N. Ceritinib Reduces Transendothelial Invasion of Non-small Cell Lung Cancer Cells by Restoring Claudin-10 and Suppressing VEGF-A Signaling. Biochem Genet 2025:10.1007/s10528-025-11103-5. [PMID: 40259199 DOI: 10.1007/s10528-025-11103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Non-small cell lung cancer (NSCLC) cells that cross the blood-brain barrier (BBB) can lead to brain metastases, a severe complication of NSCLC. 7Preventing brain metastasis is crucial for improving the survival rates of NSCLC patients. Ceritinib, a tyrosine kinase inhibitor, is approved for treating certain advanced stages of NSCLC. This study investigates the potential of ceritinib in blocking brain metastasis by examining its effect on NSCLC cell transendothelial invasion using an in vitro BBB model. Our findings demonstrate that co-culturing human brain microvascular endothelial cells (hCMEC/D3) with NSCLC lines A549, NCI-H292, and NCI-H596 increases paracellular permeability and reduces transendothelial electrical resistance. Ceritinib mitigates these effects, preventing NSCLC cell invasion through the hCMEC/D3 monolayer and restoring Claudin-10 expression in hCMEC/D3 cells. Knocking down Claudin-10 counteracts the beneficial effects of ceritinib in reducing endothelial permeability. Mechanistically, ceritinib suppresses the expression of VEGF-A and VEGF-R2. Adding VEGF-A reverses ceritinib's protective effect against NSCLC cell invasion. Our results indicate that ceritinib may diminish NSCLC-caused BBB compromise by restoring Claudin-10-associated tight junctions, potentially by influencing VEGF-A/VEGF-R2 signaling. More research is needed to clarify how ceritinib specifically interacts with and regulates the VEGF pathway.
Collapse
Affiliation(s)
- Xin Xu
- Department of Respiratory Medicine, No.964 Hospital of People's Liberation Army, No.4799 Xi'an Road, Changchun, Jilin, 130062, China
| | - Guiwen Yang
- Department of Respiratory Medicine, No.964 Hospital of People's Liberation Army, No.4799 Xi'an Road, Changchun, Jilin, 130062, China
| | - Nan Shi
- Department of Respiratory Medicine, No.964 Hospital of People's Liberation Army, No.4799 Xi'an Road, Changchun, Jilin, 130062, China.
| |
Collapse
|
8
|
Brunmaier LAE, Ozdemir T, Walker TW. Angiogenesis: Biological Mechanisms and In Vitro Models. Ann Biomed Eng 2025:10.1007/s10439-025-03721-2. [PMID: 40210793 DOI: 10.1007/s10439-025-03721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
The translation of biomedical devices and drug research is an expensive and long process with a low probability of receiving FDA approval. Developing physiologically relevant in vitro models with human cells offers a solution to not only improving the odds of FDA approval but also to expand our ability to study complex in vivo systems in a simpler fashion. Animal models remain the standard for pre-clinical testing; however, the data from animal models is an unreliable extrapolation when anticipating a human response in clinical trials, thus contributing to the low rates of translation. In this review, we focus on in vitro vascular or angiogenic models because of the incremental role that the vascular system plays in the translation of biomedical research. The first section of this review discusses the most common angiogenic cytokines that are used in vitro to initiate angiogenesis, followed by angiogenic inhibitors where both initiators and inhibitors work to maintain vascular homeostasis. Next, we evaluate previously published in vitro models, where we evaluate capturing the physical environment for biomimetic in vitro modeling. These topics provide a foundation of parameters that must be considered to improve and achieve vascular biomimicry. Finally, we summarize these topics to suggest a path forward with the goal of engineering human in vitro models that emulate the in vivo environment and provide a platform for biomedical device and drug screening that produces data to support clinical translation.
Collapse
Affiliation(s)
- Laura A E Brunmaier
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Tugba Ozdemir
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Travis W Walker
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA.
| |
Collapse
|
9
|
Yanar S, Sarihan M, Kasap M, Akpinar G, Teke K, Yaprak Bayrak B. GFP Transfection Alters Protein Expression Patterns in Prostate Cancer Cells: A Proteomic Study. J Fluoresc 2025; 35:2121-2133. [PMID: 38502405 DOI: 10.1007/s10895-023-03498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 03/21/2024]
Abstract
PURPOSE Green Fluorescent Protein is widely used as a cellular marker tool, but its potential influence on cells has been questioned. Although the potential off-target effects of GFP on tumor cells have been studied to some extent, the findings at the molecular level are insufficient to explain the effect of GFP expression on the tumorigenic capacity of cancer cells. Here, we aimed to investigate the effect of GFP expression on the tumorigenicity of PC3 prostate cancer cells. METHODS Using GFP-expressing and wild-type PC-3 cells, xenograft models were generated in athymic BALB/C mice. To identify differentially expressed proteins, the change in cells proteome was investigated by label-free quantification with nano-high performance liquid chromatography to tandem mass spectrometry (nHPLC-MS/MS). Proteins that showed significantly altered expression levels were evaluated using the bioinformatics tools. RESULTS Unlike the wild-type PC-3 cells, GFP-expressing cells failed to develop tumor. Comparative proteome analysis of GFP-expressing cells with WT PC-3 cells revealed a total of 216 differentially regulated proteins, of which 98 were upregulated and 117 were downregulated. CONCLUSION Upon GFP expression, differential changes in several pathways including the immune system, translational machinery, energy metabolism, elements of cytoskeletal and VEGF signaling pathway were observed. Therefore, care should be taken into account to prevent reporting deceitful mechanisms generated from studies utilizing GFP.
Collapse
Affiliation(s)
- Sevinc Yanar
- Faculty of Medicine, Department of Medical Biology, Kocaeli University, Kocaeli, Turkey.
- Faculty of Medicine, Department of Histology and Embryology, Sakarya University, Korucuk, Sakarya, Turkey.
| | - Mehmet Sarihan
- Faculty of Medicine, Department of Medical Biology, Kocaeli University, Kocaeli, Turkey
| | - Murat Kasap
- Faculty of Medicine, Department of Medical Biology, Kocaeli University, Kocaeli, Turkey
| | - Gurler Akpinar
- Faculty of Medicine, Department of Medical Biology, Kocaeli University, Kocaeli, Turkey
| | - Kerem Teke
- Faculty of Medicine, Department of Urology, Kocaeli University, Kocaeli, Turkey
| | - Busra Yaprak Bayrak
- Faculty of Medicine, Department of Pathology, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
10
|
Li K, Wang Y, Huang P. Association of Four VEGFA Gene Variants with Rheumatoid Arthritis Risk: A Meta-analysis and Trial Sequential Analysis. Biochem Genet 2025; 63:984-1013. [PMID: 38814384 DOI: 10.1007/s10528-024-10834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
The association between rheumatoid arthritis (RA) risk and specific variants of the Vascular Endothelial Growth Factor A (VEGFA) gene remains contentious. This study sought to elucidate the correlations between RA risk and several VEGFA gene variants, including VEGFA-634 (rs2010963), VEGFA-C936 (rs3025039), VEGFA-2578 (rs699947), VEGFA-1154 (rs1570360), through a comprehensive meta-analysis. We systematically reviewed literature from the Cochrane Library database, Embase, PubMed, Web of Science, China National Knowledge Infrastructure, and the Wanfang Data Information Service platform to gather relevant case-control studies. Using odds ratio (OR) and 95% confidence interval (95% CI), we analyzed the data to assess potential correlations. Sensitivity analysis and the Egger's test were employed to ensure the results stability and to evaluate potential publication bias. Additionally, trial sequential analysis (TSA) was conducted to validate the findings. Our meta-analysis incorporated ten studies involving 2817 patients and 2855 controls. Results indicated that the AA genotype of VEGFA-1154 (rs1570360) is associated with a reduced risk of RA in the overall population (AG + GG vs AA: P = 0.032 OR = 1.932 95% CI 1.059-3.523). However, no significant association is found for VEGFA-634 (rs2010963), VEGFA-C936 (rs3025039), and VEGFA-2578 (rs699947) variants with RA risk. Subgroup analysis revealed a significant association between the VEGF rs3025039(C936) variant and RA risk in the PCR-RFLP group under the TC vs. CC model. TSA confirmed the sufficiency of the sample size for robust conclusions. These findings suggest that the G allele of VEGFA-1154 (rs1570360) may increase RA risk, whereas the A allele appears to confer a protective effect. This study enhances our understanding of the genetic predispositions to RA and underscores the potential role of VEGFA gene variants in its pathogenesis.
Collapse
Affiliation(s)
- Ke Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yilu Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Peng Huang
- Center for Evidence-Based Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Donghu District, Nanchang, 330006, China.
- Jiangxi Province Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
11
|
Luo H, Zhang W, Zeng W, Wang Y, Feng J, Lan Y, Dong X, Liu T, Sun Y, Lu H. OPN3-mediated positive regulation of angiogenesis in HUVECs through VEGFR2 interaction. Commun Biol 2025; 8:529. [PMID: 40164822 PMCID: PMC11958745 DOI: 10.1038/s42003-025-07958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Many rhodopsin-like G-protein-coupled receptors (Rh-GPCRs) are known to either promote or inhibit angiogenesis. Among these, Opsin 4 and Opsin 5 are specifically involved in vascular development within the eye. Opsin 3 (OPN3), another member of Rh-GPCRs, performs a variety of light-dependent and light-independent functions in extraocular tissue. However, its role in endothelial cells and angiogenesis remains unclear. Here, we found that OPN3 knockdown or knockout in zebrafish impairs embryonic angiogenesis and vascular development. Similarly, silencing OPN3 in human umbilical vein endothelial cells (HUVECs) inhibits cellular proliferation, migration, sprouting, and tube formation, while OPN3 overexpression promotes these cellular processes. Moreover, OPN3 regulates angiogenesis in HUVECs through the VEGFR2-AKT pathway, with OPN3 and VEGFR2 co-localizing at the plasma membrane and forming a physical complex. These findings provide new insights into the non-light-dependent functions of OPN3 in angiogenesis, expanding our understanding of its physiological roles and offering potential therapeutic strategies for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Huanhuan Luo
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen Zeng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianglong Feng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinghua Lan
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xian Dong
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Liu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Sun
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongguang Lu
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China.
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
12
|
Puzzo M, De Santo M, Morelli C, Leggio A, Catalano S, Pasqua L. Colorectal Cancer: Current and Future Therapeutic Approaches and Related Technologies Addressing Multidrug Strategies Against Multiple Level Resistance Mechanisms. Int J Mol Sci 2025; 26:1313. [PMID: 39941081 PMCID: PMC11818749 DOI: 10.3390/ijms26031313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and is associated with a poor prognosis. The mutation profile and related involved pathways of CRC have been, in broad terms, analyzed. The main current therapeutic approaches have been comprehensively reviewed here, and future possible therapeu-tic options and related technologies have been perspectively presented. The complex scenario represented by the multiple-level resistance mechanism in the epidermal growth factor receptor (EGFR) pathway, including mutations in KRAS, NRAS, and BRAF V600E, is discussed. Examples of engineered therapeutic approaches from the literature along with a drug combination tested in clinical trials are discussed. The encouraging results observed with the latter combination (the BEACON clinical trial), totally free from chemotherapy, prompted the authors to imagine a future possible nanotechnology-assisted therapeutic approach for bypassing multiple-level resistance mechanisms, hopefully allowing, in principle, a complete biological cancer remission.
Collapse
Affiliation(s)
- Marianna Puzzo
- Laboratory of Clinical, Biomolecular and Genetic Analyses Unit, Annunziata Hospital, 87100 Cosenza, Italy; (M.P.); (S.C.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefania Catalano
- Laboratory of Clinical, Biomolecular and Genetic Analyses Unit, Annunziata Hospital, 87100 Cosenza, Italy; (M.P.); (S.C.)
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
| | - Luigi Pasqua
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
13
|
Han N, Yu N, Yu L. The mRNA Stability of PIEZO1, Regulated by Methyltransferase-Like 3 via N 6-Methylation of Adenosine Modification in a YT521-B Homology Domain Family 2-Dependent Manner, Facilitates the Progression of Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:265-280. [PMID: 39476953 DOI: 10.1016/j.ajpath.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/09/2024]
Abstract
Diabetic retinopathy (DR) is the major ocular complication of diabetes caused by chronic hyperglycemia, which leads to incurable blindness. Currently, the effectiveness of therapeutic interventions is limited. This study aimed to investigate the function of piezo-type mechanosensitive ion channel component 1 (PIEZO1) and its potential regulatory mechanism in DR progression. PIEZO1 expression was up-regulated in the retinal tissues of streptozotocin-induced diabetic mice and high-glucose (HG)-triggered Müller cells. Functionally, the knockdown of PIEZO1 improved the abnormal retinal function of diabetic mice and impeded inflammatory cytokine secretion and gliosis of Müller cells under HG conditions. Mechanistic investigations using RNA immunoprecipitation-real-time quantitative PCR, methylation RNA immunoprecipitation-real-time quantitative PCR, and luciferase reporter assays demonstrated that PIEZO1 was a downstream target of methyltransferase-like 3 (METTL3). METTL3-mediated N6-methyladenosine (m6A) modification within the coding sequence of PIEZO1 mRNA significantly shortened its half-life. In HG-stimulated cells, there was a negative regulatory relationship between PIEZO1 and YTH (YT521-B homology) domain family 2 (YTHDF2), a recognized m6A reader. The loss of YTHDF2 resulted in an extended half-life of PIEZO1 in cells with overexpression of METTL3, indicating that the effect of METTL3 on the mRNA stability of PIEZO1 was dependent on YTHDF2. Taken together, this study demonstrated the protective role of the PIEZO1 silencing in DR development, and that the degradation of PIEZO1 mRNA is accelerated by METTL3/YTHDF2-mediated m6A modification.
Collapse
Affiliation(s)
- Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Na Yu
- Department of Blood Transfusion, The Second Hospital of Jilin University, Changchun, China
| | - Li Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
14
|
Feng Q, Yu C, Guo L, Liu X, Lin Y, Li C, Zhang W, Zong Y, Yang W, Ma Y, Wang R, Li L, Pei Y, Wang H, Liu D, Niu H, Han M, Nie L. DCBLD1 Modulates Angiogenesis by Regulation of the VEGFR-2 Endocytosis in Endothelial Cells. Arterioscler Thromb Vasc Biol 2025; 45:198-217. [PMID: 39665138 DOI: 10.1161/atvbaha.123.320443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Unwanted angiogenesis is involved in the progression of various malignant tumors and cardiovascular diseases, and the factors that regulate angiogenesis are potential therapeutic targets. We tested the hypothesis that DCBLD1 (discoidin, CUB, and LCCL domain-containing protein 1) is a coreceptor of VEGFR-2 (vascular endothelial growth factor receptor-2) and modulates angiogenesis in endothelial cells. METHODS A carotid artery ligation model and retinal angiogenesis assay were used to study angiogenesis using globe knockout or endothelial cell-specific conditional Dcbld1 knockout mice in vivo. Immunoblotting, immunofluorescence staining, plasma membrane subfraction isolation, Coimmunoprecipitation, and mass spectrum assay were performed to clarify the molecular mechanisms. RESULTS Loss of Dcbld1 impaired VEGF (vascular endothelial growth factor) response and inhibited VEGF-induced endothelial cell proliferation and migration. Dcbld1 deletion interfered with adult and developmental angiogenesis. Mechanistically, DCBLD1 bound to VEGFR-2 and regulated the formation of VEGFR-2 complex with negative regulators: protein tyrosine phosphatases, E3 ubiquitin ligases (neuronal precursor cell-expressed developmentally downregulated gene 4, Nedd4 and c-Casitas B-lineage lymphoma, c-Cbl), and also Dcbld1 knockdown promoted lysosome-mediated VEGFR-2 degradation in endothelial cells. CONCLUSION These findings demonstrated the essential role of endothelial DCBLD1 in regulating VEGF signaling and provided evidence that DCBLD1 promotes VEGF-induced angiogenesis by limiting the dephosphorylation, ubiquitination, and lysosome degradation after VEGFR-2 endocytosis. We proposed that endothelial DCBLD1 is a potential therapeutic target for ischemic cardiovascular diseases by the modulation of angiogenesis through regulation of the VEGFR-2 endocytosis.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Chao Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Lingling Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Xiaoning Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yanling Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Chenyang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Wenjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yanhong Zong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Weiwei Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yuehua Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Runtao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Lijing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Yunli Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Huifang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Demin Liu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China (D.L.)
| | - Honglin Niu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei Province, China (H.N.)
| | - Mei Han
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| | - Lei Nie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Key Laboratory of Vascular Biology in Hebei Province, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.)
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei Province, China (Q.F., C.Y., L.G., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., D.L., H.N., M.H., L.N.)
| |
Collapse
|
15
|
Du YX, Li X, Ji SW, Niu N. Hypertension toxicity of VEGFR-TKIs in cancer treatment: incidence, mechanisms, and management strategies. Arch Toxicol 2025; 99:67-81. [PMID: 39347999 DOI: 10.1007/s00204-024-03874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) are a class of targeted anticancer agents that include pazopanib, sunitinib, axitinib, and others. Currently, VEGFR-TKIs are widely used in the clinical treatment of various tumors, which can prolong patients' survival and even cure tumors. However, the use of VEGFR-TKIs is frequently associated with the occurrence of cardiovascular adverse events, with hypertension being the most prevalent. Hypertension and its complications can significantly impact the prognosis of patients, potentially jeopardizing their lives and resulting in the reduction or even cessation of treatment in severe cases. This review addresses the incidence of hypertension due to VEGFR-TKIs, mechanisms of toxicity, management strategies, and future research directions. In addition, hypertension due to VEGFR-TKIs may be associated with salt sensitivity, and possible mechanisms of hypertensive side effects are vasodilator imbalance, decreased capillary density, renal injury, impaired endothelial function due to oxidative stress, decreased lymphatic vascular density, and "off-target effect". A comprehensive understanding of hypertension toxicity due to cancer treatment with VEGFR-TKIs, can enhance clinical practice, thereby improving the prognostic outcomes of VEGFR-TKIs in oncology patients.
Collapse
Affiliation(s)
- Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Si-Wen Ji
- Office of Academic Affairs, North Sichuan Medical College, Nanchong, 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
16
|
Li Q, Zhang Q, Su S, Yang S, Shao J, Guan W, Zhang S. Maternal fish oil supplementation enhances nutrient transport in the placenta and milk biosynthesis in the mammary gland via the GPR120 signaling pathway. J Adv Res 2024:S2090-1232(24)00607-6. [PMID: 39706333 DOI: 10.1016/j.jare.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION Maternal fish oil (FO) supplementation during pregnancy has been shown to improve pregnancy outcomes. FO is recognized as dietary source for n-3 polyunsaturated fatty acids (n-3 PUFAs). While early research has focused on the benefits of n-3 PUFAs for fetal neurodevelopment, retinal maturation and neonatal behavior, their roles in the placenta during late pregnancy and in the mammary gland during lactation still remain unknow. OBJECTIVES Here, we aim to clarify the mechanisms by which maternal supplementation with FO during pregnancy and lactation affects placental and mammary gland function. METHODS We evaluated the effects of FO on maternal placental nutrient transport, mammary gland milk synthesis and offspring growth. We then explored the molecular mechanisms by which docosahexaenoic acid (DHA) affects the biological function of placental trophoblast cells and mammary epithelial cells through in vitro experiments. Finally, a lipopolysaccharide-challenged experiment was performed to access the potential of maternal FO supplementation in alleviating offspring intestinal inflammation. RESULTS Maternal supplementation with FO during late pregnancy increased offspring birth weight, associated with enhanced maternal placental vascularization and nutrient transporter abundance. Additionally, maternal FO supplementation during lactation improved milk biosynthesis, increasing the fat, protein, and non-fat solids content in both colostrum and mature milk, thereby promoting offspring growth. The stimulatory effects of DHA on nutrient transportation in placental trophoblast cells and nutrient secretion in mammary gland epithelial cells were mediated by GPR120 signaling pathways. Furthermore, maternal FO supplementation strengthened the placental barrier, reduced placental inflammation, oxidative stress and alleviated lipopolysaccharide-induced intestinal inflammation in offspring. CONCLUSION Maternal FO supplementation during late pregnancy and lactation enhances offspring growth by increasing placental nutrient transport and milk biosynthesis, mediated by GPR120. Additionally, maternal FO supplementation reduces the susceptibility of offspring to intestinal inflammation.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Senlin Su
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Li G, Ma Y, Zhang S, Lin W, Yao X, Zhou Y, Zhao Y, Rao Q, Qu Y, Gao Y, Chen L, Zhang Y, Han F, Sun M, Zhao C. A mechanistic systems biology model of brain microvascular endothelial cell signaling reveals dynamic pathway-based therapeutic targets for brain ischemia. Redox Biol 2024; 78:103415. [PMID: 39520909 PMCID: PMC11584692 DOI: 10.1016/j.redox.2024.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Ischemic stroke is a significant threat to human health. Currently, there is a lack of effective treatments for stroke, and progress in new neuron-centered drug target development is relatively slow. On the other hand, studies have demonstrated that brain microvascular endothelial cells (BMECs) are crucial components of the neurovascular unit and play pivotal roles in ischemic stroke progression. To better understand the complex multifaceted roles of BMECs in the regulation of ischemic stroke pathophysiology and facilitate BMEC-based drug target discovery, we utilized a transcriptomics-informed systems biology modeling approach and constructed a mechanism-based computational multipathway model to systematically investigate BMEC function and its modulatory potential. Extensive multilevel data regarding complex BMEC pathway signal transduction and biomarker expression under various pathophysiological conditions were used for quantitative model calibration and validation, and we generated dynamic BMEC phenotype maps in response to various stroke-related stimuli to identify potential determinants of BMEC fate under stress conditions. Through high-throughput model sensitivity analyses and virtual target perturbations in model-based single cells, our model predicted that targeting succinate could effectively reverse the detrimental cell phenotype of BMECs under oxygen and glucose deprivation/reoxygenation, a condition that mimics stroke pathogenesis, and we experimentally validated the utility of this new target in terms of regulating inflammatory factor production, free radical generation and tight junction protection in vitro and in vivo. Our work is the first that complementarily couples transcriptomic analysis with mechanistic systems-level pathway modeling in the study of BMEC function and endothelium-based therapeutic targets in ischemic stroke.
Collapse
Affiliation(s)
- Geli Li
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China; Gusu School, Nanjing Medical University, 215000, Suzhou, China
| | - Yuchen Ma
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Sujie Zhang
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Wen Lin
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Xinyi Yao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Yating Zhou
- The First Affiliated Hospital of Nanjing Medical University, 210000, Nanjing, China
| | - Yanyong Zhao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Qi Rao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Yuchen Qu
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China
| | - Yuan Gao
- QSPMed Technologies, 210000, Nanjing, China
| | - Lianmin Chen
- The First Affiliated Hospital of Nanjing Medical University, 210000, Nanjing, China
| | - Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 21205, Baltimore, USA
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China.
| | - Meiling Sun
- School of Basic Medical Sciences, Nanjing Medical University, 210000, Nanjing, China.
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, 210000, Nanjing, China; The First Affiliated Hospital of Nanjing Medical University, 210000, Nanjing, China.
| |
Collapse
|
18
|
Lin CI, Merley A, Wada H, Zheng J, Jaminet SCS. Transmembrane-4 L-Six Family Member-1 Is Essential for Embryonic Blood Vessel Development. Curr Issues Mol Biol 2024; 46:13105-13118. [PMID: 39590375 PMCID: PMC11592815 DOI: 10.3390/cimb46110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Transmembrane-4 L-six family member-1 (TM4SF1) is a small cell surface glycoprotein that is highly and selectively expressed on endothelial cell and mesenchymal stem cell surfaces. TM4SF1 regulates cellular functions by forming protein complexes called TMED (TM4SF1-enriched microdomains) that either recruit growth-factor activated proteins and internalize them via microtubules to distribute the recruited molecules intracellularly or support the formation of nanopodia for intercellular interactions extracellularly. Through a genetically manipulated mouse model for global Tm4sf1 gene knockout, we demonstrate here that TM4SF1 is essential for blood vessel development. Tm4sf1-null embryos fail to develop blood vessels and experience lethality at E9.5. Tm4SF1-heterozygous embryos are smaller in body size during early embryonic development, and almost half die in utero due to intracranial hemorrhage in the intraventricular and subarachnoid space, which becomes apparent by E17.5. Surviving Tm4SF1-heterozygotes do not display overt phenotypic differences relative to wild type littermates postnatally. Together, these studies demonstrate that TM4SF1, through its molecular facilitator and nanopodia formation roles in TMED, intimately regulates blood vessel formation during embryonic development.
Collapse
Affiliation(s)
- Chi-Iou Lin
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (C.-I.L.); (A.M.); (H.W.); (J.Z.)
- Anesthesiology Department, Riverview Hospital, Noblesville, IN 46060, USA
| | - Anne Merley
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (C.-I.L.); (A.M.); (H.W.); (J.Z.)
- Center for Animal Resources and Education, Brown University, Providence, RI 02912, USA
| | - Hiromi Wada
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (C.-I.L.); (A.M.); (H.W.); (J.Z.)
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Jianwei Zheng
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (C.-I.L.); (A.M.); (H.W.); (J.Z.)
- Department of General Surgery, TianTan Hospital, Capital Medical University, Beijing 100070, China
| | - Shou-Ching S. Jaminet
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (C.-I.L.); (A.M.); (H.W.); (J.Z.)
- Angiex Inc., Cambridge, MA 02140, USA
| |
Collapse
|
19
|
Sankarapandian V, Rajendran RL, Miruka CO, Sivamani P, Maran BAV, Krishnamoorthy R, Gangadaran P, Ahn BC. A review on tyrosine kinase inhibitors for targeted breast cancer therapy. Pathol Res Pract 2024; 263:155607. [PMID: 39326367 DOI: 10.1016/j.prp.2024.155607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Breast cancer is a heterogeneous disease with complex molecular pathogenesis. Overexpression of several tyrosine kinase receptors is associated with poor prognosis, therefore, they can be key targets in breast cancer therapy. Tyrosine kinase inhibitors (TKIs) have emerged as leading agents in targeted cancer therapy due to their effectiveness in disrupting key molecular pathways involved in tumor growth. TKIs target various tyrosine kinases, including the human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR), Vascular endothelial growth factor receptor (VEGFR), anaplastic lymphoma kinase (ALK), vascular endothelial growth factor receptor (VEGFR)-associated multi-targets, rearranged during transfection (RET), fibroblast growth factor receptor (FGFR), receptor tyrosine kinase-like orphan signal 1 (ROS1), Mitogen-activated protein kinase (MAPK), and tropomyosin receptor kinase (TRK). These drugs target the tyrosine kinase domain of receptor tyrosine kinases and play a vital role in proliferation and migration of breast cancer cells. Several TKIs, including lapatinib, neratinib, and tucatinib, have been developed and are currently used in clinical settings, often in combination with chemotherapy, endocrine therapy, or other targeted agents. TKIs have demonstrated remarkable benefits in enhancing progression-free and overall survival in patients with breast cancer and have become a standard of care for this population. This review provides an overview of TKIs currently being examined in preclinical studies and clinical trials, especially in combination with drugs approved for breast cancer treatment. TKIs have emerged as a promising therapeutic option for patients with breast cancer and hold potential for treating other breast cancer subtypes. The development of new TKIs and their integration into personalized treatment strategies will continue to shape the future of breast cancer therapy.
Collapse
Affiliation(s)
- Vidya Sankarapandian
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Box 20000, Uganda
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Conrad Ondieki Miruka
- Department of Biochemistry, Kampala International University, Western Campus, Box 20000, Uganda
| | - Poornima Sivamani
- Department of Pharmacology and Clinical pharmacology, Christian Medical College, Vellore 632004, India
| | - Balu Alagar Venmathi Maran
- Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea..
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea..
| |
Collapse
|
20
|
Yang X, Zheng H, Huang J, Liu Y, Li Y, Zhang B, Sun C, Li Y, Thiery JP, Wu S. Co-inhibition of PGF and VEGFA enhances the effectiveness of immunotherapy in bladder cancer. Int J Med Sci 2024; 21:2870-2882. [PMID: 39628692 PMCID: PMC11610333 DOI: 10.7150/ijms.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/09/2024] [Indexed: 12/06/2024] Open
Abstract
Background: Anti-angiogenic inhibitors and immune checkpoint blockade combination therapy offers a novel approach to circumvent the challenges associated with limited responsiveness to checkpoint inhibitors in bladder cancer. However, the effective strategies for inhibiting angiogenesis in bladder cancer need further elucidation. Objective: This work aims to identify key targets for the effective inhibition of angiogenesis in bladder cancer and to explore the potential benefits of combining anti-angiogenic therapies with immune checkpoint blockade strategies in the treatment of this disease. Methods: Cell-cell interaction analysis was performed using bladder cancer single-cell transcriptome datasets downloaded from the Gene Expression Omnibus (GEO) database to determine the regulatory network driving angiogenesis in bladder cancer. The bladder cancer cell line MBT2 was orthotopically transplanted into mice to investigate the impact of pro-angiogenic molecules on angiogenesis and tumor growth, and to evaluate the synergistic therapeutic potential of a combination therapy targeting angiogenesis and Programmed Cell Death Protein 1 (PD-1). Proliferation and tube formation assays with Human Umbilical Vein Endothelial Cells (HUVECs) were used to explore the regulatory functions of pro-angiogenic molecules in angiogenesis. Results: Placental growth factor (PGF) is a pro-angiogenic factor in bladder cancer, in addition to vascular endothelial growth factor A (VEGFA). Suppression of PGF reduced the tumor size and angiogenesis in bladder cancer. The expression level of vascular endothelial growth factor receptor 1 (VEGFR1) is higher than that of vascular endothelial growth factor receptor2 (VEGFR2) in the endothelial cells of bladder cancer. The pro-angiogenic activity of PGF is dependent on the expression level of VEGFR1 in endothelial cells. The combined inhibition of PGF and VEGFA exerts a synergistic effect on suppressing tumor growth and angiogenesis. The concurrent inhibition of PGF and VEGFA stands out as the only intervention capable of significantly enhancing the infiltration of CD8+ cytotoxic T cells within the bladder cancer microenvironment. In the bladder cancer mouse model, the introduction of an anti- programmed cell death protein 1 (PD-1) therapeutic regimen combined with the targeted inhibition of PGF and VEGFA, led to a significantly elevated survival rate compared to the outcome observed with anti-PD-1 monotherapy. Conclusion: PGF is a pro-angiogenic molecule in bladder cancer that requires significant expression levels of VEGFR1 in endothelial cells. Notably, the concurrent inhibition of PGF and VEGFA amplifies the therapeutic impact of anti-PD-1 treatment in bladder cancer. These findings provide further insights into the role of PGF in angiogenesis regulation and have conceptual implications for combining anti-angiogenic therapy with immune therapy in bladder cancer treatment.
Collapse
Affiliation(s)
- Xianzhi Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Haoxiang Zheng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Jianxu Huang
- Shantou University Medical College, Shantou University, Shantou, China
| | - Yujun Liu
- Medical School, Anhui University of Science and Technology, Huainan 232001, China
| | - Yingrui Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Bingwen Zhang
- Guangzhou Laboratory, Guangzhou International BioIsland, Guangzhou 510005, China
| | - Chu Sun
- Guangzhou Laboratory, Guangzhou International BioIsland, Guangzhou 510005, China
| | - Yuqing Li
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Jean Paul Thiery
- Guangzhou Laboratory, Guangzhou International BioIsland, Guangzhou 510005, China
- BioSyngen Pte Ltd, Taiseng Exchange, 5 Tai Seng Avenue, 536671, Singapore
| | - Song Wu
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| |
Collapse
|
21
|
Yu E, Kim H, Park H, Hong JH, Jin J, Song Y, Woo JM, Min JK, Yun J. Targeting the VEGFR2 signaling pathway for angiogenesis and fibrosis regulation in neovascular age-related macular degeneration. Sci Rep 2024; 14:25682. [PMID: 39465270 PMCID: PMC11514265 DOI: 10.1038/s41598-024-76258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is characterized by abnormal blood vessel growth from the choroid, leading to complications and eventual blindness. Despite anti-VEGF therapy, subretinal fibrosis remains a major concern, as VEGF/VEGF receptor-2 (VEGFR2) signaling can contribute to both angiogenesis and fibrosis. For the identification of the aqueous humor proteome, we performed liquid chromatography with tandem mass spectrometry analysis. To investigate the potential therapeutic effects of targeting the VEGF signaling pathway using apatinib, a highly selective VEGFR2 tyrosine kinase inhibitor, this study employed in vitro (THP-1 conditioned media-treated ARPE-19 cells) and in vivo (laser-induced choroidal neovascularization mouse) models of nAMD. This study revealed elevated VEGFR2 protein levels in the aqueous humor of nAMD patients, suggesting a potential target to mitigate neovascularization and fibrosis in nAMD. Apatinib effectively reduced VEGFA and αSMA levels in both in vitro and in vivo models. Moreover, apatinib showed improvement in laser-induced subretinal hyper-reflective lesions. The action mechanism was linked to the inhibition of VEGFR2 activation, leading to the suppression of both angiogenesis and fibrosis through the downregulation of STAT3 phosphorylation. Therefore, the VEGFR2 signaling pathway appears to play a central role in the development of nAMD by regulating both angiogenesis and fibrosis.
Collapse
Affiliation(s)
- Eunhye Yu
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Haechan Kim
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Hyeonji Park
- New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
- College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Ji Hye Hong
- New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Jonghwa Jin
- New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Yunjeong Song
- Ministry of Food and Drug Safety, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Je Moon Woo
- Department of Ophthalmology, College of Medicine, Ulsan University Hospital, University of Ulsan, 25, Daehakbyeongwon-ro, Dong-gu, Ulsan, 44033, Republic of Korea
| | - Jung Kee Min
- Department of Ophthalmology, College of Medicine, Ulsan University Hospital, University of Ulsan, 25, Daehakbyeongwon-ro, Dong-gu, Ulsan, 44033, Republic of Korea.
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| |
Collapse
|
22
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
23
|
Shen Y, Jiang R, Huang Y, Wang Y, Zhan S, Tang X, Yi P. Identification of hub genes through integrated single-cell and microarray transcriptome analysis in osteoarthritic meniscus. J Orthop Surg Res 2024; 19:682. [PMID: 39438957 PMCID: PMC11515729 DOI: 10.1186/s13018-024-05175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is marked by the progressive degradation of joint cartilage and subchondral bone. The precise molecular mechanisms driving meniscus deterioration in OA, especially at the single-cell level, remain poorly understood. METHOD We analyzed two datasets from the GEO database, GSE220243 and GSE98918, focusing on meniscus tissue sequencing data from OA and non-OA patients. The standard Seurat procedure was employed to process single-cell data and identify differentially expressed genes (DEGs). Immune cell infiltration was assessed using the Microenvironment Cell Populations (MCP) counter and CIBERSORT algorithms. For the microarray data, DEGs were identified with the limma package, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using ClusterProfiler. The overlapping DEGs from both datasets were imported into Cytoscape to generate protein-protein interaction (PPI) networks and identify hub genes. Transcription factor (TF) and miRNA interaction networks were analyzed using NetworkAnalyst, and gene-related predictive drugs were enriched through the DSigDB platform. RESULT After quality control, 34,763 cells from the OA patients and 34,145 cells from the healthy controls were analyzed. UMAP identified and SingleR annotated 14 cell clusters. The 10 largest cell clusters were selected for further analysis. The OA group exhibited a notable increase in macrophages and a reduction in cytotoxic lymphocytes and endothelial cells in the meniscus. In GSE98918, 220 DEGs were identified, and the MCODE plug-in in Cytoscape pinpointed a key module containing 12 candidate genes. The MCC methodfiltered the top 20 DEGs in each GSE220243 cluster. Overlapping DEGs from GSE220243 and GSE98918 identified COL1A1, COL3A1, COL5A2, COL6A3, LOX, and VEGFA as significantly decreased in OA, with COL3A1, COL5A2, LOX, and VEGFA upregulated in meniscal chondrocytes. The interaction network highlighted 3 key miRNAs and 13 shared TFs. Ten gene-related predictive drug molecules were identified. CONCLUSION This research highlights crucial genes in the OA meniscus and uncovers their differing regulatory patterns between chondrocytes and non-chondrocytes. These findings enhance our understanding of the molecular mechanisms driving OA pathogenesis and aid in identifying potential drug targets.
Collapse
Affiliation(s)
- Yanzhu Shen
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 , China
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ruichen Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yanjun Huang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 , China
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuming Wang
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Sizheng Zhan
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiangsheng Tang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 , China
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ping Yi
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 , China.
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
24
|
Chaudhari PJ, Nemade AR, Shirkhedkar AA. Recent updates on potential of VEGFR-2 small-molecule inhibitors as anticancer agents. RSC Adv 2024; 14:33384-33417. [PMID: 39439843 PMCID: PMC11495155 DOI: 10.1039/d4ra05244g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
The vascular endothelial growth factor receptor (VEGFR) system is the key component for controlling angiogenesis in cancer cells. Blocking vascular endothelial growth factor receptor 2 (VEGFR2) signalling is one of the most promising approaches to hindering angiogenesis and the subsequent growth of cancer cells. The USFDA-approved small-molecule drugs targeting VEGFR-2 are developing drug resistance over the course of chemotherapy, and cardiac-related side effects are consistently being reported; hence, there is an urgent need for more safe and effective anticancer molecules. The present review focuses on the structure and physiology of VEGFR-2 and its involvement in the progression of cancer cells. The recent updates from the last five years through papers and patents on structure-activity relationships, pharmacophoric attributes, molecular docking interactions, antiangiogenic assays, cancer cell line studies, and the potencies (IC50) of VEGFR-2 inhibitors are discussed herein. The common structural framework requirements, such as the Asp-Phe-Gly (DFG) motif of VEGFR-2 interacting with the HBD-HBA region in the ligand molecules, the central aryl ring occupying the linker region, and a variety of bio-isosteres, can enhance activity against VEGFR-2. At one end, the heteroaryl moiety is essential for interaction within the ATP-binding site of VEGFR-2, while the terminal hydrophobic tail occupies the allosteric binding site. Three to five bond spacers between the heteroaryl and HBD-HBA regions provided a better result towards VEGFR-2 inhibition, mirroring the behaviors of standard drugs. The in-depth analysis of recent updates on VEGFR-2 inhibitors presented in this paper will help prospective synthetic and medicinal chemists to discover new lead molecules for the treatment of various cancers.
Collapse
Affiliation(s)
- Prashant Jagannath Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| | - Aditya Ramchandra Nemade
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
- Department of Pharmaceutics, M.S. Ramaiah University of Applied Sciences Bengaluru Karnataka 560054 India
| | - Atul Arun Shirkhedkar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
| |
Collapse
|
25
|
Fang H, Zhou Y, Bai X, Che W, Zhang W, Zhang D, Chen Q, Duan W, Nie G, Hou Y. The VEGFA-Induced MAPK-AKT/PTEN/TGFβ Signal Pathway Enhances Progression and MDR in Gastric Cancer. Genes (Basel) 2024; 15:1266. [PMID: 39457390 PMCID: PMC11507385 DOI: 10.3390/genes15101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Gastric cancer (GC) is a globally frequent cancer, in particular leading in mortality caused by digestive tract cancers in China. Vascular endothelial growth factor A (VEGFA) is excessively expressed in cancers including GC; its involvement in GC development, particularly in multidrug resistance (MDR), and the signal route it affects in GC remain unknown. To explore the roles VEGFA plays during progression and MDR formation in GC, we studied its function in a VEGFA-deleted GC cell platform. METHODS We initially assessed the importance of VEGFA in GC and MDR using database analysis. Then, using CCK8, wound healing, transwell, scanning electron microscopy, immunofluorescence, flow cytometry, and other techniques, the alterations in tumor malignancy-connected cell behaviors and microstructures were photographed and evaluated in a VEGFA-gene-deleted GC cell line (VEGFA-/-SGC7901). Finally, the mechanism of VEGFA in GC progression and MDR was examined by Western blot. RESULTS Database analysis revealed a strong correlation between high VEGFA expression and a poor prognosis for GC. The results showed that VEGFA deletion reduced GC cell proliferation and motility and altered microstructures important for motility, such as the depolymerized cytoskeleton. VEGFA deletion inhibited the growth of pseudopodia/filopodia and suppressed the epithelial-mesenchymal transition (EMT). The occurrence of MDR is induced by overactivation of the MAPK-AKT and TGFβ signaling pathways, while PTEN inhibits these pathways. CONCLUSIONS All findings suggested that VEGFA acts as a cancer enhancer and MDR inducer in GC via the MAPK-AKT/PTEN/TGFβ signal pathway.
Collapse
Affiliation(s)
- Hongming Fang
- College of Life Sciences, Shaanxi Normal University, 620 West Chang-An Street, Xi’an 710119, China; (H.F.); (Y.Z.); (X.B.); (W.C.); (W.Z.); (D.Z.)
| | - Yujuan Zhou
- College of Life Sciences, Shaanxi Normal University, 620 West Chang-An Street, Xi’an 710119, China; (H.F.); (Y.Z.); (X.B.); (W.C.); (W.Z.); (D.Z.)
| | - Xue Bai
- College of Life Sciences, Shaanxi Normal University, 620 West Chang-An Street, Xi’an 710119, China; (H.F.); (Y.Z.); (X.B.); (W.C.); (W.Z.); (D.Z.)
| | - Wanlin Che
- College of Life Sciences, Shaanxi Normal University, 620 West Chang-An Street, Xi’an 710119, China; (H.F.); (Y.Z.); (X.B.); (W.C.); (W.Z.); (D.Z.)
| | - Wenxuan Zhang
- College of Life Sciences, Shaanxi Normal University, 620 West Chang-An Street, Xi’an 710119, China; (H.F.); (Y.Z.); (X.B.); (W.C.); (W.Z.); (D.Z.)
| | - Danying Zhang
- College of Life Sciences, Shaanxi Normal University, 620 West Chang-An Street, Xi’an 710119, China; (H.F.); (Y.Z.); (X.B.); (W.C.); (W.Z.); (D.Z.)
| | - Qingmei Chen
- Guangxi Key Laboratory of Agricultural Resource Chemistry and Biotechnology, 299 Jiao-Yu-Zhong Road, Yulin 537000, China;
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Melbourne, VIC 3216, Australia;
| | - Guochao Nie
- Guangxi Key Laboratory of Agricultural Resource Chemistry and Biotechnology, 299 Jiao-Yu-Zhong Road, Yulin 537000, China;
| | - Yingchun Hou
- College of Life Sciences, Shaanxi Normal University, 620 West Chang-An Street, Xi’an 710119, China; (H.F.); (Y.Z.); (X.B.); (W.C.); (W.Z.); (D.Z.)
| |
Collapse
|
26
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
27
|
Yu J, Park R, Tojjari A, Sadeghipour A, Saeed A, Saeed A. Zanzalintinib (XL092): a next-generation tyrosine kinase inhibitor-comprehensive review of early safety & efficacy data. Expert Opin Investig Drugs 2024; 33:887-895. [PMID: 39099411 DOI: 10.1080/13543784.2024.2388571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Zanzalintinib (XL092) is a next-generation anti-VEGFR-related multi-targeted TKI that exhibits immunomodulatory effects. AREAS COVERED This review explores preclinical and clinical data, along with the future directions associated with zanzalintinib and its combination with immune checkpoint inhibitors (ICIs). EXPERT OPINION In addition to its anti-VEGFR activity, zanzalintinib demonstrates potential synergistic effects with ICIs through its immunomodulatory impact, attributed to its inhibition of MET and TAM kinases. Recent preclinical studies provide compelling evidence supporting this synergistic potential. Furthermore, a recent phase 1 dose escalation study confirmed the tolerability of the zanzalintinib and anti-PDL1 combination without major safety concerns.Multiple ongoing clinical trials are investigating the combination of zanzalintinib and ICIs across various solid tumor types, including phase 3 studies for renal cell carcinoma, colorectal, and head and neck cancer. These trials aim to elucidate the therapeutic role of this new-generation TKI and ICI combination.However, the identification of reliable predictive biomarkers for the zanzalintinib and ICI combination presents significant challenges. Given the intricate nature of their mechanistic rationale and the difficulties in identifying reliable biomarkers for combined anti-angiogenesis and ICI therapies, addressing this challenge remains a priority for ongoing and future research.
Collapse
Affiliation(s)
- James Yu
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Robin Park
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alireza Tojjari
- Department of Medicine, Division of Hematology and Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Sun Y, Dinenno FA, Tang P, Kontaridis MI. Protein tyrosine phosphatase 1B in metabolic and cardiovascular diseases: from mechanisms to therapeutics. Front Cardiovasc Med 2024; 11:1445739. [PMID: 39238503 PMCID: PMC11374623 DOI: 10.3389/fcvm.2024.1445739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) has emerged as a significant regulator of metabolic and cardiovascular disease. It is a non-transmembrane protein tyrosine phosphatase that negatively regulates multiple signaling pathways integral to the regulation of growth, survival, and differentiation of cells, including leptin and insulin signaling, which are critical for development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Given PTP1B's central role in glucose homeostasis, energy balance, and vascular function, targeted inhibition of PTP1B represents a promising strategy for treating these diseases. However, challenges, such as off-target effects, necessitate a focus on tissue-specific approaches, to maximize therapeutic benefits while minimizing adverse outcomes. In this review, we discuss molecular mechanisms by which PTP1B influences metabolic and cardiovascular functions, summarize the latest research on tissue-specific roles of PTP1B, and discuss the potential for PTP1B inhibitors as future therapeutic agents.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Frank A Dinenno
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Peiyang Tang
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Dumitru CS, Raica M. A Splice Form of VEGF, a Potential Anti-Angiogenetic Form of Head and Neck Squamous Cell Cancer Inhibition. Int J Mol Sci 2024; 25:8855. [PMID: 39201541 PMCID: PMC11354464 DOI: 10.3390/ijms25168855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Angiogenesis, primarily mediated by vascular endothelial growth factor (VEGF), is a fundamental step in the progression and metastasis of head and neck squamous cell carcinoma (HNSCC). Traditional anti-angiogenic therapies that target the VEGF pathway have shown promise but are often associated with significant side effects and variable efficacy due to the complexity of the angiogenic signaling pathway. This review highlights the potential of a specific VEGF splice form, VEGF165b, as an innovative therapeutic target for HNSCC. VEGF165b, unlike standard VEGF, is a natural inhibitor that binds to VEGF receptors without triggering pro-angiogenic signaling. Its distinct molecular structure and behavior suggest ways to modulate angiogenesis. This concept is particularly relevant when studying HNSCC, as introducing VEGF165b's anti-angiogenic properties offers a novel approach to understanding and potentially influencing the disease's dynamics. The review synthesizes experimental evidence suggesting the efficacy of VEGF165b in inhibiting tumor-induced angiogenesis and provides insight into a novel therapeutic strategy that could better manage HNSCC by selectively targeting aberrant vascular growth. This approach not only provides a potential pathway for more targeted and effective treatment options but also opens the door to a new paradigm in anti-angiogenic therapy with the possibility of reduced systemic toxicity. Our investigation is reshaping the future of HNSCC treatment by setting the stage for future research on VEGF splice variants as a tool for personalized medicine.
Collapse
Affiliation(s)
- Cristina Stefania Dumitru
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | | |
Collapse
|
30
|
Zhou R, Xue Y, Zhu Z, Xu P, Shen L, Wang Z, Xiang Y, Cao Y, Yu X, Shang W. VEGF-B is involved in diabetic peripheral neuropathy in patients with type 2 diabetes. Growth Factors 2024; 42:101-110. [PMID: 39001597 DOI: 10.1080/08977194.2024.2377553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/03/2024] [Indexed: 11/12/2024]
Abstract
Aims: This study aims to explore the potential role of vascular endothelial growth factor-B (VEGF-B) in the pathogenesis of diabetic peripheral neuropathy (DPN). The expression of VEGFRs were reanalysed by using gene arrays of peripheral nerve samples from mouse models of DPN retrieved from the GEO database. 213 T2D patients as well as 31 healthy individuals were recruited. The serum VEGF-B was detected and its relationship with DPN was analysed. The elevated VEGFR1 was the only change of VEGFR gene expression in the peripheral nerve from mouse models of DPN. The level of serum VEGF-B in T2D patients with DPN was higher than that in T2D patients without DPN and healthy people. Analysis of correlation and binary logistic regression confirmed that the increased serum VEGF-B level was an independent risk factor of DPN in T2D patients. VEGF-B-VEGFR1 signaling pathway may be involved in the development of DPN.
Collapse
Affiliation(s)
- Ruonan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Xue
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziwei Zhu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pingyuan Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lixuan Shen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziwei Wang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Xiang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Cao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Chitoran E, Rotaru V, Ionescu SO, Gelal A, Capsa CM, Bohiltea RE, Mitroiu MN, Serban D, Gullo G, Stefan DC, Simion L. Bevacizumab-Based Therapies in Malignant Tumors-Real-World Data on Effectiveness, Safety, and Cost. Cancers (Basel) 2024; 16:2590. [PMID: 39061228 PMCID: PMC11274419 DOI: 10.3390/cancers16142590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Overall, it is estimated that more than 3,500,000 patients have received Bevacizumab as part of systemic oncologic treatment. Bevacizumab and its biosimilars are currently marketed in over 130 countries. Given the wide usage of Bevacizumab in current oncological practice, it is very important to compare the "real-world" results to those obtained in controlled clinical trials. This study aims to describe the clinical experience of using Bevacizumab in a large cohort of cancer patients in "non-controlled real-world" conditions with regard to effectiveness, safety, and cost of therapy. METHODS For this purpose, we conducted an open, observational, retrospective study involving all patients treated for solid malignant tumors in the Bucharest Institute of Oncology with "Prof. Dr. Al. Trestioreanu" with Bevacizumab-based systemic therapy, between 2017 and 2021. RESULTS The study consisted of 657 treatment episodes in 625 patients (F/B = 1.62/1, with a median age of 57.6 years) which were treated for malignant tumors (majority colorectal, non-small cell lung, ovarian, and breast cancer). First-line treatment was administered in 229 patients, and the rest received Bevacizumab as second or subsequent lines of treatment. The overall response rate to Bevacizumab-based therapies was around 60-65% across all indication except for subsequent treatment lines in colorectal and ovarian cancers, where lower values were recorded (27.1%, and 31.5% respectively). Median PFS for the entire cohort was 8.2 months (95% CI 6.8-9.6), and the median OS was 13.2 months (95% CI 11.5-14.9). Usual bevacizumab-related toxicities were observed, including bleeding, hypertension, wound-healing complications, gastrointestinal perforation, other types of fistulas, septic complications, and thromboembolic events. Although the clinical benefits are undeniable, the addition of Bevacizumab to standard chemotherapy increased the overall treatment cost by 213%. CONCLUSIONS Bevacizumab remains a high-cost therapy, but it can add to clinical benefits (like overall survival, progression-free survival, and response rate) when used in conjunction with standard chemotherapy. Similar results as those presented in various controlled trials are observable even on unselected cohorts of patients in the uncontrolled conditions of "real-world" oncological practice. Off-label usage is encountered in clinical practice, and this aspect should be monitored given the potential adverse effects of the therapy.
Collapse
Affiliation(s)
- Elena Chitoran
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Vlad Rotaru
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Sinziana-Octavia Ionescu
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Aisa Gelal
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Cristina-Mirela Capsa
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Radiology Department, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Roxana-Elena Bohiltea
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Obstetrics and Gynecology Department, “Filantropia” Clinical Hospital, 011132 Bucharest, Romania
| | - Madalina-Nicoleta Mitroiu
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Obstetrics and Gynecology Department, “Filantropia” Clinical Hospital, 011132 Bucharest, Romania
| | - Dragos Serban
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Department 4, Bucharest University Emergency Hospital, 050098 Bucharest, Romania
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Daniela-Cristina Stefan
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laurentiu Simion
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
32
|
Elzanaty KA, Omran GA, Elmahallawy EK, Albrakati A, Saleh AA, Dahran N, Alhegaili AS, Salahuddin A, Abd-El-Azim H, Noreldin A, Okda TM. Design and Optimization of Sesamol Nanosuspensions to Potentiate the Anti-Tumor Activity of Epirubicin against Ehrlich Solid Carcinoma-Bearing Mice. Pharmaceutics 2024; 16:937. [PMID: 39065634 PMCID: PMC11279961 DOI: 10.3390/pharmaceutics16070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
There is a growing interest in discovering natural sources of anti-cancer drugs. Sesamol (SES) is a phenolic compound with antitumor effects. The present study aimed to investigate the anticancer properties of SES and its nano-suspensions (SES-NS) combined with Epirubicin (EPI) in breast cancer (BC) using mice bearing a solid Ehrlich tumor. The study involved 35 female albino mice and investigated the effects of SES and EPI on tumor growth, proliferation, apoptosis, autophagy, angiogenesis, and oxidative stress. Methods including ELISA, qRT-PCR, and immunohistochemistry were utilized. The findings revealed reductions in tumor growth and proliferation using SES either alone or combined and evidenced by decreased AKT (AKT Serine/Threonine kinase1) levels, angiogenesis indicated by lower levels of VEGFR (vascular endothelial growth factor), and apoptosis demonstrated by elevated caspase3 and BAX levels. Furthermore, autophagy increased and was indicated by increased levels of beclin1 and lc3, along with decreased oxidative stress as evidenced by elevated TAC (total antioxidant capacity) and reduced MDA (malondialdehyde) levels. Interestingly, SES-NS demonstrated more significant effects at lower doses. In summary, this study underscores the potential of SES as a promising agent for BC treatment. Moreover, SES-NS potentiated the beneficial effects of EPI while mitigating its adverse effects.
Collapse
Affiliation(s)
- Kholoud A. Elzanaty
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| | - Gamal A. Omran
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| | - Ehab Kotb Elmahallawy
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, 14071 Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman A. Saleh
- Department of Pathology, College of Medicine, University of Hail, Hail 55428, Saudi Arabia;
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Alaa S. Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmad Salahuddin
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
- Department of Biochemistry, College of Pharmacy, Al-Ayen Iraqi University, Nasiriyah 64001, Iraq
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Tarek M. Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| |
Collapse
|
33
|
Hu B, Pei J, Wan C, Liu S, Xu Z, Zou Y, Li Z, Tang Z. Mechanisms of Postischemic Stroke Angiogenesis: A Multifaceted Approach. J Inflamm Res 2024; 17:4625-4646. [PMID: 39045531 PMCID: PMC11264385 DOI: 10.2147/jir.s461427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Ischemic stroke constitutes a significant global health care challenge, and a comprehensive understanding of its recovery mechanisms is imperative for the development of innovative therapeutic strategies. Angiogenesis, a pivotal element of ischemic tissue repair, facilitates the restoration of blood flow to damaged regions, thereby promoting neuronal regeneration and functional recovery. Nevertheless, the mechanisms underlying postischemic stroke angiogenesis remain incompletely elucidated. This review meticulously examines the constituents of the neurovascular unit, ion channels, molecular mediators, and signaling pathways implicated in angiogenesis following stroke. Furthermore, it delves into prospective therapeutic strategies informed by these factors. Our objective is to provide detailed and exhaustive information on the intricate mechanisms governing postischemic stroke angiogenesis, thus providing a robust scientific foundation for the advancement of novel neurorepair therapies.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Cheng Wan
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuangshuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, People’s Republic of China
- School of Basic Medical Sciences, Qujing Medical College, Qujing, People’s Republic of China
| | - Yongwei Zou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
34
|
Tarallo V, Magliacane Trotta S, Panico S, D'Orsi L, Mercadante G, Cicatiello V, De Falco S. PlGF and VEGF-A/PlGF Heterodimer are Crucial for Recruitment and Activation of Immune Cells During Choroid Neovascularization. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 38967942 PMCID: PMC11232896 DOI: 10.1167/iovs.65.8.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Purpose Recruitment and activation of inflammatory cells, such as retinal microglia/macrophages, in the subretinal space contribute significantly to the pathogenesis of age-related macular degeneration (AMD). This study aims to explore the functional role of vascular endothelial growth factor (VEGF-A), placental growth factor (PlGF) and VEGF-A/PlGF heterodimer in immune homeostasis and activation during pathological laser-induced choroidal neovascularization (CNV). Methods To investigate these roles, we utilized the PlGF-DE knockin (KI) mouse model, which is the full functional knockout (KO) of PlGF. In this model, mice express a variant of PlGF, named PlGF-DE, that is unable to bind and activate VEGFR-1 but can still form heterodimer with VEGF-A. Results Our findings demonstrate that, although there is no difference in healthy conditions, PlGF-DE-KI mice exhibit decreased microglia reactivity and reduced recruitment of both microglia and monocyte-macrophages, compared to wild-type mice during laser-induced CNV. This impairment is associated with a reduction in VEGF receptor 1 (VEGFR-1) phosphorylation in the retinae of PlGF-DE-KI mice compared to C57Bl6/J mice. Corroborating these data, intravitreal delivery of PlGF or VEGF-A/PlGF heterodimer in PlGF-DE-KI mice rescued the immune cell response at the early phase of CNV compared to VEGF-A delivery. Conclusions In summary, our study suggests that targeting PlGF and the VEGF-A/PlGF heterodimer, thereby preventing VEGFR-1 activation, could represent a potential therapeutic approach for the management of inflammatory processes in diseases such as AMD.
Collapse
Affiliation(s)
- Valeria Tarallo
- Angiogenesis Lab, Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ - CNR, Naples, Italy
| | - Sara Magliacane Trotta
- Angiogenesis Lab, Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ - CNR, Naples, Italy
| | - Sonia Panico
- Angiogenesis Lab, Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ - CNR, Naples, Italy
| | - Luca D'Orsi
- Angiogenesis Lab, Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ - CNR, Naples, Italy
- BIOVIIIx srl, Via Alessandro Manzoni 1, Napoli, Italy
| | - Grazia Mercadante
- Angiogenesis Lab, Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ - CNR, Naples, Italy
| | - Valeria Cicatiello
- Angiogenesis Lab, Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ - CNR, Naples, Italy
| | - Sandro De Falco
- Angiogenesis Lab, Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ - CNR, Naples, Italy
- BIOVIIIx srl, Via Alessandro Manzoni 1, Napoli, Italy
- AnBition srl, Via Alessandro Manzoni 1, Napoli, Italy
| |
Collapse
|
35
|
Chiang H, Chung CA. Simulation of Soluble and Bound VEGF-stimulated in vitro Capillary-like Network Formation on Deformed Substrate. PLoS Comput Biol 2024; 20:e1012281. [PMID: 39038038 PMCID: PMC11262697 DOI: 10.1371/journal.pcbi.1012281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Capillary plexus cultivation is crucial in tissue engineering and regenerative medicine. Theoretical simulations have been conducted to supplement the expensive experimental works. However, the mechanisms connecting mechanical and chemical stimuli remained undefined, and the functions of the different VEGF forms in the culture environment were still unclear. In this paper, we developed a hybrid model for simulating short-term in vitro capillary incubations. We used the Cellular Potts model to predict individual cell migration, morphology change, and continuum mechanics to quantify biogel deformation and VEGF transport dynamics. By bridging the mechanical regulation and chemical stimulation in the model, the results showed good agreement between the predicted network topology and experiments, in which elongated cells connected, forming the network cords and round cells gathered, creating cobblestone-like aggregates. The results revealed that the capillary-like networks could develop in high integrity only when the mechanical and chemical couplings worked adequately, with the cell morphology and haptotaxis driven by the soluble and bound forms of VEGF, respectively, functioning simultaneously.
Collapse
Affiliation(s)
- Hsun Chiang
- Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
| | - Chih-Ang Chung
- Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
36
|
Gazzini S, Cerullo R, Soloperto D. VEGF as a Key Actor in Recurrent Respiratory Papillomatosis: A Narrative Review. Curr Issues Mol Biol 2024; 46:6757-6768. [PMID: 39057045 PMCID: PMC11275356 DOI: 10.3390/cimb46070403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recurrent respiratory papillomatosis (RRP) is a benign disease of the upper aerodigestive tract caused by human papillomavirus (HPV) types 6 and 11. The clinical course is unpredictable and some patients, especially younger children, experience a high rate of recurrence with a significant impact on their quality of life. The molecular mechanisms of HPV infection in keratinocytes have been extensively studied throughout the years, with particular regard to its role in causing malignant tumors, like cervical cancer and head and neck carcinomas. A minor but not negligible amount of the literature has investigated the molecular landscape of RRP patients, and some papers have studied the role of angiogenesis (the growth of blood vessels from pre-existing vasculature) in this disease. A central role in this process is played by vascular endothelial growth factor (VEGF), which activates different signaling cascades on multiple levels. The increased knowledge has led to the introduction of the VEGF inhibitor bevacizumab in recent years as an adjuvant treatment in some patients, with good results. This review summarizes the current evidence about the role of VEGF in the pathophysiology of RRP, the molecular pathways activated by binding with its receptors, and the current and future roles of anti-angiogenic treatment.
Collapse
Affiliation(s)
- Sandra Gazzini
- Division of Otolaryngology, Head and Neck Surgery Department, University Hospital of Verona, 37134 Verona, Italy
| | - Raffaele Cerullo
- Division of Otolaryngology, Hospital of Treviso, 31100 Treviso, Italy
| | - Davide Soloperto
- Department of Otorhinolaryngology, University Hospital of Modena, 41125 Modena, Italy
| |
Collapse
|
37
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
38
|
Cai R, Jiang Q, Chen D, Feng Q, Liang X, Ouyang Z, Liao W, Zhang R, Fang H. Identification of osteoblastic autophagy-related genes for predicting diagnostic markers in osteoarthritis. iScience 2024; 27:110130. [PMID: 38952687 PMCID: PMC11215306 DOI: 10.1016/j.isci.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
The development of osteoarthritis (OA) involves subchondral bone lesions, but the role of osteoblastic autophagy-related genes (ARGs) in osteoarthritis is unclear. Through integrated analysis of single-cell dataset, Bulk RNA dataset, and 367 ARGs extracted from GeneCards, 40 ARGs were found. By employing multiple machine learning algorithms and PPI networks, three key genes (DDIT3, JUN, and VEGFA) were identified. Then the RF model constructed from these genes indicated great potential as a diagnostic tool. Furthermore, the model's effectiveness in predicting OA has been confirmed through external validation datasets. Moreover, the expression of ARGs was examined in osteoblasts subject to excessive mechanical stress, human and mouse tissues. Finally, the role of ARGs in OA was confirmed through co-culturing explants and osteoblasts. Thus, osteoblastic ARGs could be crucial in OA development, providing potential diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Rulong Cai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qijun Jiang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Dongli Chen
- Department of Ultrasound, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Qi Feng
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xinzhi Liang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoming Ouyang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Weijian Liao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hang Fang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
39
|
Lin C, Merley A, Jaminet SS. TM4SF1 is a molecular facilitator that distributes cargo proteins intracellularly in endothelial cells in support of blood vessel formation. J Cell Commun Signal 2024; 18:e12031. [PMID: 38946725 PMCID: PMC11208120 DOI: 10.1002/ccs3.12031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 07/02/2024] Open
Abstract
Transmembrane-4 L-six family member-1 (TM4SF1) is an atypical tetraspanin that is highly and selectively expressed in proliferating endothelial cells and plays an essential role in blood vessel development. TM4SF1 forms clusters on the cell surface called TMED (TM4SF1-enriched microdomains) and recruits other proteins that internalize along with TM4SF1 via microtubules to intracellular locations including the nucleus. We report here that tumor growth and wound healing are inhibited in Tm4sf1-heterozygous mice. Investigating the mechanisms of TM4SF1 activity, we show that 12 out of 18 signaling molecules examined are recruited to TMED on the surface of cultured human umbilical vein endothelial cells (HUVEC) and internalize along with TMED; notable among them are PLCγ and HDAC6. When TM4SF1 is knocked down in HUVEC, microtubules are heavily acetylated despite normal levels of HDAC6 protein, and, despite normal levels of VEGFR2, are unable to proliferate. Together, our studies indicate that pathological angiogenesis is inhibited when levels of TM4SF1 are reduced as in Tm4sf1-heterozygous mice; a likely mechanism is that TM4SF1 regulates the intracellular distribution of signaling molecules necessary for endothelial cell proliferation and migration.
Collapse
Affiliation(s)
- Chi‐Iou Lin
- Center for Vascular Biology Research and Department of PathologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
- Department of AnesthesiologyRiverview HospitalNoblesvilleIndianaUSA
| | - Anne Merley
- Center for Vascular Biology Research and Department of PathologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
- Center for Animal Resources and EducationBrown UniversityProvidenceRhode IslandUSA
| | - Shou‐Ching S. Jaminet
- Center for Vascular Biology Research and Department of PathologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
- Biology DepartmentAngiex Inc.CambridgeMassachusettsUSA
| |
Collapse
|
40
|
Berro A, Assi A, Farhat M, Hatoum L, Saad JP, Mohanna R, Bechara AMA, Prince G, Hachem MCR, Zalaquett Z, Kourie HR. Unlocking Hope: Anti-VEGFR inhibitors and their potential in glioblastoma treatment. Crit Rev Oncol Hematol 2024; 198:104365. [PMID: 38677355 DOI: 10.1016/j.critrevonc.2024.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
PURPOSE This systematic review summarizes evidence of VEGFR gene mutations and VEGF/VEGFR protein expression in glioblastoma multiforme (GBM) patients, alongside the efficacy and safety of anti-VEGFR tyrosine kinase inhibitors (TKIs) for GBM treatment. METHODS A comprehensive literature review was conducted using PubMed up to August 2023. Boolean operators and MeSH term "glioma," along with specific VEGFR-related keywords, were utilized following thorough examination of existing literature. RESULTS VEGFR correlates with glioma grade and GBM progression, presenting a viable therapeutic target. Regorafenib and axitinib show promise among studied TKIs. Other multi-targeted TKIs (MTKI) and combination therapies exhibit potential, albeit limited by blood-brain barrier penetration and toxicity. Combining treatments like radiotherapy and enhancing BBB penetration may benefit patients. Further research is warranted in patient quality of life and biomarker-guided selection. CONCLUSION While certain therapies hold promise for GBM, future research should prioritize personalized medicine and innovative strategies for improved treatment outcomes.
Collapse
Affiliation(s)
- Ali Berro
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Ahmad Assi
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Mohamad Farhat
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Lea Hatoum
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Jean-Pierre Saad
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Rami Mohanna
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Anna Maria Antoun Bechara
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Gilles Prince
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Maria Catherine Rita Hachem
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Ziad Zalaquett
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon.
| | - Hampig-Raphael Kourie
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
41
|
Lin YH, Chen TM, Tsai YL, Tsai WC, Wang HH, Chen Y, Wu ST. The Reduction of PSMB4 in T24 and J82 Bladder Cancer Cells Inhibits the Angiogenesis and Migration of Endothelial Cells. Int J Mol Sci 2024; 25:5559. [PMID: 38791597 PMCID: PMC11122396 DOI: 10.3390/ijms25105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Bladder cancer (BC) is a malignant tumor of the urinary system with high mortality and recurrence rates. Proteasome subunit type 4 (PSMB4) is highly expressed and has been identified as having oncogenic properties in a variety of cancer types. This study aimed to explore the effect of PSMB4 knockdown on the survival, migration, and angiogenesis of human bladder cancer cells with different degrees of malignancy. We analyzed the effects of PSMB4 knockdown in bladder cancer cells and endothelial cells in the tumor microenvironment. PSMB4 was highly expressed in patients with low- and high-grade urothelial carcinoma. Inhibition of PSMB4 reduced protein expression of focal adhesion kinase (FAK) and myosin light chain (MLC), leading to reduced migration. Furthermore, the suppression of PSMB4 decreased the levels of vascular endothelial factor B (VEGF-B), resulting in lower angiogenic abilities in human bladder cancer cells. PSMB4 inhibition affected the migratory ability of HUVECs and reduced VEGFR2 expression, consequently downregulating angiogenesis. In the metastatic animal model, PSMB4 knockdown reduced the relative volumes of lung tumors. Our findings suggest the role of PSMB4 as a potential target for therapeutic strategies against human bladder cancer.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.L.); (T.-M.C.)
| | - Tzu-Min Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.L.); (T.-M.C.)
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-L.T.); (W.-C.T.)
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-L.T.); (W.-C.T.)
| | - Hisao-Hsien Wang
- Department of Urology, Cheng Hsin General Hospital, Taipei 11490, Taiwan;
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.L.); (T.-M.C.)
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
42
|
Janes PW, Parslow AC, Cao D, Rigopoulos A, Lee FT, Gong SJ, Cartwright GA, Burvenich IJG, Eriksson U, Johns TG, Scott FE, Scott AM. An Anti-VEGF-B Antibody Reduces Abnormal Tumor Vasculature and Enhances the Effects of Chemotherapy. Cancers (Basel) 2024; 16:1902. [PMID: 38791979 PMCID: PMC11119922 DOI: 10.3390/cancers16101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key regulators of blood vessel formation, including in tumors, where their deregulated function can promote the production of aberrant, leaky blood vessels, supporting tumor development. Here we investigated the VEGFR1 ligand VEGF-B, which we demonstrate to be expressed in tumor cells and in tumor stroma and vasculature across a range of tumor types. We examined the anti-VEGF-B-specific monoclonal antibody 2H10 in preclinical xenograft models of breast and colorectal cancer, in comparison with the anti-VEGF-A antibody bevacizumab. Similar to bevacizumab, 2H10 therapy was associated with changes in tumor blood vessels and intra-tumoral diffusion consistent with normalization of the tumor vasculature. Accordingly, treatment resulted in partial inhibition of tumor growth, and significantly improved the response to chemotherapy. Our studies indicate the importance of VEGF-B in tumor growth, and the potential of specific anti-VEGF-B treatment to inhibit tumor development, alone or in combination with established chemotherapies.
Collapse
Affiliation(s)
- Peter W. Janes
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3083, Australia
| | - Adam C. Parslow
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Diana Cao
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Angela Rigopoulos
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Fook-Thean Lee
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Sylvia J. Gong
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC 3083, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
| | - Glenn A. Cartwright
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Ingrid J. G. Burvenich
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3083, Australia
| | - Ulf Eriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| | - Terrance G. Johns
- Oncogenic Signalling Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Fiona E. Scott
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Andrew M. Scott
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3083, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
43
|
Koutrouli A, Machla F, Arapostathis K, Kokoti M, Bakopoulou A. "Biological responses of two calcium-silicate-based cements on a tissue-engineered 3D organotypic deciduous pulp analogue". Dent Mater 2024; 40:e14-e25. [PMID: 38431482 DOI: 10.1016/j.dental.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES The biological responses of MTA and Biodentine™ has been assessed on a three-dimensional, tissue-engineered organotypic deciduous pulp analogue. METHODS Human endothelial (HUVEC) and dental mesenchymal stem cells (SHED) at a ratio of 3:1, were incorporated into a collagen I/fibrin hydrogel; succeeding Biodentine™ and MTA cylindrical specimens were placed in direct contact with the pulp analogue 48 h later. Cell viability/proliferation and morphology were evaluated through live/dead staining, MTT assay and Scanning Electron Microscopy (SEM), and expression of angiogenic, odontogenic markers through real time PCR. RESULTS Viable cells dominated at day 3 after treatment presenting typical morphology, firmly attached within the hydrogel structures, as shown by live/dead staining and SEM images. MTT assay at day 1 presented a significant increase of cell proliferation in Biodentine™ group. Real-time PCR showed significant upregulation of odontogenic markers DSPP, BMP-2 (day 3,6), RUNX2, ALP (day 3) in contact with Biodentine™ compared to MTA and the control, whereas MTA promoted significant upregulation of DSPP, BMP-2, RUNX2, Osterix (day 3) and ALP (day 6) compared to the control. MSX1 presented downregulation in both experimental groups. Expression of angiogenic markers VEGFa and ANGPT-1 at day 3 was significantly upregulated in contact with Biodentine™ and MTA respectively, while the receptors VEGFR1, VEGFR2 and Tie-2, as well as PECAM-1 were downregulated. SIGNIFICANCE Both calcium silicate-based materials are biocompatible and exert positive angiogenic and odontogenic effects, although Biodentine™ during the first days of culture, seems to induce higher cell proliferation and provoke a more profound odontogenic and angiogenic response from SHED.
Collapse
Affiliation(s)
- A Koutrouli
- Department of Paediatric Dentistry, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - F Machla
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - K Arapostathis
- Department of Paediatric Dentistry, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - M Kokoti
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - A Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| |
Collapse
|
44
|
Kaur A, Raji, Verma V, Goel RK. Strategic pathway analysis for dual management of epilepsy and comorbid depression: a systems biology perspective. In Silico Pharmacol 2024; 12:36. [PMID: 38699778 PMCID: PMC11061056 DOI: 10.1007/s40203-024-00208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Depression is a common psychiatric comorbidity among patients with epilepsy (PWE), affecting more than a third of PWE. Management of depression may improve quality of life of epileptic patients. Unfortunately, available antidepressants worsen epilepsy by reducing the seizure threshold. This situation demands search of new safer target for combined directorate of epilepsy and comorbid depression. A system biology approach may be useful to find novel pathways/markers for the cure of both epilepsy and associated depression via analyzing available genomic and proteomic information. Hence, the system biology approach using curated 64 seed genes involved in temporal lobe epilepsy and mental depression was applied. The interplay of 600 potential proteins was revealed by the Disease Module Detection (DIAMOnD) Algorithm for the treatment of both epilepsy and comorbid depression using these seed genes. The gene enrichment analysis of seed and diamond genes through DAVID suggested 95 pathways. Selected pathways were refined based on their syn or anti role in epilepsy and depression. In conclusion, total 8 pathways and 27 DIAMOnD genes/proteins were finally deduced as potential new targets for modulation of selected pathways to manage epilepsy and comorbid depression. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00208-1.
Collapse
Affiliation(s)
- Arvinder Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab India 147002
| | - Raji
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab India 147002
| | - Varinder Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab India 147002
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab India 147002
| |
Collapse
|
45
|
Lang L, Liang S, Zhang F, Fu Y, Wang J, Deng K, Wang L, Gao P, Zhu C, Shu G, Wu R, Jiang Q, Wang S. Knockdown of the VEGFB/VEGFR1 signaling suppresses pubertal mammary gland development of mice via the inhibition of PI3K/Akt pathway. Int J Biol Macromol 2024; 264:130782. [PMID: 38471613 DOI: 10.1016/j.ijbiomac.2024.130782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Vascular endothelial growth factor B (VEGFB) has been well demonstrated to play a crucial role in regulating vascular function by binding to the VEGF receptors (VEGFRs). However, the specific role of VEGFB and VEGFRs in pubertal mammary gland development remains unclear. In this study, we observed that blocking the VEGF receptors with Axitinib suppressed the pubertal mammary gland development. Meanwhile, the proliferation of mammary epithelial cells (HC11) was repressed by blocking the VEGF receptors with Axitinib. Additionally, knockdown of VEGFR1 rather than VEGFR2 and NRP1 elicited the inhibition of HC11 proliferation, suggesting the essential role of VEGFR1 during this process. Furthermore, Axitinib or VEGFR1 knockdown led to the inhibition of the PI3K/Akt pathway. However, the inhibition of HC11 proliferation induced by Axitinib and or VEGFR1 knockdown was eliminated by the Akt activator SC79, indicating the involvement of the PI3K/Akt pathway. Finally, the knockdown of VEGFB and VEGFR1 suppressed the pubertal development of mice mammary gland with the inhibition of the PI3K/Akt pathway. In summary, the results showed that knockdown of the VEGFB/VEGFR1 signaling suppresses pubertal mammary gland development of mice via the inhibition of the PI3K/Akt pathway, which provides a new target for the regulation of pubertal mammary gland development.
Collapse
Affiliation(s)
- Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shuyi Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Junfeng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Kaixin Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ruifan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Research Institute of Wens Foodstuff Group Co., Ltd., Xinxing 527400, PR China.
| |
Collapse
|
46
|
González-Rojas A, Valencia-Narbona M. Neurodevelopmental Disruptions in Children of Preeclamptic Mothers: Pathophysiological Mechanisms and Consequences. Int J Mol Sci 2024; 25:3632. [PMID: 38612445 PMCID: PMC11012011 DOI: 10.3390/ijms25073632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Preeclampsia (PE) is a multisystem disorder characterized by elevated blood pressure in the mother, typically occurring after 20 weeks of gestation and posing risks to both maternal and fetal health. PE causes placental changes that can affect the fetus, particularly neurodevelopment. Its key pathophysiological mechanisms encompass hypoxia, vascular and angiogenic dysregulation, inflammation, neuronal and glial alterations, and disruptions in neuronal signaling. Animal models indicate that PE is correlated with neurodevelopmental alterations and cognitive dysfunctions in offspring and in humans, an association between PE and conditions such as cerebral palsy, autism spectrum disorder, attention deficit hyperactivity disorder, and sexual dimorphism has been observed. Considering the relevance for mothers and children, we conducted a narrative literature review to describe the relationships between the pathophysiological mechanisms behind neurodevelopmental alterations in the offspring of PE mothers, along with their potential consequences. Furthermore, we emphasize aspects pertinent to the prevention/treatment of PE in pregnant mothers and alterations observed in their offspring. The present narrative review offers a current, complete, and exhaustive analysis of (i) the pathophysiological mechanisms that can affect neurodevelopment in the children of PE mothers, (ii) the relationship between PE and neurological alterations in offspring, and (iii) the prevention/treatment of PE.
Collapse
Affiliation(s)
- Andrea González-Rojas
- Laboratorio de Neurociencias Aplicadas, Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaíso 2340025, Chile;
| | | |
Collapse
|
47
|
Xi X, Yang Y, Chen Q, Ma J, Wang X, Deng Y, Wang X, Li Y. GnT-V-mediated aberrant N-glycosylation of TIMP-1 promotes diabetic retinopathy progression. Mol Biol Rep 2024; 51:428. [PMID: 38499842 PMCID: PMC10948582 DOI: 10.1007/s11033-024-09388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) signaling pathway plays an important role in the progression of diabetic retinopathy (DR). The glycosylation modification process of many key functional proteins in DR patients is abnormal. However, the potential involvement of abnormal N-glycoproteins in DR progression remains unclear. METHODS Glycoproteomic profiling of the vitreous humor was performed. The level of protein and N-glycoprotein was confirmed by Western blot and Lectin blot, respectively. The cell viability and migration efficiency were detected by CCK-8 and Transwell assay. Flow cytometry was conducted to analyze the level of cell apoptosis and reactive oxygen specie. Malondialdehyde, superoxide dismutase activity and VEGF content were detected by Enzyme linked immunosorbent assays. The interaction of metalloproteinase 1 (TIMP-1) with N-acetylglucosamine transferase V (GnT-V) was detected by GST pull-down. Hematoxylin and eosin staining and choroidal and retinal flat mount stained with fluorescein isothiocyanate-Dextran assay were used for functional research in vivo. RESULTS We found that N-glycosylation was up-regulated in DR rats and high glucose (HG)-induced human retinal pigment epithelium cell line ARPE-19. HG-induced inhibited the viability of ARPE-19 cells and promoted cell apoptosis and oxidative stress (OS), but these effects were reversed with kifunensine treatment, GnT-V knockdown and TIMP-1 mutation. Additionally, GnT-V binds to TIMP-1 to promote N-glycosylation of TIMP-1. Over-expression of GnT-V inhibited the viability of ARPE-19 cells and promoted cell apoptosis, OS and VEGF release, which these effects were reversed with TIMP-1 mutation. Interestingly, over-expression of GnT-V promoted retinal microvascular endothelial cells (RMECs) angiogenesis but was revered with TIMP-1 mutation, which was terminally boosted by VEGF-A treatment. Finally, knockdown of GnT-V relieved DR progression. CONCLUSION The findings indicate that GnT-V can promote RMECs angiogenesis and ARPE-19 cells injury through activation VEGF signaling pathway by increasing TIMP-1 N-glycosylation level, which provides a new theoretical basis for the prevention of DR.
Collapse
Affiliation(s)
- Xiaoting Xi
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Yanni Yang
- Ophthalmology Department, The Second Hospital of Ningbo, Ningbo, 315010, Zhejiang, China
| | - Qianbo Chen
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Jia Ma
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Xuewei Wang
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Yachun Deng
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Xi Wang
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Yan Li
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
48
|
Ceci C, Lacal PM, Barbaccia ML, Mercuri NB, Graziani G, Ledonne A. The VEGFs/VEGFRs system in Alzheimer's and Parkinson's diseases: Pathophysiological roles and therapeutic implications. Pharmacol Res 2024; 201:107101. [PMID: 38336311 DOI: 10.1016/j.phrs.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The vascular endothelial growth factors (VEGFs) and their cognate receptors (VEGFRs), besides their well-known involvement in physiological angiogenesis/lymphangiogenesis and in diseases associated to pathological vessel formation, play multifaceted functions in the central nervous system (CNS). In addition to shaping brain development, by controlling cerebral vasculogenesis and regulating neurogenesis as well as astrocyte differentiation, the VEGFs/VEGFRs axis exerts essential functions in the adult brain both in physiological and pathological contexts. In this article, after describing the physiological VEGFs/VEGFRs functions in the CNS, we focus on the VEGFs/VEGFRs involvement in neurodegenerative diseases by reviewing the current literature on the rather complex VEGFs/VEGFRs contribution to the pathogenic mechanisms of Alzheimer's (AD) and Parkinson's (PD) diseases. Thereafter, based on the outcome of VEGFs/VEGFRs targeting in animal models of AD and PD, we discuss the factual relevance of pharmacological VEGFs/VEGFRs modulation as a novel and potential disease-modifying approach for these neurodegenerative pathologies. Specific VEGFRs targeting, aimed at selective VEGFR-1 inhibition, while preserving VEGFR-2 signal transduction, appears as a promising strategy to hit the molecular mechanisms underlying AD pathology. Moreover, therapeutic VEGFs-based approaches can be proposed for PD treatment, with the aim of fine-tuning their brain levels to amplify neurotrophic/neuroprotective effects while limiting an excessive impact on vascular permeability.
Collapse
Affiliation(s)
- Claudia Ceci
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Luisa Barbaccia
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Ada Ledonne
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
49
|
Letsoalo K, Nortje E, Patrick S, Nyakudya T, Hlophe Y. Decoding the synergistic potential of MAZ-51 and zingerone as therapy for melanoma treatment in alignment with sustainable development goals. Cell Biochem Funct 2024; 42:e3950. [PMID: 38348768 DOI: 10.1002/cbf.3950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Melanoma, an invasive class of skin cancer, originates from mutations in melanocytes, the pigment-producing cells. Globally, approximately 132,000 new cases are reported each year, and in South Africa, the incidence stands at 2.7 per 100,000 people, signifying a worrisome surge in melanoma rates. Therefore, there is a need to explore treatment modalities that will target melanoma's signalling pathways. Melanoma metastasis is aided by ligand activity of transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor-C (VEGF-C) and C-X-C chemokine ligand 12 (CXCL12) which bind to their receptors and promote tumour cell survival, lymphangiogenesis and chemotaxis. (3-(4-dimethylaminonaphthelen-1-ylmethylene)-1,3-dihydroindol-2-one) MAZ-51 is an indolinone-based molecule that inhibits VEGF-C induced phosphorylation of vascular endothelial growth factor receptor 3 (VEGFR-3). Despite the successful use of conventional cancer therapies, patients endure adverse side effects and cancer drug resistance. Moreover, conventional therapies are toxic to the environment and caregivers. The use of medicinal plants and their phytochemical constituents in cancer treatment strategies has become more widespread because of the rise in drug resistance and the development of unfavourable side effects. Zingerone, a phytochemical derived from ginger exhibits various pharmacological properties positioning it as a promising candidate for cancer treatment. This review provides an overview of melanoma biology and the intracellular signalling pathways promoting cell survival, proliferation and adhesion. There is a need to align health and environmental objectives within sustainable development goals 3 (good health and well-being), 13 (climate action) and 15 (life on land) to promote early detection of skin cancer, enhance sun-safe practices, mitigation of environmental factors and advancing the preservation of biodiversity, including medicinal plants. Thus, this review discusses the impact of cytostatic cancer drugs on patients and the environment and examines the potential use of phytochemicals as adjuvant therapy.
Collapse
Affiliation(s)
- Kganya Letsoalo
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Evangeline Nortje
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Sean Patrick
- Environmental Chemical Pollution and Health Research Unit, University of Pretoria, Pretoria, South Africa
| | - Trevor Nyakudya
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Yvette Hlophe
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
50
|
Shaw P, Dwivedi SKD, Bhattacharya R, Mukherjee P, Rao G. VEGF signaling: Role in angiogenesis and beyond. Biochim Biophys Acta Rev Cancer 2024; 1879:189079. [PMID: 38280470 DOI: 10.1016/j.bbcan.2024.189079] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Angiogenesis is a crucial process for tissue development, repair, and tumor survival. Vascular endothelial growth factor (VEGF) is a key driver secreted by cancer cells, promoting neovascularization. While VEGF's role in angiogenesis is well-documented, its influence on the other aspects in tumor microenvironemt is less discussed. This review elaborates on VEGF's impact on intercellular interactions within the tumor microenvironment, including how VEGF affects pericyte proliferation and migration and mediates interactions between tumor-associated macrophages and cancer cells, resulting in PDL-1-mediated immunosuppression and Nrf2-mediated epithelial-mesenchymal transition. The review discusses VEGF's involvement in intra-organelle crosstalk, tumor metabolism, stemness, and epithelial-mesenchymal transition. It also provides insights into current anti-VEGF therapies and their limitations in cancer treatment. Overall, this review aims to provide a thorough overview of the current state of knowledge concerning VEGF signaling and its impact, not only on angiogenesis but also on various other oncogenic processes.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|