1
|
Sengar AS, Kumar M, Rai C, Chakraborti S, Kumar D, Kumar P, Mukherjee S, Mondal K, Stewart A, Maity B. RGS6 drives cardiomyocyte death following nucleolar stress by suppressing Nucleolin/miRNA-21. J Transl Med 2024; 22:204. [PMID: 38409136 PMCID: PMC10895901 DOI: 10.1186/s12967-024-04985-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Prior evidence demonstrated that Regulator of G protein Signaling 6 (RGS6) translocates to the nucleolus in response to cytotoxic stress though the functional significance of this phenomenon remains unknown. METHODS Utilizing in vivo gene manipulations in mice, primary murine cardiac cells, human cell lines and human patient samples we dissect the participation of a RGS6-nucleolin complex in chemotherapy-dependent cardiotoxicity. RESULTS Here we demonstrate that RGS6 binds to a key nucleolar protein, Nucleolin, and controls its expression and activity in cardiomyocytes. In the human myocyte AC-16 cell line, induced pluripotent stem cell derived cardiomyocytes, primary murine cardiomyocytes, and the intact murine myocardium tuning RGS6 levels via overexpression or knockdown resulted in diametrically opposed impacts on Nucleolin mRNA, protein, and phosphorylation.RGS6 depletion provided marked protection against nucleolar stress-mediated cell death in vitro, and, conversely, RGS6 overexpression suppressed ribosomal RNA production, a key output of the nucleolus, and triggered death of myocytes. Importantly, overexpression of either Nucleolin or Nucleolin effector miRNA-21 counteracted the pro-apoptotic effects of RGS6. In both human and murine heart tissue, exposure to the genotoxic stressor doxorubicin was associated with an increase in the ratio of RGS6/Nucleolin. Preventing RGS6 induction via introduction of RGS6-directed shRNA via intracardiac injection proved cardioprotective in mice and was accompanied by restored Nucleolin/miRNA-21 expression, decreased nucleolar stress, and decreased expression of pro-apoptotic, hypertrophy, and oxidative stress markers in heart. CONCLUSION Together, these data implicate RGS6 as a driver of nucleolar stress-dependent cell death in cardiomyocytes via its ability to modulate Nucleolin. This work represents the first demonstration of a functional role for an RGS protein in the nucleolus and identifies the RGS6/Nucleolin interaction as a possible new therapeutic target in the prevention of cardiotoxicity.
Collapse
Affiliation(s)
- Abhishek Singh Sengar
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Manish Kumar
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Chetna Rai
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sreemoyee Chakraborti
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
- Forensic Science Laboratory, Department of Home and Hill Affairs, Kolkata, West Bengal, 700037, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Pranesh Kumar
- Institute of Pharmaceutical Science, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Sukhes Mukherjee
- Biochemistry, AIIMS Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462026, India
| | - Kausik Mondal
- Zoology, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Adele Stewart
- Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Biswanath Maity
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
2
|
Diamantopoulos MA, Georgoulia KK, Levis P, Kotronopoulos G, Stravodimos K, Kontos CK, Avgeris M, Scorilas A. 28S rRNA-Derived Fragments Represent an Independent Molecular Predictor of Short-Term Relapse in Prostate Cancer. Int J Mol Sci 2023; 25:239. [PMID: 38203408 PMCID: PMC10779029 DOI: 10.3390/ijms25010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancer (PCa) is a global health concern, being a leading cause of cancer-related mortality among males. Early detection and accurate prognosis are crucial for effective management. This study delves into the diagnostic and prognostic potential of 28S rRNA-derived fragments (rRFs) in PCa. Total RNA extracted from 89 PCa and 53 benign prostate hyperplasia (BPH) tissue specimens. After 3'-end polyadenylation, we performed reverse transcription to create first-strand cDNA. Using an in-house quantitative real-time PCR (qPCR) assay, we quantified 28S rRF levels. Post-treatment biochemical relapse served as the clinical endpoint event for survival analysis, which we validated internally through bootstrap analysis. Our results revealed downregulated 28S rRF levels in PCa compared to BPH patients. Additionally, we observed a significant positive correlation between 28S rRF levels and higher Gleason scores and tumor stages. Furthermore, PCa patients with elevated 28S rRF expression had a significantly higher risk of post-treatment disease relapse independently of clinicopathological data. In conclusion, our study demonstrates, for the first time, the prognostic value of 28S rRF in prostate adenocarcinoma. Elevated 28S rRF levels independently predict short-term PCa relapse and enhance risk stratification. This establishes 28S rRF as a potential novel molecular marker for PCa prognosis.
Collapse
Affiliation(s)
- Marios A. Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| | - Konstantina K. Georgoulia
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| | - Panagiotis Levis
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.L.); (G.K.); (K.S.)
| | - Georgios Kotronopoulos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.L.); (G.K.); (K.S.)
| | - Konstantinos Stravodimos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.L.); (G.K.); (K.S.)
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (M.A.D.); (K.K.G.); (C.K.K.); (M.A.)
| |
Collapse
|
3
|
Montacié C, Riondet C, Wei L, Darrière T, Weiss A, Pontvianne F, Escande ML, de Bures A, Jobet E, Barbarossa A, Carpentier MC, Aarts MGM, Attina A, Hirtz C, David A, Marchand V, Motorin Y, Curie C, Mari S, Reichheld JP, Sáez-Vásquez J. NICOTIANAMINE SYNTHASE activity affects nucleolar iron accumulation and impacts rDNA silencing and RNA methylation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4384-4400. [PMID: 37179467 PMCID: PMC10433931 DOI: 10.1093/jxb/erad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
In plant cells, a large pool of iron (Fe) is contained in the nucleolus, as well as in chloroplasts and mitochondria. A central determinant for intracellular distribution of Fe is nicotianamine (NA) generated by NICOTIANAMINE SYNTHASE (NAS). Here, we used Arabidopsis thaliana plants with disrupted NAS genes to study the accumulation of nucleolar iron and understand its role in nucleolar functions and more specifically in rRNA gene expression. We found that nas124 triple mutant plants, which contained lower quantities of the iron ligand NA, also contained less iron in the nucleolus. This was concurrent with the expression of normally silenced rRNA genes from nucleolar organizer regions 2 (NOR2). Notably, in nas234 triple mutant plants, which also contained lower quantities of NA, nucleolar iron and rDNA expression were not affected. In contrast, in both nas124 and nas234, specific RNA modifications were differentially regulated in a genotype dependent manner. Taken together, our results highlight the impact of specific NAS activities in RNA gene expression. We discuss the interplay between NA and nucleolar iron with rDNA functional organization and RNA methylation.
Collapse
Affiliation(s)
- Charlotte Montacié
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Christophe Riondet
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Lili Wei
- Institut Agro, BPMP, CNRS, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Tommy Darrière
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Alizée Weiss
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Frédéric Pontvianne
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Line Escande
- Observatoire Océanologique de Banyuls s/ mer, CNRS, 66650 Banyuls-sur-mer, France
- BioPIC Platform of the OOB, 66650 Banyuls-sur-mer, France
| | - Anne de Bures
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Edouard Jobet
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Adrien Barbarossa
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, 6700AA Wageningen, Netherlands
| | - Aurore Attina
- INSERM, CHU Montpellier, CNRS, IRMB, Université Montpellier, 34090Montpellier, France
| | - Christophe Hirtz
- INSERM, CHU Montpellier, CNRS, IRMB, Université Montpellier, 34090Montpellier, France
| | - Alexandre David
- IGF, CNRS, INSERM, Université Montpellier, 34090Montpellier, France
| | - Virginie Marchand
- Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, CNRS, INSERM, IBSLor (UMS2008/US40), Université de Lorraine, F-54000 Nancy, France
| | - Yuri Motorin
- Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, CNRS, INSERM, IBSLor (UMS2008/US40), Université de Lorraine, F-54000 Nancy, France
- CNRS, IMoPA (UMR 7365), Université de Lorraine, F-54000 Nancy, France
| | - Catherine Curie
- Institut Agro, BPMP, CNRS, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Stéphane Mari
- Institut Agro, BPMP, CNRS, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
4
|
Gaylord A, Cohen A, Kupsco A. Biomarkers of aging through the life course: A Recent Literature Update. CURRENT OPINION IN EPIDEMIOLOGY AND PUBLIC HEALTH 2023; 2:7-17. [PMID: 38130910 PMCID: PMC10732539 DOI: 10.1097/pxh.0000000000000018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Purpose of review The development of biomarkers of aging has greatly advanced epidemiological studies of aging processes. However, much debate remains on the timing of aging onset and the causal relevance of these biomarkers. In this review, we discuss the most recent biomarkers of aging that have been applied across the life course. Recent findings The most recently developed aging biomarkers that have been applied across the life course can be designated into three categories: epigenetic clocks, epigenetic markers of chronic inflammation, and mitochondrial DNA copy number. While these have been applied at different life stages, the development, validation, and application of these markers has been largely centered on populations of older adults. Few studies have examined trajectories of aging biomarkers across the life course. As the wealth of molecular and biochemical data increases, emerging biomarkers may be able to capture complex and system-specific aging processes. Recently developed biomarkers include novel epigenetic clocks; clocks based on ribosomal DNA, transcriptomic profiles, proteomics, metabolomics, and inflammatory markers; clonal hematopoiesis of indeterminate potential gene mutations; and multi-omics approaches. Summary Attention should be placed on aging at early and middle life stages to better understand trajectories of aging biomarkers across the life course. Additionally, novel biomarkers will provide greater insight into aging processes. The specific mechanisms of aging reflected by these biomarkers should be considered when interpreting results.
Collapse
Affiliation(s)
- Abigail Gaylord
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Alan Cohen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center on Aging and Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
5
|
Lezhava T, Khavinson V, Jokhadze T, Buadze T, Monaselidze J, Sigua T, Gaiozishvili M, Tsuleiskiri T. Epigenetic Activation of Ribosomal Cystrons in Chromatids of Acrocentric Chromosome 15th in Ductal Breast Cancer. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Hoang PH, Landi MT. DNA Methylation in Lung Cancer: Mechanisms and Associations with Histological Subtypes, Molecular Alterations, and Major Epidemiological Factors. Cancers (Basel) 2022; 14:cancers14040961. [PMID: 35205708 PMCID: PMC8870477 DOI: 10.3390/cancers14040961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is the major leading cause of cancer-related mortality worldwide. Multiple epigenetic factors-in particular, DNA methylation-have been associated with the development of lung cancer. In this review, we summarize the current knowledge on DNA methylation alterations in lung tumorigenesis, as well as their associations with different histological subtypes, common cancer driver gene mutations (e.g., KRAS, EGFR, and TP53), and major epidemiological risk factors (e.g., sex, smoking status, race/ethnicity). Understanding the mechanisms of DNA methylation regulation and their associations with various risk factors can provide further insights into carcinogenesis, and create future avenues for prevention and personalized treatments. In addition, we also highlight outstanding questions regarding DNA methylation in lung cancer to be elucidated in future studies.
Collapse
|
7
|
Diamantopoulos MA, Georgoulia KK, Scorilas A. Identification and expression analysis of ten novel small non-coding RNAs (sncRNAs) in cancer cells using a high-throughput sequencing approach. Gene 2022; 809:146025. [PMID: 34710527 DOI: 10.1016/j.gene.2021.146025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 01/18/2023]
Abstract
Non-coding RNAs are characterized as RNA molecules, which lack the capacity to encode protein structures and appear to include a level of internal signals. Moreover, they control various stages of gene expression, thus controlling the cell physiology and development. In this study, we implemented a high-throughput sequencing approach based on the primary semi-conductor technology and computational tools, in order to identity novel small non-coding RNAs. Fourteen human cancer cell lines were cultured, and RNA samples were enriched for small RNAs following semi-conductor next generation sequencing (NGS). Bioinformatics analysis of NGS data revealed the existence of several classes of ncRNAs using the miRDeep* and CPSS 2.0 software. To investigate the existence of the predicted non-coding RNA sequences in cDNA pools of cell lines, a developed qPCR-based assay was implemented. The structure of each novel small ncRNA was visualized, using the RNAfold algorithm. Our results support the existence of twenty (20) putative new small ncRNAs, ten (10) of which have had their expression experimentally validated and presented differential profiles in cancerous and normal cells. A deeper comprehension of the ncRNAs interactive network and its role in cancer can therefore be translated into a wide range of clinical applications. Despite this progress, further scientific research from different perspectives and in different fields is needed, so that the riddle of the human transcriptome can be solved.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Konstantina K Georgoulia
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
8
|
Wang M, Bissonnette N, Dudemaine PL, Zhao X, Ibeagha-Awemu EM. Whole Genome DNA Methylation Variations in Mammary Gland Tissues from Holstein Cattle Producing Milk with Various Fat and Protein Contents. Genes (Basel) 2021; 12:1727. [PMID: 34828333 PMCID: PMC8618717 DOI: 10.3390/genes12111727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Milk fat and protein contents are among key elements of milk quality, and they are attracting more attention in response to consumers' demand for high-quality dairy products. To investigate the potential regulatory roles of DNA methylation underlying milk component yield, whole genome bisulfite sequencing was employed to profile the global DNA methylation patterns of mammary gland tissues from 17 Canada Holstein cows with various milk fat and protein contents. A total of 706, 2420 and 1645 differentially methylated CpG sites (DMCs) were found between high vs. low milk fat (HMF vs. LMF), high vs. low milk protein (HMP vs. LMP), and high vs. low milk fat and protein (HMFP vs. LMFP) groups, respectively (q value < 0.1). Twenty-seven, 56 and 67 genes harboring DMCs in gene regions (denoted DMC genes) were identified for HMF vs. LMF, HMP vs. LMP and HMFP vs. LMFP, respectively. DMC genes from HMP vs. LMP and HMFP vs. LMFP comparisons were significantly overrepresented in GO terms related to aerobic electron transport chain and/or mitochondrial ATP (adenosine triphosphate) synthesis coupled electron transport. A total of 83 (HMF vs. LMF), 708 (HMP vs. LMP) and 408 (HMFP vs. LMFP) DMCs were co-located with 87, 147 and 158 quantitative trait loci (QTL) for milk component and yield traits, respectively. In conclusion, the identified methylation changes are potentially involved in the regulation of milk fat and protein yields, as well as the variation in reported co-located QTLs.
Collapse
Affiliation(s)
- Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada;
| | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| |
Collapse
|
9
|
Huang X, Zhang X, Zong L, Gao Q, Zhang C, Wei R, Guan Y, Huang L, Zhang L, Lyu G, Tao W. Gene body methylation safeguards ribosomal DNA transcription by preventing PHF6-mediated enrichment of repressive histone mark H4K20me3. J Biol Chem 2021; 297:101195. [PMID: 34520760 PMCID: PMC8511956 DOI: 10.1016/j.jbc.2021.101195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 02/04/2023] Open
Abstract
DNA methylation shows complex correlations with gene expression, and the role of promoter hypermethylation in repressing gene transcription has been well addressed. Emerging evidence indicates that gene body methylation promotes transcription; however, the underlying mechanisms remain to be further investigated. Here, using methylated DNA immunoprecipitation sequencing (MeDIP-seq), bisulfite genomic sequencing, and immunofluorescent labeling, we show that gene body methylation is indeed positively correlated with rRNA gene (rDNA) transcription. Mechanistically, gene body methylation is largely maintained by DNA methyltransferase 1 (DNMT1), deficiency or downregulation of which during myoblast differentiation or nutrient deprivation results in decreased gene body methylation levels, leading to increased gene body occupancy of plant homeodomain (PHD) finger protein 6 (PHF6). PHF6 binds to hypomethylated rDNA gene bodies where it recruits histone methyltransferase SUV4-20H2 to establish the repressive histone modification, H4K20me3, ultimately inhibiting rDNA transcription. These findings demonstrate that DNMT1-mediated gene body methylation safeguards rDNA transcription by preventing enrichment of repressive histone modifications, suggesting that gene body methylation serves to maintain gene expression in response to developmental and/or environmental stresses.
Collapse
Affiliation(s)
- Xiaoke Huang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xuebin Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Le Zong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Qianqian Gao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chao Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Ran Wei
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yiting Guan
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Li Huang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Lijun Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Guoliang Lyu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Nuclear Organization during Hepatogenesis in Zebrafish Requires Uhrf1. Genes (Basel) 2021; 12:genes12071081. [PMID: 34356097 PMCID: PMC8304062 DOI: 10.3390/genes12071081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/07/2023] Open
Abstract
Acquisition of cellular fate during development is initiated and maintained by well-coordinated patterns of gene expression that are dictated by the epigenetic landscape and genome organization in the nucleus. While the epigenetic marks that mediate developmental gene expression patterns during organogenesis have been well studied, less is known about how epigenetic marks influence nuclear organization during development. This study examines the relationship between nuclear structure, chromatin accessibility, DNA methylation, and gene expression during hepatic outgrowth in zebrafish larvae. We investigate the relationship between these features using mutants that lack DNA methylation. Hepatocyte nuclear morphology was established coincident with hepatocyte differentiation at 80 h post-fertilization (hpf), and nuclear shape and size continued to change until the conclusion of outgrowth and morphogenesis at 120 hpf. Integrating ATAC-Seq analysis with DNA methylation profiling of zebrafish livers at 120 hpf showed that closed and highly methylated chromatin occupies most transposable elements and that open chromatin correlated with gene expression. DNA hypomethylation, due to mutation of genes encoding ubiquitin-like, containing PHD and RING Finger Domains 1 (uhrf1) and DNA methyltransferase (dnmt1), did not block hepatocyte differentiation, but had dramatic effects on nuclear organization. Hepatocytes in uhrf1 mutants have large, deformed nuclei with multiple nucleoli, downregulation of nucleolar genes, and a complete lack of the nuclear lamina. Loss of lamin B2 staining was phenocopied by dnmt1 mutation. Together, these data show that hepatocyte nuclear morphogenesis coincides with organ morphogenesis and outgrowth, and that DNA methylation directs chromatin organization, and, in turn, hepatocyte nuclear shape and size during liver development.
Collapse
|
11
|
Di Stefano M, Nützmann HW, Marti-Renom M, Jost D. Polymer modelling unveils the roles of heterochromatin and nucleolar organizing regions in shaping 3D genome organization in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:1840-1858. [PMID: 33444439 PMCID: PMC7913674 DOI: 10.1093/nar/gkaa1275] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
The 3D genome is characterized by a complex organization made of genomic and epigenomic layers with profound implications on gene regulation and cell function. However, the understanding of the fundamental mechanisms driving the crosstalk between nuclear architecture and (epi)genomic information is still lacking. The plant Arabidopsis thaliana is a powerful model organism to address these questions owing to its compact genome for which we have a rich collection of microscopy, chromosome conformation capture (Hi-C) and ChIP-seq experiments. Using polymer modelling, we investigate the roles of nucleolus formation and epigenomics-driven interactions in shaping the 3D genome of A. thaliana. By validation of several predictions with published data, we demonstrate that self-attracting nucleolar organizing regions and repulsive constitutive heterochromatin are major mechanisms to regulate the organization of chromosomes. Simulations also suggest that interphase chromosomes maintain a partial structural memory of the V-shapes, typical of (sub)metacentric chromosomes in anaphase. Additionally, self-attraction between facultative heterochromatin regions facilitates the formation of Polycomb bodies hosting H3K27me3-enriched gene-clusters. Since nucleolus and heterochromatin are highly-conserved in eukaryotic cells, our findings pave the way for a comprehensive characterization of the generic principles that are likely to shape and regulate the 3D genome in many species.
Collapse
Affiliation(s)
- Marco Di Stefano
- CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Hans-Wilhelm Nützmann
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Marc A Marti-Renom
- CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CRG, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Daniel Jost
- Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| |
Collapse
|
12
|
Methylation of 45S Ribosomal DNA (rDNA) Is Associated with Cancer and Aging in Humans. Int J Genomics 2021; 2021:8818007. [PMID: 33575316 PMCID: PMC7861956 DOI: 10.1155/2021/8818007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer and aging, two distinct processes of cell development, are two major problems threatening our human health and life in current days. Epigenetic studies, especially DNA methylation, have been intensively investigated on them over the years, though a lot of unanswered issues remain. In the human genome, rDNA is a highly conserved tandem repeat family playing critical roles in protein synthesis, genome stability and integrity, etc. More importantly, rDNA is the significant target of DNA methylation, and a potential association between rDNA methylation and cancer and aging has emerged recently. However, whether there is a general trend that rDNA methylation is associated with cancer and aging remains an open issue. In this study, the involvement of rDNA methylation in a series of records of cancer and aging was investigated and summarized, upon which perspectives about rDNA methylation in cancer and aging were proposed. The results showed that rDNA methylation in most cancer cases displayed a consistent pattern with hypermethylation in the coding region but with hypomethylation in the promoter region, which likely facilitates the proliferation and metastasis of cancerous cells. Distinctively, both the coding and promoter regions of rDNA become increasingly methylated during the process of aging, indicating the decline of rDNA activity. The finding of rDNA methylation also implies its potential application as an epigenetic biomarker in the diagnosis of cancer and aging. This work will shed light on our understanding of the pathogenesis, diagnosis, and treatment of cancer and aging from the perspective of rDNA methylation.
Collapse
|
13
|
Luo Y, Fefelova E, Ninova M, Chen YCA, Aravin AA. Repression of interrupted and intact rDNA by the SUMO pathway in Drosophila melanogaster. eLife 2020; 9:e52416. [PMID: 33164748 PMCID: PMC7676866 DOI: 10.7554/elife.52416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/06/2020] [Indexed: 11/17/2022] Open
Abstract
Ribosomal RNAs (rRNAs) are essential components of the ribosome and are among the most abundant macromolecules in the cell. To ensure high rRNA level, eukaryotic genomes contain dozens to hundreds of rDNA genes, however, only a fraction of the rRNA genes seems to be active, while others are transcriptionally silent. We found that individual rDNA genes have high level of cell-to-cell heterogeneity in their expression in Drosophila melanogaster. Insertion of heterologous sequences into rDNA leads to repression associated with reduced expression in individual cells and decreased number of cells expressing rDNA with insertions. We found that SUMO (Small Ubiquitin-like Modifier) and SUMO ligase Ubc9 are required for efficient repression of interrupted rDNA units and variable expression of intact rDNA. Disruption of the SUMO pathway abolishes discrimination of interrupted and intact rDNAs and removes cell-to-cell heterogeneity leading to uniformly high expression of individual rDNA in single cells. Our results suggest that the SUMO pathway is responsible for both repression of interrupted units and control of intact rDNA expression.
Collapse
Affiliation(s)
- Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Elena Fefelova
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Institute of Molecular Genetics, Russian Academy of SciencesMoscowRussian Federation
| | - Maria Ninova
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Yung-Chia Ariel Chen
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
14
|
Zhou H, Li L, Wang Q, Hu Y, Zhao W, Gautam M, Li L. H3K9 Demethylation-Induced R-Loop Accumulation Is Linked to Disorganized Nucleoli. Front Genet 2020; 11:43. [PMID: 32117455 PMCID: PMC7025566 DOI: 10.3389/fgene.2020.00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/15/2020] [Indexed: 11/24/2022] Open
Abstract
The nucleolar structure and integrity are important for a range of cellular functions of the nucleoli. It has been shown that cells lacking histone H3 Lysine 9 (H3K9) methylation form fragmented nucleoli. However, the molecular mechanism involved remains poorly understood. Here, we present evidence suggesting that loss of H3K9 dimethylation (H3K9me2) triggers R-loop accumulation at the rDNA locus, which further leads to the multilobed nucleoli. We reveal that suppression of H3K9 methyltransferase G9a by the inhibitor BIX 01294 causes R-loop accumulation at the rDNA region as well as inducing formation of multiple nucleoli. SiRNA-mediated knockdown of RNase H1 which can hydrolyze the RNA chain in R-loops causes an increase in R-loop formation, which in turn results in multiple nucleoli in one nucleus, whereas H3K9me2 levels are not affected by R-loop accumulation. Inhibition of RNA polymerase I transcription elongation by small molecule inhibitors induces a substantial decrease in H3K9me2 levels, accumulation of R-loops at rDNA sites, and nucleolus fragmentation. These results provide a mechanistic insight into the role of H3K9me2 in the structural integrity and organization of nucleoli via regulating R-loop accumulation.
Collapse
Affiliation(s)
- Hong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Le Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qing Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiwei Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mayank Gautam
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Aging and Caloric Restriction Modulate the DNA Methylation Profile of the Ribosomal RNA Locus in Human and Rat Liver. Nutrients 2020; 12:nu12020277. [PMID: 31973116 PMCID: PMC7070571 DOI: 10.3390/nu12020277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
A growing amount of evidence suggests that the downregulation of protein synthesis is an adaptive response during physiological aging, which positively contributes to longevity and can be modulated by nutritional interventions like caloric restriction (CR). The expression of ribosomal RNA (rRNA) is one of the main determinants of translational rate, and epigenetic modifications finely contribute to its regulation. Previous reports suggest that hypermethylation of ribosomal DNA (rDNA) locus occurs with aging, although with some species- and tissue- specificity. In the present study, we experimentally measured DNA methylation of three regions (the promoter, the 5′ of the 18S and the 5′ of 28S sequences) in the rDNA locus in liver tissues from rats at two, four, 10, and 18 months. We confirm previous findings, showing age-related hypermethylation, and describe, for the first time, that this gain in methylation also occurs in human hepatocytes. Furthermore, we show that age-related hypermethylation is enhanced in livers of rat upon CR at two and 10 months, and that at two months a trend towards the reduction of rRNA expression occurs. Collectively, our results suggest that CR modulates age-related regulation of methylation at the rDNA locus, thus providing an epigenetic readout of the pro-longevity effects of CR.
Collapse
|
16
|
Cerqueira AV, Lemos B. Ribosomal DNA and the Nucleolus as Keystones of Nuclear Architecture, Organization, and Function. Trends Genet 2019; 35:710-723. [PMID: 31447250 DOI: 10.1016/j.tig.2019.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022]
Abstract
The multicopy ribosomal DNA (rDNA) array gives origin to the nucleolus, a large nonmembrane-bound organelle that occupies a substantial volume within the cell nucleus. The rDNA/nucleolus has emerged as a coordinating hub in which seemingly disparate cellular functions converge, and from which a variety of cellular and organismal phenotypes emerge. However, the role of the nucleolus as a determinant and organizer of nuclear architecture and other epigenetic states of the genome is not well understood. We discuss the role of rDNA and the nucleolus in nuclear organization and function - from nucleolus-associated domains (NADs) to the regulation of imprinted loci and X chromosome inactivation, as well as rDNA contact maps that anchor and position the rDNA relative to the rest of the genome. The influence of the nucleolus on nuclear organization undoubtedly modulates diverse biological processes from metabolism to cell proliferation, genome-wide gene expression, maintenance of epigenetic states, and aging.
Collapse
Affiliation(s)
- Amanda V Cerqueira
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bernardo Lemos
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Zhou J, Wu YC, Xiao BJ, Guo XD, Zheng QX, Wu B. Age-related Changes in the Global DNA Methylation Profile of Oligodendrocyte Progenitor Cells Derived from Rat Spinal Cords. Curr Med Sci 2019; 39:67-74. [PMID: 30868493 DOI: 10.1007/s11596-019-2001-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/27/2018] [Indexed: 01/12/2023]
Abstract
Demyelination of axons plays an important role in the pathology of many spinal cord diseases and injuries. Remyelination in demyelinated lesions is primarily performed by oligodendrocyte progenitor cells (OPCs), which generate oligodendrocytes in the developing and mature central nervous system. The efficiency of remyelination decreases with age. Many reports suggest that this decline in remyelination results from impaired OPC recruitment and differentiation during aging. Of the various molecular mechanisms involved in aging, changes in epigenetic modifications have received particular attention. Global DNA methylation is a major epigenetic modification that plays important roles in cellular senescence and organismal aging. Thus, we aimed to evaluate the dynamic changes in the global DNA methylation profiles of OPCs derived from rat spinal cords during the aging process. We separated and cultured OPCs from the spinal cords of neonatal, 4-month-old, and 16-month-old rats and investigated the age-related alterations of genomic DNA methylation levels by using quantitative colorimetric analysis. To determine the potential cause of dynamic changes in global DNA methylation, we further analyzed the activity of DNA methyltransferases (DNMTs) and the expression of DNMT1, DNMT3a, DNMT3b, TET1, TET2, TET3, MBD2, and MeCP2 in the OPCs from each group. Our results showed the genomic DNA methylation level and the activity of DNMTs from OPCs derived from rat spinal cords decreased gradually during aging, and OPCs from 16-month-old rats were characterized by global hypomethylation. During OPC aging, the mRNA and protein expression levels of DNMT3a, DNMT3b, and MeCP2 were significantly elevated; those of DNMT1 were significantly down-regulated; and no significant changes were observed in those for TET1, TET2, TET3, or MBD2. Our results indicated that global DNA hypomethylation in aged OPCs is correlated with DNMT1 downregulation. Together, these data provide important evidence for partly elucidating the mechanism of age-related impaired OPC recruitment and differentiation and assist in the development of new treatments for promoting efficient remyelination.
Collapse
Affiliation(s)
- Jing Zhou
- Department of General Surgery, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong-Chao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bao-Jun Xiao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Dong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi-Xin Zheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Wang M, Lemos B. Ribosomal DNA harbors an evolutionarily conserved clock of biological aging. Genome Res 2019; 29:325-333. [PMID: 30765617 PMCID: PMC6396418 DOI: 10.1101/gr.241745.118] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/22/2019] [Indexed: 01/17/2023]
Abstract
The ribosomal DNA (rDNA) is the most evolutionarily conserved segment of the genome and gives origin to the nucleolus, an energy intensive nuclear organelle and major hub influencing myriad molecular processes from cellular metabolism to epigenetic states of the genome. The rDNA/nucleolus has been directly and mechanistically implicated in aging and longevity in organisms as diverse as yeasts, Drosophila, and humans. The rDNA is also a significant target of DNA methylation that silences supernumerary rDNA units and regulates nucleolar activity. Here, we introduce an age clock built exclusively with CpG methylation within the rDNA. The ribosomal clock is sufficient to accurately estimate individual age within species, is responsive to genetic and environmental interventions that modulate life-span, and operates across species as distant as humans, mice, and dogs. Further analyses revealed a significant excess of age-associated hypermethylation in the rDNA relative to other segments of the genome, and which forms the basis of the rDNA clock. Our observations identified an evolutionarily conserved marker of aging that is easily ascertained, grounded on nucleolar biology, and could serve as a universal marker to gauge individual age and response to interventions in humans as well as laboratory and wild organisms across a wide diversity of species.
Collapse
Affiliation(s)
- Meng Wang
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Bernardo Lemos
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
19
|
Guo X, Feng L, Lemos B, Lou J. DNA methylation modifications induced by hexavalent chromium. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:133-145. [PMID: 31084241 PMCID: PMC8479272 DOI: 10.1080/10590501.2019.1592640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Hexavalent chromium [Cr (VI)] contributes a significant health risk and causes a number of chronic diseases and cancers. While the genotoxic and carcinogenic effects of hexavalent chromium exposure are explicit and better-characterized, the exact mechanism underlying the carcinogenic process of Cr (VI) is still a matter of debate. In recent years, studies have shown that epigenetic modifications, especially DNA methylation, may play a significant role in Cr (VI)-induced carcinogenesis. The aim of this review is to summarize our understanding regarding the effects of Cr (VI) on global and gene-specific DNA methylation.
Collapse
Affiliation(s)
- Xinnian Guo
- Institute of Occupation Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, P.R.China
| | - Lingfang Feng
- Institute of Occupation Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, P.R.China
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jianlin Lou
- Institute of Occupation Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, P.R.China
- Corresponding author at: Institute of Occupation Diseases, Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou, 310013, P.R.C. Telephone: +86-571-88215566. Fax: +86-571-88215576.
| |
Collapse
|
20
|
Abstract
The nucleolus as site of ribosome biogenesis holds a pivotal role in cell metabolism. It is composed of ribosomal DNA (rDNA), which is present as tandem arrays located in nucleolus organizer regions (NORs). In interphase cells, rDNA can be found inside and adjacent to nucleoli and the location is indicative for transcriptional activity of ribosomal genes-inactive rDNA (outside) versus active one (inside). Moreover, the nucleolus itself acts as a spatial organizer of non-nucleolar chromatin. Microscopy-based approaches offer the possibility to explore the spatially distinct localization of the different DNA populations in relation to the nucleolar structure. Recent technical developments in microscopy and preparatory methods may further our understanding of the functional architecture of nucleoli. This review will attempt to summarize the current understanding of mammalian nucleolar chromatin organization as seen from a microscopist's perspective.
Collapse
Affiliation(s)
- Christian Schöfer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| | - Klara Weipoltshammer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| |
Collapse
|
21
|
Paredes S, Angulo-Ibanez M, Tasselli L, Carlson SM, Zheng W, Li TM, Chua KF. The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. J Biol Chem 2018; 293:11242-11250. [PMID: 29728458 DOI: 10.1074/jbc.ac118.003325] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/21/2018] [Indexed: 12/16/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, genomic instability in rDNA repeat sequences is an underlying cause of cell aging and is suppressed by the chromatin-silencing factor Sir2. In humans, rDNA instability is observed in cancers and premature aging syndromes, but its underlying mechanisms and functional consequences remain unclear. Here, we uncovered a pivotal role of sirtuin 7 (SIRT7), a mammalian Sir2 homolog, in guarding against rDNA instability and show that this function of SIRT7 protects against senescence in primary human cells. We found that, mechanistically, SIRT7 is required for association of SNF2H (also called SMARCA5, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A, member 5), a component of the nucleolar heterochromatin-silencing complex NoRC, with rDNA sequences. Defective rDNA-heterochromatin silencing in SIRT7-deficient cells unleashed rDNA instability, with excision and loss of rDNA gene copies, which in turn induced acute senescence. Mounting evidence indicates that accumulation of senescent cells significantly contributes to tissue dysfunction in aging-related pathologies. Our findings identify rDNA instability as a driver of mammalian cellular senescence and implicate SIRT7-dependent heterochromatin silencing in protecting against this process.
Collapse
Affiliation(s)
- Silvana Paredes
- From the Department of Medicine, Stanford University School of Medicine, Stanford, California 94305.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, and
| | - Maria Angulo-Ibanez
- From the Department of Medicine, Stanford University School of Medicine, Stanford, California 94305.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, and
| | - Luisa Tasselli
- From the Department of Medicine, Stanford University School of Medicine, Stanford, California 94305.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, and
| | - Scott M Carlson
- Department of Biology, Stanford University, Stanford, California 94305
| | - Wei Zheng
- From the Department of Medicine, Stanford University School of Medicine, Stanford, California 94305.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, and
| | - Tie-Mei Li
- From the Department of Medicine, Stanford University School of Medicine, Stanford, California 94305.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, and
| | - Katrin F Chua
- From the Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, .,Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, and
| |
Collapse
|
22
|
Galbiati A, Penzo M, Bacalini MG, Onofrillo C, Guerrieri AN, Garagnani P, Franceschi C, Treré D, Montanaro L. Epigenetic up-regulation of ribosome biogenesis and more aggressive phenotype triggered by the lack of the histone demethylase JHDM1B in mammary epithelial cells. Oncotarget 2018; 8:37091-37103. [PMID: 28415746 PMCID: PMC5514893 DOI: 10.18632/oncotarget.16181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
The alterations of ribosome biogenesis and protein synthesis play a direct role in the development of tumors. The accessibility and transcription of ribosomal genes is controlled at several levels, with their epigenetic regulation being one of the most important. Here we explored the JmjC domain-containing histone demethylase 1B (JHDM1B) function in the epigenetic control of rDNA transcription. Since JHDM1B is a negative regulator of gene transcription, we focused on the effects induced by JHDM1B knock-down (KD). We studied the consequences of stable inducible JHDM1B silencing in cell lines derived from transformed and untransformed mammary epithelial cells. In these cellular models, prolonged JHDM1B downregulation triggered a surge of 45S pre-rRNA transcription and processing, associated with a re-modulation of the H3K36me2 levels at rDNA loci and with changes in DNA methylation of specific CpG sites in rDNA genes. We also found that after JHDM1B KD, cells showed a higher ribosome content: which were engaged in mRNA translation. JHDM1B KD and the consequent stimulation of ribosomes biogenesis conferred more aggressive features to the tested cellular models, which acquired a greater clonogenic, staminal and invasive potential. Taken together, these data indicate that the reduction of JHDM1B leads to a more aggressive cellular phenotype in mammary gland cells, by virtue of its negative regulatory activity on ribosome biogenesis.
Collapse
Affiliation(s)
- Alice Galbiati
- Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Marianna Penzo
- Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Maria Giulia Bacalini
- Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Carmine Onofrillo
- Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Ania Naila Guerrieri
- Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Davide Treré
- Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Wang B, Du R, Xiao X, Deng ZL, Jian D, Xie HF, Li J. Microrna-217 modulates human skin fibroblast senescence by directly targeting DNA methyltransferase 1. Oncotarget 2018; 8:33475-33486. [PMID: 28380423 PMCID: PMC5464883 DOI: 10.18632/oncotarget.16509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) is a major epigenetic regulator associated with many biological processes. However, the roles and mechanisms of DNMT1 in skin aging are incompletely understood. Here we explored the role of DNMT1 in human skin fibroblasts senescence and its related regulatory mechanisms. DNMT1 expression decreased in passage-aged fibroblasts and DNMT1 silencing in young fibroblasts induced the senescence phenotype. MiR-217 is predicted to target DNMT1 mRNA and miR-217 expression increased in passage-aged fibroblasts. MiR-217 directly targeted the 3′-untranslated region (3′-UTR) of DNMT1 in HEK 293T cells and inhibited DNMT1 expression in fibroblasts. MiR-217 overexpression induced a senescence phenotype in young fibroblasts, and miR-217 downregulation in old HSFs partially reversed the senescence phenotype. However, these effects could be significantly rescued by regulating DNMT1 expression in fibroblasts. After regulating miR-217 levels, we analyzed changes in the promoter methylation levels of 24 senescent-associated genes, finding that 6 genes were significantly altered, and verified p16 and phosphorylated retinoblastoma (pRb) protein levels. Finally, an inverse correlation between DNMT1 and miR-217 expression was observed in skin tissues and different-aged fibroblasts. Together, these findings revealed that miR-217 promotes fibroblasts senescence by suppressing DNMT1-mediated methylation of p16 and pRb by targeting the DNMT1 3′-UTR.
Collapse
Affiliation(s)
- Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Du
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Xiao
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha, China
| | - Zhi-Li Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Jian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Fu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Neben CL, Tuzon CT, Mao X, Lay FD, Merrill AE. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Hum Mol Genet 2018; 26:3253-3270. [PMID: 28595297 DOI: 10.1093/hmg/ddx209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
Fibroblast Growth Factor (FGF) signaling promotes self-renewal in progenitor cells by encouraging proliferation and inhibiting cellular senescence. Yet, these beneficial effects can be hijacked by disease-causing mutations in FGF receptor (FGFR) during embryogenesis. By studying dominant FGFR2 mutations that are germline in bent bone dysplasia syndrome (BBDS), we reveal a mechanistic connection between FGFR2, ribosome biogenesis, and cellular stress that links cell fate determination to disease pathology. We previously showed that FGFR2 mutations in BBDS, which amplify nucleolar targeting of FGFR2, activate ribosomal DNA (rDNA) transcription and delay differentiation in osteoprogenitor cells and patient-derived bone. Here we find that the BBDS mutations augment the ability of FGFR2 to recruit histone-remodeling factors that epigenetically activate transcriptionally silent rDNA. Nucleolar morphology is controlled by chromatin structure, and the high levels of euchromatic rDNA induced by the BBDS mutations direct nucleolar disorganization, alter ribosome biogenesis, and activate the Rpl11-Mdm2-p53 nucleolar stress response pathway. Inhibition of p53 in cells expressing the FGFR2 mutations in BBDS rescues delayed osteoblast differentiation, suggesting that p53 activation is an essential pathogenic factor in, and potential therapeutic target for, BBDS. This work establishes rDNA as developmentally regulated loci that receive direct input from FGF signaling to balance self-renewal and cell fate determination.
Collapse
Affiliation(s)
- Cynthia L Neben
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Creighton T Tuzon
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaojing Mao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fides D Lay
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. JOURNAL OF CANCER RESEARCH AND PRACTICE 2017. [DOI: 10.1016/j.jcrpr.2017.07.001] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
26
|
Finnerty BM, Gray KD, Moore MD, Zarnegar R, Fahey III TJ. Epigenetics of gastroenteropancreatic neuroendocrine tumors: A clinicopathologic perspective. World J Gastrointest Oncol 2017; 9:341-353. [PMID: 28979716 PMCID: PMC5605334 DOI: 10.4251/wjgo.v9.i9.341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/27/2017] [Accepted: 08/04/2017] [Indexed: 02/05/2023] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are a heterogeneous group of rare tumors whose site-specific tumor incidence and clinical behavior vary widely. Genetic alterations associated with familial inherited syndromes have been well defined; however, the genetic profile of sporadic tumors is less clear as their tumorigenesis does not appear to be controlled by classic oncogenes such as P53, RB, or KRAS. Even within GEP-NETs, there are no common oncogenic drivers; for example, DAXX/ATRX mutations are strongly implicated in the tumorigenesis of pancreatic but not small bowel NETs. Accordingly, the dysregulation of epigenetic mechanisms has been hypothesized as a potential regulator of GEP-NET tumorigenesis and has become a major focus of recent studies. Despite the heterogeneity of tumor cohorts evaluated in these studies, it is obvious that there are methylation patterns, chromatin remodeling alterations, and microRNA and long non-coding RNA (lncRNA) differential expression profiles that are distinctive of GEP-NETs, some of which are correlated with significant differences in clinical outcomes. Several translational studies have provided convincing data identifying potential prognostic biomarkers, and some of these have demonstrated preliminary success as serum biomarkers that can be used clinically. Nevertheless, there are many opportunities to further define the mechanisms by which these epigenetic modifications influence tumorigenesis, and this will provide better insight into their prognostic and therapeutic utility. Furthermore, these findings form the foundation for future studies evaluating the clinical efficacy of epigenetic modifications as prognostic biomarkers, as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Brendan M Finnerty
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, United States
| | - Katherine D Gray
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, United States
| | - Maureen D Moore
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, United States
| | - Rasa Zarnegar
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, United States
| | - Thomas J Fahey III
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
27
|
Ianni A, Hoelper S, Krueger M, Braun T, Bober E. Sirt7 stabilizes rDNA heterochromatin through recruitment of DNMT1 and Sirt1. Biochem Biophys Res Commun 2017; 492:434-440. [PMID: 28842251 DOI: 10.1016/j.bbrc.2017.08.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 12/24/2022]
Abstract
Maintenance of highly compact heterochromatin at ribosomal DNA (rDNA) segments is essential to prevent homologous recombination between rDNA repeats and for preserving genomic stability and nucleolar architecture. Here, we investigated the role of Sirtuin 7 (Sirt7) in the regulation of rDNA chromatin structure, rDNA repeat stability and nucleolar organization. We found that Sirt7 mediates heterochromatin formation at rRNA genes through recruitment of DNA methyltransferase 1 and another member of the sirtuin family, Sirt1. Lack of Sirt7 leads to nucleolar fragmentation associated with hypomethylation of rDNA and hyperacetylation of histones at rDNA loci resulting in rDNA and genomic instability. Our findings suggest a novel role of Sirt7 in preventing cellular transformation by mediating maintenance of rDNA repeats and nucleolar integrity.
Collapse
Affiliation(s)
- Alessandro Ianni
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Soraya Hoelper
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Marcus Krueger
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.
| | - Eva Bober
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.
| |
Collapse
|
28
|
Zhou W, Tian D, He J, Zhang L, Tang X, Zhang L, Wang Y, Li L, Zhao J, Yuan X, Peng S. Exposure scenario: Another important factor determining the toxic effects of PM2.5 and possible mechanisms involved. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:412-425. [PMID: 28449967 DOI: 10.1016/j.envpol.2017.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
Worsening air pollution is a serious threat to public health in many urban and heavily industrialized areas. Particle size and chemical composition are well known determinants of the pathological response to air pollution. In addition, pathological responses may depend on the exposure profile (or scenario) of air pollution. For instance, we previously demonstrated that repeated exposure to low levels of fine airborne particulate matter (PM2.5) induced distinct epigenetic changes compared to acute high-doses exposure. In the present study, we evaluated the differential pathological responses of BEAS-2B human bronchial epithelial cells to two distinct PM2.5 exposure scenarios: 24-h exposure to high-doses PM2.5 (0, 6, 12, 24, 48, 96 μg/cm2) and 10 days' repeated exposure to low levels of PM2.5 (0, 1.5, 3, 6 μg/cm2). Acute exposure to high concentrations of PM2.5 caused ROS burst, marked DNA damage, dysfunction of the endoplasmic reticulum (ER) stress response, autophagy and necrotic cell death. In contrast, repeated low levels of PM2.5 led to sustained low-grade ROS accumulation, milder DNA damage, ER stress/unfolded protein response (UPR), S-phase arrest, apoptosis, and autophagy. Notably, most cells surviving repeated low-level exposure showed a series of abnormal adaptive responses, such as inhibition of mitochondria biogenesis and epigenetic dysregulation. These results indicate that different PM2.5 exposure scenarios induce distinct forms cytotoxicity and adaptive response. In addition to particle size and chemical composition, exposure scenario may be a critical factor determining the toxic health effects of PM2.5.
Collapse
Affiliation(s)
- Wei Zhou
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071, PR China
| | - Dongdong Tian
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071, PR China
| | - Jun He
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071, PR China
| | - Li Zhang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071, PR China
| | - Xiuli Tang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071, PR China
| | - Lijun Zhang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071, PR China
| | - Yimei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071, PR China
| | - Lizhong Li
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071, PR China
| | - Jun Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071, PR China
| | - Xiaoyan Yuan
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071, PR China.
| | - Shuangqing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071, PR China.
| |
Collapse
|
29
|
de Pauli LF, Santos EG, Daher Arcangelo FP, Orcini WA, Peruquetti RL. Differential expression of the nucleolar protein fibrillarin during mammalian spermatogenesis and its probable association with chromatoid body components. Micron 2017; 94:37-45. [DOI: 10.1016/j.micron.2016.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
|
30
|
Abstract
Heterochromatin is the transcriptionally repressed portion of eukaryotic chromatin that maintains a condensed appearance throughout the cell cycle. At sites of ribosomal DNA (rDNA) heterochromatin, epigenetic states contribute to gene silencing and genome stability, which are required for proper chromosome segregation and a normal life span. Here, we focus on recent advances in the epigenetic regulation of rDNA silencing in Saccharomyces cerevisiae and in mammals, including regulation by several histone modifications and several protein components associated with the inner nuclear membrane within the nucleolus. Finally, we discuss the perturbations of rDNA epigenetic pathways in regulating cellular aging and in causing various types of diseases.
Collapse
|
31
|
Abstract
Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle.
Collapse
Affiliation(s)
- Klara Weipoltshammer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
32
|
The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin Cancer Biol 2015; 37-38:36-50. [PMID: 26721423 DOI: 10.1016/j.semcancer.2015.12.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022]
Abstract
The nucleolus is the most prominent nuclear substructure assigned to produce ribosomes; molecular machines that are responsible for carrying out protein synthesis. To meet the increased demand for proteins during cell growth and proliferation the cell must increase protein synthetic capacity by upregulating ribosome biogenesis. While larger nucleolar size and number have been recognized as hallmark features of many tumor types, recent evidence has suggested that, in addition to overproduction of ribosomes, decreased ribosome biogenesis as well as qualitative changes in this process could also contribute to tumor initiation and cancer progression. Furthermore, the nucleolus has become the focus of intense attention for its involvement in processes that are clearly unrelated to ribosome biogenesis such as sensing and responding to endogenous and exogenous stressors, maintenance of genome stability, regulation of cell-cycle progression, cellular senescence, telomere function, chromatin structure, establishment of nuclear architecture, global regulation of gene expression and biogenesis of multiple ribonucleoprotein particles. The fact that dysregulation of many of these fundamental cellular processes may contribute to the malignant phenotype suggests that normal functioning of the nucleolus safeguards against the development of cancer and indicates its potential as a therapeutic approach. Here we review the recent advances made toward understanding these newly-recognized nucleolar functions and their roles in normal and cancer cells, and discuss possible future research directions.
Collapse
|
33
|
Zillner K, Komatsu J, Filarsky K, Kalepu R, Bensimon A, Németh A. Active human nucleolar organizer regions are interspersed with inactive rDNA repeats in normal and tumor cells. Epigenomics 2015; 7:363-78. [PMID: 26077426 DOI: 10.2217/epi.14.93] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM The synthesis of rRNA is a key determinant of normal and malignant cell growth and subject to epigenetic regulation. Yet, the epigenomic features of rDNA arrays clustered in nucleolar organizer regions are largely unknown. We set out to explore for the first time how DNA methylation is distributed on individual rDNA arrays. MATERIALS & METHODS Here we combined immunofluorescence detection of DNA modifications with fluorescence hybridization of single DNA fibers, metaphase immuno-FISH and methylation-sensitive restriction enzyme digestions followed by Southern blot. RESULTS We found clustering of both hypomethylated and hypermethylated repeat units and hypermethylation of noncanonical rDNA in IMR90 fibroblasts and HCT116 colorectal carcinoma cells. Surprisingly, we also found transitions between hypo- and hypermethylated rDNA repeat clusters on single DNA fibers. CONCLUSION Collectively, our analyses revealed co-existence of different epialleles on individual nucleolar organizer regions and showed that epi-combing is a valuable approach to analyze epigenomic patterns of repetitive DNA.
Collapse
Affiliation(s)
- Karina Zillner
- Department of Biochemistry III, Biochemistry Center Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Jun Komatsu
- Genomic Vision, 80 Rue des Meuniers, 92220 Bagneux, France
| | - Katharina Filarsky
- Department of Biochemistry III, Biochemistry Center Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Rajakiran Kalepu
- Department of Biochemistry III, Biochemistry Center Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.,University Hospital Ulm, Ulm 89070, Germany
| | - Aaron Bensimon
- Genomic Vision, 80 Rue des Meuniers, 92220 Bagneux, France
| | - Attila Németh
- Department of Biochemistry III, Biochemistry Center Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
34
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
35
|
Li Y, Liang J, Hou P. Hypermethylation in gastric cancer. Clin Chim Acta 2015; 448:124-32. [PMID: 26148722 DOI: 10.1016/j.cca.2015.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
Although gastric cancer (GC) is highly prevalent in China and is a leading cause of cancer-related death, major advances in early diagnostic and effective therapeutic strategies have not been made. GC patients are usually diagnosed at an advanced stage and the prognosis is still poor. Over the years, many efforts have been done on exploring the pathology of GC. In particular, genome-wide analysis tools have been widely used in the detection of genetic and epigenetic alterations in GC. For example, many tumor suppressor genes have been found to be aberrantly hypermethylated in GCs, and some even in gastric precancerous lesions, suggesting a role of this molecular event in early gastric tumorigenesis. In addition, accumulating evidences have demonstrated that some hypermethylated genes can be used as potential biomarkers for detection and diagnosis of GC in biopsy specimens and non-invasive body fluids. These exciting advances provide unprecedented opportunities for the development of molecular-based novel diagnostic, prognostic, and therapeutic strategies for GC. Here, we reviewed recent findings on the promoter hypermethylation of tumor suppressor genes in GC and aimed to provide better understanding of the contribution of this epigenetic event to gastric tumorigenesis.
Collapse
Affiliation(s)
- Yujun Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Junrong Liang
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.
| |
Collapse
|
36
|
Alvarado S, Mak T, Liu S, Storey KB, Szyf M. Dynamic changes in global and gene-specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus. ACTA ACUST UNITED AC 2015; 218:1787-95. [PMID: 25908059 DOI: 10.1242/jeb.116046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Hibernating mammals conserve energy in the winter by undergoing prolonged bouts of torpor, interspersed with brief arousals back to euthermia. These bouts are accompanied by a suite of reversible physiological and biochemical changes; however, much remains to be discovered about the molecular mechanisms involved. Given the seasonal nature of hibernation, it stands to reason that underlying plastic epigenetic mechanisms should exist. One such form of epigenomic regulation involves the reversible modification of cytosine bases in DNA by methylation. DNA methylation is well known to be a mechanism that confers upon DNA its cellular identity during differentiation in response to innate developmental cues. However, it has recently been hypothesized that DNA methylation also acts as a mechanism for adapting genome function to changing external environmental and experiential signals over different time scales, including during adulthood. Here, we tested the hypothesis that DNA methylation is altered during hibernation in adult wild animals. This study evaluated global changes in DNA methylation in response to hibernation in the liver and skeletal muscle of thirteen-lined ground squirrels along with changes in expression of DNA methyltransferases (DNMT1/3B) and methyl binding domain proteins (MBDs). A reduction in global DNA methylation occurred in muscle during torpor phases whereas significant changes in DNMTs and MBDs were seen in both tissues. We also report dynamic changes in DNA methylation in the promoter of the myocyte enhancer factor 2C (mef2c) gene, a candidate regulator of metabolism in skeletal muscle. Taken together, these data show that genomic DNA methylation is dynamic across torpor-arousal bouts during winter hibernation, consistent with a role for this regulatory mechanism in contributing to the hibernation phenotype.
Collapse
Affiliation(s)
- Sebastian Alvarado
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| | - Timothy Mak
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| | - Sara Liu
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Moshe Szyf
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| |
Collapse
|
37
|
Sun L, Kokura K, Izumi V, Koomen JM, Seto E, Chen J, Fang J. MPP8 and SIRT1 crosstalk in E-cadherin gene silencing and epithelial-mesenchymal transition. EMBO Rep 2015; 16:689-99. [PMID: 25870236 DOI: 10.15252/embr.201439792] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/17/2015] [Indexed: 11/09/2022] Open
Abstract
As a critical developmental process, epithelial-mesenchymal transition (EMT) involves complex transcriptional reprogramming and has been closely linked to malignant progression. Although various epigenetic modifications, such as histone deacetylation and H3K9 methylation, have been implicated in this process, how they are coordinated remains elusive. We recently revealed that MPP8 couples H3K9 methylation and DNA methylation for E-cadherin gene silencing and promotes tumor cell migration, invasion, and EMT. Here, we show that MPP8 cooperates with the class III HDAC SIRT1 in this process through their physical interaction. SIRT1 antagonizes PCAF-catalyzed MPP8-K439 acetylation to protect MPP8 from ubiquitin-proteasome-mediated proteolysis. Conversely, MPP8 recruits SIRT1 for H4K16 deacetylation after binding to methyl-H3K9 on target promoters. Consequently, disabling either MPP8 methyl-H3K9 binding or SIRT1 interaction de-represses E-cadherin and reduces EMT phenotypes, as does knockdown of MPP8 or SIRT1 in prostate cancer cells. These results illustrate how SIRT1 and MPP8 reciprocally promote each other's function and coordinate epithelial gene silencing and EMT.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kenji Kokura
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Victoria Izumi
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Edward Seto
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jiandong Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jia Fang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
38
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
39
|
Nguyen LXT, Raval A, Garcia JS, Mitchell BS. Regulation of Ribosomal Gene Expression in Cancer. J Cell Physiol 2015; 230:1181-8. [DOI: 10.1002/jcp.24854] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Le Xuan Truong Nguyen
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Aparna Raval
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Jacqueline S. Garcia
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Beverly S. Mitchell
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| |
Collapse
|
40
|
Holmberg Olausson K, Nistér M, Lindström MS. Loss of nucleolar histone chaperone NPM1 triggers rearrangement of heterochromatin and synergizes with a deficiency in DNA methyltransferase DNMT3A to drive ribosomal DNA transcription. J Biol Chem 2014; 289:34601-19. [PMID: 25349213 DOI: 10.1074/jbc.m114.569244] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoli are prominent nuclear structures assembled and organized around actively transcribed ribosomal DNA (rDNA). The nucleolus has emerged as a platform for the organization of chromatin enriched for repressive histone modifications associated with repetitive DNA. NPM1 is a nucleolar protein required for the maintenance of genome stability. However, the role of NPM1 in nucleolar chromatin dynamics and ribosome biogenesis remains unclear. We found that normal fibroblasts and cancer cells depleted of NPM1 displayed deformed nucleoli and a striking rearrangement of perinucleolar heterochromatin, as identified by immunofluorescence staining of trimethylated H3K9, trimethylated H3K27, and heterochromatin protein 1γ (HP1γ/CBX3). By co-immunoprecipitation we found NPM1 associated with HP1γ and core and linker histones. Moreover, NPM1 was required for efficient tethering of HP1γ-enriched chromatin to the nucleolus. We next tested whether the alterations in perinucleolar heterochromatin architecture correlated with a difference in the regulation of rDNA. U1242MG glioma cells depleted of NPM1 presented with altered silver staining of nucleolar organizer regions, coupled to a modest decrease in H3K9 di- and trimethylation at the rDNA promoter. rDNA transcription and cell proliferation were sustained in these cells, indicating that altered organization of heterochromatin was not secondary to inhibition of rDNA transcription. Furthermore, knockdown of DNA methyltransferase DNMT3A markedly enhanced rDNA transcription in NPM1-depleted U1242MG cells. In summary, this study highlights a function of NPM1 in the spatial organization of nucleolus-associated heterochromatin.
Collapse
Affiliation(s)
- Karl Holmberg Olausson
- From the Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Monica Nistér
- From the Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Mikael S Lindström
- From the Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
41
|
Bosch-Presegué L, Vaquero A. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J 2014; 282:1745-67. [DOI: 10.1111/febs.13053] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Laia Bosch-Presegué
- Chromatin Biology Laboratory; Cancer Epigenetics and Biology Program; Institut d'Investigació Biomèdica de Bellvitge; Barcelona Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory; Cancer Epigenetics and Biology Program; Institut d'Investigació Biomèdica de Bellvitge; Barcelona Spain
| |
Collapse
|
42
|
Smith CL, Matheson TD, Trombly DJ, Sun X, Campeau E, Han X, Yates JR, Kaufman PD. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli. Mol Biol Cell 2014; 25:2866-81. [PMID: 25057015 PMCID: PMC4161520 DOI: 10.1091/mbc.e14-05-1029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chromatin assembly factor-1 contains a separable domain unrelated to histone deposition, which provides a previously unrecognized ability to maintain nucleolar protein and chromosome associations. Chromatin assembly factor-1 (CAF-1) is a three-subunit protein complex conserved throughout eukaryotes that deposits histones during DNA synthesis. Here we present a novel role for the human p150 subunit in regulating nucleolar macromolecular interactions. Acute depletion of p150 causes redistribution of multiple nucleolar proteins and reduces nucleolar association with several repetitive element–containing loci. Of note, a point mutation in a SUMO-interacting motif (SIM) within p150 abolishes nucleolar associations, whereas PCNA or HP1 interaction sites within p150 are not required for these interactions. In addition, acute depletion of SUMO-2 or the SUMO E2 ligase Ubc9 reduces α-satellite DNA association with nucleoli. The nucleolar functions of p150 are separable from its interactions with the other subunits of the CAF-1 complex because an N-terminal fragment of p150 (p150N) that cannot interact with other CAF-1 subunits is sufficient for maintaining nucleolar chromosome and protein associations. Therefore these data define novel functions for a separable domain of the p150 protein, regulating protein and DNA interactions at the nucleolus.
Collapse
Affiliation(s)
- Corey L Smith
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Timothy D Matheson
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Daniel J Trombly
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Xiaoming Sun
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Eric Campeau
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Xuemei Han
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037
| | - John R Yates
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037
| | - Paul D Kaufman
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
43
|
Causes and Consequences of Age-Related Changes in DNA Methylation: A Role for ROS? BIOLOGY 2014; 3:403-25. [PMID: 24945102 PMCID: PMC4085615 DOI: 10.3390/biology3020403] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 05/28/2014] [Accepted: 05/31/2014] [Indexed: 01/15/2023]
Abstract
Recent genome-wide analysis of C-phosphate-G (CpG) sites has shown that the DNA methylome changes with increasing age, giving rise to genome-wide hypomethylation with site‑specific incidences of hypermethylation. This notion has received a lot of attention, as it potentially explains why aged organisms generally have a higher risk of age-related diseases. However, very little is known about the mechanisms that could cause the occurrence of these changes. Moreover, there does not appear to be a clear link between popular theories of aging and alterations in the methylome. Some of the most fruitful of these theories attribute an important role to reactive oxygen species, which seem to be responsible for an increase in oxidative damage to macromolecules, such as DNA, during the lifetime of an organism. In this review, the connection between changes in DNA methylation and these reactive oxygen species is discussed, as well as the effect of these changes on health. Deeper insights into the nature, causes and consequences of the aging methylome might provide a deeper understanding of the molecular mechanisms of aging and eventually contribute to the development of new diagnostic and therapeutic tools.
Collapse
|
44
|
The nucleolar size is associated to the methylation status of ribosomal DNA in breast carcinomas. BMC Cancer 2014; 14:361. [PMID: 24884608 PMCID: PMC4062283 DOI: 10.1186/1471-2407-14-361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/30/2014] [Indexed: 01/21/2023] Open
Abstract
Background There is a body of evidence that shows a link between tumorigenesis and ribosome biogenesis. The precursor of mature 18S, 28S and 5.8S ribosomal RNAs is transcribed from the ribosomal DNA gene (rDNA), which exists as 300–400 copies in the human diploid genome. Approximately one half of these copies are epigenetically silenced, but the exact role of epigenetic regulation on ribosome biogenesis is not completely understood. In this study we analyzed the methylation profiles of the rDNA promoter and of the 5’ regions of 18S and 28S in breast cancer. Methods We analyzed rDNA methylation in 68 breast cancer tissues of which the normal counterpart was partially available (45/68 samples) using the MassARRAY EpiTYPER assay, a sensitive and quantitative method with single base resolution. Results We found that rDNA locus tended to be hypermethylated in tumor compared to matched normal breast tissues and that the DNA methylation level of several CpG units within the rDNA locus was associated to nuclear grade and to nucleolar size of tumor tissues. In addition we identified a subgroup of samples in which large nucleoli were associated with very limited or absent rDNA hypermethylation in tumor respect to matched normal tissue. Conclusions In conclusion, we suggest that rDNA is an important target of epigenetic regulation in breast tumors and that rDNA methylation level is associated to nucleolar size.
Collapse
|
45
|
O’Hagan HM. Chromatin modifications during repair of environmental exposure-induced DNA damage: a potential mechanism for stable epigenetic alterations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:278-91. [PMID: 24259318 PMCID: PMC4020002 DOI: 10.1002/em.21830] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 05/22/2023]
Abstract
Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure.
Collapse
Affiliation(s)
- Heather M. O’Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN
| |
Collapse
|
46
|
Estève PO, Terragni J, Deepti K, Chin HG, Dai N, Espejo A, Corrêa IR, Bedford MT, Pradhan S. Methyllysine reader plant homeodomain (PHD) finger protein 20-like 1 (PHF20L1) antagonizes DNA (cytosine-5) methyltransferase 1 (DNMT1) proteasomal degradation. J Biol Chem 2014; 289:8277-87. [PMID: 24492612 PMCID: PMC3961655 DOI: 10.1074/jbc.m113.525279] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/31/2014] [Indexed: 11/28/2022] Open
Abstract
Inheritance of DNA cytosine methylation pattern during successive cell division is mediated by maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1). Lysine 142 of DNMT1 is methylated by the SET domain containing lysine methyltransferase 7 (SET7), leading to its degradation by proteasome. Here we show that PHD finger protein 20-like 1 (PHF20L1) regulates DNMT1 turnover in mammalian cells. Malignant brain tumor (MBT) domain of PHF20L1 binds to monomethylated lysine 142 on DNMT1 (DNMT1K142me1) and colocalizes at the perinucleolar space in a SET7-dependent manner. PHF20L1 knockdown by siRNA resulted in decreased amounts of DNMT1 on chromatin. Ubiquitination of DNMT1K142me1 was abolished by overexpression of PHF20L1, suggesting that its binding may block proteasomal degradation of DNMT1K142me1. Conversely, siRNA-mediated knockdown of PHF20L1 or incubation of a small molecule MBT domain binding inhibitor in cultured cells accelerated the proteasomal degradation of DNMT1. These results demonstrate that the MBT domain of PHF20L1 reads and controls enzyme levels of methylated DNMT1 in cells, thus representing a novel antagonist of DNMT1 degradation.
Collapse
Affiliation(s)
| | - Jolyon Terragni
- From New England Biolabs Inc., Ipswich, Massachusetts 01938 and
| | | | | | - Nan Dai
- From New England Biolabs Inc., Ipswich, Massachusetts 01938 and
| | - Alexsandra Espejo
- the Department of Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Ivan R. Corrêa
- From New England Biolabs Inc., Ipswich, Massachusetts 01938 and
| | - Mark T. Bedford
- the Department of Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | | |
Collapse
|
47
|
Keep-ING balance: tumor suppression by epigenetic regulation. FEBS Lett 2014; 588:2728-42. [PMID: 24632289 DOI: 10.1016/j.febslet.2014.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022]
Abstract
Cancer cells accumulate genetic and epigenetic changes that alter gene expression to drive tumorigenesis. Epigenetic silencing of tumor suppressor, cell cycle, differentiation and DNA repair genes contributes to neoplastic transformation. The ING (inhibitor of growth) proteins (ING1-ING5) have emerged as a versatile family of growth regulators, phospholipid effectors, histone mark sensors and core components of HDAC1/2 - and several HAT chromatin-modifying complexes. This review will describe the characteristic pathways by which ING family proteins differentially affect the Hallmarks of Cancer and highlight the various epigenetic mechanisms by which they regulate gene expression. Finally, we will discuss their potentials as biomarkers and therapeutic targets in epigenetic treatment strategies.
Collapse
|
48
|
Lee J, Hwang YJ, Kim KY, Kowall NW, Ryu H. Epigenetic mechanisms of neurodegeneration in Huntington's disease. Neurotherapeutics 2013; 10:664-76. [PMID: 24006238 PMCID: PMC3805871 DOI: 10.1007/s13311-013-0206-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD) is an incurable and fatal hereditary neurodegenerative disorder of mid-life onset characterized by chorea, emotional distress, and progressive cognitive decline. HD is caused by an expansion of CAG repeats coding for glutamine (Q) in exon 1 of the huntingtin gene. Recent studies suggest that epigenetic modifications may play a key role in HD pathogenesis. Alterations of the epigenetic "histone code" lead to chromatin remodeling and deregulation of neuronal gene transcription that are prominently linked to HD pathogenesis. Furthermore, specific noncoding RNAs and microRNAs are associated with neuronal damage in HD. In this review, we discuss how DNA methylation, post-translational modifications of histone, and noncoding RNA function are affected and involved in HD pathogenesis. In addition, we summarize the therapeutic effects of histone deacetylase inhibitors and DNA binding drugs on epigenetic modifications and neuropathological sequelae in HD. Our understanding of the role of these epigenetic mechanisms may lead to the identification of novel biological markers and new therapeutic targets to treat HD.
Collapse
Affiliation(s)
- Junghee Lee
- />Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118 USA
- />VA Boston Healthcare System, Boston, MA 02130 USA
| | - Yu Jin Hwang
- />WCU Neurocytomics Group, Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 110-799 South Korea
| | - Ki Yoon Kim
- />WCU Neurocytomics Group, Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 110-799 South Korea
| | - Neil W. Kowall
- />Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118 USA
- />VA Boston Healthcare System, Boston, MA 02130 USA
| | - Hoon Ryu
- />Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118 USA
- />VA Boston Healthcare System, Boston, MA 02130 USA
- />WCU Neurocytomics Group, Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 110-799 South Korea
| |
Collapse
|
49
|
Martínez-Redondo P, Vaquero A. The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer 2013; 4:148-63. [PMID: 24020006 DOI: 10.1177/1947601913483767] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The members of the Sir2 family, or sirtuins, are major regulators of the response to different types of stress. The members of the family have adapted to increasing complexities throughout evolution and have become diversified by increasing their number, specificity, and localization and acquiring novel functions. Sirtuins have been consistently implicated in the cross-talk between the genomic information and environment from the prokaryotes onward. Evidence suggests that in the transition to eukaryotes, histones became one of the basic and most conserved targets of the family, to the extent that in yeast and mammals, sirtuins were originally described as NAD(+)-dependent histone deacetylases and classified as class III histone deacetylases. A growing number of studies have determined that sirtuins also target a wide range of nonhistone proteins. Many of these targets are also directly or indirectly related to chromatin regulation. The number of targets has grown considerably in the last decade but has provoked an ill-founded discussion that neglects the importance of histones as sirtuin targets. In this review, we summarize our knowledge regarding the range of sirtuin targets described to date and discuss the different functional implications of histone and nonhistone targets throughout evolution.
Collapse
Affiliation(s)
- Paloma Martínez-Redondo
- Cancer Epigenetics and Biology Program, Chromatin Biology Laboratory, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | | |
Collapse
|
50
|
Serravallo M, Jagdeo J, Glick SA, Siegel DM, Brody NI. Sirtuins in dermatology: applications for future research and therapeutics. Arch Dermatol Res 2013; 305:269-82. [PMID: 23377138 DOI: 10.1007/s00403-013-1320-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/13/2013] [Accepted: 01/21/2013] [Indexed: 12/31/2022]
Abstract
Sirtuins are a family of seven proteins in humans (SIRT1-SIRT7) that are involved in multiple cellular processes relevant to dermatology. The role of sirtuins in other organ systems is established. However, the importance of these proteins in dermatology is less defined. Recently, sirtuins gained international attention because of their role as "longevity proteins" that may extend and enhance human life. Sirtuins function in the cell via histone deacetylase and/or adenosine diphosphate ribosyltransferase enzymatic activity that target histone and non-histone substrates, including transcription regulators, tumor suppressors, structural proteins, DNA repair proteins, cell signaling proteins, transport proteins, and enzymes. Sirtuins are involved in cellular pathways related to skin structure and function, including aging, ultraviolet-induced photoaging, inflammation, epigenetics, cancer, and a variety of cellular functions including cell cycle, DNA repair and proliferation. This review highlights sirtuin-related cellular pathways, therapeutics and pharmacological targets in atopic dermatitis, bullous dermatoses, collagen vascular disorders, psoriasis, systemic lupus erythematosus, hypertrophic and keloid scars, cutaneous infections, and non-melanoma and melanoma skin cancer. Also discussed is the role of sirtuins in the following genodermatoses: ataxia telangiectasia, Cowden's syndrome, dyskeratosis congenita, Rubenstein-Taybi, Werner syndrome, and xeroderma pigmentosum. The pathophysiology of these inherited diseases is not well understood, and sirtuin-related processes represent potential therapeutic targets for diseases lacking suitable alternative treatments. The goal of this review is to bring attention to the dermatology community, physicians, and scientists, the importance of sirtuins in dermatology and provide a foundation and impetus for future discussion, research and pharmacologic discovery.
Collapse
Affiliation(s)
- Melissa Serravallo
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|