1
|
Lu Y, Wang T, Yan X, Zhang H. Comprehensive assessment of cleavage and polyadenylation specificity factors in hepatocellular carcinoma: Expression, prognostic significance and immune infiltration analysis. Mol Clin Oncol 2025; 22:60. [PMID: 40357165 PMCID: PMC12067038 DOI: 10.3892/mco.2025.2855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Hepatocellular carcinoma (HCC), a prevalent and highly malignant form of liver cancer, poses significant global health challenges. Previous studies have suggested that alterations in cleavage and polyadenylation specificity factors (CPSFs) play a role in the development and prognosis of HCC. Despite these insights, a thorough evaluation of CPSFs' expression levels, prognostic value and association with immune infiltration in HCC is lacking. To address this gap, the present study conducted a systematic analysis leveraging multiple bioinformatics databases to elucidate the functions of CPSFs in HCC. To comprehensively investigate the role of CPSFs in HCC, a diverse array of bioinformatics tools and publicly accessible datasets were utilized. The present study investigated the gene expression patterns, clinicopathological correlations, and diagnostic and prognostic capabilities of CPSFs. Furthermore, genetic variations, co-expression networks and the role of CPSFs in immune cell infiltration and tumor-related pathways were examined. To elucidate the biological functions of CPSF-associated genes, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were integrated. For experimental validation, reverse transcription-quantitative polymerase chain reaction was used to assess gene expression and the Cell Counting Kit-8 assay was utilized to evaluate the effects of CPSFs on HCC cell proliferation. Our analysis offers valuable insights into the molecular mechanisms through which CPSFs contribute to HCC progression. The current findings suggest that CPSFs, particularly CPSF1, CPSF3, CPSF4 and CPSF6, exhibit significant transcriptional upregulation in HCC, with their overexpression closely tied to advanced tumor progression. These CPSFs showed diagnostic and prognostic significance in HCC. Additionally, CPSF expression was associated with immune cell infiltration and activation status. Functional enrichment analysis indicated that CPSF1, CPSF3, CPSF4, CPSF6 and CPSF7 are involved in cancer-related signaling pathways, highlighting their role in tumor immune modulation. Experimental validation demonstrated that the expression of CPSF3 and CPSF7 was notably greater in the HCC cell lines than in the normal liver cells. Knockdown of CPSF3 and CPSF7 inhibited HCC cell proliferation, suggesting their potential oncogenic roles. This research offers an in-depth evaluation of the expression patterns, prognostic relevance and immune modulation-related functions of CPSFs in HCC. The observed upregulation of CPSFs in HCC, coupled with their association with poor clinical outcomes and immune system activation, highlights their potential as prognostic indicators. Nonetheless, additional experimental studies are needed to fully elucidate the molecular mechanisms and clinical significance of CPSFs in HCC.
Collapse
Affiliation(s)
- Yuxiang Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ting Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiuli Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
2
|
Wang H, Mei Q, Mei P. Comprehensive analysis of the role of Caspases in glioma. Brain Res 2025; 1855:149529. [PMID: 40032044 DOI: 10.1016/j.brainres.2025.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Caspases (CASPs) are attractive targets for cancer therapy. Many prognostic models based on gene signatures include genes from the CASPs family in diffuse glioma. CASP3, CASP4 and CASP6 in glioma have been studied individually. However, specialized comprehensive analysis of the roles of CASPs family in glioma is lacking. Therefore, this study utilized bioinformatics methods to investigate this issue. CASP1-10 expressionlevels were significantly up-regulated in LGG and GBM and glioma, and varied significantly across different clinical subgroups of glioma and LGG and various cell types, and most of CASP1-10 members showed significant differences in recurrence status of LGG. 10 signatures (CASP1-10) were associated with poor overall survival (OS) in glioma and LGG and GBM. However, pan-cancer survival analysis showed that CASP1-10 were associated with the prognosis of LGG, but not GBM. CASP1-10 were related to poor prognosis of glioma and LGG, except for CASP9, which was the opposite of a protective factor. CASP1-10 were independent prognostic factors for OS in glioma and LGG, except for CASP5, and also for recurrence-free survival (RFS) in LGG. Most of CASP1-10 were also independent prognostic factors for disease-specific survival (DSS) and progression-free interval (PFI) and had diagnostic value in glioma and LGG. Genetic alterations of CASP1-10 genes set were associated with poor prognosis in LGG. CASP1-10 were involved in immune infiltration and programmed cell death in glioma and LGG and GBM, and might promote the apoptosis of immune cells. Compared to GBM, CASP1-10 had a more significant impact on the prognosis, cancer-related pathways, and immune infiltration in LGG, indicating that CASP1-10 might play important roles in the recurrence and progression of LGG, and might be promising therapeutic targets for LGG. Therefore, it is speculated that natural caspase inhibitor p35 may be a promising drug for the treatment of glioma, especially for LGG.
Collapse
Affiliation(s)
- Heming Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou 570228, China
| | - Qunfang Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengying Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Chen Q, Wu Z, Ma Y. Transcriptomics-based exploration of ubiquitination-related biomarkers and potential molecular mechanisms in laryngeal squamous cell carcinoma. BMC Med Genomics 2025; 18:84. [PMID: 40355841 PMCID: PMC12070575 DOI: 10.1186/s12920-025-02148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND One of the most common and prevalent cancers is laryngeal squamous cell carcinoma (LSCC), which poses a great threat to the life and health of the patient. Nonetheless, it has been demonstrated that ubiquitination is crucial for the development and course of LSCC. Therefore, it is particularly important to identify biomarkers for ubiquitination-related genes (UbRGs) in LSCC. METHODS Differentially expressed genes (DEGs) in the LSCC versus controls were obtained by differential expression analysis. Also, key modular genes associated with LSCC were obtained using weighted gene co-expression network analysis (WGCNA). Next, DEGs, key module genes, and UbRGs were taken to intersect to obtain candidate genes. And then machine algorithms were to screen potential biomarkers, further their diagnostic value were analyzed and validated. Then, therapeutic agents for biomarkers were predict. In addition, the regulatory networks of the biomarkers were mapped. The expression levels of biomarkers were detected in clinical samples using reverse transcription-quantitative PCR (RT-qPCR). RESULTS A total of eight candidate genes were acquired by the overlap 1,911 DEGs, the key modular genes of WGCNA, and 1,393 UbRGs. A sum of four biomarkers (WDR54, KAT2B, NBEAL2 and LNX1) were identified by two machine learning, then these four biomarkers were validated in GSE127165 and the expression trend was consistent with TCGA-LSCC, they were recorded as biomarkers. Moreover, the accuracy of the biomarkers in predicting clinical aspects of LSCC was confirmed by the receiver operating characteristic (ROC) curves. Subsequently, cancers such as malignant neoplasms, colorectal cancers, tumors, and primary malignant neoplasms were significantly associated with the biomarkers, which further suggests that these four biomarkers were strongly associated with cancer. Meanwhile, the drugs garcinol, cocaine, and triazolam, among others, used for LSCC treatment were predicted. Finally, transcription factors (TFs) (BRD4, MYC, AR, and CTCF) were predicted to regulate the biomarkers. RT-qPCR assays illustrated that the expression trends of KAT2B, LNX1 and NBEAL2 remained consistent with the dataset. CONCLUSION The identification of four biomarkers (WDR54, KAT2B, NBEAL2 and LNX1) associated with UbRGs could ultimately serve as a predictive clinical diagnosis of LSCC and provide insight into the molecular mechanisms of LSCC.
Collapse
Affiliation(s)
- Qiu Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
| | - Zhimin Wu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Yifei Ma
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
4
|
Chalepaki AM, Gkoris M, Chondrou I, Kourti M, Georgakopoulos-Soares I, Zaravinos A. A multi-omics analysis of effector and resting treg cells in pan-cancer. Comput Biol Med 2025; 189:110021. [PMID: 40088713 DOI: 10.1016/j.compbiomed.2025.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Regulatory T cells (Tregs) are critical for maintaining the stability of the immune system and facilitating tumor escape through various mechanisms. Resting T cells are involved in cell-mediated immunity and remain in a resting state until stimulated, while effector T cells promote immune responses. Here, we investigated the roles of two gene signatures, one for resting Tregs (FOXP3 and IL2RA) and another for effector Tregs (FOXP3, CTLA-4, CCR8 and TNFRSF9) in pan-cancer. Using data from The Cancer Genome Atlas (TCGA), The Cancer Proteome Atlas (TCPA) and Gene Expression Omnibus (GEO), we focused on the expression profile of the two signatures, the existence of single nucleotide variants (SNVs) and copy number variants (CNVs), methylation, infiltration of immune cells in the tumor and sensitivity to different drugs. Our analysis revealed that both signatures are differentially expressed across different cancer types, and correlate with patient survival. Furthermore, both types of Tregs influence important pathways in cancer development and progression, like apoptosis, epithelial-to-mesenchymal transition (EMT) and the DNA damage pathway. Moreover, a positive correlation was highlighted between the expression of gene markers in both resting and effector Tregs and immune cell infiltration in adrenocortical carcinoma, while mutations in both signatures correlated with enrichment of specific immune cells, mainly in skin melanoma and endometrial cancer. In addition, we reveal the existence of widespread CNVs and hypomethylation affecting both Treg signatures in most cancer types. Last, we identified a few correlations between the expression of CCR8 and TNFRSF9 and sensitivity to several drugs, including COL-3, Chlorambucil and GSK1070916, in pan-cancer. Overall, these findings highlight new evidence that both Treg signatures are crucial regulators of cancer progression, providing potential clinical outcomes for cancer therapy.
Collapse
Affiliation(s)
- Anna-Maria Chalepaki
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Marios Gkoris
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Irene Chondrou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Malamati Kourti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| |
Collapse
|
5
|
Xu P, Zhang Q, Zhai J, Chen P, Deng X, Miao L, Zhang X. APOA1 promotes tumor proliferation and migration and may be a potential pan-cancer biomarker and immunotherapy target. Transl Oncol 2025; 55:102344. [PMID: 40088749 PMCID: PMC11957500 DOI: 10.1016/j.tranon.2025.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/26/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025] Open
Abstract
INTRODUCTION Aberrant expression of APOA1 has been reported in various cancers. However, a comprehensive investigation into its role in cancer is currently lacking. METHODS Online websites and databases such as TIMER2.0, GEPIA2, UALCAN and GSCA were used to investigate the relationship between APOA1 expression and prognostic value, immune infiltration, gene mutations, and drug sensitivity. In addition, in vitro CCK-8 and transwell migration and invasion assays were performed to determine the biological functions of APOA1 in gastric cancer (GC) cells. RESULTS The pan-cancer analysis showed that APOA1 is differentially expressed in different cancer types and significantly correlated with tumor stages. A survival analysis revealed that APOA1 predicted a poor prognosis in ACC, KIRC, STAD, and a good prognosis in BRCA, OV, and UCEC. We also found that the most common genetic alteration type of APOA1 was deep deletion, and the DNA methylation level of APOA1 decreased in various cancers. Furthermore, APOA1 expression negatively correlated with immune cells infiltration in cancers, including CD4+ T, CD8+ T, and myeloid dendritic cells. For STAD, GO/KEGG enrichment analysis revealed the possible involvement of APOA1 in cholesterol metabolism and PPAR signaling pathway. Finally, we further performed in vitro experiments to verify that overexpression of APOA1 could promote the proliferation, migration and invasion of GC cells. CONCLUSION The results of this study indicate that APOA1 is a potential tumor prognostic biomarker and immunotherapy target. In addition, APOA1 plays an essential role in the proliferation, migration, and invasion of GC cells by vitro experiments.
Collapse
Affiliation(s)
- Peiyi Xu
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Qiuyan Zhang
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jing Zhai
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Pu Chen
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xueting Deng
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Lin Miao
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiuhua Zhang
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Gong W, Wen S, Chen Y, Wu F, Yang M, Sun P, Guo X, Li M, Chen D, Zhao H, Wang L. Deciphering ERR family genes as prognostic and immunological biomarkers through pan-cancer analysis with validation in gallbladder cancer. Front Oncol 2025; 15:1525635. [PMID: 40356747 PMCID: PMC12066295 DOI: 10.3389/fonc.2025.1525635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Background The estrogen-related receptor family genes (ERRs), including ESRRA, ESRRB, and ESRRG, have been implicated in a few tumors, exhibiting distinct roles through diverse mechanisms. The purpose of our research is to explore the commonalities and underlying mechanism of ERRs in malignancies from a pan-cancer perspective and to validate the role and mechanisms of ESRRG in gallbladder cancer (GBC). Methods We leveraged public databases such as TCGA and GTEx to systematically investigate the potential functions of ERRs in malignancies. ESRRG expression was analyzed through immunohistochemical staining in gallbladder cancer and cholecystitis tissues. For functional validation, ESRRG was knocked down in GBC cell lines, followed by CCK-8, colony formation, scratch wound healing, Transwell migration, and invasion assays. Western blot, qPCR, and immunofluorescence were performed to evaluate the relationship between ESRRG, PD-L1, and CD8+ T cells. Results Compared to adjacent normal tissues, ESRRA is overexpressed in most tumors, ESRRB is generally underexpressed, and ESRRG exhibits significant expression alterations across various tumors. All three ERRs demonstrate significant prognostic value across different cancers. Notably, the strong associations of ERRs with key immunological features-stromal scores, immune cell infiltration, microsatellite instability (MSI), and tumor mutational burden (TMB)-suggest their involvement in immune evasion and their potential utility in guiding immunotherapy strategies. All three ERRs display a positive correlation with advanced tumor stages in cholangiocarcinoma (CHOL). Specifically, in CHOL, ESRRG expression is closely associated with lymphatic metastasis, poorer overall survival, reduced immune infiltration, elevated PD-L1 expression, epithelial-mesenchymal transition (EMT), and DNA damage response. In GBC tissues, we subsequently confirmed that ESRRG expression positively correlates with pathological staging and PD-L1 expression, while negatively correlating with prognosis and CD8+ T cell infiltration. Knockdown of ESRRG in gallbladder cancer cells results in decreased proliferation, migration, and invasion. Moreover, the expression of PD-L1, MSH2, BRCA1, MMP2, and VIMENTIN decreased with ESRRG knockdown. Conclusion Our pan-cancer analysis reveals ERRs as critical regulators of tumor immunity and progression, with ESRRG emerging as a key oncogenic driver in GBC. The mechanistic link between ESRRG and PD-L1/EMT suggests its potential as a therapeutic target to enhance immunotherapy efficacy. These findings underscore the need for tissue-specific targeting strategies for ERR family members in precision oncology.
Collapse
Affiliation(s)
- Wanwan Gong
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Sijia Wen
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fan Wu
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mengmeng Yang
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Ping Sun
- Department of Pathology, Jiangnan University Medical Center, Wuxi, China
| | - Xingmei Guo
- Department of Pathology, Jiangnan University Medical Center, Wuxi, China
| | - Meiqin Li
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Hui Zhao
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Lei Wang
- Department of Hepatopancreatobiliary Surgery, Jiangnan University Medical Center, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Department of Hepatopancreatobiliary Surgery, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
7
|
Zhang N, Qin X, Liu J, Han K, Kang M, Zhu Z, Zhang D, Zhong F. Pan-cancer analysis and validation show GTF2E2's diagnostic, prognostic, and immunological roles in regulating ferroptosis in endometrial cancer. PLoS One 2025; 20:e0321983. [PMID: 40267151 PMCID: PMC12017540 DOI: 10.1371/journal.pone.0321983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Transcription initiation factor IIE subunit beta (GTF2E2) is a crucial component of the RNA polymerase II transcription initiation complex. There is a lack of more detailed research on the biological function of GTF2E2 in pan-cancer. METHODS We conducted a comprehensive pan-cancer analysis using data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) project. Employing a multi-pronged approach with tools including R, Cytoscape, TISIDB, cBioPortal, STRING, GSCALite, and CancerSEA, we investigated GTF2E2's expression patterns, prognostic value, mutational landscape, functional enrichment, and immunological associations across 33 cancer types. Besides, we further validated the bioinformatic results through in vitro experiments in Uterine corpus endometrial carcinoma (UCEC), including western blotting (WB), cell proliferation assays and transwell. DCFH-DA, C11-BODIPY 581/591 and FeRhoNox-1 probes were performed to identify ferroptosis levels in vitro. RESULTS GTF2E2 expression was significantly elevated in most cancers compared to normal tissues, with notable diagnostic potential (AUC > 0.7) in 20 cancer types. GTF2E2 expression varied across molecular and immune subtypes and correlated with tumor stage and patient age in several cancers. Functional enrichment analyses highlighted GTF2E2's involvement in key cancer-related and immunological pathways. Notably, GTF2E2 promoted UCEC progression in vitro, and knockdown of GTF2E2 significantly inhibited the proliferation, migration and invasion of UCEC cells. Compared with the control group, GPX4 expression was down-regulated and ACSL4 expression was up-regulated in the GTF2E2-knockdown group. Knockdown of GTF2E2 also increased the intracellular levels of Fe2+, lipid peroxides (LPOs) and reactive oxygen species (ROS). CONCLUSIONS Our findings underscore GTF2E2's multifaceted roles in cancer biology, highlighting its potential as a diagnostic biomarker, prognostic indicator, and immunotherapeutic target across various malignancies. This investigation has the potential to contribute significantly to a deeper understanding of the substantial involvement of GTF2E2 in human malignancies, particularly UCEC.
Collapse
Affiliation(s)
- Nie Zhang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
- Graduate School of Anhui Medical University, Anhui, China
- Key Laboratory of Gametes and Abnormal Reproductive Tract of National Health Commission, Anhui Medical University, Anhui, China
| | - Xuejin Qin
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Jingjing Liu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Ke Han
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Manman Kang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Zhengchun Zhu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Di Zhang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
- Graduate School of Anhui Medical University, Anhui, China
- Key Laboratory of Gametes and Abnormal Reproductive Tract of National Health Commission, Anhui Medical University, Anhui, China
| |
Collapse
|
8
|
Li Y, Ding T, Zhang T, Liu S, Wang J, Zhou X, Guo Z, He Q, Zhang S. Leveraging Diverse Cell-Death Patterns to Decipher the Interactive Relation of Unfavorable Outcome and Tumor Microenvironment in Breast Cancer. Bioengineering (Basel) 2025; 12:420. [PMID: 40281780 PMCID: PMC12024675 DOI: 10.3390/bioengineering12040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Programmed cell death (PCD) dynamically influences breast cancer (BC) prognosis through interactions with the tumor microenvironment (TME). We investigated 13 PCD patterns to decipher their prognostic impact and mechanistic links to TME-driven outcomes. Our study aimed to explore the complex mechanisms underlying these interactions and establish a prognostic prediction model for breast cancer. METHODS Using TCGA and METABRIC datasets, we integrated single-sample gene set enrichment analysis (ssGSEA), weighted gene co-expression network analysis (WGCNA), and Least Absolute Shrinkage and Selection Operator (LASSO) to explore PCD-TME interactions. Multi-dimensional analyses included immune infiltration, genomic heterogeneity, and functional pathway enrichment. RESULTS Our results indicated that high apoptosis and pyroptosis activity, along with low autophagy, correlated with favorable prognosis, which was driven by enhanced anti-tumor immunity, including more M1 macrophage polarization and activated CD8+ T cells in TME. PCD-related genes could promote tumor metastasis and poor prognosis via VEGF/HIF-1/MAPK signaling and immune response, including Th1/Th2 cell differentiation, while new tumor event occurrences (metastasis/secondary cancers) were linked to specific clinical features and gene mutation spectrums, including TP53/CDH1 mutations and genomic instability. We constructed a six-gene LASSO model (BCAP31, BMF, GLUL, NFKBIA, PARP3, PROM2) to predict prognosis and identify high-risk BC patients (for five-year survival, AUC = 0.76 in TCGA; 0.74 in METABRIC). Therein, the high-risk subtype patients demonstrated a poorer prognosis, also characterized by lower microenvironment matrix and downregulated immunocyte infiltration. These six gene signatures also showed prognostic value with significant differential expression in gene and protein levels of BC samples. CONCLUSION Our study provided a comprehensive landscape of the cancer survival difference and related PCD-TME interaction axis and highlighted that high-apoptosis/pyroptosis states caused favorable prognosis, underlying mechanisms closely related with the TME where anti-tumor immunity would be beneficial for patient prognosis. These findings highlighted the model's potential for risk stratification in BC.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Ting Ding
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Tong Zhang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Shuangyu Liu
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Jinhua Wang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Zeqi Guo
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
9
|
Paolì A, Sadeghi S, Battistello G, Carpanese V, Checchetto V. In silico pan-cancer analysis of VRAC subunits and their prognostic roles in human cancers. Sci Rep 2025; 15:12388. [PMID: 40216864 PMCID: PMC11992229 DOI: 10.1038/s41598-025-97078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
The study focuses on the VRAC channel and its significant roles in cancer development. It addresses a research gap by conducting a pan-cancer analysis with multi-omics bioinformatics tools, integrating data from the Human Protein Atlas (HPA) and Genotype-Tissue Expression (GTEx) datasets to examine mRNA expression patterns of its Leucine Rich Repeat Containing 8 (LRRC8) subunits in various tissues and cancers. The study links variations in LRRC8s expression with patient outcomes and includes analyses of DNA and RNA methylation. The study reveals significant correlations between LRRC8s expression and immune cell infiltration, as well as a positive association with cancer-associated fibroblasts and key immune regulators such as major histocompatibility complex (MHCs) and chemokines. Furthermore, the research suggests that LRRC8s are involved in cancer-signalling pathways, which may offer new therapeutic targets. Additionally, a drug sensitivity analysis shows that LRRC8 subunits affect drug responses differently, supporting the use of personalized therapeutic strategies. In conclusion, the study emphasizes the significance of VRAC subunits in cancer biology and suggests their potential as biomarkers and targets in cancer immunotherapy and personalized medicine.
Collapse
Affiliation(s)
| | - Soha Sadeghi
- Department of Biology, University of Padova, Padua, Italy
| | | | | | | |
Collapse
|
10
|
Techa-Ay S, Watcharadetwittaya S, Deenonpoe R, Sa-Ngiamwibool P, Panwoon C, Loilome W, Klanrit P, Techasen A, Chamgramol Y, Suksawat M, Armartmuntree N, O'Connor T, Saya H, Thanee M. Identifying a unique chromosomal pattern to predict the gemcitabine response in patients with cholangiocarcinoma. Sci Rep 2025; 15:11984. [PMID: 40200077 PMCID: PMC11978821 DOI: 10.1038/s41598-025-96442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
Cholangiocarcinoma (CCA) is an epithelial bile duct cancer frequently found at an advanced stage, leading to poor response to current therapies. Although gemcitabine (GEM) and cisplatin (CIS) are the current gold-standard for treating unresectable CCA, GEM resistance often occurs. To predict the response to GEM, we evaluated chromosomal aberrations using a chromosome microarray, and their association with GEM response by histoculture drug response assay. Our findings revealed principal component analysis and orthogonal partial-least square discriminant analysis cross validated score plot between response and non-response groups were different. Different signature patterns of chromosomes between response and non-response groups analyzed by heatmap analysis identified 34 regions of 15 chromosomes. An increased signal in responders and a decreased signal in non-responders were found in regions 4q32.1, 5q12.3, 10q21.3, 11p11.2, 11q14.2, 16p11.2, 17q22, 21q21.3 and 22q12.3. In contrast, a high signal in non-responders and low signal in responders were seen in regions 2q37.2, 11q14.1, 16q22.3 and 16q23.3. High signal of CDH13 and TENM4 were demonstrated in GEM non-response, while a high CWC27 signal was noted in GEM response. This signature pattern could provide the knowledge to improve a predictive biomarker for GEM response, benefitting for individual CCA patient management and chemotherapeutic selection.
Collapse
Affiliation(s)
- Sutheemon Techa-Ay
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sasithorn Watcharadetwittaya
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Raksawan Deenonpoe
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Prakasit Sa-Ngiamwibool
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chanita Panwoon
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, Thailand
| | - Yaovalux Chamgramol
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University National Phenome Institute, Khon Kaen, Thailand
- International College, Khon Kaen University, Khon Kaen, Thailand
| | - Napat Armartmuntree
- Department of Medical Science, Mahidol University, Amnatcharoen Campus, Amnatcharoen, Thailand
| | - Thomas O'Connor
- School of Physiology, Pharmacology and Neuroscience, Bristol University, Bristol, BS81 TD, UK
| | - Hideyuki Saya
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Japan
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Malinee Thanee
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
11
|
Ahmadi M, Bazrgar M, Akhavan S, Fathi M, Mousavi P, Ghafouri-Fard S. HOXB and HOXD genes contribute to the carcinogenic processes in glioblastoma: evidence form a bioinformatics analysis. Cancer Treat Res Commun 2025; 43:100923. [PMID: 40209540 DOI: 10.1016/j.ctarc.2025.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/11/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE Glioblastoma is an aggressive cancer that affects the brain. The Homeobox B and D (HOXB/D) family has been linked to tumor progression, but their exact mechanism remains unclear. MATERIAL AND METHODS This study aimed to identify critical HOXB/D family members associated with glioblastoma and analyze their expression in glioblastoma using the GEPIA2 database. The study also assessed genetic alterations, their related transcription factors, miRNAs, gene-gene interactions, and correlations between their expression and immune infiltration using databases like cBioPortal, miRNet, GeneMANIA, and GSCA. RESULTS We showed that HOXB2/3/7 and HOXD3/8/9/10/11/13 expression was higher in glioblastoma samples compared to normal samples. Increased expression of HOXB2/5/8/9/13 was associated with negative effects on overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS), while overexpression of HOXB2/5/9 was linked to inferior PFS. Heightened levels of HOXD4/9, HOXD9/11, and HOXD9/10/11 expression in glioblastoma patients were correlated with unfavorable outcomes in terms of OS, DSS, and PFS. HOXB/D genes were related to 20 different genes, mainly enriched in the Activation of HOX Genes During Differentiation R-HSA-5619507 pathway. Immune cells were linked to specific genes in glioblastoma, with HOXB2 and HOXD3 expression potentially causing resistance to Methotrexate and Z-LLNle-CHO, HOXB7 indicating sensitivity to Lapatinib but resistance to 18 other small molecules, HOXD8 leading to resistance against 5 small molecules, and upregulated HOXD9, HOXD10, and HOXD13 suggesting sensitivity to 2, 4, and 9 small molecules, respectively. CONCLUSION Taken together, we showed contribution of HOXB and HOXD genes in the carcinogenic processes and proposed them as possible targets for treatment options.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Akhavan
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Mohadeseh Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Yang T, Sun K, Peng F, Hao Y, Bai Q, Yu H, Xia Q. FADS1, a lipid metabolism-related diagnostic biomarker in KIRC. Discov Oncol 2025; 16:475. [PMID: 40189725 PMCID: PMC11973044 DOI: 10.1007/s12672-025-02255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC), the predominant subtype of renal cell carcinoma, poses significant health risks. The rapid progression and resistance to targeted therapies highlight the need for new tumor markers and therapeutic targets. FADS1, part of the fatty acid desaturase family, regulates fatty acid synthesis and participates in lipid metabolism. However, its role in KIRC is not well-studied. METHODS The study utilized bioinformatics analysis through the TCGA database and other platforms to identify FADS1 expression levels in KIRC. Twenty pairs of KIRC clinical tissue samples were used for qPCR verification. Meanwhile, eight pairs of KIRC clinical tissue samples were used for Western blot verification. Conduct statistical evaluation, including Wilcoxon rank sum test and Kaplan-Meier analysis, to explore the correlation between FADS1 expression and clinical pathological features and immune infiltration. In addition, in vitro experiments were conducted to confirm the biological function of FADS1. RESULTS The findings indicated that FADS1 is highly expressed in KIRC and contributes to tumor development. FADS1's role in lipid metabolism leads to lipid accumulation within tumor cells, which may influence the occurrence and progression of KIRC. TIMER analysis revealed a correlation between FADS1 expression and the infiltration levels of various immune cells, indicating its potential role in modulating immune characteristics. CONCLUSION FADS1 could serve as a prognostic biomarker associated with immunity in KIRC, highlighting its potential as a diagnostic and therapeutic target. The study underscores the importance of further research into FADS1's role in lipid metabolism and immune infiltration to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Tianmin Yang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Kai Sun
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Fan Peng
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yuhu Hao
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Qingjie Bai
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Hanpu Yu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China.
| |
Collapse
|
13
|
Xu Q, Ma L, Streuer A, Altrock E, Schmitt N, Rapp F, Klär A, Nowak V, Obländer J, Weimer N, Palme I, Göl M, Zhu HH, Hofmann WK, Nowak D, Riabov V. Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancer. Cell Commun Signal 2025; 23:169. [PMID: 40186284 PMCID: PMC11971788 DOI: 10.1186/s12964-025-02176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Lysyl oxidases (LOX/LOXL1-4) are crucial for cancer progression, yet their transcriptional regulation, potential therapeutic targeting, prognostic value and involvement in immune regulation remain poorly understood. This study comprehensively evaluates LOX/LOXL expression in cancer and highlights cancer types where targeting these enzymes and developing LOX/LOXL-based prognostic models could have significant clinical relevance. METHODS We assessed the association of LOX/LOXL expression with survival and drug sensitivity via analyzing public datasets (including bulk and single-cell RNA sequencing data of six datasets from Gene Expression Omnibus (GEO), Chinese Glioma Genome Atlas (CGGA) and Cancer Genome Atlas Program (TCGA)). We performed comprehensive machine learning-based bioinformatics analyses, including unsupervised consensus clustering, a total of 10 machine-learning algorithms for prognostic prediction and the Connectivity map tool for drug sensitivity prediction. RESULTS The clinical significance of the LOX/LOXL family was evaluated across 33 cancer types. Overexpression of LOX/LOXL showed a strong correlation with tumor progression and poor survival, particularly in glioma. Therefore, we developed a novel prognostic model for glioma by integrating LOX/LOXL expression and its co-expressed genes. This model was highly predictive for overall survival in glioma patients, indicating significant clinical utility in prognostic assessment. Furthermore, our analysis uncovered a distinct LOXL2-overexpressing malignant cell population in recurrent glioma, characterized by activation of collagen, laminin, and semaphorin-3 pathways, along with enhanced epithelial-mesenchymal transition. Apart from glioma, our data revealed the role of LOXL3 overexpression in macrophages and in predicting the response to immune checkpoint blockade in bladder and renal cancers. Given the pro-tumor role of LOX/LOXL genes in most analyzed cancers, we identified potential therapeutic compounds, such as the VEGFR inhibitor cediranib, to target pan-LOX/LOXL overexpression in cancer. CONCLUSIONS Our study provides novel insights into the potential value of LOX/LOXL in cancer pathogenesis and treatment, and particularly its prognostic significance in glioma.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany.
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Ling Ma
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Felicitas Rapp
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Alessa Klär
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Melda Göl
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Hong-Hu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68169, Germany
| |
Collapse
|
14
|
Razghonova Y, Mika A, Czapiewska M, Stanczak A, Zygowska P, Wydra DG, Sledzinski T, Abacjew-Chmylko A. Endometrial Cancer Is Associated with Altered Metabolism and Composition of Fatty Acids. Int J Mol Sci 2025; 26:3322. [PMID: 40244177 PMCID: PMC11989365 DOI: 10.3390/ijms26073322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Endometrial cancer (EC) is a complex gynecologic malignancy that requires a deeper understanding of its molecular basis to improve therapeutic strategies. In this study, we investigated the role of fatty acid (FA) reprogramming in the progression of EC. We analyzed FA profiles to identify the stage-specific changes and gene expression profiles of key enzymes involved in FA synthesis, desaturation, elongation, transport, and oxidation at different stages of EC. Our results show that EC tissues have lower levels of saturated FA and branched-chain FA, higher levels of very long-chain FA, n-3 polyunsaturated FA (PUFA), and monounsaturated FA, with the exception of myristoleic acid. The differences in n-6 PUFA were inconsistent. Gene expression analysis revealed the upregulation of key enzymes controlling de novo FA synthesis, including ACACA, FASN, SCD1, and ELOVL1. In contrast, the expression of genes related to FA transport in the cell and β-oxidation was downregulated. The expression of some genes related to PUFA metabolism was upregulated, while others were downregulated. These results demonstrate a reprogramming of lipid metabolism in EC tissues and suggest potential targets for novel therapeutic interventions in EC.
Collapse
Affiliation(s)
- Yelyzaveta Razghonova
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (Y.R.); (M.C.); (T.S.)
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (Y.R.); (M.C.); (T.S.)
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Monika Czapiewska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (Y.R.); (M.C.); (T.S.)
| | - Agata Stanczak
- Department of Obstetrics and Gynecology, Gynecological Oncology and Endocrinological Gynecology, University Clinical Center, 80-952 Gdansk, Poland; (A.S.); (P.Z.); (D.G.W.)
| | - Paulina Zygowska
- Department of Obstetrics and Gynecology, Gynecological Oncology and Endocrinological Gynecology, University Clinical Center, 80-952 Gdansk, Poland; (A.S.); (P.Z.); (D.G.W.)
| | - Dariusz Grzegorz Wydra
- Department of Obstetrics and Gynecology, Gynecological Oncology and Endocrinological Gynecology, University Clinical Center, 80-952 Gdansk, Poland; (A.S.); (P.Z.); (D.G.W.)
- Department of Obstetrics and Gynaecology and Gynecological Oncology and Endocrinological Gynecology, Medical University of Gdansk, 80-952 Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (Y.R.); (M.C.); (T.S.)
| | - Anna Abacjew-Chmylko
- Department of Obstetrics and Gynecology, Gynecological Oncology and Endocrinological Gynecology, University Clinical Center, 80-952 Gdansk, Poland; (A.S.); (P.Z.); (D.G.W.)
- Department of Obstetrics and Gynaecology and Gynecological Oncology and Endocrinological Gynecology, Medical University of Gdansk, 80-952 Gdansk, Poland
| |
Collapse
|
15
|
Habibipour L, Sadeghi M, Raghibi A, Sanadgol N, Mohajeri Khorasani A, Mousavi P. The NLRP1 Emerges as a Promising Therapeutic Target and Prognostic Biomarker Across Multiple Cancer Types: A Comprehensive Pan-Cancer Analysis. Cancer Med 2025; 14:e70836. [PMID: 40237399 PMCID: PMC12001265 DOI: 10.1002/cam4.70836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
INTRODUCTION Nod-like receptor family pyrin domain containing 1 (NLRP1) serves as the central component of the inflammasome complex and has emerged as a potential contributor to cancer development. Despite accumulating evidence, a comprehensive assessment of NLRP1 across various cancer types has yet to be undertaken. METHODS Several databases have evaluated NLRP1 expression across various cancer types in The Cancer Genome Atlas (TCGA). Additionally, studies have investigated the correlation between NLRP1 and various survival metrics, infiltration of cancer-associated fibroblasts, genetic alterations, drug sensitivity, and promoter methylation. Furthermore, research has explored the potential roles of NLRP1 and its interactions with other proteins. RESULTS Our analysis revealed decreased expression of NLRP1 in BLCA, BRCA, KICH, LUAD, LUSC, PRAD, and UCEC tumor tissues compared to normal tissues. We identified a significant correlation between NLRP1 expression and various cancer survival parameters, genetic mutations, and immune infiltration of cancer-associated fibroblasts. Furthermore, we observed that NLRP1 expression is regulated by promoter DNA methylation in ESCA. Abnormal expression of NLRP1 was associated with decreased sensitivity to multiple anti-tumor drugs and small compounds. NLRP1 was found to be involved in pathways associated with T cell receptors and chemokines. CONCLUSIONS Reduced NLRP1 expression contributes to cancer progression and holds potential as a crucial biomolecular marker for diagnostic, prognostic, and personalized therapeutic interventions across different malignancies.
Collapse
Affiliation(s)
- Leila Habibipour
- Molecular Medicine Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Mahboubeh Sadeghi
- Molecular Medicine Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
- Student Research CommitteeHormozgan University of Medical SciencesBandar AbbasIran
| | - Alireza Raghibi
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Nima Sanadgol
- Institute of NeuroanatomyRWTH University Hospital AachenAachenGermany
| | - Amirhossein Mohajeri Khorasani
- Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| |
Collapse
|
16
|
Zhong Y, Zhang W, Zheng C, Wu H, Luo J, Yuan Z, Zhang H, Wang C, Feng H, Wang M, Zhang Q, Ju H, Wang G. Multi-omic analyses reveal PTPN6's impact on tumor immunity across various cancers. Sci Rep 2025; 15:11025. [PMID: 40164665 PMCID: PMC11958644 DOI: 10.1038/s41598-025-96302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
Protein Tyrosine Phosphatase Non-Receptor Type 6 (PTPN6) plays a crucial regulatory role in cellular processes and has been implicated in oncogenesis. This pan-cancer analysis aimed to elucidate PTPN6's involvement across various cancer types, with a particular emphasis on its association with tumor immunity. We analyzed PTPN6 expression data from open access databases using various statistical techniques, including survival analysis, genetic heterogeneity analysis, immune profiling, single-cell analysis, drug sensitivity analysis, and protein interaction analysis. We also conducted in vitro experiments utilizing colorectal cancer cell lines to validate PTPN6's functional role. PTPN6 exhibited distinct expression patterns across cancers, and its prognostic significance was apparent in several cancer types, particularly in glioblastoma, sarcoma, and melanoma. We observed correlations between PTPN6 and immune genes/cell infiltration in these cancers, suggesting a potential role in modulating the tumor immune microenvironment. Single-cell analysis revealed that PTPN6 is predominantly localized in macrophages, B cells, and dendritic cells within the tumor microenvironment, implying its involvement in regulating immune cell function. Enrichment analysis highlighted PTPN6's role in immune-related pathways. Drug sensitivity analysis identified specific drugs, including PAC-1, SNX-2112, BELINOSTAT, VORINOSTAT, TPCA-1, and PHA-893,888, whose efficacy may be influenced by PTPN6 expression. Knocking down PTPN6 expression inhibited the proliferation and migration of colorectal cancer cells in vitro, confirming its oncogenic role in this cancer type. This pan-cancer analysis establishes PTPN6's multifaceted influence on tumor immunity and its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuchen Zhong
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, People's Republic of China
- Department of Colorectal Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, People's Republic of China
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Weiyuan Zhang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Chaojing Zheng
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, People's Republic of China
- Department of Colorectal Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, People's Republic of China
| | - Hongyu Wu
- Department of Colorectal Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Luo
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, People's Republic of China
- Department of Colorectal Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, People's Republic of China
| | - Ziming Yuan
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Hao Zhang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Chunlin Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Haiyang Feng
- Department of Colorectal Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, People's Republic of China
| | - Meng Wang
- Department of Colorectal Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, People's Republic of China
| | - Qian Zhang
- Department of Colorectal Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, People's Republic of China.
| | - Haixing Ju
- Department of Colorectal Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, People's Republic of China.
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, People's Republic of China.
| |
Collapse
|
17
|
Liao S, Zhang X, Chen L, Zhang J, Lu W, Rao M, Zhang Y, Ye Z, Ivanova D, Li F, Chen X, Wang Y, Song A, Xie B, Wang M. KRT14 is a promising prognostic biomarker of breast cancer related to immune infiltration. Mol Immunol 2025; 180:55-73. [PMID: 40014952 DOI: 10.1016/j.molimm.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/12/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Breast cancer (BC) is the leading cancer among women globally, which has the highest incidence and mortality rate in over a hundred countries. This study was intended to discover a new prognostic biomarker, facilitating personalized treatment approaches. METHODS RNA sequencing data from The Cancer Genome Atlas database and Gene Expression Omnibus database were utilized to download to evaluate expression levels and prognostic significance of Keratin 14 (KRT14). Methylation of KRT14 was also assessed. The CIBERSORT and single-sample gene set enrichment analysis algorithms were applied to explore the connection between KRT14 and the tumor microenvironment. Primary drugs' sensitivity and potential small molecule therapeutic compounds were analyzed through the "pRRophetic" R package and the Connectivity Map. The prognostic value of KRT14 was additionally corroborated through a comparison of protein levels in peritumoral and cancerous tissues via immunohistochemistry. Moreover, an immune-related prognostic model based on KRT14 was designed to enhance the prediction accuracy for the prognosis of BC patients. RESULTS The study found that KRT14 expression was generally downregulated in BC, correlating strongly with poor prognosis. Compared to normal tissues, the methylation level of KRT14 was higher in BC tissues. Lower expression of KRT14 was linked to decreased anti-tumoral immune cells infiltration and increased immunosuppressive cells infiltration. Sensitivity to various key therapeutic drugs was lower in groups with diminished KRT14 expression. In addition, several potential anti-BC small molecule compounds were identified. The model designed in this study significantly enhanced the predictive capability for BC patients compared to predictions based solely on KRT14 expression levels. CONCLUSION Overall, KRT14 was closely correlated with the prognosis in BC, making it a reliable biomarker.
Collapse
Affiliation(s)
- Siqi Liao
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xin Zhang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lanhui Chen
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianning Zhang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weiyu Lu
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Mengou Rao
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yifan Zhang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zijian Ye
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Deyana Ivanova
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston MA02115, USA
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Anchao Song
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Biao Xie
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Meijiao Wang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
18
|
Fu C, Fu J, Liu C, Yu Z. Synergistic potential of CDH3 in targeting CRC metastasis and enhancing immunotherapy. BMC Cancer 2025; 25:560. [PMID: 40155851 PMCID: PMC11951682 DOI: 10.1186/s12885-025-13845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/28/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, particularly due to advanced-stage metastasis. P-cadherin (CDH3), a potential therapeutic target, is highly expressed in CRC tissues and associated with poor prognosis and metastasis. However, the mechanisms underlying its role in CRC progression and its translational potential remain poorly understood. MATERIALS AND METHODS This study integrated multiple public databases (TCGA, HCMDB, UALCAN, HPA, UniProt, cBioPortal, and GEO) to evaluate CDH3 expression, construct a prognostic model, and perform functional and translational analyses. Immunohistochemistry was used to validate CDH3 protein expression in clinical samples. Additional analyses included correlations with clinicopathological parameters, immune infiltration (TIDE, TISIDB), functional enrichment (KEGG, GSEA), drug sensitivity (GSCA), and molecular docking (MOE). Single-cell sequencing (CancerSEA, HPA) was also conducted to explore CDH3's role at the single-cell level. RESULTS CDH3 expression was significantly elevated in CRC tissues and correlated with poor prognosis, recurrence, and metastasis. CDH3 expression was associated with the infiltration of resting immune cells, particularly dendritic cells, and enrichment analysis revealed its critical role in CRC metastasis through extracellular matrix (ECM) and local adhesion pathways. Notably, afatinib emerged as a promising candidate for targeting CDH3 via "drug repositioning," a process involving the repurposing of existing drugs for new therapeutic applications. CONCLUSION This study provides novel insights into CDH3's role in CRC metastasis and its potential as a therapeutic target. The translational potential of CDH3, including its integration with immunotherapy and drug repositioning strategies, offers a promising avenue for the treatment of metastatic CRC.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P.R. China
- Pharmaceutical Sciences Laboratory Center, School of Pharmacy, China Medical University, Shenyang, 110122, P.R. China
| | - Jia Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P.R. China
| | - Chaoyue Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P.R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P.R. China.
- Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Department of Pharmacology, China Medical University, Shenyang, 110122, P.R. China.
| |
Collapse
|
19
|
Zhong F, Mao S, Peng S, Li J, Xie Y, Xia Z, Chen C, Sun A, Zhang S, Wang S. Exploration of SUSD3 in pan-cancer: studying its role, predictive analysis, and biological significance in various malignant tumors in humans. Front Immunol 2025; 16:1521965. [PMID: 40191190 PMCID: PMC11968365 DOI: 10.3389/fimmu.2025.1521965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Background The SUSD3 protein, marked by the Sushi domain, plays a key role in cancer progression, with its expression linked to tumor advancement and patient prognosis. Altered SUSD3 levels could serve as a predictive biomarker for cancer progression. Recognized as a novel susceptibility marker, SUSD3 presents a promising target for antibody-based therapies, offering a potential approach for the prevention, diagnosis, and treatment of breast cancer. Methods Using the HPA and GeneMANIA platforms, the distribution of SUSD3 protein across tissues was analyzed, while expression levels in tumor and healthy tissues were compared using The Cancer Genome Atlas data. The TISCH and STOmics DB databases facilitated the mapping of SUSD3 expression in different cell types and its spatial relationship with cancer markers. Univariate Cox regression assessed the prognostic significance of SUSD3 expression in various cancers. Genomic alterations of SUSD3 were explored through the cBioPortal database. The potential of SUSD3 as a predictor of immunotherapy response was investigated using TIMER2.0, and GSEA/GSVA identified related biological pathways. Drugs targeting SUSD3 were identified through CellMiner, CTRP, and GDSC databases, complemented by molecular docking studies. In vitro experiments demonstrated that SUSD3 knockdown in breast cancer cell lines significantly reduced proliferation and migration. Results SUSD3 expression variations in pan-cancer cohorts are closely linked to the prognosis of various malignancies. In the tumor microenvironment (TME), SUSD3 is predominantly expressed in monocytes/macrophages and CD4+ T cells. Research indicates a strong correlation between SUSD3 expression and key cancer immunotherapy biomarkers, immune cell infiltration, and immunomodulatory factors. To explore its immune regulatory role, StromalScore, ImmuneScore, ESTIMATE, and Immune Infiltration metrics were employed. Molecular docking studies revealed that selumetinib inhibits tumor cell proliferation. Finally, SUSD3 knockdown reduced cancer cell proliferation and migration. Conclusion These findings provide valuable insights and establish a foundation for further exploration of SUSD3's role in pan-carcinomas. Additionally, they offer novel perspectives and potential targets for the development of innovative therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Fei Zhong
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Shining Mao
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Shuangfu Peng
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Jiaqi Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - YanTeng Xie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Ziqian Xia
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Chao Chen
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Aijun Sun
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyan Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| |
Collapse
|
20
|
Yuan M, Chen S, Liao Z, Wang K. The expression of autophagy-related gene CXCL12 in endometriosis associated ovarian cancer and pan-cancer analysis. Front Endocrinol (Lausanne) 2025; 16:1450892. [PMID: 40166682 PMCID: PMC11955448 DOI: 10.3389/fendo.2025.1450892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Background Endometriosis-associated ovarian cancer (EAOC), an aggressive form of malignant ovarian neoplasm with origins in endometriosis (EM), has risen to prominence recently. Despite extensive investigation, the precise pathophysiology remains elusive.This article explores new autophagy-related DEG genes between EM and EAOC, and investigates CXCL12's expression and prognostic relevance across pan-cancer. Methods From Gene Expression Omnibus (GEO), we retrieved gene sequencing data to uncover DEGs. We carried out enrichment analysis, PPI network construction and explored CXCL12's multi-database expression and prognostic significance employing the analytical tools of ONCOMINE, PrognoScan, GEPIA, and Kaplan-Meier Plotter. Subsequently, assessing the relationship between CXCL12 expression and immune presence in cancer utilizing GEPIA and TIMER. Lastly, CXCL12, IL17, STAT3, and FOXP3 protein expressions were determined through immunohistochemistry analysis in EAOC, EM, and normal endometrial tissues. Results Two DEGs were discovered and enrichment analysis indicated virus-cytokine/receptor interactions, chemokine signaling, and cytokine-cytokine receptor interplay as pivotal in EAOC. Notably, cancerous tissues exhibited reduced CXCL12 levels compared with non-malignant tissues across cancers. CXCL12, IL17, STAT3, Th17/Treg ratio, and FOXP3 expressions were also lower in EAOC than EM and normal tissues. Additionally, CXCL12 expression was related to stage, survival, immune subtype, and molecular classification across cancers. Conclusions In conclusion, our study implicates CXCL12 and altered Th17/Treg balance in progression from EM to EAOC. CXCL12 emerges as a predictive marker for cancer progression across various tumors and is associated with inflammatory response.
Collapse
Affiliation(s)
- Mingwei Yuan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Sijing Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zelan Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Kana Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
21
|
Liu Z, Huang S, Luo R, Shi X, Xiu M, Wang Y, Wang R, Zhang W, Lv M, Tang X. EXO1's pan-cancer roles: diagnostic, prognostic, and immunological analyses through bioinformatics. Discov Oncol 2025; 16:310. [PMID: 40074873 PMCID: PMC11903978 DOI: 10.1007/s12672-025-02045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a leading cause of mortality worldwide, with human exonuclease 1 (EXO1) emerging as a key player in DNA repair and damage response pathways, critical for genomic stability and tumor evolution. The aim of this study was to conduct a comprehensive pan-cancer analysis to elucidate the multifaceted roles of EXO1 in various malignancies. Leveraging public databases including TCGA, GTEx, HPA, cBioPortal, UALCAN, STRING, CancerSEA and TISIDB database, we examined EXO1's expression, diagnostic potential, prognostic significance, mutational characteristics, functional roles, and immunological effects across different cancer types. EXO1 was found to be upregulated in multiple cancers, with significant diagnostic potential as indicated by high AUC values in ROC analyses. Elevated EXO1 expression correlated with adverse prognosis in several cancer types, including breast, lung, and pancreatic cancers. Epigenetic alterations, including DNA methylation and mRNA modifications, were also associated with EXO1 expression. Enrichment analyses identified EXO1-related genes involved in DNA recombination, replication, and repair, with GSEA implicating EXO1 in cell cycle regulation and DNA processing pathways. Importantly, immunogenomic analyses revealed EXO1's significant role in modulating the tumor microenvironment, as it is associated with immune cell infiltration and cytokine expression, suggesting its involvement in tumor immunology and immune response regulation. These results implied that EXO1 as a significant biomarker with prognostic and diagnostic potential across various malignancies, suggesting its potential as a therapeutic target and its involvement in immunomodulatory processes within the tumor microenvironment.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Shu Huang
- Department of Gastroenterology, Lianshui County People' Hospital, Huaian, China
- Department of Gastroenterology, Lianshui People' Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China
| | - Rui Luo
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Xiaomin Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Mingzhu Xiu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Yizhou Wang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Ruiyu Wang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Wei Zhang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China
| | - Muhan Lv
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China.
| | - Xiaowei Tang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Taiping No.25, Jiangyang, Luzhou, Sichuan, China.
| |
Collapse
|
22
|
He D, Yang Z, Zhang T, Luo Y, Peng L, Yan J, Qiu T, Zhang J, Qin L, Liu Z, Sun M. Multi-omics and machine learning-driven CD8 + T cell heterogeneity score for head and neck squamous cell carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102413. [PMID: 40027882 PMCID: PMC11869859 DOI: 10.1016/j.omtn.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/03/2024] [Indexed: 03/05/2025]
Abstract
The heterogeneity of head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to treatment, underscoring the urgent need for more precise and personalized therapeutic approaches. CD8+ T cells, integral components of the tumor immune microenvironment, have emerged as key targets for immunotherapy. Our research has established a correlation between a decrease in CD8+ T cell score and a poor clinical prognosis, highlighting the prognostic value of this biomarker. By analyzing the gene expression related to CD8+ T cells, we have differentiated HNSCC into cold and hot tumor subtypes, uncovering disparities in clinical prognosis and responses to immunotherapy. Utilizing eight machine learning methods, we identified the key gene OLR1. Single-cell analysis of HNSCC tissues and peripheral blood, along with spatial transcriptome analysis, revealed that OLR1 predominantly functions in macrophages, modulating the immune microenvironment of HNSCC. The expression level of OLR1 may serve as a predictive marker for immunotherapy responses. Moreover, drug sensitivity analysis and molecular docking studies have indicated that simvastatin and pazopanib are potential inhibitors of OLR1. These findings suggest that simvastatin and pazopanib could open up innovative potential therapeutic avenues for individuals with HNSCC.
Collapse
Affiliation(s)
- Di He
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhan Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Tian Zhang
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jiatao Yan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jingyu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Luying Qin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
23
|
Cai F, Mao S, Peng S, Wang Z, Li W, Zhang R, Wang S, Sun A, Zhang S. A comprehensive pan-cancer examination of transcription factor MAFF: Oncogenic potential, prognostic relevance, and immune landscape dynamics. Int Immunopharmacol 2025; 149:114105. [PMID: 39923580 DOI: 10.1016/j.intimp.2025.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
AIMS Previous studies indicate that MAF BZIP Transcription Factor F (MAFF) facilitates ectopic metastasis and tumor cell migration. While its role in neoplasm progression is recognized, a thorough pan-cancer analysis of MAFF's impact remains pending. MAIN METHODS MAFF expression across normal and tumor tissues was analyzed using transcriptomic data from Genomic Data Commons (GDC) and UCSC XENA, with protein details from Human Protein Atlas (HPA) and GeneMANIA. Tumor Immune Single-cell Hub (TISCH) and Spatial Transcriptomics Omics DataBase (STOmics DB) identified MAFF expression in the tumor microenvironment (TME). MAFF's prognostic significance and immune-related gene associations were evaluated through univariate Cox regression, TIMER2.0 immune cell infiltration analysis, and Spearman correlation. Critical pathways were identified using Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA), while molecular docking explored anticancer agent interactions. KEY FINDINGS MAFF expression varies across cancers, affecting tumor prognosis, notably in monocytes/macrophages and endothelial cells. Copy number variation (CNV) positively correlates with MAFF expression, while methylation shows inverse correlation. MAFF mutations significantly affect LGG patient prognosis and correlate with immune therapy responses. ESTIMATE and immune profiling linked MAFF to immunosuppression pathways. Molecular docking identified MAFF-targeted drugs, with validated effects on breast cancer and endometrial cancer cell survival and migration in vitro. SIGNIFICANCE Multi-omics analysis identified MAFF as a potential prognostic marker correlating with tumor immunity and microenvironment, suggesting its value for personalized cancer immunotherapy, particularly in BRCA and UCEC.
Collapse
Affiliation(s)
- Fengze Cai
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Shining Mao
- School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Shuangfu Peng
- Department of Thyroid and Breast Oncological Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huaian, Jiangsu, China
| | - Zirui Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Wen Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Ruixuan Zhang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Shiyan Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China.
| | - Aijun Sun
- Department of Thyroid and Breast Oncological Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huaian, Jiangsu, China.
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
24
|
Juthi RT, Sazed SA, Mareboina M, Zaravinos A, Georgakopoulos-Soares I. Characterization of Exhausted T Cell Signatures in Pan-Cancer Settings. Int J Mol Sci 2025; 26:2311. [PMID: 40076932 PMCID: PMC11899893 DOI: 10.3390/ijms26052311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
T cells play diverse roles in cancer immunology, acting as tumor suppressors, cytotoxic effectors, enhancers of cytotoxic T lymphocyte responses and immune suppressors; providing memory and surveillance; modulating the tumor microenvironment (TME); or activating innate immune cells. However, cancer cells can disrupt T cell function, leading to T cell exhaustion and a weakened immune response against the tumor. The expression of exhausted T cell (Tex) markers plays a pivotal role in shaping the immune landscape of multiple cancers. Our aim was to systematically investigate the role of known T cell exhaustion (Tex) markers across multiple cancers while exploring their molecular interactions, mutation profiles, and potential implications for immunotherapy. The mRNA expression profile of six Tex markers, LAG-3, PDCD1, TIGIT, HAVCR2, CXCL13, and LAYN was investigated in pan-cancer. Utilizing data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), The Cancer Proteome Atlas (TCPA), and other repositories, we characterized the differential expression of the Tex markers, their association with the patients' survival outcome, and their mutation profile in multiple cancers. Additionally, we analyzed the effects on cancer-related pathways and immune infiltration within the TME, offering valuable insights into mechanisms of cancer immune evasion and progression. Finally, the correlation between their expression and sensitivity to multiple anti-cancer drugs was investigated extensively. Differential expression of all six markers was significantly associated with KIRC and poor prognosis in several cancers. They also played a potential activating role in apoptosis, EMT, and hormone ER pathways, as well as a potential inhibitory role in the DNA damage response and RTK oncogenic pathways. Infiltration of different immune cells was also found to be associated with the expression of the Tex-related genes in most cancer types. These findings underline that the reviving of exhausted T cells can be used to enhance the efficacy of immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Rifat Tasnim Juthi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh;
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.A.S.); (M.M.)
| | - Saiful Arefeen Sazed
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.A.S.); (M.M.)
| | - Manvita Mareboina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.A.S.); (M.M.)
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 22006, 1516 Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 22006, 1516 Nicosia, Cyprus
| | - Ilias Georgakopoulos-Soares
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.A.S.); (M.M.)
| |
Collapse
|
25
|
Xiong S, Jin J, Zhao X, Zhao Y, He Z, Guo H, Gong C, Yu J, Guo L, Liang T. Cell Cycle-Based Molecular Features via Synthetic Lethality and Non-Coding RNA Interactions in Cancer. Genes (Basel) 2025; 16:310. [PMID: 40149461 PMCID: PMC11941865 DOI: 10.3390/genes16030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The cell cycle, a critical and intricate biological process, comprises various phases, and its dysregulation plays a pivotal role in tumorigenesis and metastasis. The exploration of cell cycle-based molecular subtypes across pan-cancers, along with the application of synthetic lethality concepts, holds promise for advancing cancer therapies. METHODS A pan-cancer analysis was conducted to assess the cell cycle serves as a reliable signature for classifying molecular subtypes and to understand the potential clinical application of genes as potential drug targets based on synthetic lethality. RESULTS Molecular subtypes derived from cell cycle features in certain cancers, particularly kidney-related malignancies, exhibited distinct immune characteristics. Synthetic lethal interactions within the cell cycle pathway were common, with significant genetic interactions further identifying potential drug targets through the exploitation of genetic relationships with key driver genes. Additionally, miRNAs and lncRNAs may influence the cell cycle through miRNA:mRNA interactions and ceRNA networks, thereby enriching the genetic interaction landscape. CONCLUSIONS These findings suggest that the cell cycle pathway could serve as a promising molecular subtype signature to enhance cancer prognostication and offer potential targets for anticancer drug development through synthetic lethality.
Collapse
Affiliation(s)
- Shizheng Xiong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Jiaming Jin
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Xinmiao Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Yang Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Zhiheng He
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Chengjun Gong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| |
Collapse
|
26
|
Sultana A, Alam MS, Khanam A, Liang H. Unraveling the molecular landscape of non-small cell lung cancer: Integrating bioinformatics and statistical approaches to identify biomarkers and drug repurposing. Comput Biol Med 2025; 187:109744. [PMID: 39914199 DOI: 10.1016/j.compbiomed.2025.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most malignant tumors and the leading cause of death from cancer worldwide and is increasing at a massive rate every year. Most NSCLC patients are diagnosed at advanced stages, which is associated with a poor prognosis and a very low 5-year survival rate. Therefore, the purpose of this study is to investigate molecular markers for early diagnosis, prognosis and therapy of NSCLC through the integration of bioinformatics and statistical methods. A total of 93 overlapping differentially expressed genes (oDEGs) were identified between NSCLC and normal samples through Linear Models for Microarray (LIMMA) and Significance Analysis of Microarrays (SAM) methods. Six top-degree oDEGs (CCNA2, CDC6, AURKA, CCNB1, MKI67, and PRC1) were identified as key genes (KGs) through the protein-protein interaction (PPI) network. The predictive accuracy analysis of the identified KGs revealed an accuracy of 96.92 %, with a sensitivity of 91.73 % and a specificity of 98.15 %. KGs associated with 3 molecular functions (MFs), 5 cellular components (CCs), 3 biological processes (BPs), and 4 pathways were identified through FunRich software. Analysis of expression levels using the UALCAN database revealed that KGs are significantly associated with potential early diagnostic biomarkers. Survival analysis using the GEPIA database demonstrated that the KGs possessed strong prognostic power for NSCLC. Finally, seven repurposed candidate drugs ENTRECTINIB, SORAFENIB, CHEMBL1765740, TOZASERTIB, NERVIANO, AZD-1152-HQPA, and SELICICLIB were proposed through molecular docking analysis. In conclusion, the findings of this study have the potential to significantly impact the early diagnosis, prognosis, and treatment of NSCLC.
Collapse
Affiliation(s)
- Adiba Sultana
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, 510080, China
| | - Md Shahin Alam
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, 510080, China; Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Alima Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Huiying Liang
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, 510080, China.
| |
Collapse
|
27
|
Tang G, Wang Z, Geng W, Yu Y, Zhang Y. Exploration of crucial stromal risk genes associated with prognostic significance and chemotherapeutic opportunities in invasive ductal breast carcinoma. J Genet Eng Biotechnol 2025; 23:100448. [PMID: 40074422 PMCID: PMC11732444 DOI: 10.1016/j.jgeb.2024.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/04/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Few studies revealed that stromal genes regulate the tumor microenvironment (TME). However, identification of key-risk genes in the invasive ductal breast carcinoma-associated stroma (IDBCS) and their associations with the prediction of risk group remains lacking. METHODS This study used the GSE9014, GSE10797, GSE8977, GSE33692, and TGGA BRCA datasets. We explored the differentially expressed transcriptional markers, hub genes, gene modules, and enriched KEGG pathways. We employed a variety of algorithms, such as the log-rank test, the LASSO-cox model, the univariate regression model, and the multivariate regression model, to predict prognostic-risk genes and the prognostic-risk model. Finally, we employed a molecular docking-based study to explore the interaction of sensitive drugs with prognostic-risk genes. RESULTS In comparing IDBCS and normal stroma, we discovered 1472 upregulated genes and 1400 downregulated genes (combined ES > 0585 and adjusted p-value < 0.05). The hub genes enrich cancer, immunity, and cellular signaling pathways. We explored the 12 key risk genes (ADAM8, CD86, CSRP1, DCTN2, EPHA1, GALNT10, IGFBP6, MIA, MMP11, RBM22, SLC39A4, and SYT2) in the IDBCS to identify the high-risk group and low-risk group patients. The high-risk group had a lower survival rate, and the constructed ROC curves evaluated the validity of the risk model. Expression validation and diagnostic efficacy revealed that the key stromal risk genes are consistently deregulated in the high-risk group and high stromal samples of the TCGA BRCA cohort. The expression of crucial risk genes, including CD86, CSRP1, EPHA1, GALNT10, IGFBP6, MIA, and RBM22 are associated with drug resistance and drug sensitivity. Finally, a molecular docking study explored several sensitive drugs (such as QL-XII-61, THZ-2-49, AZ628, NG-25, lapatinib, dasatinib, SB590885, and dabrafenib) interacted with these essential risk genes through hydrogen bonds and other chemical interactions. CONCLUSIONS Exploring essential prognostic-risk genes and their association with the prognosis, diagnostic efficacy, and risk-group prediction may provide substantial clues for targeting the breast cancer stromal key-risk genes.
Collapse
Affiliation(s)
- Guohua Tang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Zhi Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Wei Geng
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yang Yu
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, China; Department of Hepatobiliary and Echinococcosis Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
28
|
Li M, Cui Y, Wu X, Yang X, Huang C, Yu L, Yi P, Chen C. Integrating network pharmacology to investigate the mechanism of quercetin's action through AKT inhibition in co-expressed genes associated with polycystic ovary syndrome and endometrial cancer. Int J Biol Macromol 2025; 297:139468. [PMID: 39765297 DOI: 10.1016/j.ijbiomac.2025.139468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025]
Abstract
Endometrial cancer (EC) is a common gynecological malignancy for which polycystic ovarian syndrome (PCOS) has been identified as a significant risk factor. Quercetin, a widely distributed natural flavonoid, has demonstrated potential therapeutic effects in managing both PCOS and EC. However, the specific molecular targets of quercetin in the context of PCOS comorbid with EC (PCOS-EC) remain poorly defined. This study aims to elucidate the therapeutic potential of quercetin for treating PCOS-EC using network pharmacology, molecular dynamics simulations, and in vitro assays. The intersection of 379 PCOS-EC-associated targets with 361 quercetin targets identified 47 potential therapeutic targets of quercetin for PCOS-EC. Gene Ontology enrichment analysis revealed the biological functions, while Kyoto Encyclopedia of Genes and Genomes identified the pathways potentially involved in quercetin's effects against PCOS-EC. Protein-protein interaction network analysis highlighted six overlapping targets, namely, ACTB, AKT1, EGFR, ESR1, PTGS2, and TP53. Molecular docking and molecular dynamics simulations indicated that quercetin bound with high affinity to the hub genes, with AKT1 emerging as a central target. In vitro experiments confirmed that quercetin treatment significantly downregulated AKT expression in EC cells. These findings elucidate potential targets and molecular mechanisms through which quercetin exerts its therapeutic effects.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Obstetrics and Gynecology, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yewei Cui
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xingfan Wu
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xunmei Yang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chenglong Huang
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Lili Yu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Cheng Chen
- Department of Obstetrics and Gynecology, Chongqing General Hospital, Chongqing University, Chongqing 401147, China.
| |
Collapse
|
29
|
Zhang Y, Wang H, Dai F, He K, Tuo Z, Wang J, Bi L, Chen X. A pan-cancer analysis of the oncogenic and immunological roles of RGS5 in clear cell renal cell carcinomas based on in vitro experiment validation. Hum Genomics 2025; 19:14. [PMID: 39985100 PMCID: PMC11846387 DOI: 10.1186/s40246-025-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/15/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND RGS5, the first gene identified in tumor-resident pericytes, plays a crucial role in angiogenesis. However, its effects on immunology and prognosis in human cancer are still mostly unknown. This study investigates the carcinogenic and immunological roles of RGS5 through a comprehensive pan-cancer analysis. METHODS A standardized pan-cancer dataset for RGS5 was obtained from the public database. R software and relevant packages were utilized to analyze the oncogenic and immunological roles. Clinical samples and cellular experiments were conducted to validate RGS5 expression and its biological function in renal cancer. RESULTS Bioinformatics analysis revealed that RGS5 is dysregulated in a variety of human malignancies and is significantly associated with patient prognosis. Additionally, RGS5 expression is closely linked to tumor heterogeneity and stemness indicators across different cancer types. Co-expression of RGS5 with genes involved in MHC, immune activation, immunosuppressive proteins, chemokines, and chemokine receptors was observed in various tumors. High expression of RGS5 predicts a good prognosis in patients with renal cancer. In the renal cancer cohort, RGS5 expression strongly correlated with the distribution of tumor-associated fibroblasts. Silencing RGS5 expression can affect the proliferation, migration, and invasion of renal carcinoma cells. CONCLUSIONS RGS5 expression in tumors is intricately associated with various clinical features, particularly concerning tumor progression and patient prognosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Huming Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Fang Dai
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ke He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| | - Liangkuan Bi
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China.
| | - Xin Chen
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
30
|
Wang H, Liu X, Huang H, Tang M, Li J, Huang T, Wang S. Multi-omics analysis identifies UBA family as potential pan-cancer biomarkers for tumor prognosis and immune microenvironment infiltration. Front Immunol 2025; 16:1510503. [PMID: 40046044 PMCID: PMC11880792 DOI: 10.3389/fimmu.2025.1510503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/30/2025] [Indexed: 03/17/2025] Open
Abstract
Background UBA1 and UBA6 are classic ubiquitin-activating E1 enzymes, which participate in the ubiquitination degradation of intracellular proteins and are closely related to the occurrence and development of various diseases and tumors. However, at present, comprehensive analysis has not been used to study the role of UBA family in cancers. Methods We extracted the relevant data of cancer patients from the TCGA database and studied the relationship between the expression patterns of UBA family and the survival rate, and stage of patients in pan-cancer, especially breast cancer (BRCA), colorectal cancer (COAD), renal cancer (KIRC) and lung adenocarcinoma (LUAD). In addition, we also evaluated their impact on immune infiltration using TISIDB database and R packages. Results UBA1 and UBA6 are highly expressed in most cancer types, which may be associated with poor prognosis of patients. This study also investigated their expression had a closely tie with clinical stages in some specific tumors. Furthermore, this study also demonstrated that these genes were closely related to immune score, immune subtypes and tumor infiltrating immune cells. Conclusions Our study demonstrated that the differential expression of the UBA family, along with their associated survival landscape and immune infiltration across various cancer types, holds potential as biomarkers linked to cancer immune infiltration. This finding offers a novel perspective for informing the direction of cancer treatment strategies.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - XinLi Liu
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hesen Huang
- Department of Otolaryngology-Head and Neck Surgery, Xiang’an Hospital of Xiamen University, Fujian, Xiamen, China
| | - Meng Tang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Tingting Huang
- Department of Medical Oncology, Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China
| | - Shengjie Wang
- Department of Thyroid and Breast Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen, Fujian, China
| |
Collapse
|
31
|
Lei Z, Song S, Geng Y, Liu B, Li Y, Min H, Zhang S, Qi Y. The pan-cancer analysis of LRG1 and its potential role in kidney renal clear cell carcinoma. RSC Med Chem 2025:d4md00940a. [PMID: 40008188 PMCID: PMC11848403 DOI: 10.1039/d4md00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Leucine-rich α-2 glycoprotein 1 (LRG1) is a secreted glycoprotein implicated in various diseases, yet its role across multiple cancers remains insufficiently explored. Consequently, we conducted a comprehensive bioinformatics analysis, exploring LRG1 expression patterns, prognostic implications, and potential therapeutic associations in a pan-cancer context. Additionally, we collected gene expression and clinical data from patients with kidney renal clear cell carcinoma (KIRC) from TCGA, conducting gene set enrichment analysis (GSEA) and Cox proportional hazards regression analysis to explore the potential regulatory role of LRG1 in KIRC. Our study revealed that LRG1 expression is upregulated in 18 cancer types, with elevated levels correlating with poor prognostic outcomes in several cancers, notably KIRC. Epigenetic analysis showed hypomethylation in the LRG1 promoter region, potentially contributing to the overexpression of LRG1. Moreover, LRG1 expression was linked to immunotherapeutic responses and altered drug sensitivities, particularly influencing the efficacy of tyrosine kinase inhibitors. In KIRC, high LRG1 expression was associated with the activation of key pathways, including angiogenesis, epithelial-mesenchymal transition (EMT), and hypoxia signalling. We identified key gene pairs interacting with LRG1 in KIRC, including CARD14 and CYP8B1, with CARD14 overexpression correlating with poorer clinical outcomes and CYP8B1 indicating a favourable prognosis. In conclusion, LRG1 emerges as a potential biomarker for prognosis and immunotherapy responsiveness in both pan-cancer and KIRC contexts. This study provides a theoretical foundation for further research on the therapeutic potential of target regulating LRG1 in cancer treatment.
Collapse
Affiliation(s)
- Ziwen Lei
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001 China
- The First Clinical Medical School, Zhengzhou University Zhengzhou Henan 450001 China
| | - Shiyu Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001 China
- The First Clinical Medical School, Zhengzhou University Zhengzhou Henan 450001 China
| | - Yizhuo Geng
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001 China
- The First Clinical Medical School, Zhengzhou University Zhengzhou Henan 450001 China
| | - Bian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Yongzheng Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Huan Min
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001 China
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450003 China
| | - Saiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Yingqiu Qi
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
32
|
Xiong Z, Guan H, Pei S, Wang C. Identification of metabolism-related subtypes and feature genes of pre-eclampsia. Sci Rep 2025; 15:4986. [PMID: 39930027 PMCID: PMC11811273 DOI: 10.1038/s41598-025-89140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The heterogeneity of pre-eclampsia (PE) complicates its pathogenesis, which remains incompletely understood. Emerging evidence indicates a significant role of metabolism in the pathophysiology of PE. We procured the PE dataset from the Gene Expression Omnibus database and sourced a published compilation of metabolism-related genes, then employed consensus clustering to classify PE subtypes. Subsequently, we examined the relationships of these subtypes with metabolic features and immune infiltration. Feature genes were identified using weighted gene co-expression network analysis (WGCNA) and further scrutinized through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. To refine the selection of feature genes, we applied two machine learning algorithms. Additionally, we assessed the expression profiles of RAG1, RBBP7, RFTN2, SPATA7, and ZNF16 at the single-cell RNA sequencing (scRNA-seq) level. Finally, we validated the diagnostic value and expression of these genes using PE datasets and quantitative reverse transcription-PCR (qRT-PCR) analysis. We identified three PE subtypes on the basis of the number of distinct metabolic characteristics, namely Metabolism Correlated (MC) A (MCA), MCB, and MCC subclasses. Through WGCNA, we pinpointed 101 metabolic genes that were strongly associated with PE progression. Machine learning algorithms helped to narrow the list to five key signature genes, which were then used to construct a predictive model offering significant clinical benefits for PE patients. qRT-PCR analysis confirmed that these genes are closely linked to PE progression, while scRNA-seq data revealed high expression of RBBP7 in trophoblast cells. In conclusion, the five genes identified here-RAG1, RBBP7, RFTN2, SPATA7, and ZNF16-were found to be strongly associated with PE progression.
Collapse
Affiliation(s)
- Zhihui Xiong
- Obstetrical Department, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310007, China
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Hailian Guan
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Shuping Pei
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Caijiao Wang
- Neurology Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
33
|
Cai Y, Xiao H, Zhou Q, Lin J, Liang X, Xu W, Cao Y, Zhang X, Wang H. Comprehensive Analyses of PANoptosome with Potential Implications in Cancer Prognosis and Immunotherapy. Biochem Genet 2025; 63:331-353. [PMID: 38436818 PMCID: PMC11832696 DOI: 10.1007/s10528-024-10687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024]
Abstract
Cell death resistance significantly contributes to poor therapeutic outcomes in various cancers. PANoptosis, a unique inflammatory programmed cell death (PCD) pathway activated by specific triggers and regulated by the PANoptosome, possesses key features of apoptosis, pyroptosis, and necroptosis, but these cannot be accounted for by any of the three PCD pathways alone. While existing studies on PANoptosis have predominantly centered on infectious and inflammatory diseases, its role in cancer malignancy has been understudied. In this comprehensive investigation, we conducted pan-cancer analyses of PANoptosome component genes across 33 cancer types. We characterized the genetic, epigenetic, and transcriptomic landscapes, and introduced a PANoptosome-related potential index (PANo-RPI) for evaluating the intrinsic PANoptosome assembly potential in cancers. Our findings unveil PANo-RPI as a prognostic factor in numerous cancers, including KIRC, LGG, and PAAD. Crucially, we established a significant correlation between PANo-RPI and tumor immune responses, as well as the infiltration of diverse lymphoid and myeloid cell subsets across nearly all cancer types. Moreover, a high PANo-RPI was consistently associated with improved immunotherapy response and efficacy, as evidenced by re-analysis of multiple immunotherapy cohorts. In conclusion, our study suggests that targeting PANoptosome components and modulating PANoptosis may hold tremendous therapeutic potential in the context of cancer.
Collapse
Affiliation(s)
- Yonghua Cai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Heng Xiao
- Southern Medical School, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Qixiong Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jie Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xianqiu Liang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Wei Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yongfu Cao
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
34
|
Liu Z, Ling ZQ. Golgi scaffold protein PAQR11 in pan-cancer landscape: A comprehensive bioinformatics exploration of expression patterns, prognostic significance, and potential immunological function. Heliyon 2025; 11:e41724. [PMID: 39906812 PMCID: PMC11791267 DOI: 10.1016/j.heliyon.2025.e41724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/28/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Background The progestin and adipoQ receptor family member, PAQR11, is recognized for its roles in vesicle trafficking, mitogenic signaling, and metastatic spread, positioning it as a crucial regulator in cancer biology. PAQR11 influences lipid metabolism and susceptibility to ferroptosis in cancer cells. This study aims to investigate the prognostic significance of PAQR11, its relevance to immune responses, and its association with drug sensitivity across various cancer types. By elucidating these aspects, the research seeks to assess PAQR11's potential as a biomarker and therapeutic target in oncology. Methods We conducted a comprehensive bioinformatics analysis using publicly available pan-cancer datasets from TCGA, GEO, UALCAN, TIMER, GEPIA2, KM plotter, and TISIDB. This analysis encompassed gene expression profiles across 33 cancer types, with a focus on PAQR11's expression patterns, prognostic significance, and immunological relevance. In addition, the study explored the correlation between PAQR11 expression and drug sensitivity, alongside its molecular and pathological characteristics in various tumors. Results Our findings demonstrate elevated PAQR11 expression levels across multiple cancer types, which significantly correlate with patient prognostic outcomes. The analysis further revealed PAQR11's involvement in immunological and epigenetic processes, underscoring its critical role in cancer progression and treatment response. Notably, a strong correlation between PAQR11 expression and drug sensitivity was identified, suggesting its potential influence on the initiation and progression of various cancers and highlighting its promise as a therapeutic target. Conclusions The comprehensive analysis of PAQR11 underscores its significance as a biomarker for cancer prognosis and its role in regulating immunological and epigenetic processes. These findings offer valuable insights that could inform early detection strategies and the development of novel therapeutic approaches. Further exploration and validation of PAQR11 are essential, highlighting the need for its integration into future oncological research and treatment strategy development. Trial registration Not applicable.
Collapse
Affiliation(s)
- Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
35
|
Luan F, Cui Y, Huang R, Yang Z, Qiao S. Comprehensive pan-cancer analysis reveals NTN1 as an immune infiltrate risk factor and its potential prognostic value in SKCM. Sci Rep 2025; 15:3223. [PMID: 39863609 PMCID: PMC11762998 DOI: 10.1038/s41598-025-85444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression. For instance, inhibiting Netrin-1 has been shown to suppress tumor growth and epithelial-mesenchymal transition (EMT) characteristics in endometrial cancer. To further elucidate the influence of genes on tumors, we utilized a variety of machine learning techniques and found that NTN1 is strongly linked to multiple cancer types, suggesting it as a potential therapeutic target. This study aimed to elucidate the role of NTN1 in pan-cancer using multi-omics data and explore its potential as a prognostic biomarker in SKCM. Analysis of the TCGA, GTEx, and UALCAN databases revealed significant differences in NTN1 expression at both the mRNA and protein levels. Prognostic value was evaluated through univariate Cox regression and Kaplan-Meier methods. Mutation and methylation analyses were conducted using the cBioPortal and SMART databases. We identified genes interacting with and correlated to NTN1 through STRING and GEPIA2, respectively. Subsequently, we performed GO and KEGG enrichment analyses. The results suggested that NTN1 might be involved in crucial biological processes and pathways related to cancer development and progression, including cell adhesion, axon guidance, immune response, and various signaling pathways. We then explored the correlation between NTN1 and immune infiltration as well as immunotherapy using the ESTIMATE package, TIMER2.0, TISIDB, TIDE, TIMSO, and TCIA. The relationship between NTN1 and tumor heterogeneity, stemness, DNA methyltransferases, and MMR genes was also examined. Lastly, we constructed a nomogram based on NTN1 in SKCM and investigated its association with drug sensitivity. NTN1 expression was significantly associated with tumor immune infiltration, molecular subtypes, and clinicopathological features in various cancers. Genetic analysis revealed that Deep deletions were the most common type of NTN1 alteration. Additionally, a positive correlation was observed between NTN1 CNAs and its expression levels. In most cancers, NTN1 showed positive correlations with immune and stromal scores, as well as with specific immune cell populations. Its predictive value for immunotherapy response was comparable to that of tumor mutational burden. Furthermore, NTN1 exhibited positive correlations with tumor heterogeneity, stemness, DNA methyltransferase genes, and MMR genes. In SKCM, NTN1 was identified as an independent risk factor and demonstrated potential associations with multiple drugs. NTN1 exhibits substantial clinical utility as a prognostic marker and indicator of immune response across various tumor types. This comprehensive analysis provides insights into its potential implications in pan-cancer research.
Collapse
Affiliation(s)
- Fuxiang Luan
- The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yuying Cui
- The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Ruizhe Huang
- The First Clinical College of Changsha Medical University, Changsha, China
| | - Zhuojie Yang
- Academy of medical sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Shishi Qiao
- The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
36
|
Zhang N, He Z, Qin X, Han K, Zhu Z, Zhong F. Pan-cancer analysis and single-cell analysis identifies the CENPN as a biomarker for survival prognosis and immunotherapy. Discov Oncol 2025; 16:55. [PMID: 39832113 PMCID: PMC11747051 DOI: 10.1007/s12672-025-01801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Centromere protein N (CENPN), located on chromosome 16q23.2, encodes vital nucleosome-associated complexes that are essential for dynamic assembly processes. CENPN plays a pivotal role in regulating cell proliferation and cell cycle progression by influencing mitotic events. Despite its potential importance, the precise functional role and regulatory mechanisms of CENPN in diverse malignancies remain largely unexplored. This study aimed to elucidate the role of CENPN in human cancers and evaluate its prognostic significance. METHODS Investigate the role of CENPN in various malignancies, we leveraged data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. We employed a comprehensive suite of web platforms and software tools for data analysis, including R, Cytoscape, an integrated repository portal for tumor-immune system interactions (TISIDB), CBio Cancer Genomics Portal (cBioPortal), Search Tool for the Retrieval of Interaction Gene/Proteins (STRING), Gene Set Cancer Analysis (GSCALite), and a cancer single-cell state atlas (CancerSEA). RESULTS The findings demonstrated that CENPN expression was elevated in the majority of cancer types and differentially expressed across molecular and immune subtypes. Functional enrichment analysis in multiple tumors also identified possible pathways of CENPN involvement in tumorigenesis. Its expression positively correlated with Th2 and Tcm cells in most cancers. It is also correlated with genetic markers of immunomodulators in various cancers. CONCLUSIONS Overall, CENPN expression is closely related to cancers and has the potential to act as a cancer biomarker.
Collapse
Affiliation(s)
- Nie Zhang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- Graduate School of Anhui Medical University, Hefei, China
- Key Laboratory of Gametes and Abnormal Reproductive Tract of National Health Commission, Anhui Medical University, Hefei, China
| | - Zhuoying He
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Xuejin Qin
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Ke Han
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Zhengchun Zhu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
- Key Laboratory of Gametes and Abnormal Reproductive Tract of National Health Commission, Anhui Medical University, Hefei, China.
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
37
|
Liu H, Karsidag M, Chhatwal K, Wang P, Tang T. Single-cell and bulk RNA sequencing analysis reveals CENPA as a potential biomarker and therapeutic target in cancers. PLoS One 2025; 20:e0314745. [PMID: 39820192 PMCID: PMC11737691 DOI: 10.1371/journal.pone.0314745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/14/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Cancer remains one of the most significant public health challenges worldwide. A widely recognized hallmark of cancer is the ability to sustain proliferative signaling, which is closely tied to various cell cycle processes. Centromere Protein A (CENPA), a variant of the standard histone H3, is crucial for selective chromosome segregation during the cell cycle. Despite its importance, a comprehensive pan-cancer bioinformatic analysis of CENPA has not yet been conducted. METHODS Data on genomes, transcriptomes, and clinical information were retrieved from publicly accessible databases. We analyzed CENPA's genetic alterations, mRNA expression, functional enrichment, association with stemness, mutations, expression across cell populations and cellular locations, link to the cell cycle, impact on survival, and its relationship with the immune microenvironment. Additionally, a prognostic model for glioma patients was developed to demonstrate CENPA's potential as a biomarker. Furthermore, drugs targeting CENPA in cancer cells were identified and predicted using drug sensitivity correlations and protein-ligand docking. RESULTS CENPA exhibited low levels of gene mutation across various cancers. It was found to be overexpressed in nearly all cancer types analyzed in TCGA, relative to normal controls, and was predominantly located in the nucleus of malignant cells. CENPA showed a strong association with the cancer cell cycle, particularly as a biomarker for the G2 phase. It also emerged as a valuable diagnostic and prognostic biomarker across multiple cancer types. In glioma, CENPA demonstrated reliable prognostic potential when used alongside other prognostic factors. Additionally, CENPA was linked to the immune microenvironment. Drugs such as CD-437, 3-Cl-AHPC, Trametinib, BI-2536, and GSK461364 were predicted to target CENPA in cancer cells. CONCLUSION CENPA serves as a crucial biomarker for the cell cycle in cancers, offering both diagnostic and prognostic value.
Collapse
Affiliation(s)
- Hengrui Liu
- Cancer Research Institute, Jinan University, Guangzhou, Guangdong, China
- Yinuo Biomedical Co., Ltd, Tianjin, China
| | - Miray Karsidag
- Canyon Crest Academy, San Diego, CA, United States of America
| | - Kunwer Chhatwal
- Hopkinton High School, Hopkinton, MA, United States of America
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Tao Tang
- Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Liu D, Liu S, Ji Y, Jin Z, He Z, Hou M, Li D, Ma X. Lactylation modulation identifies key biomarkers and therapeutic targets in KMT2A-rearranged AML. Sci Rep 2025; 15:1511. [PMID: 39789150 PMCID: PMC11718094 DOI: 10.1038/s41598-025-86136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025] Open
Abstract
Acute Myeloid Leukemia (AML) with KMT2A rearrangements (KMT2Ar), found on chromosome 11q23, is often called KMT2A-rearranged AML (KMT2Ar-AML). This variant is highly aggressive, characterized by rapid disease progression and poor outcomes. Growing knowledge of epigenetic changes, especially lactylation, has opened new avenues for investigation and management of this subtype. Lactylation plays a significant role in cancer, inflammation, and tissue regeneration, but the underlying mechanisms are not yet fully understood. This research examined the influence of lactylation on gene expression within KMT2Ar-AML, initially identifying twelve notable lactylation-dependent differentially expressed genes (DEGs). Using advanced machine learning techniques, six key lactylation-associated genes (PFN1, S100A6, CBR1, LDHB, LGALS1, PRDX1) were identified as essential for prognostic evaluation and linked to relevant disease pathways. The study also suggested PI3K inhibitors and Pevonedistat as possible therapeutic options to modulate immune cell infiltration. Our findings confirm the critical role of lactylation in KMT2Ar-AML and identify six key genes that may serve as biomarkers for diagnosis and treatment. In addition to highlighting the need for further validation in clinical settings, these findings contribute to our understanding of KMT2Ar-AML's molecular mechanisms.
Collapse
Grants
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 18KJA320005 Natural Science Foundation of the Jiangsu Higher Education Institution of China
- No. 18KJA320005 Natural Science Foundation of the Jiangsu Higher Education Institution of China
- No. 81900130 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Dan Liu
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China.
| | - Silu Liu
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Yujie Ji
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ziyan Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhewei He
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mengjia Hou
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Dongyang Li
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.
| |
Collapse
|
39
|
Ahmadi M, Motallebinezhad M, Mousavi P, Miladipour AH, Fooladgar S, Ghafouri-Fard S, Fazeli SA. Bioinformatics analysis of mitochondrial metabolism-related genes demonstrates their importance in renal cell carcinoma. Discov Oncol 2025; 16:28. [PMID: 39789365 PMCID: PMC11717778 DOI: 10.1007/s12672-025-01780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
PURPOSE Clear cell renal cell carcinoma (ccRCC) is resistant to radiotherapy and chemotherapy. Thus, it is necessary to find new diagnostic markers and therapeutic targets to increase the overall outcomes of ccRCC. Recent studies have shown that therapeutic methods that interfere with the energy transfer system can also positively affect the treatment process. METHODS The present study is focused on finding markers associated with mitochondrial metabolic pathways that affect the outcome of ccRCC. For this purpose, we investigated various aspects of the relationship between mitochondrial metabolism and ccRCC based on analysis of gene network connections and differentially expressed genes, through assessment of protein-protein interaction, mutations, and promoter methylation on the related genes. We also investigated gene interaction with miRNAs and immune infiltration analysis. RESULTS Through these steps, we provided a list of possible diagnostic markers and therapeutic targets for ccRCC. CONCLUSION The current study further proved the importance of mitochondrial metabolic pathways in the pathogenesis of ccRCC and provided a list of possible diagnostic markers and therapeutic targets from these pathways that can be used in ccRCC.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Motallebinezhad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Hossein Miladipour
- Chronic Kidney Disease Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamim Fooladgar
- Department of Biology, School of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Amirhossein Fazeli
- Clinical Research and Development Center, Division of Nephrology, Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Division of Nephrology, Department of Internal Medicine, Taleghani General Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Ma L, Li Y, Wu J, Gao Y. Bioinformatics approaches to multi-omics analysis of the potential of CDKN2A as a biomarker and therapeutic target for uterine corpus endometrial carcinoma. Sci Rep 2025; 15:895. [PMID: 39762354 PMCID: PMC11704072 DOI: 10.1038/s41598-025-85364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is a significant cause of cancer-related mortality among women worldwide. Prior research has demonstrated an association between cyclin-dependent kinase inhibitor 2 A (CDKN2A) and various tumors. As a member of the INK4 family, CDKN2A is involved in cell cycle regulation by controlling CDKs. In the present study, bioinformatics was used to analyze public datasets. The expression levels, signaling pathways, and copy number variations of CDKN2A in UCEC were explored, along with its immune cell subset associations. CDKN2A expression was found to be elevated in UCEC, particularly in the signaling pathways involved in cell proliferation and inflammation. Analysis of somatic copy number alterations in the TCGA (The Cancer Genome Atlas)-UCEC dataset revealed a connection between CDKN2A and drug metabolism in UCEC. Assessment of the relationship between CDKN2A and genes involved in immunotherapy for UCEC patients showed a negative correlation between CDKN2A and CD8+ T cell activity, as well as IL-2 and TP53. Collectively, these insights suggest that CDKN2A may be a potential biomarker for prognosis and treatment strategies in UCEC.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400000, China
| | - Yuling Li
- Biochemistry and Molecular Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400000, China
| | - Jingxian Wu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400000, China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400000, China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China.
| | - Yanfei Gao
- Biochemistry and Molecular Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, 400000, China.
| |
Collapse
|
41
|
Wang X, Bao S, Jiang M, Zou X, Yin Y. Clinical, pathological and gene expression profiling of estrogen receptor discordance in breast cancer. Clin Transl Oncol 2025; 27:233-256. [PMID: 38926258 DOI: 10.1007/s12094-024-03547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Breast cancer (BC) is the world's largest tumor species in which hormone receptor-positive patients have relatively good prognosis. However, majority of patients will develop late resistance, one of the important factors is due to the loss of the original estrogen receptor (ER) expression. METHODS We conducted this study in 115 patients with BC who experienced second biopsy at Jiangsu Province Hospital (JSPH) and divided patients into two subgroups ER + to - and ER + to + . First, clinicopathological characteristics between two groups were evaluated. Second, we explored candidate genes related to BC ER intratumor heterogeneity by applying next-generation sequencing (NGS) in 42 patients. Multi-omics integrative analysis of tumor transcriptomic, cancer-related pathway, diagnostic and prognostic value and immune profile were conducted. Besides, preliminary assay were also used to evaluate the correlation between KMT2C and ERα (ESR1) expression. The CCK-8, 5-Ethynyl-2'-deoxyuridine (EdU) assays, Transwell assays and the wound scratch tests were applied to explore the cellular interactions between KMT2C and BC. RESULTS We find the histological type (p = 0.008) and disease-free survival (DFS) (p = 0.004) were significantly different in two subgroups. In Cox survival analysis, metastasis (Hazard ratio (HR) > 1, p = 0.007) and neo-adjuvant (HR < 1, p < 0.001) are independent prognostic factors of DFS. Besides, by analyzing NGS results, we found four genes KMT2C, FGFR19, FGF1 and FGF4 were highly mutated genes in ER + to - subgroup. Furthermore, the gene KMT2C displayed significant diagnostic value and prognostic value in BC and pan-cancer. In addition, a positive correlation between KMT2C expression and immune infiltrating levels of T cell CD4 + , macrophage and neutrophil was found. In the end, Western blot and RT-qPCR assay were used and found KMT2C and ERα (ESR1) expressions are strongly positive correlated in mRNA and protein level. Inhibition of KMT2C significantly reduced proliferation, invasion, and migration of MCF7 cells. CONCLUSION People in two cohorts from JSPH presented different clinical characteristics and prognosis. The gene KMT2C may affect the progression of BC by regulating the molecular, epigenetic activity and immune infiltration. It may also serve as a novel prognostic biomarker for BC patients who underwent ER status converted from positive to negative.
Collapse
Affiliation(s)
- Xi Wang
- Department of Radiotherapy, Affiliated Hospital 2 of Nantong University (Nantong First People's Hospital), Nantong, 226300, Jiangsu, China
| | - Shengnan Bao
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226300, Jiangsu, China
| | - Mengping Jiang
- Department of Radiotherapy, Affiliated Hospital 2 of Nantong University (Nantong First People's Hospital), Nantong, 226300, Jiangsu, China
| | - Xian Zou
- Clinical Medicine, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
42
|
Wang Q, Jiang Y, Liao W, Zhu P. Comprehensive Pan-cancer Analysis Revealed CASP10 As a Promising Biomarker For Diverse Tumor Types. Int J Immunopathol Pharmacol 2025; 39:3946320251327620. [PMID: 40152300 PMCID: PMC11954456 DOI: 10.1177/03946320251327620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
We aimed to explore the comprehensive cancer landscape of Caspase-10 (CASP10). CASP10, a member of the caspase family, is located at the human chromosome locus 2q33-34. Studies have suggested its potential role in the development of certain cancers. To evaluate CASP10 expression in normal and pan-cancer tissues, we integrated data from The Cancer Genome Atlas (TCGA), GEO, Human Protein Atlas (HPA), and UALCAN databases. The diagnostic and prognostic significance of CASP10 was analyzed using Receiver Operating Characteristic (ROC), Cox regression, and Kaplan-Meier analysis. Correlations of CASP10 with clinical parameters were assessed via the Wilcoxon test, Kruskal-Wallis test, and logistic regression analysis. Genomic variations were explored with cBioPortal, GSCALite database, and UALCAN databases. LinkedOmics database was used to detect the function of CASP10 in pan-cancer. Interactions between CASP10 and the Tumor Immune Microenvironment (TIME) were investigated using TISIDB, TIMER2, and TISCH databases. The GSCALite database was utilized to assess the sensitivity of CASP10 to small-molecule drugs. In addition, Western Blotting (WB) was employed to detect the expression of the CASP10 in our clinical Liver Hepatocellular Carcinoma (LIHC) and Stomach Adenocarcinoma (STAD) cohorts. The transcription and protein expression of CASP10 significantly differ across cancer types, marking it as a biomarker for diagnosis and prognosis. Its expression correlated with certain clinical characteristics such as histological types and Alpha-Fetoprotein (AFP) levels. CASP10 gene exhibited a 2% alteration frequency across pan-cancer patients, with significant SNV and CNV profiles, and decreased methylation levels. CASP10 was closely related to the Nuclear Factor-κappa B (NF-κB), TNF, cell cycle, and JAK-STAT signal pathways. CASP10 showed correlation with immune components in the tumor microenvironment, including lymphocytes, immune stimulators, immune inhibitors, MHC molecules, chemokines, receptors, and Cancer-Associated Fibroblasts (CAFs). Importantly, CASP10 could predict the sensitivity of diverse anti-cancer drugs. Finally, WB analysis validated the overexpression of CASP10 in LIHC and STAD tissues. Our comprehensive bioinformatic analysis reveal the function of CASP10 on the diagnosis, prognosis, and progression of diverse cancer types.
Collapse
Affiliation(s)
- Qian Wang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- The Precision Medical Institute, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yaping Jiang
- Department of Clinical Laboratory, Xi’an NO. 3 Hospital, Xi’an, China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Pengpeng Zhu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
43
|
Zhou L, Min Y, Cao Q, Tan X, Cui Y, Wang J. Comprehensive analysis of the value of angiogenesis and stemness-related genes in the prognosis and immunotherapy of ovarian cancer. Biofactors 2025; 51:e2155. [PMID: 39704033 DOI: 10.1002/biof.2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Tumor angiogenesis and the presence of cancer stem cells (CSCs) are critical characteristics of tumors. Previous research has demonstrated that cancer stem cells promote tumor angiogenesis, while increased vascularity, in turn, fosters the growth of cancer stem cells. This creates a detrimental cycle that contributes to tumor progression. However, studies investigating the angiogenesis and stemness characteristics in ovarian cancer (OV) are limited. In this study, we employed cluster analysis and LASSO methods to assess the significance of angiogenesis- and stemness-related genes in the efficacy of OV immunotherapy. Through multivariate Cox regression analysis and Friends analysis, we identified TNFSF11 as the most significant prognostic gene associated with angiogenesis and stemness. Additionally, molecular docking results confirmed that TNFSF11 exhibits a high affinity for sorafenib and sunitinib. In summary, for the first time, we conducted a comprehensive analysis of the roles of angiogenesis and stemness-related genes in the prognosis and immunotherapy of OV patients, revealing TNFSF11 as a novel therapeutic target.
Collapse
Affiliation(s)
- Linsen Zhou
- Department of Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Min
- Department of Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiqi Cao
- Department of Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xun Tan
- Department of Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongfen Cui
- Department of Ultrasound, Nantong Second People's Hospital, Nantong, Jiangsu, People's Republic of China
| | - Jiawei Wang
- Department of Gynecology, Affiliated Hospital of Nantong University, Nantong, China
- Department of Obstetrics and Gynecology, Affiliated Maternal and Child Care Service Centre, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
44
|
Li C, Mao Y, Liu Y, Hu J, Su C, Tan H, Hou X, Ou M. Machine learning-based integration develops a multiple programmed cell death signature for predicting the clinical outcome and drug sensitivity in colorectal cancer. Anticancer Drugs 2025; 36:1-18. [PMID: 39132895 DOI: 10.1097/cad.0000000000001654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Tumorigenesis and treatment are closely associated with various programmed cell death (PCD) patterns. However, the coregulatory role of multiple PCD patterns in colorectal cancer (CRC) remains unknown. In this study, we developed a multiple PCD index (MPCDI) based on 19 PCD patterns using two machine learning algorithms for risk stratification, prognostic prediction, construction of nomograms, immune cell infiltration analysis, and chemotherapeutic drug sensitivity analysis. As a result, in the TCGA-COAD, GSE17536, and GSE29621 cohorts, the MPCDI can effectively distinguished survival outcomes in CRC patients and served as an independent factor for CRC patients. We then explored the immune infiltration landscape in two groups using the nine algorithms and found more overall immune infiltration in the high-MPCDI group. TIDE scores suggested that the increased immune evasion potential and immune checkpoint inhibition therapy may be less effective in the high-MPCDI group. Immunophenoscores indicated that anti-PD1, anti-cytotoxic T-lymphocyte associated antigen 4 (anti-CTLA4), and anti-PD1-CTLA4 combination therapies are less effective in the high-MPCDI group. In addition, the high-MPCDI group was more sensitive to AZD1332, Foretinib, and IGF1R_3801, and insensitive to AZD3759, AZD5438, AZD6482, Erlotinib, GSK591, IAP_5620, and Picolinici-acid, which suggests that the MPCDI can guide drug selection for CRC patients. As a new clinical classifier, the MPCDI can more accurately distinguish CRC patients who benefit from immunotherapy and develop personalized treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Chunhong Li
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University
| | - Yuhua Mao
- Department of Obstetrics, The Second Affiliated Hospital of Guilin Medical University
| | - Yi Liu
- Department of Obstetrics, The Second Affiliated Hospital of Guilin Medical University
| | - Jiahua Hu
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University
| | - Chunchun Su
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University
| | - Haiyin Tan
- School of Medical Laboratory Medicine, Guilin Medical University, Guilin, China
| | - Xianliang Hou
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University
| | - Minglin Ou
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University
| |
Collapse
|
45
|
Wang P, Zhu Z, Hou C, Xu D, Guo F, Zhi X, Liang W, Xue J. FGF19 is a biomarker associated with prognosis and immunity in colorectal cancer. Int J Immunopathol Pharmacol 2025; 39:3946320251324401. [PMID: 40162957 PMCID: PMC11960187 DOI: 10.1177/03946320251324401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the relationship between fibroblast growth factor 19 (FGF19) and the prognosis and immune infiltration of colorectal cancer (CRC) and identify the related genes and pathways influencing the onset and progression of CRC. INTRODUCTION The potential of FGF19 to guide the prognosis of CRC and inform immunotherapeutic strategies warrants further investigation. METHODS We performed Quantitative Real-Time PCR to assess the expression of FGF19 and conducted a bioinformatics analysis to evaluate the impact of FGF19 expression on the clinical prognosis of CRC. We also analyzed the association between FGF19 expression and immune cell infiltration in CRC, and explored the related genes and pathways through which FGF19 influences CRC development. RESULTS CRC patients with higher FGF19 expression exhibited a poorer prognosis. In terms of the Receiver Operating Characteristic (ROC), FGF19 achieved an area under the curve (AUC) of 0.904. FGF19 expression correlated with the N stage, M stage, and pathological stage in patients with CRC. Functional enrichment analysis revealed significant enrichment of FGF19 in pathways associated with tumor development. ssGSEA and Spearman correlation analysis demonstrated that FGF19 expression was linked to tumor immune cells. We discovered that FGF19 is closely related to neutrophil extracellular traps (NETs), which play a significant role in the immune microenvironment. CONCLUSION FGF19 is a key gene associated with immunity and prognosis in CRC patients. Our findings suggest that FGF19 may influence CRC progression by promoting NETs expression, which leads to suppression of immune cells.
Collapse
Affiliation(s)
- Peng Wang
- Graduate School, Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Zhenpeng Zhu
- Graduate School, Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Chenyang Hou
- Graduate School, Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Dandan Xu
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Fei Guo
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Weizheng Liang
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Jun Xue
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| |
Collapse
|
46
|
Xu P, Zhang Q, Zhai J, Chen P, Deng X, Miao L, Zhang X. Systematic pan-cancer analysis identifies ZBTB11 as a potential pan-cancer biomarker and immunotherapy target in multiple tumor types. Discov Oncol 2024; 15:830. [PMID: 39715911 DOI: 10.1007/s12672-024-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND ZBTB11 is a putative transcription factor with an N-terminal BTB domain and tandem C-terminal zinc finger motifs. Recent studies have suggested a potential role for ZBTB11 in tumorigenesis. However, the biological significance of ZBTB11 in different cancer types remains uncertain. METHODS The expression levels, prognostic values, genetic mutations, and DNA promoter methylation of ZBTB11 across tumor types were explored via various online websites and databases, including TIMER2.0, GEPIA2, cBioPortal, UALCAN, GSCA, CancerSEA, and others. Additionally, a competing lncRNA-miRNA network of ZBTB11 was constructed, and its interaction with chemicals and genes was investigated. RESULTS Our findings revealed that ZBTB11 was aberrantly expressed in a multitude of tumor types and exhibited variability across various tumor stages. A survival analysis revealed that ZBTB11 predicted a poor prognosis in BRCA, KIRP, LIHC, PCPG, PRAD, SARC, UCEC, and a good prognosis in CHOL, ESCA, GBM, KIRC, and READ. We also found that the most frequent genetic alterations type of ZBTB11 was mutation, and the DNA methylation level of ZBTB11 decreased in various cancers. Furthermore, ZBTB11 expression correlated with immune cells infiltration and genetic markers of immunodulators in cancers. Moreover, the results of single-cell sequencing demonstrated that ZBTB11 could regulate several tumor biological behaviors, including apoptosis, DNA damage, and angiogenesis. A lncRNA-miRNA network regulating ZBTB11 expression in tumor development and progression was constructed. It is of particular significance that ZBTB11 demonstrated a correlation with the CTRP and GDSC drug sensitivity, and that it served as a mediator between chemicals and cancers. CONCLUSION These findings demonstrate that ZBTB11 is associated with multiple tumor types and disease prognosis. ZBTB11 may represent a potential key biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Peiyi Xu
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Qiuyan Zhang
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Jing Zhai
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Pu Chen
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Xueting Deng
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Lin Miao
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Xiuhua Zhang
- Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China.
| |
Collapse
|
47
|
Xue C, Dai YZ, Li GL, Zhang Y. Prediction of prognosis, efficacy of lung adenocarcinoma by machine learning model based on immune and metabolic related genes. Discov Oncol 2024; 15:778. [PMID: 39692796 DOI: 10.1007/s12672-024-01515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND The aim of this study is to integrate immune and metabolism-related genes in order to construct a predictive model for predicting the prognosis and treatment response of LUAD(lung adenocarcinoma) patients, aiming to address the challenges posed by this highly lethal and heterogeneous disease. MATERIAL AND METHODS Using TCGA-LUAD as the training subset, differential gene expression analysis, batch survival analysis, Lasso regression analysis, univariate and multivariate Cox regression analysis were performed to construct prognostic related gene models. GEO queue as validation subsets, is used to validate build Riskscore. Then, we explore the Riskscore and mutation status, immune cell infiltration, the relationship between immune therapy and chemotherapy, and build the model of the nomogram. RESULTS The Riskscore has been determined to be composed of seven gene. In the high-risk group defined by this score, both early-stage and advanced-stage LUAD patients exhibit a decreased overall survival rate. The mutation status of patients as well as immune cell infiltration show associations with the Riskscore value obtained from these genes' expression levels. Furthermore, there exist variations in response to immunotherapy as well as sensitivity to commonly used chemotherapy drugs among different individuals. Lastly, when using a column line plot model based on the calculated Riskscore values, we obtain a concordance index (C-index) was 0 .716 (95% CI 0.671-0.762), and time-dependent ROC predicted probabilities of 1-, 3- and 5-year survival for LUAD patients were 0.752, 0.725 and 0.654, respectively. CONCLUSION In conclusion, we have successfully developed a predictive model incorporating immune and metabolism-related genes, encompassing gene expression levels of CAT/CCL20/GPI/INSL4 NT5E/GSTA3/GNPNAT1. This comprehensive model not only enables the prognosis prediction for LUAD patients but also facilitates the prediction of their response to first-line chemotherapy drugs and immune checkpoint inhibitors, thus demonstrating its broad potential in clinical applications. However, our study still has limitations as it is based on TCGA and GEO databases with limited pathological characteristics of patients. Therefore, more practical and valuable factors are needed to predict efficacy. The crosstalk between metabolism and immunity remains to be explored. Finally, this study lacks experimental evidence for the underlying gene expression of prognosis and further research is required.
Collapse
Affiliation(s)
- Cong Xue
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli Road, Zhangzhou, 363000, Fujian, China
| | - Yi-Zhi Dai
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli Road, Zhangzhou, 363000, Fujian, China
| | - Gui-Long Li
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli Road, Zhangzhou, 363000, Fujian, China
| | - Yi Zhang
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli Road, Zhangzhou, 363000, Fujian, China.
| |
Collapse
|
48
|
Emelyanova MA, Ikonnikova AY. Utilization of molecular genetic approaches for colorectal cancer screening. World J Gastroenterol 2024; 30:4950-4957. [PMID: 39679308 PMCID: PMC11612711 DOI: 10.3748/wjg.v30.i46.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
The feasibility of population screening for colorectal cancer has been demonstrated in several studies. Most of these studies have considered individual characteristics, diagnostic approaches, epidemiological data, and socioeconomic factors. In this article, we comment on an editorial by Metaxas et al published in the recent issue of the journal. The authors emphasized the need to raise public awareness through health education programs and the possibility of using easily accessible non-invasive screening methods. Here, we focus on non-invasive molecular genetic approaches that can aid in colorectal cancer screening. On the one hand, we highlighted the use of tumor DNA/RNA markers directly for screening and, on the other hand, underline the use of polygenic risk assessment and hereditary predisposition to select individuals for more thorough cancer screening.
Collapse
Affiliation(s)
- Marina A Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna Y Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
49
|
Tian QS, Zhang C, Bao ZJ, Pei Z. The role of CD47 in immune escape of colon cancer and its correlation with heterogeneity of tumor immune microenvironment. PeerJ 2024; 12:e18579. [PMID: 39670101 PMCID: PMC11636535 DOI: 10.7717/peerj.18579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
Background Cluster of differentiation 47 (CD47), a transmembrane protein, plays a critical role in regulating cellular functions and maintaining immune homeostasis. Its expression has been shown to influence cancer prognosis. In this study, we investigated the role of CD47 in tumor progression in colon adenocarcinoma (COAD) and evaluated its potential as a target for immunotherapy. Materials and Methods We analyzed surgical samples from 96 COAD patients. Immunohistochemical analysis was performed on 90 samples, while the remaining 6 were subjected to multiplex immunofluorescence. To explore the association between CD47 expression and clinicopathological characteristics, we integrated transcriptome data from The Cancer Genome Atlas and the Gene Expression Omnibus using R software. The Tumor Immune Estimation Resource and Kaplan-Meier plotter were utilized to assess the relationship between CD47 expression, patient prognosis, and immune infiltration. Furthermore, the single-cell Tumor Immune System Interaction Database was used to examine the correlation between CD47 expression and the tumor microenvironment (TME). All included patients gave oral and written informed consent. The study was approved by the Ethics Committee of 3201 Hospital (full name: Medical Ethics Committee of 3201 Hospital). Results CD47 was found to be overexpressed in various tumors, including COAD. Higher CD47 expression was significantly associated with more advanced tumor stages, including TNM staging, T staging, and N staging (P < 0.05). A robust correlation was observed between CD47 expression and immune cell infiltration in COAD. Patients with elevated CD47 expression tended to have longer disease-free intervals, although this benefit was diminished in cases with high infiltration of M1 macrophages. The immunosuppressive function of CD47 primarily acted through the CD47/SIRPα pathway. Additionally, distinct cellular compositions and distributions were identified between primary and metastatic COAD, underscoring the heterogeneity of the TME. CD47 also influenced the TME by modulating cytokine and cytokine receptor interactions. Conclusion CD47 represents a promising prognostic biomarker and a potential target for immunotherapy in COAD. These findings provide new insights into therapeutic strategies aimed at modulating the TME and improving patient outcomes.
Collapse
Affiliation(s)
- Qiu-Si Tian
- Department of Neurosurgery, 3201 Hospital of Xi’an Jiaotong University Health Science Center, HanZhong, ShaanXi, China
| | - ChunMei Zhang
- Department of Pathology, Chongqing University Jiangjin Hospital, ChongQing, China
| | - Zhi-Jun Bao
- Department of Neurosurgery, 3201 Hospital of Xi’an Jiaotong University Health Science Center, HanZhong, ShaanXi, China
| | - ZhiGang Pei
- Department of Pathology, Chongqing University Jiangjin Hospital, ChongQing, China
| |
Collapse
|
50
|
Mahmud S, Ajadee A, Hossen MB, Islam MS, Ahmmed R, Ali MA, Mollah MMH, Reza MS, Mollah MNH. Gene-expression profile analysis to disclose diagnostics and therapeutics biomarkers for thyroid carcinoma. Comput Biol Chem 2024; 113:108245. [PMID: 39454454 DOI: 10.1016/j.compbiolchem.2024.108245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
The most frequent endocrine cancer of the head and neck is thyroid carcinoma (THCA). Although there is increasing evidence linking THCA to genetic alterations, the exact molecular mechanism behind this relationship is not yet completely known to the researchers. There is still much to learn about THCA's molecular roots and genetic biomarkers. Though drug therapies are the best choice after metastasis, unfortunately, the majority of the patients progressively develop resistance against the therapeutic drugs after receiving them for a few years. Therefore, multi-targeted different variants of therapeutic drugs may be essential for effective treatment against THCA. To understand molecular mechanisms of THCA development and progression and explore multi-targeted different variants of therapeutic drugs, we detected 80 common differentially expressed genes (cDEGs) between THCA and non-THCA samples from six microarray gene expression datasets using the statistical LIMMA approach. Through protein-protein interaction (PPI) network analysis, we identified the top-ranked eight differentially expressed genes (TIMP1, FN1, THBS1, RUNX2, SHANK2, TOP2A, LRP2, and ACTN1) as the THCA-causing key genes (KGs), where 6 KGs (TIMP1, TOP2A, FN1, ACTN1, RUNX2, THBS1) are upregulated and 2 KGs (LRP2, SHANK2) are downregulated. The expression pattern analysis of KGs with the independent TCGA database by Box plots also confirmed their upregulated and downregulated patterns. The expression analysis of KGs in different stages of THCA development indicated that these KGs might be utilized as early diagnostic and prognostic biomarkers. The pan-cancer analysis of KGs indicated a substantial correlation of KGs with multiple cancers, including THCA. Some transcription factors (TFs) and microRNAs were detected as the key transcriptional and post-transcriptional regulators of KGs using gene regulatory network (GRN) analysis. The enrichment analysis of the cDEGs revealed several key molecular functions, biological processes, cellular components, and pathways significantly associated with THCA. These findings highlight critical mechanisms influenced by the identified key genes (KGs), providing deeper insight into their roles in THCA development. Then we detected 6 repurposable drug molecules (Entrectinib, Imatinib, Ponatinib, Sorafenib, Retevmo, and Pazopanib) by molecular docking with KGs-mediated receptor proteins, ADME/T analysis, and cross-validation with the independent receptors. Therefore, these findings might be useful resources for wet lab researchers and clinicians to consider an effective treatment strategy against THCA.
Collapse
Affiliation(s)
- Sabkat Mahmud
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Alvira Ajadee
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Bayazid Hossen
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; Department of Agricultural and Applied Statistics, Bangladesh Agricultural University (BAU), Bangladesh
| | - Md Saiful Islam
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Reaz Ahmmed
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh
| | - Md Ahad Ali
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh
| | | | - Md Selim Reza
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; Department of Biomedical Informatics and Genomics, Tulane University, USA
| | - Md Nurul Haque Mollah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|