1
|
Olesińska W, Biernatek M, Lachowicz-Wiśniewska S, Piątek J. Systematic Review of the Impact of COVID-19 on Healthcare Systems and Society-The Role of Diagnostics and Nutrition in Pandemic Response. J Clin Med 2025; 14:2482. [PMID: 40217931 PMCID: PMC11989619 DOI: 10.3390/jcm14072482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
The COVID-19 pandemic has revealed deep vulnerabilities in healthcare systems and public health preparedness. This systematic review examines the effectiveness of epidemiological procedures, the role of diagnostics, and the influence of nutritional status on immune function and disease severity. A total of 88 studies were analyzed, encompassing diagnostics, micronutrient deficiencies (notably vitamin D, C, E, zinc, and selenium), and the psychosocial impact of the pandemic. The results underscore the importance of integrated strategies-including accurate testing, preventive nutritional measures, and mental health support-in improving outcomes and societal resilience during global health crises. Unlike previous reviews that focused on isolated biomedical or public health elements, this study integrates diagnostics, immune-nutritional status, and psychosocial effects to present a comprehensive, multidimensional analysis of pandemic impact and preparedness.
Collapse
Affiliation(s)
| | | | - Sabina Lachowicz-Wiśniewska
- Faculty of Medicine and Health Science, University of Kalisz (Calisia University), plac Wojciecha Bogusławskiego 2, 62-800 Kalisz, Poland; (W.O.); (M.B.); (J.P.)
| | | |
Collapse
|
2
|
Shahidin, Wang Y, Wu Y, Chen T, Wu X, Yuan W, Zhu Q, Wang X, Zi C. Selenium and Selenoproteins: Mechanisms, Health Functions, and Emerging Applications. Molecules 2025; 30:437. [PMID: 39942544 PMCID: PMC11820089 DOI: 10.3390/molecules30030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Selenium (Se) is an essential trace element crucial for human health that primarily functions as an immunonutrient. It is incorporated into polypeptides such as selenocysteine (SeC) and selenomethionine (SeMet), two key amino acids involved in various biochemical processes. All living organisms can convert inorganic Se into biologically active organic forms, with SeMet being the predominant form and a precursor for SeC production in humans and animals. The human genome encodes 25 selenoprotein genes, which incorporate low-molecular-weight Se compounds in the form of SeC. Organic Se, especially in the form of selenoproteins, is more efficiently absorbed than inorganic Se, driving the demand for selenoprotein-based health products, such as functional foods. Se-enriched functional foods offer a practical means of delivering bioavailable Se and are associated with enhanced antioxidant properties and various health benefits. Recent advancements in selenoprotein synthesis have improved our understanding of their roles in antioxidant defense, cancer prevention, immune regulation, anti-inflammation, hypoglycemia, cardiovascular health, Alzheimer's disease, fertility, and COVID-19. This review highlights key selenoproteins and their biological functions, biosynthetic pathways, and emerging applications while highlighting the need for further research.
Collapse
Affiliation(s)
- Shahidin
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yilong Wu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Taixia Chen
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyun Wu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Wenjuan Yuan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Qiangqiang Zhu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
| | - Xuanjun Wang
- College of Resources, Environment, and Chemistry, Chuxiong Normal University, No. 546 S Rd. Lucheng, Chuxiong 675099, China
| | - Chengting Zi
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Eftekhari Z, Doroud D, Tajabadi-Ebrahimi M, Kazemi-Lomedasht F. Improving Vaccine Response through Probiotics and Micronutrient Supplementation: Evaluating the Role of TLR5 in Adult Female BALB/c Mice. Curr Pharm Des 2025; 31:233-242. [PMID: 39257145 DOI: 10.2174/0113816128310203240823053538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The role of probiotics and micronutrients in improving immune system function and response to vaccination has been proven. Hence, this study aimed to investigate the effects of probiotics enriched with micronutrients on the immunogenicity of PastoCovac® vaccine. METHODS The probiotic supplement BioBoost® and PastoCovac® vaccine, which contain six expressed Receptor- binding Domains (RBD) and conjugated with tetanus toxin, were administered concurrently. The safety and efficacy were assessed by determining Immunoglobulin G (IgG) antibody titers to RBD and cytokines, mRNA expression of Toll-like Receptors (TLRs) 5, and clinical symptoms. RESULTS Results revealed that the administration of the probiotics enriched with micronutrients and vitamins for 14 days before the first vaccine dose, followed by continued supplementation for 14 days after the first dose, and in conjunction with the second vaccine dose, yielded the most significant elevation in Interleukin 4 (IL-4), Tumor Necrosis Factor-alpha (TNF alpha), Interferon-gamma (IFN-gamma), and anti-SARS-CoV-2 RBD IgG levels within the supernatant samples collected from spleen cultures with the highest expression of TLR5 genes in intestinal samples, compared to the control group. CONCLUSION Our results indicated that the inclusion of probiotics enriched with micronutrients and vitamins significantly enhanced the immunogenicity of the PastoCovac® vaccine. Based on the recommendation to administer third and fourth vaccine doses, particularly for vulnerable and elderly individuals, the utilization of supplements containing probiotics is expected to favorably influence immune responses.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Delaram Doroud
- Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- Venom and Bio-therapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Liu L, Wang C, Yin K, Ni M, Ding Y, Li C, Zheng SJ. The Dual Effect of Selenium Application in Reducing Fusarium Wilt Disease Incidence in Banana and Producing Se-Enriched Fruits. PLANTS (BASEL, SWITZERLAND) 2024; 13:3435. [PMID: 39683228 DOI: 10.3390/plants13233435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Fusarium wilt disease severely constrains the global banana industry. The highly destructive disease is caused by Fusarium oxysporum f. sp. cubense, especially its virulent tropical race 4 (Foc TR4). Selenium (Se), a non-essential mineral nutrient in higher plants, is known to enhance plant resistance against several fungal pathogens. The experiments we conducted showed that selenium (≥10 mg/L) dramatically inhibited the growth of Foc TR4 mycelia and promoted plant growth. The further study we performed recorded a substantial reduction in the disease index (DI) of banana plants suffering from Foc TR4 when treated with selenium. The selenium treatments (20~160 mg/L) demonstrated significant control levels, with recorded symptom reductions ranging from 42.4% to 65.7% in both greenhouse and field trials. The DI was significantly negatively correlated with the total selenium content (TSe) in roots. Furthermore, selenium treatments enhanced the antioxidant enzyme activities of peroxidase (POD), polyphenol oxidase (PPO), and glutathione peroxidase (GSH-Px) in banana. After two applications of selenium (100 and 200 mg/plant) in the field, the TSe in banana pulps increased 23.7 to 25.9-fold and achieved the Se enrichment standard for food. The results demonstrate that selenium applications can safely augment root TSe levels, both reducing Fusarium wilt disease incidence and producing Se-enriched banana fruits. For the first time, this study has revealed that selenium can significantly reduce the damage caused by soil-borne pathogens in banana by increasing the activities of antioxidant enzymes and inhibiting fungal growth.
Collapse
Affiliation(s)
- Lina Liu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, China
| | - Chengye Wang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Kesuo Yin
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Ming Ni
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yue Ding
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, China
| | - Si-Jun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Bioversity International, Kunming 650205, China
| |
Collapse
|
5
|
Chen X, Yue J, Xu X, Chen J, Huang X, Huang Y, Yang Y, Li F, Li T. Surface different charge ligands for modulating selenium nanoparticles formation and activating the interaction with proteins for effective anti-Herpes simplex virus l infection. NANOTECHNOLOGY 2024; 36:065101. [PMID: 39514902 DOI: 10.1088/1361-6528/ad902b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Selenium-based nanoparticles exhibit antiviral activity by directly modulating immune function. Despite recent promising developments in utilizing selenium nanoparticles (Se NPs) against viral infections, the impact of surface ligand charge on the conformation and interaction with viral proteins, as well as the effectiveness of Se NPs in anti-Herpes simplex virus 1 (HSV-1) infection remains unexplored. In this study, three types of selenium nanoparticles (CTAB-Se, PVP-Se, SDS-Se) with distinct surface charges were synthesized by modifying the surface ligands. We found that apart from differences in surface charge, the size, morphology, and crystal structure of the three types of Se NPs were similar. Notably, although the lipophilicity and cellular uptake of SDS-Se with a negative charge were lower compared to positively charged CTAB-Se and neutrally charged PVP-Se, SDS-Se exhibited the strongest protein binding force during interaction with HSV-1. Consequently, SDS-Se demonstrated the most potent anti-HSV-1 activity and safeguarded normal cells from damage. The mechanistic investigation further revealed that SDS-Se NPs effectively inhibited the proliferation and assembly of HSV-1 by powerfully suppressing the key genes and proteins of HSV-1 at various stages of viral development. Hence, this study highlights the significant role of surface ligand engineering in the antiviral activity of Se NPs, presenting a viable approach for synthesizing Se NPs with tailored antiviral properties by modulating surface charge. This method holds promise for advancing research on the antiviral capabilities of Se NPs.
Collapse
Affiliation(s)
- Xu Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Jian Yue
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Xiongjun Xu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Jiajun Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xuechan Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Yukai Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, People's Republic of China
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
- Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing 526000, People's Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Xie J, Yuan C, Yang S, Ma Z, Li W, Mao L, Jiao P, Liu W. The role of reactive oxygen species in severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection-induced cell death. Cell Mol Biol Lett 2024; 29:138. [PMID: 39516736 PMCID: PMC11549821 DOI: 10.1186/s11658-024-00659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents the novel respiratory infectious disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by rapid spread throughout the world. Reactive oxygen species (ROS) account for cellular metabolic by-products, and excessive ROS accumulation can induce oxidative stress due to insufficient endogenous antioxidant ability. In the case of oxidative stress, ROS production exceeds the cellular antioxidant capacity, thus leading to cell death. SARS-CoV-2 can activate different cell death pathways in the context of infection in host cells, such as neutrophil extracellular trap (NET)osis, ferroptosis, apoptosis, pyroptosis, necroptosis and autophagy, which are closely related to ROS signalling and control. In this review, we comprehensively elucidated the relationship between ROS generation and the death of host cells after SARS-CoV-2 infection, which leads to the development of COVID-19, aiming to provide a reasonable basis for the existing interventions and further development of novel therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sen Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lin Mao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
Bizerea-Moga TO, Pitulice L, Bizerea-Spiridon O, Moga TV. Exploring the Link between Oxidative Stress, Selenium Levels, and Obesity in Youth. Int J Mol Sci 2024; 25:7276. [PMID: 39000383 PMCID: PMC11242909 DOI: 10.3390/ijms25137276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity is a worldwide increasing concern. Although in adults this is easily estimated with the body mass index, in children, who are constantly growing and whose bodies are changing, the reference points to assess weight status are age and gender, and need corroboration with complementary data, making their quantification highly difficult. The present review explores the interaction spectrum of oxidative stress, selenium status, and obesity in children and adolescents. Any factor related to oxidative stress that triggers obesity and, conversely, obesity that induces oxidative stress are part of a vicious circle, a complex chain of mechanisms that derive from each other and reinforce each other with serious health consequences. Selenium and its compounds exhibit key antioxidant activity and also have a significant role in the nutritional evaluation of obese children. The balance of selenium intake, retention, and metabolism emerges as a vital aspect of health, reflecting the complex interactions between diet, oxidative stress, and obesity. Understanding whether selenium status is a contributor to or a consequence of obesity could inform nutritional interventions and public health strategies aimed at preventing and managing obesity from an early age.
Collapse
Affiliation(s)
- Teofana Otilia Bizerea-Moga
- Department XI of Pediatrics-1st Pediatric Discipline, Center for Research on Growth and Developmental Disorders in Children, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq No 2, 300041 Timișoara, Romania;
- 1st Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical and Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania
| | - Laura Pitulice
- Department of Biology-Chemistry, West University of Timişoara, Pestallozi 16, 300115 Timişoara, Romania;
- The Institute for Advanced Environmental Research (ICAM), Popa Şapcă 4C, 300054 Timişoara, Romania
| | - Otilia Bizerea-Spiridon
- Department of Biology-Chemistry, West University of Timişoara, Pestallozi 16, 300115 Timişoara, Romania;
- The Institute for Advanced Environmental Research (ICAM), Popa Şapcă 4C, 300054 Timişoara, Romania
| | - Tudor Voicu Moga
- Department VII of Internal Medicine-Gastroenterology Discipline, Advanced Regional Research Center in Gastroenterology and Hepatology, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq No 2, 300041 Timișoara, Romania;
- Gastroenterology and Hepatology Clinic, ‘Pius Brînzeu’ County Emergency Clinical Hospital, Liviu Rebreanu 156, 300723 Timișoara, Romania
| |
Collapse
|
8
|
Hasan Anber ZN, Oied Saleh B, Hassan Majed R. Assessment of Oxidative Stress Parameters in Iraqi Male Patients with Covid-19; A Case Control Study. Rep Biochem Mol Biol 2024; 13:167-173. [PMID: 39995639 PMCID: PMC11847586 DOI: 10.61186/rbmb.13.2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/05/2024] [Indexed: 02/26/2025]
Abstract
Background SARS-CoV-2 infection can cause significant alterations in our lives. Oxidative stress (OS) has been proposed to play a major role in COVID-19 pathogenesis, and the determination of OS biomarkers provides insight into disease severity. Methods The study was conducted during the second wave of the pandemic in 2020. Fifty blood samples were collected from patients admitted to one of the COVID-19 isolation centers in Baghdad, Iraq. The samples were subdivided into 25 patients admitted to the intensive care unit (ICU) and 25 non-ICU patients, compared to 25 healthy controls. All participants were aged 35-52 years. Results The study showed that the mean (±SD) serum total oxidant status (TOS) and malondialdehyde (MDA) levels were significantly increased (p< 0.001) in the ICU group compared to the control and non-ICU groups. Conversely, the levels of serum total antioxidant capacity (TAC) and serum antioxidative enzymes superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase, and glutathione (GSH) were significantly decreased (p< 0.001) in the ICU group compared to both the control and non-ICU groups. Serum zinc levels were significantly decreased (p< 0.001) in both ICU and non-ICU groups compared to the control group, while serum selenium (Se), copper (Cu), and vitamins C and E were significantly decreased (p< 0.001) in the ICU group compared to both the control and non-ICU groups. Conclusions The presence of OS biomarkers in the sera of COVID-19 patients offers a potential new approach for the treatment of this disease.
Collapse
Affiliation(s)
| | - Basil Oied Saleh
- Department of Biochemistry, College of Medicine, University of Baghdad, Iraq.
| | | |
Collapse
|
9
|
Liu YX, Bin CL, Zhang L, Yang WT, An BP. Socioeconomic traits and the risk of Barrett’s esophagus and gastroesophageal reflux disease: A Mendelian randomization study. World J Gastrointest Oncol 2024; 16:2619-2633. [DOI: 10.4251/wjgo.v16.i6.2619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 04/08/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Previous observational studies have shown that the prevalence of gastroesophageal reflux disease (GERD) and Barrett’s esophagus (BE) is associated with socioeconomic status. However, due to the methodological limitations of traditional observational studies, it is challenging to definitively establish causality.
AIM To explore the causal relationship between the prevalence of these conditions and socioeconomic status using Mendelian randomization (MR).
METHODS We initially screened single nucleotide polymorphisms (SNPs) to serve as proxies for eight socioeconomic status phenotypes for univariate MR analysis. The inverse variance weighted (IVW) method was used as the primary analytical method to estimate the causal relationship between the eight socioeconomic status phenotypes and the risk of GERD and BE. We then collected combinations of SNPs as composite proxies for the eight socioeconomic phenotypes to perform multivariate MR (MVMR) analyses based on the IVW MVMR model. Furthermore, a two-step MR mediation analysis was used to examine the potential mediation of the associations by body mass index, major depressive disorder (MDD), smoking, alcohol consumption, and sleep duration.
RESULTS The study identified three socioeconomic statuses that had a significant impact on GERD. These included household income [odds ratio (OR): 0.46; 95% confidence interval (95%CI): 0.31-0.70], education attainment (OR: 0.23; 95%CI: 0.18-0.29), and the Townsend Deprivation Index at recruitment (OR: 1.57; 95%CI: 1.04-2.37). These factors were found to independently and predominantly influence the genetic causal effect of GERD. Furthermore, the mediating effect of educational attainment on GERD was found to be mediated by MDD (proportion mediated: 10.83%). Similarly, the effect of educational attainment on BE was mediated by MDD (proportion mediated: 10.58%) and the number of cigarettes smoked per day (proportion mediated: 3.50%). Additionally, the mediating effect of household income on GERD was observed to be mediated by sleep duration (proportion mediated: 9.75%)
CONCLUSION This MR study shed light on the link between socioeconomic status and GERD or BE, providing insights for the prevention of esophageal cancer and precancerous lesions.
Collapse
Affiliation(s)
- Yu-Xin Liu
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Cheng-Li Bin
- Department of Gynecology and Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Lu Zhang
- Department of Endocrine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Wen-Tao Yang
- Department of Cardiovascular, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610041, Sichuan Province, China
| | - Bai-Ping An
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
10
|
Liu YX, Bin CL, Zhang L, Yang WT, An BP. Socioeconomic traits and the risk of Barrett's esophagus and gastroesophageal reflux disease: A Mendelian randomization study. World J Gastrointest Oncol 2024; 16:2631-2645. [PMID: 38994145 PMCID: PMC11236248 DOI: 10.4251/wjgo.v16.i6.2631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 04/08/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Previous observational studies have shown that the prevalence of gastroesophageal reflux disease (GERD) and Barrett's esophagus (BE) is associated with socioeconomic status. However, due to the methodological limitations of traditional observational studies, it is challenging to definitively establish causality. AIM To explore the causal relationship between the prevalence of these conditions and socioeconomic status using Mendelian randomization (MR). METHODS We initially screened single nucleotide polymorphisms (SNPs) to serve as proxies for eight socioeconomic status phenotypes for univariate MR analysis. The inverse variance weighted (IVW) method was used as the primary analytical method to estimate the causal relationship between the eight socioeconomic status phenotypes and the risk of GERD and BE. We then collected combinations of SNPs as composite proxies for the eight socioeconomic phenotypes to perform multivariate MR (MVMR) analyses based on the IVW MVMR model. Furthermore, a two-step MR mediation analysis was used to examine the potential mediation of the associations by body mass index, major depressive disorder (MDD), smoking, alcohol consumption, and sleep duration. RESULTS The study identified three socioeconomic statuses that had a significant impact on GERD. These included household income [odds ratio (OR): 0.46; 95% confidence interval (95%CI): 0.31-0.70], education attainment (OR: 0.23; 95%CI: 0.18-0.29), and the Townsend Deprivation Index at recruitment (OR: 1.57; 95%CI: 1.04-2.37). These factors were found to independently and predominantly influence the genetic causal effect of GERD. Furthermore, the mediating effect of educational attainment on GERD was found to be mediated by MDD (proportion mediated: 10.83%). Similarly, the effect of educational attainment on BE was mediated by MDD (proportion mediated: 10.58%) and the number of cigarettes smoked per day (proportion mediated: 3.50%). Additionally, the mediating effect of household income on GERD was observed to be mediated by sleep duration (proportion mediated: 9.75%). CONCLUSION This MR study shed light on the link between socioeconomic status and GERD or BE, providing insights for the prevention of esophageal cancer and precancerous lesions.
Collapse
Affiliation(s)
- Yu-Xin Liu
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Cheng-Li Bin
- Department of Gynecology and Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Lu Zhang
- Department of Endocrine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Wen-Tao Yang
- Department of Cardiovascular, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610041, Sichuan Province, China
| | - Bai-Ping An
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
11
|
Rayman MP, Schomburg L, Zhang J, Taylor EW, Du Laing G, Beck M, Hughes DJ, Heller R. Comment on Ambra et al. Could Selenium Supplementation Prevent COVID-19? A Comprehensive Review of Available Studies. Molecules 2023, 28, 4130. Molecules 2024; 29:2466. [PMID: 38893342 PMCID: PMC11173556 DOI: 10.3390/molecules29112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/07/2024] [Accepted: 04/18/2024] [Indexed: 06/21/2024] Open
Abstract
The authors of this Comment are longstanding selenium investigators with a total of 200 or more published articles on selenium; the corresponding author (Margaret P [...].
Collapse
Affiliation(s)
- Margaret P. Rayman
- Department of Nutritional Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Lutz Schomburg
- Institute of Experimental Endocrinology, Charité—Universitätsmedizin, D-10115 Berlin, Germany; (L.S.)
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA;
| | - Gijs Du Laing
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Melinda Beck
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - David J. Hughes
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Raban Heller
- Institute of Experimental Endocrinology, Charité—Universitätsmedizin, D-10115 Berlin, Germany; (L.S.)
| |
Collapse
|
12
|
Liu YX, Yang WT, Li Y. Different effects of 24 dietary intakes on gastroesophageal reflux disease: A mendelian randomization. World J Clin Cases 2024; 12:2370-2381. [PMID: 38765751 PMCID: PMC11099402 DOI: 10.12998/wjcc.v12.i14.2370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/11/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND In observational studies, dietary intakes are associated with gastroesophageal reflux disease (GERD). AIM To conduct a two-sample mendelian randomization (MR) analysis to determine whether those associations are causal. METHODS To explore the relationship between dietary intake and the risk of GERD, we extracted appropriate single nucleotide polymorphisms from genome-wide association study data on 24 dietary intakes. Three methods were adopted for data analysis: Inverse variance weighting, weighted median methods, and MR-Egger's method. The odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the causal association between dietary intake and GERD. RESULTS Our univariate Mendelian randomization (UVMR) results showed significant evidence that pork intake (OR, 2.83; 95%CI: 1.76-4.55; P = 1.84 × 10-5), beer intake (OR, 2.70, 95%CI: 2.00-3.64; P = 6.54 × 10-11), non-oily fish intake (OR, 2.41; 95%CI: 1.49-3.91; P = 3.59 × 10-4) have a protective effect on GERD. In addition, dried fruit intake (OR, 0.37; 95%CI: 0.27-0.50; 6.27 × 10-11), red wine intake (OR, 0.34; 95%CI: 0.25-0.47; P = 1.90 × 10-11), cheese intake (OR, 0.46; 95%CI: 0.39-0.55; P =3.73 × 10-19), bread intake (OR, 0.72; 95%CI: 0.56-0.92; P = 0.0009) and cereal intake (OR, 0.45; 95%CI: 0.36-0.57; P = 2.07 × 10-11) were negatively associated with the risk of GERD. There was a suggestive association for genetically predicted coffee intake (OR per one SD increase, 1.22, 95%CI: 1.03-1.44; P = 0.019). Multivariate Mendelian randomization further confirmed that dried fruit intake, red wine intake, cheese intake, and cereal intake directly affected GERD. In contrast, the impact of pork intake, beer intake, non-oily fish intake, and bread intake on GERD was partly driven by the common risk factors for GERD. However, after adjusting for all four elements, there was no longer a suggestive association between coffee intake and GERD. CONCLUSION This study provides MR evidence to support the causal relationship between a broad range of dietary intake and GERD, providing new insights for the treatment and prevention of GERD.
Collapse
Affiliation(s)
- Yu-Xin Liu
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Wen-Tao Yang
- Department of Cardiovascular, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610041, Sichuan Province, China
| | - Yang Li
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
13
|
Grabarczyk M, Fialek M. Microelectrode Voltammetric Analysis of Low Concentrations of Se(IV) Ions in Environmental Waters. Molecules 2024; 29:1583. [PMID: 38611862 PMCID: PMC11013906 DOI: 10.3390/molecules29071583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The current research is an attempt to analyze on-site selenium(IV) ions in environmental water samples using an eco-friendly miniaturized sensor developed by deposition of a very thin amount of metallic bismuth in a solid Bi electrode tightly closed in miniaturized housing. Numerous experimental variables are optimized, including the composition of the supporting electrolyte and its pH, as well as activation and accumulation conditions. Under optimized measurement conditions, the method shows high sensitivity, permitting a very low limit of detection equal to 7 × 10-10 mol L-1 to be achieved in a short accumulation time of 50 s. The performance of this microsensor was investigated against numerous interference factors and its good anti-interference capability was demonstrated. A series of voltammetric experiments by differential pulse cathodic stripping voltammetry (DPCSV) were carried out and they proved that the miniaturized sensor is characterized by very good accuracy and precision as well as long-term stability. The solid bismuth microelectrode displays a good voltammetric response in the analysis of diverse samples with a complex matrix and demonstrates a good recovery rate.
Collapse
Affiliation(s)
| | - Marzena Fialek
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| |
Collapse
|
14
|
Zhang H, Ouyang Z, Li M, Wen B, Zhuang S, Zhao X, Jiang P. Spatial distribution and main drivers of soil selenium in Taihu Lake Basin, Southeast China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133091. [PMID: 38056274 DOI: 10.1016/j.jhazmat.2023.133091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Selenium (Se) is an essential micronutrient that is both hazardous and beneficial to living organisms. However, few studies have examined soil Se distribution and its driving mechanisms on a large basin scale. Thus, multivariate statistics, geostatistics, boosted regression trees, and structural equation models were used to investigate the spatial distribution, driving factors, and multivariate interactions of soil Se based on 1753 topsoil samples (0-20 cm) from the Taihu Lake Basin. The results indicated that the soil Se concentration ranged from 0.12 to 57.26 mg kg-1, with a mean value of 0.90 mg kg-1. Overall, the spatial pattern of soil Se gradually decreased from south to north with approximately 1.06% of the soil contaminated with Se. Moisture index (MI), soil moisture (SM), and ≥ 0 ℃ accumulative temperature (AAT0) were the main determinants of soil Se accumulation. Additionally, the substantial effect of SM∩AAT0 on soil Se concentrations demonstrated that climate-soil interactions largely governed the spatial pattern of soil Se. The Se-enriched and Se-contaminated soils occurred mainly in regions with high precipitation, MI, SM, AAT0, and soil organic matter. This study provides a theoretical basis and practical guidance for the remediation of soil Se contamination and the sustainable development of Se-enriched agriculture.
Collapse
Affiliation(s)
- Han Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China
| | - Zhencheng Ouyang
- Ganzhou Institute of Agricultural Sciences, Gannan Academy of Sciences, Ganzhou 341000, China
| | - Manchun Li
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China.
| | - Boqing Wen
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China
| | - Sudan Zhuang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China
| | - Xiaomin Zhao
- Key Laboratory of Poyang Lake Basin Agricultural Resources and Ecology of Ministry of Agriculture and Rural Affairs in China, Jiangxi Agricultural University, Nanchang 330045, China
| | - Penghui Jiang
- College of Public Administration, Nanjing Agricultural University, Nanjing 210095, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, MNR, Nanjing 210017, China; China Resources & Environment and Development Academy (REDA), Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Pavlidou E, Poulios E, Papadopoulou SK, Fasoulas A, Dakanalis A, Giaginis C. Clinical Evidence on the Potential Beneficial Effects of Diet and Dietary Supplements against COVID-19 Infection Risk and Symptoms' Severity. Med Sci (Basel) 2024; 12:11. [PMID: 38390861 PMCID: PMC10885051 DOI: 10.3390/medsci12010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Diet and dietary supplements aim to add trace elements, vitamins, and minerals to the body to improve human health and boost the immune system. In the previous few years, the new SARS-CoV-2 coronavirus strain has been threatening the health of individuals and public health more broadly, with rates of intensive care unit cases on the rise, while long-term COVID-19 complications are persisting until today. In the peculiar circumstances of the COVID-19 pandemic, in combination with disease prevention techniques, the strengthening of the immune system is considered particularly important to enable it to effectively respond to and eliminate the SARS-CoV-2 viral pathogen in the event of infection. The purpose of the current literature review is to thoroughly summarize and critically analyze the current clinical data concerning the potential beneficial effects of diet and dietary supplements against COVID-19 infection risk and symptoms' severity. The micronutrients/supplements examined in this study in relation to COVID-19 infection are vitamins A, B, C, and D, zinc, selenium, magnesium, iron, omega-3 fatty acids, glutamine, resveratrol, beta-glucans, and probiotics. The potential effects of dietary patterns such as the Mediterranean diet against SARS-CoV-2 infection risk and symptoms' severity were also analyzed. Our literature review suggests that micro- and macronutrient supplementation and a healthy diet and lifestyle may provide support to immune system function, with beneficial effects both before and during SARS-CoV-2 infection. However, additional studies are recommended to draw safe conclusions and formulate dietary recommendations concerning dietary supplements and their possible effects on preventing and co-treating COVID-19 disease.
Collapse
Affiliation(s)
- Eleni Pavlidou
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| | - Efthymios Poulios
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Aristeidis Fasoulas
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| | - Antonios Dakanalis
- Department of Mental Health, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, MB, Italy;
- Department of Medicine and Surgery, University of Milan Bicocca, Via Cadore 38, 20900 Monza, MB, Italy
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| |
Collapse
|
16
|
Kamchen CM, de Oliveira FL, de Souza TR, Vieira BS, Telles B, Morzelle MC. Biofortification with selenium as an alternative to increase the total phenolic compounds in brassicas: a systematic review and meta-analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1234-1243. [PMID: 37782303 DOI: 10.1002/jsfa.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
The ability of brassicas to accumulate selenium is crucial for their positive effects on health. Selenium improves the immune system and the antioxidant defenses. Selenium biofortification of brassicas has therefore been explored to increase dietary selenium intake in humans. However, the effects of selenium biofortification on bioactive compounds, mainly phenolic compounds, are not clear. So, this systematic review and meta-analysis aimed to answer the question 'What are effects of the biofortification of brassicas with selenium on total phenolic compounds?' Ten studies, which assessed the effect of selenium biofortification on total phenolic compounds, were selected for qualitative synthesis and four studies were included in the meta-analysis after a thorough literature review of the PubMed, Science Direct, and Web of Knowledge databases. The quality of the evidence ranged from high to moderate. The meta-analysis results indicated that the total phenolic compound content was significantly higher (P = 0.002) in the supplemented group but the results showed considerable heterogeneity (P < 0.00001, I2 = 97%) between studies. This systematic review and meta-analysis summarizes the effect of Se biofortification on the increase in the content of total phenolic compounds and it suggests that several factors can affect this relationship. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Bruno Serpa Vieira
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia, Brazil
| | - Bruna Telles
- Department of Food and Nutrition, Federal University of Mato Grosso, Cuiabá, Brazil
| | | |
Collapse
|
17
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
18
|
Gao S, Ren N, Sun T, Nie Q, Liu S, Geng X, Deng Y, Lin Z, Liu Y, Zhou L. Association of selenium profile with neutralizing antibody response to inactivated SARS-CoV-2 vaccination. J Trace Elem Med Biol 2023; 80:127295. [PMID: 37660572 DOI: 10.1016/j.jtemb.2023.127295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Selenium profile has been related with humoral immune response after vaccination, but evidence with regard to inactivated SARS-CoV-2 vaccine is lacking. OBJECTIVE The current study aimed to examine the relationship between selenium profile and neutralizing antibody response to inactivated SARS-CoV-2 vaccine. METHODS Plasma selenium and selenoprotein P concentrations, neutralizing antibody against the wild-type and Omicron variant were measured at baseline and at 14 days, 98 days after the third dose of inactivated SARS-CoV-2 vaccine. RESULTS Neutralizing antibody against the wild-type and Omicron variant increased significantly after the third vaccination dose. Both higher plasma selenium and selenoprotein P were associated with increased neutralizing antibody against the wild-type strain at baseline. Moreover, higher plasma selenoprotein P was associated with increased neutralizing antibody against Omicron variant at baseline. However, nonsignificant association were observed after the third vaccine dose. CONCLUSION Higher selenium profile was associated with neutralizing antibody response before the third dose of inactivated SARS-CoV-2 vaccine, but not after the third dose. Further prospective cohort studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Sikang Gao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Ren
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Taoping Sun
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Qi Nie
- Department of Nutrition, Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Sitian Liu
- Department of Nutrition, Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuyang Geng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yao Deng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Zefang Lin
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yu Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
| | - Li Zhou
- Department of Nutrition, Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
19
|
Zhou Y, Yuan S, Xiao F, Li H, Ye Z, Cheng T, Luo C, Tang K, Cai J, Situ J, Sridhar S, Chu WM, Tam AR, Chu H, Che CM, Jin L, Hung IFN, Lu L, Chan JFW, Sun H. Metal-coding assisted serological multi-omics profiling deciphers the role of selenium in COVID-19 immunity. Chem Sci 2023; 14:10570-10579. [PMID: 37799995 PMCID: PMC10548515 DOI: 10.1039/d3sc03345g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023] Open
Abstract
Uncovering how host metal(loid)s mediate the immune response against invading pathogens is critical for better understanding the pathogenesis mechanism of infectious disease. Clinical data show that imbalance of host metal(loid)s is closely associated with the severity and mortality of COVID-19. However, it remains elusive how metal(loid)s, which are essential elements for all forms of life and closely associated with multiple diseases if dysregulated, are involved in COVID-19 pathophysiology and immunopathology. Herein, we built up a metal-coding assisted multiplexed serological metallome and immunoproteome profiling system to characterize the links of metallome with COVID-19 pathogenesis and immunity. We found distinct metallome features in COVID-19 patients compared with non-infected control subjects, which may serve as a biomarker for disease diagnosis. Moreover, we generated the first correlation network between the host metallome and immunity mediators, and unbiasedly uncovered a strong association of selenium with interleukin-10 (IL-10). Supplementation of selenium to immune cells resulted in enhanced IL-10 expression in B cells and reduced induction of proinflammatory cytokines in B and CD4+ T cells. The selenium-enhanced IL-10 production in B cells was confirmed to be attributable to the activation of ERK and Akt pathways. We further validated our cellular data in SARS-CoV-2-infected K18-hACE2 mice, and found that selenium supplementation alleviated SARS-CoV-2-induced lung damage characterized by decreased alveolar inflammatory infiltrates through restoration of virus-repressed selenoproteins to alleviate oxidative stress. Our approach can be readily extended to other diseases to understand how the host defends against invading pathogens through regulation of metallome.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
| | - Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong Hong Kong SAR China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Ziwei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong Pokfulam Hong Kong SAR Hong Kong China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jianpiao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jianwen Situ
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
- Department of Microbiology, Queen Mary Hospital Pokfulam Hong Kong SAR China
| | - Wing-Ming Chu
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Anthony Raymond Tam
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong Pokfulam Hong Kong SAR Hong Kong China
| | - Ivan Fan-Ngai Hung
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong Hong Kong SAR China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
- Department of Microbiology, Queen Mary Hospital Pokfulam Hong Kong SAR China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong SAR China
- Guangzhou Laboratory Guangdong Province China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| |
Collapse
|
20
|
Fan L, Cui Y, Liu Z, Guo J, Gong X, Zhang Y, Tang W, Zhao J, Xue Q. Zinc and selenium status in coronavirus disease 2019. Biometals 2023; 36:929-941. [PMID: 37079168 PMCID: PMC10116102 DOI: 10.1007/s10534-023-00501-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
We systematically analyzed and attempted to discuss the possibility that deficiencies of zinc or selenium were associated with the incidence and severity of COVID-19. We searched for published and unpublished articles in PubMed, Embase, Web of Science and Cochrane up to 9 February 2023. And we selected healthy individuals, mild/severe, and even deceased COVID-19 patients to analyze their serum data. Data related to 2319 patients from 20 studies were analyzed. In the mild/severe group, zinc deficiency was associated with the degree of severe disease (SMD = 0.50, 95% CI 0.32-0.68, I2 = 50.5%) and we got an Egger's test of p = 0.784; but selenium deficiency was not associated with the degree of severe disease (SMD = - 0.03, 95% CI - 0.98-0.93, I2 = 96.7%). In the surviving/death group, zinc deficiency was not associated with mortality of COVID-19 (SMD = 1.66, 95%CI - 1.42-4.47), nor was selenium (SMD = - 0.16, 95%CI - 1.33-1.01). In the risk group, zinc deficiency was positively associated with the prevalence of COVID-19 (SMD = 1.21, 95% CI 0.96-1.46, I2 = 54.3%) and selenium deficiency was also positively associated with the prevalence of it (SMD = 1.16, 95% CI 0.71-1.61, I2 = 58.3%). Currently, serum zinc and selenium deficiencies increase the incidence of COVID-19 and zinc deficiency exacerbates the disease; however, neither zinc nor selenium was associated with mortality in patients with COVID-19. Nevertheless, our conclusions may change when new clinical studies are published.
Collapse
Affiliation(s)
- Liding Fan
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Yanshuo Cui
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Zonghao Liu
- Shandong University, No.27, Shanda Nanshan Road, Jinan, 250100, Shandong, China
| | - Jiayue Guo
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Xiaohui Gong
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Yunfei Zhang
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Weihao Tang
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Jiahe Zhao
- Binzhou Medical University, No.346 Guanhai Road, Binzhou, 256699, Shandong, China
| | - Qingjie Xue
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China.
- Department of Pathogenic Biology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
21
|
Sinha I, Zhu J, Sinha R. Selective Impact of Selenium Compounds on Two Cytokine Storm Players. J Pers Med 2023; 13:1455. [PMID: 37888066 PMCID: PMC10607864 DOI: 10.3390/jpm13101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
COVID-19 patients suffer from the detrimental effects of cytokine storm and not much success has been achieved to overcome this issue. We sought to test the ability of selenium to reduce the impact of two important cytokine storm players: IL-6 and TNF-α. The effects of four selenium compounds on the secretion of these cytokines from THP-1 macrophages were evaluated in vitro following an LPS challenge. Also, the potential impact of methylseleninic acid (MSeA) on Nrf2 and IκBα was determined after a short treatment of THP-1 macrophages. MSeA was found to be the most potent selenium form among the four selenium compounds tested that reduced the levels of IL-6 and TNF-α secreted by THP-1 macrophages. In addition, an increase in Nrf2 and decrease in pIκBα in human macrophages was observed following MSeA treatment. Our data indicate that COVID-19 patients might benefit from the addition of MSeA to the standard therapy due to its ability to suppress the key players in the cytokine storm.
Collapse
Affiliation(s)
- Indu Sinha
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Junjia Zhu
- Department of Public Health Sciences, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
22
|
Yuan C, Ma Z, Xie J, Li W, Su L, Zhang G, Xu J, Wu Y, Zhang M, Liu W. The role of cell death in SARS-CoV-2 infection. Signal Transduct Target Ther 2023; 8:357. [PMID: 37726282 PMCID: PMC10509267 DOI: 10.1038/s41392-023-01580-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
23
|
Khurana A, Allawadhi P, Singh V, Khurana I, Yadav P, Sathua KB, Allwadhi S, Banothu AK, Navik U, Bharani KK. Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond. J Drug Deliv Sci Technol 2023; 86:104663. [PMID: 37362903 PMCID: PMC10249347 DOI: 10.1016/j.jddst.2023.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Deficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NFκB), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-β) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kshirod Bihari Sathua
- Department of Pharmacology, College of Pharmaceutical Sciences, Konark Marine Drive Road, Puri, 752002, Odisha, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| |
Collapse
|
24
|
Chen Z, Liu H, Liu C, Fei S, Hu X, Han D, Jin J, Yang Y, Zhu X, Xie S. Effects of Different Dietary Selenium Sources on the Meat Quality and Antioxidant Capacity of Yellow Catfish ( Pelteobagrus fulvidraco). AQUACULTURE NUTRITION 2023; 2023:7981183. [PMID: 37547823 PMCID: PMC10404151 DOI: 10.1155/2023/7981183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
To assess the effect of dietary selenium (Se) sources on the meat quality and antioxidant capacity of yellow catfish (Pelteobagrus fulvidraco), sodium selenite (Na2SeO3), Se yeast, and selenium-enriched Spirulina platensis (Se-SP) were supplemented in the control diet at 0.30 mg Se/kg feed to formulate four diets. The experimental period lasted 50 days. The results showed that Se levels in the plasma, liver, muscle, and whole body were significantly increased by dietary Se yeast supplementation (P < 0.05) but showed no change in response to Na2SeO3 (P > 0.05). The three types of Se all increased the firmness and decreased the fracturability of the muscles (P < 0.05), but only Na2SeO3 resulted in higher springiness, flexibility, stringiness, and stickiness (P < 0.05). In addition, the muscle n-3 polyunsaturated fatty acid (PUFA) content was increased by Se yeast (P < 0.05). Regarding antioxidant capacity, dietary Se yeast and Se-SP supplementation improved hepatic glutathione peroxidase activity but decreased hepatic malondialdehyde content (P < 0.05). Given these results, Se yeast was found to be the optimal source of Se for yellow catfish for higher tissue retention, antioxidant capacity, and PUFA levels. Dietary Se is an effective way to regulate the meat quality and antioxidant capacity of yellow catfish.
Collapse
Affiliation(s)
- Zheng Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Cui Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shuzhan Fei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaomin Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
25
|
Finnegan D, Tocmo R, Loscher C. Targeted Application of Functional Foods as Immune Fitness Boosters in the Defense against Viral Infection. Nutrients 2023; 15:3371. [PMID: 37571308 PMCID: PMC10421353 DOI: 10.3390/nu15153371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In recent times, the emergence of viral infections, including the SARS-CoV-2 virus, the monkeypox virus, and, most recently, the Langya virus, has highlighted the devastating effects of viral infection on human life. There has been significant progress in the development of efficacious vaccines for the prevention and control of viruses; however, the high rates of viral mutation and transmission necessitate the need for novel methods of control, management, and prevention. In recent years, there has been a shift in public awareness on health and wellbeing, with consumers making significant dietary changes to improve their immunity and overall health. This rising health awareness is driving a global increase in the consumption of functional foods. This review delves into the benefits of functional foods as potential natural means to modulate the host immune system to enhance defense against viral infections. We provide an overview of the functional food market in Europe and discuss the benefits of enhancing immune fitness in high-risk groups, including the elderly, those with obesity, and people with underlying chronic conditions. We also discuss the immunomodulatory mechanisms of key functional foods, including dairy proteins and hydrolysates, plant-based functional foods, fermentates, and foods enriched with vitamin D, zinc, and selenium. Our findings reveal four key immunity boosting mechanisms by functional foods, including inhibition of viral proliferation and binding to host cells, modulation of the innate immune response in macrophages and dendritic cells, enhancement of specific immune responses in T cells and B cells, and promotion of the intestinal barrier function. Overall, this review demonstrates that diet-derived nutrients and functional foods show immense potential to boost viral immunity in high-risk individuals and can be an important approach to improving overall immune health.
Collapse
Affiliation(s)
| | | | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (D.F.); (R.T.)
| |
Collapse
|
26
|
Roldán-Bretón NR, Capuchino-Suárez AG, Mejía-León ME, Olvera-Sandoval C, Lima-Sánchez DN. Selenium serum levels in patients with SARS-CoV-2 infection: a systematic review and meta-analysis. J Nutr Sci 2023; 12:e86. [PMID: 37528833 PMCID: PMC10388439 DOI: 10.1017/jns.2023.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 08/03/2023] Open
Abstract
The nutritional status is a determinant of the immune response that promotes a cellular homeostasis. In particular, adequate selenium levels lead to a better antioxidant and immune response. The aim of this work is to assess whether blood selenium levels, at time of SARS-CoV-2 infection, have an impact on the development and severity of COVID-19. A systematic review and meta-analysis of comparative and descriptive studies using MeSH terms, selenium and COVID-19 was performed. We searched bibliographic databases up to 17 July 2022 in PubMed and ScienceDirect. Studies that reported data on blood selenium levels were considered. A total of 629 articles were examined by abstract and title, of which 595 abstracts were read, of which 38 were included in the systematic review and 11 in the meta-analysis. Meta-analysis was conducted to mean difference (MD) with a 95 % confidence interval (CI), and heterogeneity was tested by I2 with random factors with a MD between selenium levels, mortality, morbidity and healthy subjects with a P-value of 0⋅05. Selenium levels were higher in healthy people compared to those in patients with COVID-19 disease (six studies, random effects MD: test for overall effect Z = 3⋅28 (P = 0⋅001), 97 % CI 28⋅36 (11⋅41-45⋅31), P < 0⋅00001), but without difference when compared with the degree of severity in mild, moderate or severe cases. In conclusion, the patients with active SARS-CoV-2 infection had lower selenium levels than the healthy population. More studies are needed to evaluate its impact on clinical severity through randomised clinical trials.
Collapse
Affiliation(s)
| | | | - María Esther Mejía-León
- Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, Mexico
| | - Carlos Olvera-Sandoval
- Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, Mexico
| | - Dania Nimbe Lima-Sánchez
- Department of Biomedical Informatics, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
27
|
Kalfas T, Kaltsas A, Symeonidis EN, Symeonidis A, Zikopoulos A, Moustakli E, Tsiampali C, Tsampoukas G, Palapela N, Zachariou A, Sofikitis N, Dimitriadis F. COVID-19 and Male Infertility: Is There a Role for Antioxidants? Antioxidants (Basel) 2023; 12:1483. [PMID: 37627478 PMCID: PMC10451649 DOI: 10.3390/antiox12081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), jeopardizes male fertility because of the vulnerability of the male reproductive system, especially the testes. This study evaluates the effects of the virus on testicular function and examines the potential role of antioxidants in mitigating the damage caused by oxidative stress (OS). A comprehensive PubMed search examined exocrine and endocrine testicular function alteration, the interplay between OS and COVID-19-induced defects, and the potential benefit of antioxidants. Although the virus is rarely directly detectable in sperm and testicular tissue, semen quality and hormonal balance are affected in patients, with some changes persisting throughout a spermatogenesis cycle. Testicular pathology in deceased patients shows defects in spermatogenesis, vascular changes, and inflammation. Acute primary hypogonadism is observed mainly in severely infected cases. Elevated OS and sperm DNA fragmentation markers suggest redox imbalance as a possible mechanism behind the fertility changes. COVID-19 vaccines appear to be safe for male fertility, but the efficacy of antioxidants to improve sperm quality after infection remains unproven due to limited research. Given the limited and inconclusive evidence, careful evaluation of men recovering from COVID-19 seeking fertility improvement is strongly recommended.
Collapse
Affiliation(s)
| | - Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (E.M.); (A.Z.); (N.S.)
| | - Evangelos N. Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.N.S.); (A.S.)
| | - Asterios Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.N.S.); (A.S.)
| | - Athanasios Zikopoulos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (E.M.); (A.Z.); (N.S.)
| | - Efthalia Moustakli
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (E.M.); (A.Z.); (N.S.)
| | | | - Georgios Tsampoukas
- Department of Urology, Oxford University Hospital NHS Trust, Oxford OX3 7LE, UK;
| | - Natalia Palapela
- Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (E.M.); (A.Z.); (N.S.)
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (E.M.); (A.Z.); (N.S.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.N.S.); (A.S.)
| |
Collapse
|
28
|
Gudkov SV, Gao M, Simakin AV, Baryshev AS, Pobedonostsev RV, Baimler IV, Rebezov MB, Sarimov RM, Astashev ME, Dikovskaya AO, Molkova EA, Kozlov VA, Bunkin NF, Sevostyanov MA, Kolmakov AG, Kaplan MA, Sharapov MG, Ivanov VE, Bruskov VI, Kalinichenko VP, Aiyyzhy KO, Voronov VV, Pimpha N, Li R, Shafeev GA. Laser Ablation-Generated Crystalline Selenium Nanoparticles Prevent Damage of DNA and Proteins Induced by Reactive Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5164. [PMID: 37512437 PMCID: PMC10386620 DOI: 10.3390/ma16145164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
With the help of laser ablation, a technology for obtaining nanosized crystalline selenium particles (SeNPs) has been created. The SeNPs do not exhibit significant toxic properties, in contrast to molecular selenium compounds. The administration of SeNPs can significantly increase the viabilities of SH-SY5Y and PCMF cells after radiation exposure. The introduction of such nanoparticles into the animal body protects proteins and DNA from radiation-induced damage. The number of chromosomal breaks and oxidized proteins decreases in irradiated mice treated with SeNPs. Using hematological tests, it was found that a decrease in radiation-induced leukopenia and thrombocytopenia is observed when selenium nanoparticles are injected into mice before exposure to ionizing radiation. The administration of SeNPs to animals 5 h before radiation exposure in sublethal and lethal doses significantly increases their survival rate. The modification dose factor for animal survival was 1.2. It has been shown that the introduction of selenium nanoparticles significantly normalizes gene expression in the cells of the red bone marrow of mice after exposure to ionizing radiation. Thus, it has been demonstrated that SeNPs are a new gene-protective and radioprotective agent that can significantly reduce the harmful effects of ionizing radiation.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Alexey S Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Roman V Pobedonostsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Ilya V Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Maksim B Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Ruslan M Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Push-chino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, 142290 Pushchino, Russia
| | - Anastasia O Dikovskaya
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Elena A Molkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Valery A Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Nikolay F Bunkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Mikhail A Sevostyanov
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Alexey G Kolmakov
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Mikhail A Kaplan
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Push-chino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, 142290 Pushchino, Russia
| | - Vladimir E Ivanov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, 142290 Pushchino, Russia
| | - Vadim I Bruskov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, 142290 Pushchino, Russia
| | - Valery P Kalinichenko
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- Institute of Fertility of Soils of South Russia, 346493 Persianovka, Russia
| | - Kuder O Aiyyzhy
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Valery V Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Nuttaporn Pimpha
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) 111, Phahonyotin Rd, Klong Luang 12120, Thailand
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Georgy A Shafeev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| |
Collapse
|
29
|
Toledano JM, Puche-Juarez M, Moreno-Fernandez J, Ochoa JJ, Diaz-Castro J. Antioxidant and Immune-Related Implications of Minerals in COVID-19: A Possibility for Disease Prevention and Management. Antioxidants (Basel) 2023; 12:antiox12051104. [PMID: 37237970 DOI: 10.3390/antiox12051104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Since the coronavirus disease 2019 (COVID-19) pandemic appeared, both governments and the scientific community have focused their efforts on the search for prophylactic and therapeutic alternatives in order to reduce its effects. Vaccines against SARS-CoV-2 have been approved and administered, playing a key role in the overcoming of this situation. However, they have not reached the whole world population, and several doses will be needed in the future in order to successfully protect individuals. The disease is still here, so other strategies should be explored with the aim of supporting the immune system before and during the infection. An adequate diet is certainly associated with an optimal inflammatory and oxidative stress status, as poor levels of different nutrients could be related to altered immune responses and, consequently, an augmented susceptibility to infections and severe outcomes derived from them. Minerals exert a wide range of immune-modulatory, anti-inflammatory, antimicrobial, and antioxidant activities, which may be useful for fighting this illness. Although they cannot be considered as a definitive therapeutic solution, the available evidence to date, obtained from studies on similar respiratory diseases, might reflect the rationality of deeper investigations of the use of minerals during this pandemic.
Collapse
Affiliation(s)
- Juan M Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - María Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Julio J Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| |
Collapse
|
30
|
Ambra R, Melloni S, Venneria E. Could Selenium Supplementation Prevent COVID-19? A Comprehensive Review of Available Studies. Molecules 2023; 28:molecules28104130. [PMID: 37241870 DOI: 10.3390/molecules28104130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The purpose of this review is to systematically examine the scientific evidence investigating selenium's relationship with COVID-19, aiming to support, or refute, the growing hypothesis that supplementation could prevent COVID-19 etiopathogenesis. In fact, immediately after the beginning of the COVID-19 pandemic, several speculative reviews suggested that selenium supplementation in the general population could act as a silver bullet to limit or even prevent the disease. Instead, a deep reading of the scientific reports on selenium and COVID-19 that are available to date supports neither the specific role of selenium in COVID-19 severity, nor the role of its supplementation in the prevention disease onset, nor its etiology.
Collapse
Affiliation(s)
- Roberto Ambra
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Sahara Melloni
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Eugenia Venneria
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
31
|
Ullah H, Lun L, Rashid A, Zada N, Chen B, Shahab A, Li P, Ali MU, Lin S, Wong MH. A critical analysis of sources, pollution, and remediation of selenium, an emerging contaminant. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1359-1389. [PMID: 35972610 PMCID: PMC9379879 DOI: 10.1007/s10653-022-01354-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/09/2022] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential metalloid and is categorized as emerging anthropogenic contaminant released to the environment. The rise of Se release into the environment has raised concern about its bioaccumulation, toxicity, and potential to cause serious damages to aquatic and terrestrial ecosystem. Therefore, it is extremely important to monitor Se level in environment on a regular basis. Understanding Se release, anthropogenic sources, and environmental behavior is critical for developing an effective Se containment strategy. The ongoing efforts of Se remediation have mostly emphasized monitoring and remediation as an independent topics of research. However, our paper has integrated both by explaining the attributes of monitoring on effective scale followed by a candid review of widespread technological options available with specific focus on Se removal from environmental media. Another novel approach demonstrated in the article is the presentation of an overwhelming evidence of limitations that various researchers are confronted with to overcome achieving effective remediation. Furthermore, we followed a holistic approach to discuss ways to remediate Se for cleaner environment especially related to introducing weak magnetic field for ZVI reactivity enhancement. We linked this phenomenal process to electrokinetics and presented convincing facts in support of Se remediation, which has led to emerge 'membrane technology', as another viable option for remediation. Hence, an interesting, innovative and future oriented review is presented, which will undoubtedly seek attention from global researchers.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Lu Lun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655 China
| | - Audil Rashid
- Faculty of Sciences, Department of Botany, University of Gujrat, Gujrat, 50700 Pakistan
| | - Noor Zada
- Department of Chemistry, Government Post Graduate College, Lower Dir, Timergara, 18300 Pakistan
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077 China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Cundra LB, Vallabhaneni M, Saadeh M, Houston KV, Yoo BS, D’Souza S, Johnsonv DA. Immunomodulation strategies against COVID-19 evidence: key nutrients and dietary approaches. EXPLORATION OF MEDICINE 2023:189-206. [DOI: 10.37349/emed.2023.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/03/2023] [Indexed: 01/16/2025] Open
Abstract
The novel coronavirus disease-2019 (COVID-19) has created a major public health crisis. Various dietary factors may enhance immunological activity against COVID-19 and serve as a method to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The dietary factors that are responsible for boosting immunity may provide a therapeutic advantage in patients with COVID-19. Investigators have demonstrated that vitamins B6, B12, C, D, E, and K, and trace elements like zinc, copper, selenium, and iron may serve as important tools for immunomodulation. Herein this is a review the peer-reviewed literature pertaining to dietary immunomodulation strategies against COVID-19. This review is intended to better define the evidence that dietary modifications and supplementation could positively influence the proinflammatory state in patients with COVID-19 and improve clinical outcomes. With appropriate insight, therapeutic interventions are discussed and directed to potentially modulate host immunity to mitigate the disease mechanisms of COVID-19.
Collapse
Affiliation(s)
- Lindsey B. Cundra
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, USA
| | - Manasa Vallabhaneni
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Michael Saadeh
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Kevin V. Houston
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Byung Soo Yoo
- Department of Gastroenterology, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Steve D’Souza
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - David A. Johnsonv
- Division of Gastroenterology, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
33
|
Equey A, Berger MM, Gonseth-Nusslé S, Augsburger M, Rezzi S, Hodgson ACC, Estoppey S, Pantaleo G, Pellaton C, Perrais M, Lenglet S, Rousson V, D'Acremont V, Bochud M. Association of plasma zinc levels with anti-SARS-CoV-2 IgG and IgA seropositivity in the general population: A case-control study. Clin Nutr 2023; 42:972-986. [PMID: 37130500 PMCID: PMC10110932 DOI: 10.1016/j.clnu.2023.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Some micronutrients have key roles in immune defence, including mucosal defence mechanisms and immunoglobulin production. Altered micronutrient status has been linked with COVID-19 infection and disease severity. We assessed the associations of selected circulating micronutrients with anti-SARS-CoV-2 IgG and IgA seropositivity in the Swiss community using early pandemic data. METHODS Case-control study comparing the first PCR-confirmed COVID-19 symptomatic cases in the Vaud Canton (May to June 2020, n = 199) and controls (random population sample, n = 447), seronegative for IgG and IgA. The replication analysis included seropositive (n = 134) and seronegative (n = 152) close contacts from confirmed COVID-19 cases. Anti-SARS-CoV-2 IgG and IgA levels against the native trimeric spike protein were measured using the Luminex immunoassay. We measured plasma Zn, Se and Cu concentrations by ICP-MS, and 25-hydroxy-vitamin D3 (25(OH)D3) with LC-MS/MS and explored associations using multiple logistic regression. RESULTS The 932 participants (54.1% women) were aged 48.6 ± 20.2 years (±SD), BMI 25.0 ± 4.7 kg/m2 with median C-Reactive Protein 1 mg/l. In logistic regressions, log2(Zn) plasma levels were negatively associated with IgG seropositivity (OR [95% CI]: 0.196 [0.0831; 0.465], P < 0.001; replication analyses: 0.294 [0.0893; 0.968], P < 0.05). Results were similar for IgA. We found no association of Cu, Se, and 25(OH)D3 with anti-SARS-CoV-2 IgG or IgA seropositivity. CONCLUSION Low plasma Zn levels were associated with higher anti-SARS-CoV-2 IgG and IgA seropositivity in a Swiss population when the initial viral variant was circulating, and no vaccination available. These results suggest that adequate Zn status may play an important role in protecting the general population against SARS-CoV-2 infection. REGISTRY CORONA IMMUNITAS:: ISRCTN18181860.
Collapse
Affiliation(s)
- Antoine Equey
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Mette M Berger
- Service of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Semira Gonseth-Nusslé
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Marc Augsburger
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation, Épalinges, Switzerland
| | | | - Sandrine Estoppey
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Pellaton
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maïwenn Perrais
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Sébastien Lenglet
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Valentin Rousson
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Valérie D'Acremont
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| |
Collapse
|
34
|
Rust P, Ekmekcioglu C. The Role of Diet and Specific Nutrients during the COVID-19 Pandemic: What Have We Learned over the Last Three Years? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5400. [PMID: 37048015 PMCID: PMC10093865 DOI: 10.3390/ijerph20075400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nutrients and diets have an important impact on our immune system and infection risk and a huge number of papers have been published dealing with various aspects of nutrition in relation to SARS-CoV-2 infection risk or COVID-19 severity. This narrative review aims to give an update on this association and tries to summarize some of the most important findings after three years of pandemic. The analysis of major studies and systematic reviews leads to the conclusion that a healthy plant-based diet reduces the risks for SARS-CoV-2 infection and especially COVID-19 severity. Regarding micronutrients, vitamin D is to the fore, but also zinc, vitamin C and, to some extent, selenium may play a role in COVID-19. Furthermore, omega-3-fatty acids with their anti-inflammatory effects also deserve attention. Therefore, a major aim of societal nutritional efforts in future should be to foster a high quality plant-based diet, which not only exerts beneficial effects on the immune system but also reduces the risk for non-communicable diseases such as type 2 diabetes or obesity which are also primary risk factors for worse COVID-19 outcomes. Another aim should be to focus on a good supply of critical immune-effective nutrients, such as vitamin D and zinc.
Collapse
Affiliation(s)
- Petra Rust
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
35
|
Renata RBN, Arely GRA, Gabriela LMA, Esther MLM. Immunomodulatory Role of Microelements in COVID-19 Outcome: a Relationship with Nutritional Status. Biol Trace Elem Res 2023; 201:1596-1614. [PMID: 35668151 PMCID: PMC9170122 DOI: 10.1007/s12011-022-03290-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection can activate innate and adaptive immune responses and result in massive inflammatory responses in the disease. A comprehensive understanding of the participation of micronutrients in the immune response to COVID-19 will allow the creation of prevention and supplementation scenarios in malnutrition states. Microelement deficiency can be decisive in the progression of diseases and their optimal levels can act as protective factors, helping to maintain homeostasis. Vitamin A, B, D, selenium, zinc, and copper, through their complementary and synergistic effects, allow the components of innate and adaptive immunity to counteract infections like those occurring in the respiratory tract.Thus, alterations in nutritional status are related to metabolic diseases, systemic inflammation, and deterioration of the immune system that alter the response against viral infections, such as COVID-19. The aim of this review is to describe the micronutrients that play an important role as immunomodulators and its relationship between malnutrition and the development of respiratory infections with an emphasis on severe and critical COVID-19. We conclude that although an unbalanced diet is not the only risk factor that predisposes to COVID-19, a correct and balanced diet, which provides the optimal amount of micronutrients and favors an adequate nutritional status, could confer beneficial effects for prevention and improvement of clinical results. The potential usefulness of micronutrient supplementation in special cases is highlighted.
Collapse
Affiliation(s)
- Roldán-Bretón Nuria Renata
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México
| | - González-Rascón Anna Arely
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Leija-Montoya Ana Gabriela
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México
| | - Mejía-León María Esther
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México.
| |
Collapse
|
36
|
Schloss JV. Nutritional deficiencies that may predispose to long COVID. Inflammopharmacology 2023; 31:573-583. [PMID: 36920723 PMCID: PMC10015545 DOI: 10.1007/s10787-023-01183-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Multiple nutritional deficiencies (MND) confound studies designed to assess the role of a single nutrient in contributing to the initiation and progression of disease states. Despite the perception of many healthcare practitioners, up to 25% of Americans are deficient in five-or-more essential nutrients. Stress associated with the COVID-19 pandemic further increases the prevalence of deficiency states. Viral infections compete for crucial nutrients with immune cells. Viral replication and proliferation of immunocompetent cells critical to the host response require these essential nutrients, including zinc. Clinical studies have linked levels of more than 22 different dietary components to the likelihood of COVID-19 infection and the severity of the disease. People at higher risk of infection due to MND are also more likely to have long-term sequelae, known as Long COVID.
Collapse
Affiliation(s)
- John V Schloss
- Departments of Pharmaceutical Science and Biochemistry & Molecular Biology, Schools of Pharmacy and Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill, CA, 90755, USA.
| |
Collapse
|
37
|
Selenium Status and Oxidative Stress in SARS-CoV-2 Patients. Medicina (B Aires) 2023; 59:medicina59030527. [PMID: 36984529 PMCID: PMC10052009 DOI: 10.3390/medicina59030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Background and Objectives: Insufficient intake of essential micronutrient selenium (Se) increases the susceptibility to diseases associated with oxidative stress. The study aim was to assess Se status and oxidative stress in COVID-19 patients depending on severity of the disease. Materials and Methods: Blood plasma of 80 post-COVID-19 disease patients and 40 acutely ill patients were investigated. Concentration of Se was detected by a fluorometric method with di-amino-naphthalene using acidic hydrolysis. Selenoprotein P (Sepp1), malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE) and their metabolite adducts were evaluated by spectrophotometric methods using commercial assay kits. Results: Obtained results demonstrated that Se and Sepp1 concentration in acute patients were significantly (p < 0.05 for Se and p < 0.001 for Sepp1) decreased compared with post-COVID-19 disease patients. However, in post-COVID-19 disease patients, Se values were close to the low limit of the norm for the European population. 4-HNE adducts concentration as a marker of lipid peroxidation was significantly increased in the acute patients group compared to the recovery group (p < 0.001). Conclusions: COVID-19 pathology is characterized by the induction of oxidative stress and suppression of antioxidant defenses during the acute phase. Lower levels of Se and Sepp1 and higher levels of reactive oxygen species reflect this imbalance, highlighting the role of oxidative stress in the disease’s pathogenesis.
Collapse
|
38
|
Larvie DY, Perrin MT, Donati GL, Armah SM. COVID-19 Severity Is Associated with Selenium Intake among Young Adults with Low Selenium and Zinc Intake in North Carolina. Curr Dev Nutr 2023; 7:100044. [PMID: 36785737 PMCID: PMC9907795 DOI: 10.1016/j.cdnut.2023.100044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Background The effects of coronavirus disease 2019 (COVID-19) remain a global public health emergency because of the ensuing economic burden and death. With robust research into vaccines, antibody treatments, and antiviral drugs for COVID-19, there is still a dearth of evidence on the role of an individual's nutritional status on the severity of COVID-19. Objective This study aimed to investigate the association between selenium (Se) and zinc (Zn) status and COVID-19 severity among individuals diagnosed with COVID-19 in North Carolina. Methods Subjects (n = 106) were recruited remotely as part of the Nutrition and COVID-19 in North Carolina (NC-NC) study and filled out online screening questionnaires and dietary surveys. Toenail samples from 97 participants were analyzed to determine Se and Zn concentrations. To assess the severity of severe acute respiratory coronavirus (SARS-CoV)-2 infection, subjects were asked about the presence and duration of 10 commonly reported symptoms. These responses were used to calculate a COVID-19 severity index (CSI). The relationship between Se and Zn status (intake and toenail concentrations) and CSI was explored using a regression analysis. Results Our results showed that the median (25th, 75th percentiles) dietary Se and Zn intake from selected food sources were 65.2 μg (43.2, 112.9) and 4.3 mg (1.8, 8), respectively. Headache, cough, loss of smell or taste, and fever were reported by at least half of the participants. In stepwise regression analysis, among individuals with low Se and Zn intake (below the median), Se intake was inversely associated with increasing CSI (β = -0.66; 95% CI: -1.21, -0.11; P = 0.02). Conclusions Findings from this study support a potential benefit of increasing the intake of dietary Se to mitigate the severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Doreen Y Larvie
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Maryanne T Perrin
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | - Seth M Armah
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
39
|
Johannes C, Moremi KE, Kemp MC, Whati L, Engel-Hills P, Kidd M, van Toorn R, Jaftha M, van Rensburg SJ, Kotze MJ. Pathology-supported genetic testing presents opportunities for improved disability outcomes in multiple sclerosis. Per Med 2023; 20:107-130. [PMID: 37194915 DOI: 10.2217/pme-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Background: Lipid metabolism may impact disability in people with multiple sclerosis (pwMS). Methods: Fifty-one pwMS entered an ultrasound and MRI study, of whom 19 had followed a pathology-supported genetic testing program for more than 10 years (pwMS-ON). Genetic variation, blood biochemistry, vascular blood flow velocities, diet and exercise were investigated. Results: pwMS-ON had significantly lower (p < 0.01) disability (Expanded Disability Status Scale) than pwMS not on the program (1.91 ± 0.75 vs 3.87 ± 2.32). A genetic variant in the lipid transporter FABP2 gene (rs1799883; 2445G>A, A54T) was significantly associated (p < 0.01) with disability in pwMS not on the program, but not in pwMS-ON (p = 0.88). Vascular blood flow velocities were lower in the presence of the A-allele. Conclusion: Pathology-supported genetic testing may provide guidance for lifestyle interventions with a significant impact on improved disability in pwMS.
Collapse
Affiliation(s)
- Clint Johannes
- Department of Internal Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - Kelebogile E Moremi
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine & Health Sciences, Stellenbosch University, & National Health Laboratory Service (NHLS), Cape Town, 7500, South Africa
| | - Merlisa C Kemp
- Department of Medical Imaging & Therapeutic Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, Bellville campus, Cape Town, 7530, South Africa
| | | | - Penelope Engel-Hills
- Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, Cape Town, 7530, South Africa
| | - Martin Kidd
- Department of Statistics & Actuarial Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Ronald van Toorn
- Department of Pediatrics & Child Health, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - Mariaan Jaftha
- Department of Medical Imaging & Therapeutic Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7530, South Africa
- Cape University Body Imaging Centre, Faculty of Human Biology, University of Cape Town, Cape Town, 7925 South Africa
| | - Susan J van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine & Health Sciences, Stellenbosch University, & National Health Laboratory Service (NHLS), Cape Town, 7500, South Africa
| |
Collapse
|
40
|
Abstract
In this review, the relevance of selenium (Se) to viral disease will be discussed paying particular attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19). Se, the active centre in selenoproteins has an ongoing history of reducing the incidence and severity of viral infections. Host Se deficiency increased the virulence of RNA viruses such as influenza A and coxsackievirus B3, the latter of which is implicated in the development of Keshan disease in north-east China. Significant clinical benefits of Se supplementation have been demonstrated in HIV-1, in liver cancer linked to hepatitis B, and in Chinese patients with hantavirus that was successfully treated with oral sodium selenite. China is of particular interest because it has populations that have both the lowest and the highest Se status in the world. We found a significant association between COVID-19 cure rate and background Se status in Chinese cities; the cure rate continued to rise beyond the Se intake required to optimise selenoproteins, suggesting an additional mechanism. Se status was significantly higher in serum samples from surviving than non-surviving COVID-19 patients. As regards mechanism, SARS-CoV-2 may interfere with the human selenoprotein system; selenoproteins are important in scavenging reactive oxygen species, controlling immunity, reducing inflammation, ferroptosis and endoplasmic reticulum (ER) stress. We found that SARS-CoV-2 significantly suppressed mRNA expression of GPX4, of the ER selenoproteins, SELENOF, SELENOM, SELENOK and SELENOS and down-regulated TXNRD3. Based on the available data, both selenoproteins and redox-active Se species (mimicking ebselen, an inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host) could employ their separate mechanisms to attenuate virus-triggered oxidative stress, excessive inflammatory responses and immune-system dysfunction, thus improving the outcome of SARS-CoV-2 infection.
Collapse
|
41
|
Zhang J, Will Taylor E, Bennett K, Rayman MP. Does atmospheric dimethyldiselenide play a role in reducing COVID-19 mortality? GONDWANA RESEARCH : INTERNATIONAL GEOSCIENCE JOURNAL 2023; 114:87-92. [PMID: 35692874 PMCID: PMC9170275 DOI: 10.1016/j.gr.2022.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 05/11/2023]
Abstract
Environmental selenium (Se) distribution in the US is uneven, yet US residents appear to have a relatively narrow range of serum Se concentrations, according to the NHANES III survey data; this is probably due to the modern food-distribution system. In the US, Se concentration in alfalfa leaves has been used as a proxy for regional Se exposure (low, medium or high, corresponding to ≤ 0.05, 0.06-0.10 and ≥ 0.11 ppm respectively). Se in plants, soil, water, and bacteria can be transformed into volatile dimethyldiselenide, which can be inhaled and excreted via the lung. Hence, pulmonary Se exposure may be different in states with different atmospheric Se levels. We found a significantly higher death rate from COVID-19 in low-Se states than in medium-Se or high-Se states, though the case densities of these states were not significantly different. Because inhaled dimethyldiselenide is a potent inducer of nuclear-factor erythroid 2 p45-related factor 2 (Nrf2), exposure to higher atmospheric dimethyldiselenide may increase Nrf2-dependent antioxidant defences, reducing the activation of NFκB by SARS-CoV-2 in the lung, thereby decreasing cytokine activation and COVID-19 severity. Atmospheric dimethyldiselenide may thereby play a role in COVID-19 mortality, although the extent of its involvement is unclear.
Collapse
Affiliation(s)
- Jinsong Zhang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Kate Bennett
- Surrey Clinical Trials Unit and Clinical Research Facility, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, United Kingdom
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
42
|
Barman F, Kundu R. Foliar application of selenium affecting pollen viability, grain chalkiness, and transporter genes in cadmium accumulating rice cultivar: A pot study. CHEMOSPHERE 2023; 313:137538. [PMID: 36521741 DOI: 10.1016/j.chemosphere.2022.137538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Under Cadmium (Cd) stress, rice grain quality and quantity are compromised, affecting human health. Application of Selenium (Se) mitigating Cd stress in rice was already reported, but its role in rescuing Cd induced damage in the reproductive parts in rice plants has not been studied before. To investigate the underlying mechanism, Se mediated alleviation of Cd-stress induced damage to pollen viability, germination rate, and grain chalkiness were studied. A grain Cd accumulating rice genotype was selected and treated with 10 μM Cd and sprayed with 5 μM Se during tillering, elongating and heading stages. A significant reduction in pollen viability, germination percentage, and accumulation of higher amount of ROS in the reproductive parts were observed in Cd treated plants. However, Se supplementation (i.e. Cd + Se), decreased the ROS accumulation in anther, pistil, pollen and enhanced the pollen viability and germination percentage. Cd translocation was prevented from flag leaf to grains, under Se treatment. As a result, a significantly higher seed setting rate, and yield were observed. Additionally, Se improved grain nutrient content and grain quality. Therefore, the recent study suggests that the use of foliar spray of Se could be a cost-effective strategy to prevent Cd-induced yield loss and quality in rice.
Collapse
Affiliation(s)
- Falguni Barman
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
43
|
Abstract
The rapid spread of new pathogens (SARS-CoV-2 virus) that negatively affect the human body has huge consequences for the global public health system and the development of the global economy. Appropriate implementation of new safety regulations will improve the functioning of the current model supervising the inhibition of the spread of COVID-19 disease. Compliance with all these standards will have a key impact on the health behavior of individual social groups. There have been demonstrably effective treatments that proved to be effective but were rapidly dismissed for unknown reasons, such as ivermectin and hydroxychloroquine. Various measures are used in the world to help inhibit its development. The properties of this element provide hope in preventing the development of the SARS-CoV-2 virus. The aim of this review is to synthesize the latest literature data and to present the effect of sodium selenite in reducing the incidence of COVID-19 disease.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| |
Collapse
|
44
|
Genchi G, Lauria G, Catalano A, Sinicropi MS, Carocci A. Biological Activity of Selenium and Its Impact on Human Health. Int J Mol Sci 2023; 24:2633. [PMID: 36768955 PMCID: PMC9917223 DOI: 10.3390/ijms24032633] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Selenium (Se) is a naturally occurring metalloid element essential to human and animal health in trace amounts but it is harmful in excess. Se plays a substantial role in the functioning of the human organism. It is incorporated into selenoproteins, thus supporting antioxidant defense systems. Selenoproteins participate in the metabolism of thyroid hormones, control reproductive functions and exert neuroprotective effects. Among the elements, Se has one of the narrowest ranges between dietary deficiency and toxic levels. Its level of toxicity may depend on chemical form, as inorganic and organic species have distinct biological properties. Over the last decades, optimization of population Se intake for the prevention of diseases related to Se deficiency or excess has been recognized as a pressing issue in modern healthcare worldwide. Low selenium status has been associated with an increased risk of mortality, poor immune function, cognitive decline, and thyroid dysfunction. On the other hand, Se concentrations slightly above its nutritional levels have been shown to have adverse effects on a broad spectrum of neurological functions and to increase the risk of type-2 diabetes. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important issue to elucidate its effect on human diseases. This review gives an overview of the role of Se in human health highlighting the effects of its deficiency and excess in the body. The biological activity of Se, mainly performed through selenoproteins, and its epigenetic effect is discussed. Moreover, a brief overview of selenium phytoremediation and rhizofiltration approaches is reported.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy
| |
Collapse
|
45
|
Constructing Selenium Nanoparticles with Enhanced Storage Stability and Antioxidant Activities via Conformational Transition of Curdlan. Foods 2023; 12:foods12030563. [PMID: 36766092 PMCID: PMC9914686 DOI: 10.3390/foods12030563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are among the emerging selenium supplements because of their high bioactivity and low toxicity. However, bare SeNPs are prone to activity loss caused by aggregation and sedimentation. This study aims to stabilize SeNPs with curdlan (CUR), a polysaccharide, to maintain or even enhance their biological activity. Herein, the stable SeNPs were constructed via the unique conformational transition of CUR induced by alkali-neutralization (AN) pretreatment. The physicochemical properties and structures of the prepared SeNPs were characterized by dynamic light scattering (DLS), UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and free-radical-scavenging activity assays. The results show that most SeNPs are stabilized within the triple helix of CUR that has been pretreated with high-intensity AN treatment. These amorphous, small-sized (average size was 53.6 ± 17.7 nm), and stabilized SeNPs have significantly enhanced free-radical-scavenging ability compared to the control and can be well-stabilized for at least 240 days at 4 °C. This work indicates that CUR, as a food additive, can be used to well-stabilize SeNPs by AN pretreatment and provides a facile method to prepare and enhance the stability and bioactivity of SeNPs via triple-helix conformational transition.
Collapse
|
46
|
Druggable Biomarkers Altered in Clear Cell Renal Cell Carcinoma: Strategy for the Development of Mechanism-Based Combination Therapy. Int J Mol Sci 2023; 24:ijms24020902. [PMID: 36674417 PMCID: PMC9864911 DOI: 10.3390/ijms24020902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Targeted therapeutics made significant advances in the treatment of patients with advanced clear cell renal cell carcinoma (ccRCC). Resistance and serious adverse events associated with standard therapy of patients with advanced ccRCC highlight the need to identify alternative 'druggable' targets to those currently under clinical development. Although the Von Hippel-Lindau (VHL) and Polybromo1 (PBRM1) tumor-suppressor genes are the two most frequently mutated genes and represent the hallmark of the ccRCC phenotype, stable expression of hypoxia-inducible factor-1α/2α (HIFs), microRNAs-210 and -155 (miRS), transforming growth factor-beta (TGF-ß), nuclear factor erythroid 2-related factor 2 (Nrf2), and thymidine phosphorylase (TP) are targets overexpressed in the majority of ccRCC tumors. Collectively, these altered biomarkers are highly interactive and are considered master regulators of processes implicated in increased tumor angiogenesis, metastasis, drug resistance, and immune evasion. In recognition of the therapeutic potential of the indicated biomarkers, considerable efforts are underway to develop therapeutically effective and selective inhibitors of individual targets. It was demonstrated that HIFS, miRS, Nrf2, and TGF-ß are targeted by a defined dose and schedule of a specific type of selenium-containing molecules, seleno-L-methionine (SLM) and methylselenocystein (MSC). Collectively, the demonstrated pleiotropic effects of selenium were associated with the normalization of tumor vasculature, and enhanced drug delivery and distribution to tumor tissue, resulting in enhanced efficacy of multiple chemotherapeutic drugs and biologically targeted molecules. Higher selenium doses than those used in clinical prevention trials inhibit multiple targets altered in ccRCC tumors, which could offer the potential for the development of a new and novel therapeutic modality for cancer patients with similar selenium target expression. Better understanding of the underlying mechanisms of selenium modulation of specific targets altered in ccRCC could potentially have a significant impact on the development of a more efficacious and selective mechanism-based combination for the treatment of patients with cancer.
Collapse
|
47
|
Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023; 75:127099. [PMID: 36372013 PMCID: PMC9630303 DOI: 10.1016/j.jtemb.2022.127099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.
Collapse
Affiliation(s)
- Anieli Golin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Institute of Bioelementology, Orenburg, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
48
|
Subirana MA, Boada R, Xiao T, Llugany M, Valiente M. Direct and indirect selenium speciation in biofortified wheat: A tale of two techniques. PHYSIOLOGIA PLANTARUM 2023; 175:e13843. [PMID: 36538026 PMCID: PMC10107779 DOI: 10.1111/ppl.13843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Wheat can be biofortified with different inorganic selenium (Se) forms, selenite or selenate. The choice of Se source influences the physiological response of the plant and the Se metabolites produced. We looked at selenium uptake, distribution and metabolization in wheat exposed to selenite, selenate and a 1:1 molar mixture of both to determine the impact of each treatment on the Se speciation in roots, shoots, and grains. To achieve a comprehensive quantification of the Se species, the complementarity of high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy was exploited. This approach allowed the identification of the six main selenium species: selenomethionine, selenocysteine, selenocystine, selenite, selenate, and elemental selenium. The three treatments resulted in similar total selenium concentration in grains, 90-150 mg Se kg-1 , but produced different effects in the plant. Selenite enhanced root accumulation (66% of selenium) and induced the maximum toxicity, whereas selenate favored shoot translocation (46%). With the 1:1 mixture, selenium was distributed along the plant generating lower toxicity. Although all conditions resulted in >92% of organic selenium in the grain, selenate produced mainly C-Se-C forms, such as selenomethionine, while selenite (alone or in the mixture) enhanced the production of C-Se-Se-C forms, such as selenocystine, modifying the selenoamino acid composition. These results provide a better understanding of the metabolization of selenium species which is key to minimize plant toxicity and any concomitant effect that may arise due to Se-biofortification.
Collapse
Affiliation(s)
- Maria Angels Subirana
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Roberto Boada
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Tingting Xiao
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Facultat de BiociènciesUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Manuel Valiente
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
49
|
A Randomized, Double-Blind, Placebo-Controlled Investigation of Selenium Supplementation in Women at Elevated Risk for Breast Cancer: Lessons for Re-Emergent Interest in Selenium and Cancer. Biomedicines 2022; 11:biomedicines11010049. [PMID: 36672557 PMCID: PMC9855926 DOI: 10.3390/biomedicines11010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Damage to cellular macromolecules such as DNA and lipid, induced via reactive oxygen species, and indicators of cell proliferation potential such as insulin-like growth factor (IGF) metabolic status are intermediate biomarkers of breast cancer risk. Based on reports that selenium status can affect these markers, a randomized, placebo-controlled, double-blind experiment was conducted to investigate the potential of selenium supplementation to modulate breast cancer risk. Using a placebo tablet or a tablet containing 200 μg selenium provided as high-selenium yeast daily for one year, concentrations of the biomarkers in blood or urine were assessed at baseline and after 6 and 12 months of intervention. The selenium intervention used in this study is presumed to mediate its effect via the induction of glutathione peroxidase activity and the consequential impact of the active form of this protein on oxidative damage. We found no evidence to support this hypothesis or to indicate that systemic IGF metabolic status was affected. Critical knowledge gaps must be addressed for the resurgence of interest in selenium and cancer to garner clinical relevance. Those knowledge gaps include the identification of a specific, high-affinity selenium metabolite and the cellular target(s) to which it binds, and the demonstration that the cellular determinant that the selenium metabolite binds plays a critical role in the initiation, promotion, or progression of a specific type of cancer.
Collapse
|
50
|
Huseynov TM, Guliyeva RT, Jafarova SH, Jafar NH. Sodium Selenite As Potential Adjuvant Therapy for COVID-19. Biophysics (Nagoya-shi) 2022; 67:775-778. [PMID: 36567968 PMCID: PMC9762656 DOI: 10.1134/s0006350922050074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
The review considers the role that selenium plays in RNA virus infections and, in particular, COVID-19. Many RNA viruses are selenium dependent because antisense interactions arise between viral RNAs and host mRNA regions containing the selencysteine insertion sequence to cause selenium deficiency, oxidative stress, immune response impairment, etc. Sodium selenite is a licensed selenium-containing product and is widely used in medicine, veterinary, and agriculture. Its advantages include the following. Sodium selenite rapidly penetrates through cell membranes in all tissues of the body; is intensely involved in metabolic processes accompanied by oxidation of sulfur-containing cell proteins; exerts an antiaggregation effect by reducing thromboxane activity; interrupts the contact of a virion (SARS-CoV-1 and SARS-CoV-2) with the membrane of a healthy cell; and suppresses NF-κB activity, which significantly increases in coronavirus infections. Arguments supporting the use of sodium selenite as adjuvant therapy in COVID-19 are discussed.
Collapse
Affiliation(s)
- T. M. Huseynov
- Institute of Biophysics, National Academy of Sciences of Azerbaijan, AZ1143 Baku, Azerbaijan
| | - R. T. Guliyeva
- Institute of Biophysics, National Academy of Sciences of Azerbaijan, AZ1143 Baku, Azerbaijan
| | - S. H. Jafarova
- Institute of Biophysics, National Academy of Sciences of Azerbaijan, AZ1143 Baku, Azerbaijan
| | | |
Collapse
|