1
|
Shi HQ, Huang S, Ma XY, Tan ZJ, Luo R, Luo B, Zhang W, Shi L, Zhong XL, Lü MH, Chen X, Tang XW. BCAR3 and BCAR3-related competing endogenous RNA expression in hepatocellular carcinoma and their prognostic value. World J Gastrointest Oncol 2024; 16:3082-3096. [PMID: 39072167 PMCID: PMC11271796 DOI: 10.4251/wjgo.v16.i7.3082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant tumor that has a high incidence and mortality worldwide. Despite extensive studies, the detailed molecular mechanism of HCC development remains unclear. Studies have shown that the occurrence and development of HCC are closely related to abnormal gene expression. BCAR3 has been shown to be overexpressed in a variety of malignant tumors. However, the role of BCAR3 in HCC remains unclear. AIM To investigate the expression of BCAR3 and BCAR3-related competing endogenous RNAs (ceRNAs) in HCC and their clinical significance, in order to provide new ideas for the diagnosis and treatment of HCC. METHODS The data of HCC were obtained from the Cancer Genome Atlas database and The Genotype Tissue Expression, including transcriptome data and clinical information. Multiple common databases, including UALCAN, Timer 2.0, cBioPortal, LinkedOmics, starBase, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, were used to analyse the expression of BCAR3, prognostic value, genetic alteration, co-expressed genes, differentially expressed genes, BCAR3 gene-related ceRNAs and functional enrichment analysis in HCC patients. Kaplan-Meier analysis, univariate and multivariate Cox regression analysis were used to analyze survival prognosis and the Spearman test was used to measure correlations between BCAR3 and immune functions. And R language package was used to analyze the correlation between BCAR3 and immune invasion of HCC. RESULTS Our study indicated that BCAR3 was differentially expressed in various tumor tissues. The over-expression of BCAR3 gene was an unfavorable prognostic indicator for HCC patients, and associated with unfavorable cytogenetic risk and gene mutations. Moreover, most immune cells were positively correlated with BCAR3 (P < 0.05). According to the results of functional enrichment analysis, BCAR3 was involved in the positive regulation of epidermal growth factor receptor signaling pathway and ERBB signaling pathway, and was related to DNA replication and GTPase regulator activity. Finally, our study found that based on RAB30-DT and miR-19b-3p pathways, targeting BCAR3 might promote the occurrence and development of HCC. CONCLUSION Collectively, this study indicated that the BCAR3 gene was involved in the occurrence and development of HCC, and it might be a new biomarker and therapeutic target for HCC, but the specific mechanism remains to be further verified.
Collapse
Affiliation(s)
- Hui-Qin Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Shu Huang
- Department of Gastroenterology, The People’s Hospital of Lianshui, Huaian 223499, Jiangsu Province, China
- Department of Gastroenterology, Lianshui People’ Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian 223499, Jiangsu Province, China
| | - Xin-Yue Ma
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Zhen-Ju Tan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Rui Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Bei Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Wei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lei Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiao-Lin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Mu-Han Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xia Chen
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Xiao-Wei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
2
|
Moon DO. Deciphering the Role of BCAR3 in Cancer Progression: Gene Regulation, Signal Transduction, and Therapeutic Implications. Cancers (Basel) 2024; 16:1674. [PMID: 38730626 PMCID: PMC11083344 DOI: 10.3390/cancers16091674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This review comprehensively explores the gene BCAR3, detailing its regulation at the gene, mRNA, and protein structure levels, and delineating its multifunctional roles in cellular signaling within cancer contexts. The discussion covers BCAR3's involvement in integrin signaling and its impact on cancer cell migration, its capability to induce anti-estrogen resistance, and its significant functions in cell cycle regulation. Further highlighted is BCAR3's modulation of immune responses within the tumor microenvironment, a novel area of interest that holds potential for innovative cancer therapies. Looking forward, this review outlines essential future research directions focusing on transcription factor binding studies, isoform-specific expression profiling, therapeutic targeting of BCAR3, and its role in immune cell function. Each segment builds towards a holistic understanding of BCAR3's operational mechanisms, presenting a critical evaluation of its therapeutic potential in oncology. This synthesis aims to not only extend current knowledge but also catalyze further research that could pivotally influence the development of targeted cancer treatments.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201 Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Pagano L, Simonetti L, Pennacchietti V, Toto A, Malagrinò F, Ivarsson Y, Gianni S. Exploring the short linear motif-mediated protein-protein interactions of CrkL through ProP-PD. Biochem Biophys Res Commun 2024; 703:149658. [PMID: 38387229 DOI: 10.1016/j.bbrc.2024.149658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Adaptor proteins play a pivotal role in cellular signaling mediating a multitude of protein-protein interaction critical for cellular homeostasis. Dysregulation of these interactions has been linked to the onset of various cancer pathologies and exploited by viral pathogens during host cell takeover. CrkL is an adaptor protein composed of an N-terminal SH2 domain followed by two SH3 domains that mediate interactions with diverse partners through the recognition of specific binding motifs. In this study, we employed proteomic peptide-phage display (ProP-PD) to comprehensively explore the short linear motif (SLiM)-based interactions of CrkL. Furthermore, we scrutinized how the binding affinity for selected peptides was influenced in the context of the full-length CrkL versus the isolated N-SH3 domain. Importantly, our results provided insights into SLiM-binding sites within previously reported interactors, as well as revealing novel human and viral ligands, expanding our understanding of the interactions mediated by CrkL and highlighting the significance of SLiM-based interactions in mediating adaptor protein function, with implications for cancer and viral pathologies.
Collapse
Affiliation(s)
- L Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Universita di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185, Rome, Italy
| | - L Simonetti
- Department of Chemistry - BMC, Husargatan 3, 751 23, Uppsala, Sweden
| | - V Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Universita di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185, Rome, Italy
| | - A Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Universita di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185, Rome, Italy
| | - F Malagrinò
- Dipartimento di Medicina clinica, sanità pubblica, scienze della vita e dell'ambiente, Università dell'Aquila, Piazzale Salvatore Tommasi 1, L'Aquila, Coppito, 67010, Italy
| | - Y Ivarsson
- Department of Chemistry - BMC, Husargatan 3, 751 23, Uppsala, Sweden.
| | - S Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Universita di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185, Rome, Italy.
| |
Collapse
|
4
|
Caporossi D, Dimauro I. Exercise-induced redox modulation as a mediator of DNA methylation in health maintenance and disease prevention. Free Radic Biol Med 2024; 213:113-122. [PMID: 38242245 DOI: 10.1016/j.freeradbiomed.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The evidence for physical activity (PA) as a major public health preventive approach and a potent medical therapy has increased exponentially in the last decades. The biomolecular mechanisms supporting the associations between PA and/or structured exercise training with health maintenance and disease prevention are not completely characterized. However, increasing evidence pointed out the role of epigenetic modifications in exercise adaptation and health-enhancing PA throughout life, DNA methylation being the most intensely studied epigenetic modification induced by acute and chronic exercise. The current data on the modulation of DNA methylation determined by physically active behavior or exercise interventions points out genes related to energy regulation, mitochondrial function, and biosynthesis, as well as muscle regeneration, calcium signaling pathways, and brain plasticity, all consistent with the known exercise-induced redox signaling and/or reactive oxygen species (ROS) unbalance. Thus, the main focus of this review is to discuss the role of ROS and redox-signaling on DNA methylation profile and its impact on exercise-induced health benefits in humans.
Collapse
Affiliation(s)
- Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, Rome, 00135, Italy.
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, Rome, 00135, Italy
| |
Collapse
|
5
|
van der Wijngaart H, Beekhof R, Knol JC, Henneman AA, de Goeij-de Haas R, Piersma SR, Pham TV, Jimenez CR, Verheul HMW, Labots M. Candidate biomarkers for treatment benefit from sunitinib in patients with advanced renal cell carcinoma using mass spectrometry-based (phospho)proteomics. Clin Proteomics 2023; 20:49. [PMID: 37940875 PMCID: PMC10631096 DOI: 10.1186/s12014-023-09437-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
The tyrosine kinase inhibitor sunitinib is an effective first-line treatment for patients with advanced renal cell carcinoma (RCC). Hypothesizing that a functional read-out by mass spectrometry-based (phospho, p-)proteomics will identify predictive biomarkers for treatment outcome of sunitinib, tumor tissues of 26 RCC patients were analyzed. Eight patients had primary resistant (RES) and 18 sensitive (SENS) RCC. A 78 phosphosite signature (p < 0.05, fold-change > 2) was identified; 22 p-sites were upregulated in RES (unique in RES: BCAR3, NOP58, EIF4A2, GDI1) and 56 in SENS (35 unique). EIF4A1/EIF4A2 were differentially expressed in RES at the (p-)proteome and, in an independent cohort, transcriptome level. Inferred kinase activity of MAPK3 (p = 0.026) and EGFR (p = 0.045) as determined by INKA was higher in SENS. Posttranslational modifications signature enrichment analysis showed that different p-site-centric signatures were enriched (p < 0.05), of which FGF1 and prolactin pathways in RES and, in SENS, vanadate and thrombin treatment pathways, were most significant. In conclusion, the RCC (phospho)proteome revealed differential p-sites and kinase activities associated with sunitinib resistance and sensitivity. Independent validation is warranted to develop an assay for upfront identification of patients who are intrinsically resistant to sunitinib.
Collapse
Affiliation(s)
- Hanneke van der Wijngaart
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Robin Beekhof
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jaco C Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Starrett GJ, Yu K, Golubeva Y, Lenz P, Piaskowski ML, Petersen D, Dean M, Israni A, Hernandez BY, Tucker TC, Cheng I, Gonsalves L, Morris CR, Hussain SK, Lynch CF, Harris RS, Prokunina-Olsson L, Meltzer PS, Buck CB, Engels EA. Evidence for virus-mediated oncogenesis in bladder cancers arising in solid organ transplant recipients. eLife 2023; 12:e82690. [PMID: 36961501 PMCID: PMC10446826 DOI: 10.7554/elife.82690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have an overall poorer outcomes, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of the tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases, with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with an antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.
Collapse
Affiliation(s)
| | - Kelly Yu
- DCEG, NCI, NIHRockvilleUnited States
| | | | - Petra Lenz
- Leidos Biomedical Research IncFrederickUnited States
| | | | | | | | - Ajay Israni
- Department of Medicine, Nephrology Division, Hennepin Healthcare System, University of MinnesotaMinneapolisUnited States
| | | | - Thomas C Tucker
- The Kentucky Cancer Registry, University of KentuckyLexingtonUnited States
| | - Iona Cheng
- Department of Epidemiology and Biostatistics,and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoFremontUnited States
| | - Lou Gonsalves
- Connecticut Tumor Registry, Connecticut Department of Public HealthHartfordUnited States
| | - Cyllene R Morris
- California Cancer Reporting and Epidemiologic Surveillance Program, University of California, DavisDavisUnited States
| | - Shehnaz K Hussain
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Charles F Lynch
- The Iowa Cancer Registry, University of IowaIowa CityUnited States
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | | |
Collapse
|
7
|
Starr I, Seiffert-Sinha K, Sinha AA, Gokcumen O. Evolutionary context of psoriatic immune skin response. Evol Med Public Health 2022; 9:474-486. [PMID: 35154781 PMCID: PMC8830311 DOI: 10.1093/emph/eoab042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
The skin is vital for protecting the body and perceiving external stimuli in the environment. Ability to adapt between environments is in part based on skin phenotypic plasticity, indicating evolved homeostasis between skin and environment. This homeostasis reflects the greater relationship between the body and the environment, and disruptions in this balance may lead to accumulation of susceptibility factors for autoimmune conditions like psoriasis. In this study, we examined the relationship between rapid, lineage-specific evolution of human skin and formation of psoriatic skin responses at the transcriptome level. We collected skin tissue biopsies from individuals with psoriasis and compared gene expression in psoriatic plaques to non-plaque psoriatic skin. We then compared these data with non-psoriatic skin transcriptome data from multiple primate species. We found 67 genes showing human-specific skin expression that are also differentially regulated in psoriatic skin; these genes are significantly enriched for skin barrier function, immunity and neuronal development. We identified six gene clusters with differential expression in the context of human evolution and psoriasis, suggesting underlying regulatory mechanisms in these loci. Human and psoriasis-specific enrichment of neuroimmune genes shows the importance of the ongoing evolved homeostatic relationship between skin and external environment. These results have implications for both evolutionary medicine and public health, using transcriptomic data to acknowledge the importance of an individual’s surroundings on their overall health. The skin is important for protecting the body from the environment and perceiving external stimuli, creating an evolved balance between skin and the environment. We compare skin gene expression in humans with psoriasis to humans and non-human primates without psoriasis to better understand human-specific evolutionary changes in the skin. Our results suggest important evolutionary links between skin perception, human-specific skin development and immune response.
Collapse
Affiliation(s)
- Izzy Starr
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Kristina Seiffert-Sinha
- Department of Dermatology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Animesh A Sinha
- Department of Dermatology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
8
|
Yeh YC, Lawal B, Hsiao M, Huang TH, Huang CYF. Identification of NSP3 ( SH2D3C) as a Prognostic Biomarker of Tumor Progression and Immune Evasion for Lung Cancer and Evaluation of Organosulfur Compounds from Allium sativum L. as Therapeutic Candidates. Biomedicines 2021; 9:1582. [PMID: 34829812 PMCID: PMC8615911 DOI: 10.3390/biomedicines9111582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The novel SH2-containing protein 3 (NSP3) is an oncogenic molecule that has been concomitantly associated with T cell trafficking. However, its oncological role in lung cancer and whether it plays a role in modulating the tumor immune microenvironment is not properly understood. In the present in silico study, we demonstrated that NSP3 (SH2D3C) is associated with advanced stage and poor prognoses of lung cancer cohorts. Genetic alterations of NSP3 (SH2D3C) co-occurred inversely with Epidermal Growth Factor Receptor (EGFR) alterations and elicited its pathological role via modulation of various components of the immune and inflammatory pathways in lung cancer. Our correlation analysis suggested that NSP3 (SH2D3C) promotes tumor immune evasion via dysfunctional T-cell phenotypes and T-cell exclusion mechanisms in lung cancer patients. NSP3 (SH2D3C) demonstrated a high predictive value and association with therapy resistance in lung cancer, hence serving as an attractive target for therapy exploration. We evaluated the in silico drug-likeness and NSP3 (SH2D3C) target efficacy of six organosulfur small molecules from Allium sativum using a molecular docking study. We found that the six organosulfur compounds demonstrated selective cytotoxic potential against cancer cell lines and good predictions for ADMET properties, drug-likeness, and safety profile. E-ajoene, alliin, diallyl sulfide, 2-vinyl-4H-1,3-dithiin, allicin, and S-allyl-cysteine docked well into the NSP3 (SH2D3C)-binding cavity with binding affinities ranging from −3.5~−6.70 Ă and random forest (RF) scores ranging from 4.31~5.26 pKd. In conclusion, our study revealed that NSP3 is an important onco-immunological biomarker encompassing the tumor microenvironment, disease staging and prognosis in lung cancer and could serve as an attractive target for cancer therapy. The organosulfur compounds from A. sativum have molecular properties to efficiently interact with the binding site of NSP3 and are currently under vigorous preclinical study in our laboratory.
Collapse
Affiliation(s)
- Yuan-Chieh Yeh
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan;
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department & Graduate Institute of Chemical Engineering & Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Chi-Ying F. Huang
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Zhang Z, Wang Y, Wang Y, Wang C, Shuai Y, Luo J, Liu R. BCAR3 promotes head and neck cancer growth and is associated with poor prognosis. Cell Death Discov 2021; 7:316. [PMID: 34707118 PMCID: PMC8551282 DOI: 10.1038/s41420-021-00714-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/14/2021] [Indexed: 01/15/2023] Open
Abstract
Breast cancer anti-estrogen resistance protein 3 (BCAR3) is involved in anti-estrogen resistance and other important aspects of breast cancer. However, the role of BCAR3 in other solid tumors remains unclear. The relationship between the clinicopathologic characteristics of head and neck squamous cell carcinoma (HNSCC) patients and BCAR3 was analyzed using the Wilcoxon’s signed-rank test and logistic regression. The association between BCAR3 expression and clinicopathologic features and survival was analyzed using Cox regression and the Kaplan–Meier method. In vivo and in vitro assays were performed to validate the effect of BCAR3 on HNSCC growth. BCAR3-related mRNAs were determined by calculating the Pearson’s correlation coefficient based on The Cancer Genome Atlas (TCGA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and gene set enrichment analysis (GSEA) were used to predict the potential functions of BCAR3. BCAR3 expression is overexpressed in HNSCC and was shown to be associated with perineural invasion (PNI) and poor survival. BCAR3 silencing significantly attenuated the proliferation of HNSCC cells, whereas BCAR3 depletion inhibited tumor growth in vitro. GO and KEGG functional enrichment analyses, and GSEA showed that BCAR3 expression in HNSCC was associated with biological processes, such as cell adhesion, actin binding, cadherin binding, and angiogenesis. BCAR3, which promotes HNSCC growth, is associated with perineural invasion and may be a potential molecular prognostic marker of poor survival in HNSCC.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yafei Wang
- Department of Maxillofacial and Otorhinolaryngology Oncology, and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yun Wang
- Department of Maxillofacial and Otorhinolaryngology Oncology, and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chunli Wang
- Department of Maxillofacial and Otorhinolaryngology Oncology, and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanjie Shuai
- Department of Maxillofacial and Otorhinolaryngology Oncology, and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jingtao Luo
- Department of Maxillofacial and Otorhinolaryngology Oncology, and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Ruoyan Liu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Department of Gynaecological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
10
|
Gillman AS, Helmuth T, Koljack CE, Hutchison KE, Kohrt WM, Bryan AD. The Effects of Exercise Duration and Intensity on Breast Cancer-Related DNA Methylation: A Randomized Controlled Trial. Cancers (Basel) 2021; 13:4128. [PMID: 34439282 PMCID: PMC8394212 DOI: 10.3390/cancers13164128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022] Open
Abstract
Emerging research suggests that one mechanism through which physical activity may decrease cancer risk is through its influence on the methylation of genes associated with cancer. The purpose of the current study was to prospectively test, using a rigorous experimental design, whether aerobic exercise affects DNA methylation in genes associated with breast cancer, as well as whether quantity of exercise completed affects change in DNA methylation in a dose-response manner. 276 women (M age = 37.25, SD = 4.64) were recruited from the Denver metro area for a randomized controlled trial in which participants were assigned to a supervised aerobic exercise program varying in a fully crossed design by intensity (55-65% versus 75-85% of VO2max) and duration (40 versus 20 min per session). DNA methylation was assessed via blood samples provided at baseline, after completing a 16-week supervised exercise intervention, and six months after the intervention. 137 participants completed the intervention, and 81 had viable pre-post methylation data. Contrary to our hypotheses, total exercise volume completed in kcal/kg/week was not associated with methylation from baseline to post-intervention for any of the genes of interest. An increase in VO2max over the course of the intervention, however, was associated with decreased post-intervention methylation of BRCA1, p = 0.01. Higher levels of self-reported exercise during the follow-up period were associated with lower levels of GALNT9 methylation at the six-month follow-up. This study provides hypothesis-generating evidence that increased exercise behavior and or increased fitness might affect methylation of some genes associated with breast cancer to reduce risk.
Collapse
Affiliation(s)
- Arielle S. Gillman
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| | - Timothy Helmuth
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| | - Claire E. Koljack
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.E.K.); (W.M.K.)
| | - Kent E. Hutchison
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| | - Wendy M. Kohrt
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.E.K.); (W.M.K.)
| | - Angela D. Bryan
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| |
Collapse
|
11
|
Steenkiste EM, Berndt JD, Pilling C, Simpkins C, Cooper JA. A Cas-BCAR3 co-regulatory circuit controls lamellipodia dynamics. eLife 2021; 10:67078. [PMID: 34169835 PMCID: PMC8266394 DOI: 10.7554/elife.67078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Integrin adhesion complexes regulate cytoskeletal dynamics during cell migration. Adhesion activates phosphorylation of integrin-associated signaling proteins, including Cas (p130Cas, BCAR1), by Src-family kinases. Cas regulates leading-edge protrusion and migration in cooperation with its binding partner, BCAR3. However, it has been unclear how Cas and BCAR3 cooperate. Here, using normal epithelial cells, we find that BCAR3 localization to integrin adhesions requires Cas. In return, Cas phosphorylation, as well as lamellipodia dynamics and cell migration, requires BCAR3. These functions require the BCAR3 SH2 domain and a specific phosphorylation site, Tyr 117, that is also required for BCAR3 downregulation by the ubiquitin-proteasome system. These findings place BCAR3 in a co-regulatory positive-feedback circuit with Cas, with BCAR3 requiring Cas for localization and Cas requiring BCAR3 for activation and downstream signaling. The use of a single phosphorylation site in BCAR3 for activation and degradation ensures reliable negative feedback by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Elizabeth M Steenkiste
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Jason D Berndt
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Carissa Pilling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Christopher Simpkins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| |
Collapse
|
12
|
Øverbye A, Torgersen ML, Sønstevold T, Iversen TG, Mørch Ý, Skotland T, Sandvig K. Cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles: toxicity and changes in the proteome of breast, colon and prostate cancer cells. Nanotoxicology 2021; 15:865-884. [PMID: 34047629 DOI: 10.1080/17435390.2021.1924888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanoparticles composed of poly(alkyl cyanoacrylate) (PACA) have shown great promise due to their biodegradability and high drug loading capacity. Development of optimal PACA nanocarriers requires detailed analysis of the overall cellular impact exerted by PACA variants. We here perform a comprehensive comparison of cabazitaxel (CBZ)-loaded nanocarriers composed of three different PACA monomers, i.e. poly(n-butyl cyanoacrylate) (PBCA), poly(2-ethylbutyl cyanoacrylate) (PEBCA) and poly(octyl cyanoacrylate) (POCA). The cytotoxicity of drug-loaded and empty PACA nanoparticles were compared to that of free CBZ across a panel of nine cancer cell lines by assessing cellular metabolism, proliferation and protein synthesis. The analyses revealed that the cytotoxicity of all CBZ-loaded PACAs was similar to that of free CBZ for all cell lines tested, whereas the empty PACAs exerted much lower toxicity. To increase our understanding of the toxic effects of these treatments comprehensive MS-based proteomics were performed with HCT116, MDA-MB-231 and PC3 cells incubated with PACA-CBZ variants or free CBZ. Interestingly, PACA-CBZ specifically led to decreased levels of proteins involved in focal adhesion and stress fibers in all cell lines. Since we recently demonstrated that encapsulation of CBZ within PEBCA nanoparticles significantly improved the therapeutic effect of CBZ on a patient derived xenograft model in mice, we investigated the effects of this PACA variant more closely by immunoblotting. Interestingly, we detected several changes in the protein expression and degree of phosphorylation of SRC-pathway proteins that can be relevant for the therapeutic effects of these substances.
Collapse
Affiliation(s)
- Anders Øverbye
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Maria Lyngaas Torgersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Tonje Sønstevold
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tore Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Ýrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Mechanisms of tRNA-derived fragments and tRNA halves in cancer treatment resistance. Biomark Res 2020; 8:52. [PMID: 33072328 PMCID: PMC7559774 DOI: 10.1186/s40364-020-00233-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
The tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are newly discovered noncoding RNAs in recent years. They are derived from specific cleavage of mature and pre-tRNAs and expressed in various cancers. They enhance cell proliferation and metastasis or inhibit cancer progression. Many studies have investigated their roles in the diagnosis, progression, metastasis, and prognosis of various cancers, but the mechanisms through which they are involved in resistance to cancer treatment are unclear. This review outlines the classification of tRFs and tiRNAs and their mechanisms in cancer drug resistance, thus providing new ideas for cancer treatment.
Collapse
|
14
|
Barreñada O, Fernández-Pérez D, Larriba E, Brieño-Enriquez M, Del Mazo J. Diversification of piRNAs expressed in PGCs and somatic cells during embryonic gonadal development. RNA Biol 2020; 17:1309-1323. [PMID: 32375541 DOI: 10.1080/15476286.2020.1757908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
piRNAs are small non-coding RNAs known to play a main role in defence against transposable elements in germ cells. However, other potential functions, such as biogenesis and differences in somatic and germline expression of these regulatory elements, are not yet fully unravelled. Here, we analysed a variety of piRNA sequences detected in mouse male and female primordial germ cells (PGCs) and gonadal somatic cells at crucial stages during embryonic differentiation of germ cells (11.5-13.5 days post-coitum). NGS of sncRNA and bioinformatic characterization of piRNAs from PGCs and somatic cells, in addition to piRNAs associated with TEs, indicated functional diversification in both cell types. Differences in the proportion of the diverse types of piRNAs are detected between somatic and germline during development. However, the global diversified patterns of piRNA expression are mainly shared between germ and somatic cells, we identified piRNAs related with molecules involved in ribosome components and translation pathway, including piRNAs derived from rRNA (34%), tRNA (10%) and snoRNA (8%). piRNAs from both tRNA and snoRNA are mainly derived from 3' and 5' end regions. These connections between piRNAs and rRNAs, tRNAs or snoRNAs suggest important functions of specialized piRNAs in translation regulation during this window of gonadal development.
Collapse
Affiliation(s)
- Odei Barreñada
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Daniel Fernández-Pérez
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Eduardo Larriba
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Miguel Brieño-Enriquez
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| | - Jesús Del Mazo
- Department of Cellular & Molecular Biology, Centro De Investigaciones Biológicas C.I.B. (CSIC) , Madrid, Spain
| |
Collapse
|
15
|
Yuan QH, Liu G, Hu Q, Wang J, Leng K. Identification of lapatinib sensitivity-related genes by integrative functional module analysis. Transl Cancer Res 2020; 9:1351-1360. [PMID: 35117483 PMCID: PMC8799157 DOI: 10.21037/tcr.2020.01.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Background Globally, gastric carcinoma (GC) is one of the most commonly encountered malignancies and is the second highest contributor to cancer mortality. Lapatinib is a potent, orally-bioavailable small-molecule inhibitor of both epidermal growth factor receptor and human epidermal growth factor receptor-2 tyrosine kinases, and is administered to treat GC. However, a large proportion of patients either develop resistance to or do not respond to lapatinib, often because the treatment activates alternative signaling pathways. It is, therefore, vital to identify the key pathways which mediate resistance to lapatinib treatment. Methods The lapatinib sensitivity-related genes were extracted from the CellMiner database (version 2.2) using “NCI-60 Analysis Tools”. The differentially expressed genes (DEGs) in gastric cancer were derived from The Cancer Genome Atlas (TCGA) database, the protein-protein interaction (PPI) network was derived from the Human Protein Reference Database (HPRD), and the Database for Annotation, Visualization and Integrated Discovery (DAVID) facilitated the functional analysis. The cell function was tested by CCK-8 cell viability assay, colony formation assay, acridine orange/ethidium bromide (AO/EB) staining, and Transwell assay. Results The functional linkage networks of lapatinib sensitivity were constructed. Two modules were identified, and pathway analysis indicated that these modules were involved in several pathways, including the neuroactive ligand-receptor interaction network and the Rap1 signaling pathway. Finally, the breast cancer anti-estrogen resistance 1 (BCAR1) gene was selected for further study with lapatinib-resistant SUN216 cells (SUN216/LR). We found the expression of BCAR1 was upregulated in SUN216/LR cells compared to SUN216 cells. The IC50 of lapatinib in SUN216/LR cells was reduced upon BCAR1 knockdown, as measured by a CCK-8 assay. A clonogenic assay showed fewer SUN216/LR colonies with BCAR1 knockdown and lapatinib treatment. Conclusions In brief, we efficiently identified those crucial modules highly related to lapatinib sensitivity in GC by using a topological network method. BCAR1 was identified as a potentially critical gene that plays a role in lapatinib sensitivity, and experiments confirmed that BCAR1 might contribute to lapatinib resistance in GC. These results provide further insight into the molecular basis of lapatinib sensitivity and may offer novel strategies for the future treatment of GC.
Collapse
Affiliation(s)
- Qi-Hua Yuan
- Department of Gastrointestinal Surgery, Yidu Central Hospital Affiliated to Weifang Medical University, Qingzhou 262500, China
| | - Guodong Liu
- Department of Gastrointestinal Surgery, Yidu Central Hospital Affiliated to Weifang Medical University, Qingzhou 262500, China
| | - Qiuhui Hu
- Department of Hepatobiliary Surgery, Heilongjiang Province Second Cancer Hospital, Harbin 150000, China
| | - Jingwen Wang
- Department of Gastrointestinal Surgery, Yidu Central Hospital Affiliated to Weifang Medical University, Qingzhou 262500, China
| | - Kaiming Leng
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao 266071, China
| |
Collapse
|
16
|
Watson AM, Casu F, Bearden DW, Yost J, Denson MR, Gaylord TG, Anderson P, Sandifer PA, Leffler JW, Barrows FT. Investigation of graded levels of soybean meal diets for red drum, Sciaenops ocellatus, using quantitative PCR derived biomarkers. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2019; 29:274-285. [PMID: 30654235 DOI: 10.1016/j.cbd.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 11/19/2022]
Abstract
A twelve-week feeding trial was conducted to examine potential metabolic and gene expression changes that occur in juvenile red drum, Sciaenops ocellatus, fed diets with increasing soybean meal inclusion. Significant reduction in fish performance characteristics (feed consumption, weight gain, final weight) was observed within the soybean meal based diets as soybean meal level increased (R, linear regression); however, all soybean meal based diets performed statistically equivalent in regards to performance characteristics (weight gain, feed conversion ratio, condition factor, etc.) to a commercial (45% crude protein and 16% crude lipid) reference diet (R, ANOVA). To better understand the underlying physiological responses and metabolic changes driving performance differences, traditional aquaculture metrics were paired with high throughput -omics techniques. Nuclear magnetic resonance (NMR) spectroscopy-based metabolomics data and RNA transcript abundance differences observed in liver tissue were utilized to select multiple sets of genes to target with quantitative polymerase chain reaction (qPCR), both for pathway activity validation and as rapid and accessible biomarkers of performance as a result of soybean meal. Genes selected based on the metabolic pathways most affected by soybean meal level corroborate the metabolite profile and performance data indicating an increase in gluconeogenic precursor production as soybean meal increased. The metabolomic and gene expression tools utilized in our study present a novel framework for diet and fish health evaluation that may provide more rapid and improved techniques for evaluating dietary manipulations and improving production of juvenile fish on alternative feeds.
Collapse
Affiliation(s)
- Aaron M Watson
- Marine Resources Research Institute, South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA.
| | - Fabio Casu
- Marine Biochemical Sciences Group, Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Daniel W Bearden
- Marine Biochemical Sciences Group, Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Justin Yost
- Marine Resources Research Institute, South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA
| | - Michael R Denson
- Marine Resources Research Institute, South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA
| | - T Gibson Gaylord
- Bozeman Fish Technology Center, United States Fish and Wildlife Service, 4050 Bridger Canyon Road, Bozeman, MT 59715, USA
| | - Paul Anderson
- College of Charleston, c/o Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Paul A Sandifer
- College of Charleston, c/o Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - John W Leffler
- Marine Resources Research Institute, South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA
| | - Frederic T Barrows
- United States Department of Agriculture, Agricultural Research Service, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Road, Hagerman, ID 83332, USA
| |
Collapse
|
17
|
Zhou K, Diebel KW, Holy J, Skildum A, Odean E, Hicks DA, Schotl B, Abrahante JE, Spillman MA, Bemis LT. A tRNA fragment, tRF5-Glu, regulates BCAR3 expression and proliferation in ovarian cancer cells. Oncotarget 2017; 8:95377-95391. [PMID: 29221134 PMCID: PMC5707028 DOI: 10.18632/oncotarget.20709] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is a complex disease marked by tumor heterogeneity, which contributes to difficulties in diagnosis and treatment. New molecular targets and better molecular profiles defining subsets of patients are needed. tRNA fragments (tRFs) offer a recently identified group of noncoding RNAs that are often as abundant as microRNAs in cancer cells. Initially their presence in deep sequencing data sets was attributed to the breakdown of mature tRNAs, however, it is now clear that they are actively generated and function in multiple regulatory events. One such tRF, a 5’ fragment of tRNA-Glu-CTC (tRF5-Glu), is processed from the mature tRNA-Glu and is shown in this study to be expressed in ovarian cancer cells. We confirmed that tRF5-Glu binds directly to a site in the 3’UTR of the Breast Cancer Anti-Estrogen Resistance 3 (BCAR3) mRNA thereby down regulating its expression. BCAR3 has not previously been studied in ovarian cancer cells and our studies demonstrate that inhibiting BCAR3 expression suppresses ovarian cancer cell proliferation. Furthermore, mimics of tRF5-Glu were found to inhibit proliferation of ovarian cancer cells. In summary, BCAR3 and tRF5-Glu contribute to the complex tumor heterogeneity of ovarian cancer cells and may provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Kevin W Diebel
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Holy
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Andrew Skildum
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Evan Odean
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Douglas A Hicks
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brent Schotl
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Monique A Spillman
- Texas A&M University Medical School, Baylor University Medical Center, Dallas, TX, 75206 USA
| | - Lynne T Bemis
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| |
Collapse
|
18
|
Yang N, Williams J, Pekovic-Vaughan V, Wang P, Olabi S, McConnell J, Gossan N, Hughes A, Cheung J, Streuli CH, Meng QJ. Cellular mechano-environment regulates the mammary circadian clock. Nat Commun 2017; 8:14287. [PMID: 28134247 PMCID: PMC5290282 DOI: 10.1038/ncomms14287] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Circadian clocks drive ∼24 h rhythms in tissue physiology. They rely on transcriptional/translational feedback loops driven by interacting networks of clock complexes. However, little is known about how cell-intrinsic circadian clocks sense and respond to their microenvironment. Here, we reveal that the breast epithelial clock is regulated by the mechano-chemical stiffness of the cellular microenvironment in primary cell culture. Moreover, the mammary clock is controlled by the periductal extracellular matrix in vivo, which contributes to a dampened circadian rhythm during ageing. Mechanistically, the tension sensing cell-matrix adhesion molecule, vinculin, and the Rho/ROCK pathway, which transduces signals provided by extracellular stiffness into cells, regulate the activity of the core circadian clock complex. We also show that genetic perturbation, or age-associated disruption of self-sustained clocks, compromises the self-renewal capacity of mammary epithelia. Thus, circadian clocks are mechano-sensitive, providing a potential mechanism to explain how ageing influences their amplitude and function.
Collapse
Affiliation(s)
- Nan Yang
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jack Williams
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Vanja Pekovic-Vaughan
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Pengbo Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Safiah Olabi
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - James McConnell
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nicole Gossan
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Alun Hughes
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Julia Cheung
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Charles H. Streuli
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
19
|
Kondo T, Nakamori T, Nagai H, Takeshita A, Kusakabe KT, Okada T. A novel spontaneous mutation of BCAR3 results in extrusion cataracts in CF#1 mouse strain. Mamm Genome 2016; 27:451-9. [PMID: 27364350 DOI: 10.1007/s00335-016-9653-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
A substrain of mice originating from the CF#1 strain (an outbred colony) reared at Osaka Prefecture University (CF#1/lr mice) develops cataracts beginning at 4 weeks of age. Affected mice were fully viable and fertile and developed cataracts by 14 weeks of age. Histologically, CF#1/lr mice showed vacuolation of the lens cortex, swollen lens fibers, lens rupture and nuclear extrusion. To elucidate the mode of inheritance, we analyzed heterozygous mutant hybrids generated from CF#1/lr mice and wild-type BALB/c mice. None of the heterozygous mutants were affected, and the ratio of affected to unaffected mice was 1:3 among the offspring of the heterozygous mutants. For the initial genome-wide screening and further mapping, we used affected progeny of CF#1/lr × (CF#1/lr × BALB/c) mice. We concluded that the cataracts in CF#1/lr mice are inherited through an autosomal recessive mutation and that the mutant gene is located on mouse chromosome 3 between D3Mit79 and D3Mit216. In this region, we identified 8 genes associated with ocular disease. All 8 genes were sequenced and a novel point mutation (1 bp insertion of cytosine) in exon 7 of the Bcar3 gene was identified. This mutation produced a premature stop codon and a truncated protein. In conclusion, we have identified the first spontaneous mutation in the Bcar3 gene associated with lens extrusion cataracts. This novel cataract model may provide further knowledge of the molecular biology of cataractogenesis and the function of the BCAR3 protein.
Collapse
Affiliation(s)
- Tomohiro Kondo
- Department of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, 1-58 Rinku Ourai kita, Izumisano, Osaka, 598-8531, Japan.
| | - Taketo Nakamori
- Department of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, 1-58 Rinku Ourai kita, Izumisano, Osaka, 598-8531, Japan
| | - Hiroaki Nagai
- Department of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, 1-58 Rinku Ourai kita, Izumisano, Osaka, 598-8531, Japan
| | - Ai Takeshita
- Department of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, 1-58 Rinku Ourai kita, Izumisano, Osaka, 598-8531, Japan
| | - Ken-Takeshi Kusakabe
- Laboratory of Basic Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Toshiya Okada
- Department of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, 1-58 Rinku Ourai kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
20
|
Yang M, Tian J, Guo X, Yang Y, Guan R, Qiu M, Li Y, Sun X, Zhen Y, Zhang Y, Chen C, Li Y, Fang H. Long noncoding RNA are aberrantly expressed in human papillary thyroid carcinoma. Oncol Lett 2016; 12:544-552. [PMID: 27347178 PMCID: PMC4906702 DOI: 10.3892/ol.2016.4653] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/19/2016] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as key regulatory molecules at almost every level of gene expression regulation. The altered expression of lncRNAs is a characteristic of numerous types of cancer, and lncRNAs have been demonstrated to promote the development, invasion and metastasis of tumors through various mechanisms. However, the role of lncRNAs in papillary thyroid carcinoma (PTC) remain unclear. In the present study, differentially expressed lncRNAs and mRNAs were detected by human lncRNA microarray in three pairs of PTC and adjacent noncancerous samples. The microarray results revealed that 675 lncRNAs and 751 mRNAs were abnormally expressed in the three PTC samples compared with adjacent noncancerous samples (fold change ≥2.0; P<0.05). To validate the microarray results, 8 differentially expressed lncRNAs were randomly selected for quantitative polymerase chain reaction (qPCR). The results of qPCR were consistent with the microarray data; the 8 lncRNAs had an aberrant expression in the PTC samples compared with the adjacent noncancerous samples. Gene ontology and pathway analysis indicated that there were 7 downregulated pathways and 29 upregulated pathways in PTC. LncRNA classification and subgroup analysis revealed 7 pairs of enhancer-like lncRNA-mRNA, 9 pairs of antisense lncRNA-mRNA and 45 pairs of lncRNA-mRNA were differentially expressed between PTC and their paired noncancerous samples. In conclusion, the present study identified a series of novel PTC-associated lncRNAs. Further study with these lncRNAs is instrumental for the identification of novel target molecules that could lead to improved diagnosis and treatment for PTC.
Collapse
Affiliation(s)
- Meiliu Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jinli Tian
- Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xin Guo
- Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Ying Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ruhua Guan
- Department of Medicine, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Mingyue Qiu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yukai Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xueling Sun
- Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yanfeng Zhen
- Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yazhong Zhang
- Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Chunyou Chen
- Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yanbing Li
- Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Hui Fang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
21
|
Cross AM, Wilson AL, Guerrero MS, Thomas KS, Bachir AI, Kubow KE, Horwitz AR, Bouton AH. Breast cancer antiestrogen resistance 3-p130 Cas interactions promote adhesion disassembly and invasion in breast cancer cells. Oncogene 2016; 35:5850-5859. [PMID: 27109104 PMCID: PMC5079856 DOI: 10.1038/onc.2016.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/10/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
Adhesion turnover is critical for cell motility and invasion. We previously demonstrated that the adaptor molecule Breast Cancer Antiestrogen Resistance 3 (BCAR3) promotes adhesion disassembly and breast tumor cell invasion. One of two established binding partners of BCAR3 is the adaptor molecule, p130Cas. In this study, we sought to determine whether signaling through the BCAR3/Cas complex was responsible for the cellular functions of BCAR3. We show that the entire pool of BCAR3 is in complex with Cas in invasive breast tumor cells and that these proteins co-localize in dynamic cellular adhesions. While accumulation of BCAR3 in adhesions did not require Cas binding, a direct interaction between BCAR3 and Cas was necessary for efficient dissociation of BCAR3 from adhesions. The dissociation rates of Cas and two other adhesion molecules, α-actinin and talin, were also significantly slower in the presence of a Cas-binding mutant of BCAR3, suggesting that turnover of the entire adhesion complex was delayed under these conditions. As was the case for adhesion turnover, BCAR3-Cas interactions were found to be important for BCAR3-mediated breast tumor cell chemotaxis toward serum and invasion in Matrigel. Previous work demonstrated that BCAR3 is a potent activator of Rac1, which in turn is an important regulator of adhesion dynamics and invasion. However, in contrast to wildtype BCAR3, ectopic expression of the Cas-binding mutant of BCAR3 failed to induce Rac1 activity in breast cancer cells. Together, these data show that the ability of BCAR3 to promote adhesion disassembly, tumor cell migration and invasion, and Rac1 activity is dependent on its ability to bind to Cas. The activity of BCAR3-Cas complexes as a functional unit in breast cancer is further supported by the co-expression of these molecules in multiple subtypes of human breast tumors.
Collapse
Affiliation(s)
- A M Cross
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - A L Wilson
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M S Guerrero
- Fujifilm Diosynth Biotechnologies, USA, Inc., Cary, NC, USA
| | - K S Thomas
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - A I Bachir
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - K E Kubow
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - A R Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - A H Bouton
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
22
|
Green YS, Kwon S, Christian JL. Expression pattern of bcar3, a downstream target of Gata2, and its binding partner, bcar1, during Xenopus development. Gene Expr Patterns 2015; 20:55-62. [PMID: 26631802 DOI: 10.1016/j.gep.2015.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 01/28/2023]
Abstract
Primitive hematopoiesis generates red blood cells that deliver oxygen to the developing embryo. Mesodermal cells commit to a primitive blood cell fate during gastrulation and, in order to do so the mesoderm must receive non-cell autonomous signals transmitted from other germ layers. In Xenopus, the transcription factor Gata2 functions in ectodermal cells to generate or transmit the non-cell autonomous signals. Here we have identified Breast Cancer Antiestrogen Resistance 3 (bcar3) as a gene that is induced in ectodermal cells downstream of Gata2. Bcar3 and its binding partner Bcar1 function to transduce integrin signaling, leading to changes in cellular morphology, motility and adhesion. We show that gata2, bcar3 and bcar1 are co-expressed in ventral ectoderm from early gastrula to early tailbud stages. At later stages of development, bcar3 and bcar1 are co-expressed in the spinal cord, notochord, fin mesenchyme and pronephros but each shows additional unique sites of expression. These co-expression and unique expression patterns suggest that Bcar3 and Bcar1 may function together but also independently during Xenopus development.
Collapse
Affiliation(s)
- Yangsook Song Green
- Department of Neurobiology and Anatomy, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, 20 North 1900 East, Salt Lake City, UT 94132, USA; Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, 20 North 1900 East, Salt Lake City, UT 94132, USA
| | - Sunjong Kwon
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, School of Medicine, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239-3098, USA
| | - Jan L Christian
- Department of Neurobiology and Anatomy, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, 20 North 1900 East, Salt Lake City, UT 94132, USA; Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, 20 North 1900 East, Salt Lake City, UT 94132, USA.
| |
Collapse
|
23
|
Walter W, Thomalla J, Bruhn J, Fagan DH, Zehowski C, Yee D, Skildum A. Altered regulation of PDK4 expression promotes antiestrogen resistance in human breast cancer cells. SPRINGERPLUS 2015; 4:689. [PMID: 26576332 PMCID: PMC4641142 DOI: 10.1186/s40064-015-1444-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022]
Abstract
Acquired or de novo resistance to the selective estrogen receptor modulators tamoxifen and fulvestrant (ICI) is a major barrier to successful treatment of breast cancer. Gene expression patterns in tamoxifen resistant (TamR-MCF-7) cells were compared to their parental cells (MCF-7L) to identify an aberrantly regulated metabolic pathway. TamR-MCF-7 cells are cross resistant to ICI and doxorubicin, and have increased mitochondrial DNA. A small subset of genes had altered expression in TamR-MCF-7 relative to MCF-7L cells. One of the genes, pyruvate dehydrogenase kinase-4 (PDK4), phosphorylates pyruvate dehydrogenase (PDH). PDK4 expression was elevated in TamR-MCF-7 cells; this result was also observed in a second model of acquired antiestrogen resistance. PDK4 expression is controlled in part by glucocorticoid response elements in the PDK4 gene promoter. In MCF-7L cells, PDK4 mRNA expression was insensitive to glucocorticoid receptor agonists, while dexamethasone dramatically increased PDK4 expression in TamR-MCF-7 cells. Using siRNA to knock down PDK4 expression increased TamR-MCF-7 sensitivity to ICI; in contrast adapting cells to growth in glucose depleted media did not affect ICI sensitivity. Despite TamR-MCF-7 cells high levels of PDK4 mRNA relative to MCF-7L, TamR-MCF-7 cells have increased PDH activity. Wild type MCF-7 cells are reported to be heterozygous for a G to A mutation that results in a substitution of threonine for alanine near PDK4′s catalytic site. We found loss of heterozygosity in TamR-MCF-7 cells; TamR-MCF-7 are homozygous for the wild type allele. These data support a role for altered regulation of PDH by PDK4 and altered substrate utilization in the development of drug resistance in human breast cancer cells.
Collapse
Affiliation(s)
- William Walter
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN USA
| | - Jennifer Thomalla
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN USA
| | - Josh Bruhn
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN USA
| | - Dedra H Fagan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Cheryl Zehowski
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Andrew Skildum
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN USA ; Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
24
|
Abstract
The members of the Cas protein family (p130Cas/BCAR1, Nedd9/HEF1, EFS and CASS4) are scaffold proteins required for the assembly of signal transduction complexes in response to several stimuli, such as growth factors, hormones and extracellular matrix components. Given their ability to integrate and coordinate multiple signalling events, Cas proteins have emerged as crucial players in the control of mammary cell proliferation, survival and differentiation. More importantly, it has been found that alterations of their expression levels result in aberrant signalling cascades, which promote initiation and progression of breast cancer. Based on the increasing data from in vitro, mouse model and clinical studies, in this review we will focus on two Cas proteins, p130Cas/BCAR1 and Nedd9, and their coupled signalling pathways, to examine their role in mammary cell transformation and in the acquirement of invasiveness and drug resistance of breast cancer cells.
Collapse
Affiliation(s)
- Giusy Tornillo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy; European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | | | | |
Collapse
|
25
|
Ibrahim R, Lemoine A, Bertoglio J, Raingeaud J. Human enhancer of filamentation 1-induced colorectal cancer cell migration: Role of serine phosphorylation and interaction with the breast cancer anti-estrogen resistance 3 protein. Int J Biochem Cell Biol 2015; 64:45-57. [DOI: 10.1016/j.biocel.2015.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 02/02/2023]
|
26
|
Schierding W, O’Sullivan JM. Connecting SNPs in Diabetes: A Spatial Analysis of Meta-GWAS Loci. Front Endocrinol (Lausanne) 2015; 6:102. [PMID: 26191039 PMCID: PMC4490250 DOI: 10.3389/fendo.2015.00102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/13/2015] [Indexed: 11/23/2022] Open
Abstract
Meta-analyses of genome-wide association studies (GWAS) have improved our understanding of the genetic foundations of a number of diseases, including diabetes. However, single nucleotide polymorphisms (SNPs) that are identified by GWAS, especially those that fall outside of gene regions, do not always clearly link to the underlying biology. Despite this, these SNPs have often been validated through re-sequencing efforts as not just tag SNPs, but as causative SNPs, and so must play a role in disease development or progression. In this study, we show how the 3D genome (spatial connections) and trans-expression Quantitative Trait Loci connect diabetes loci from different GWAS meta-analyses, informing the backbone of regulatory networks. Our findings include a three-way functional-spatial connection between the TM6SF2, CTRB1-BCAR1, and CELSR2-PSRC1 loci (rs201189528, rs7202844, and rs7202844, respectively) connected through the KCNIP3 and BCAR1/BCAR3 loci, respectively. These spatial hubs serve as an example of how loci in genes with little biological connection to disease come together to contribute to the diabetes phenotype.
Collapse
Affiliation(s)
| | - Justin M. O’Sullivan
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
- *Correspondence: Justin M. O’Sullivan, The Liggins Institute, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand,
| |
Collapse
|
27
|
Nikonova AS, Gaponova AV, Kudinov AE, Golemis EA. CAS proteins in health and disease: an update. IUBMB Life 2014; 66:387-95. [PMID: 24962474 DOI: 10.1002/iub.1282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/07/2014] [Indexed: 12/30/2022]
Abstract
The CAS family of scaffolding proteins has increasingly attracted scrutiny as important for regulation of cancer-associated signaling. BCAR1 (also known as p130Cas), NEDD9 (HEF1, Cas-L), EFS (Sin), and CASS4 (HEPL) are regulated by and mediate cell attachment, growth factor, and chemokine signaling. Altered expression and activity of CAS proteins are now known to promote metastasis and drug resistance in cancer, influence normal development, and contribute to the pathogenesis of heart and pulmonary disease. In this article, we provide an update on recently published studies describing signals regulating and regulated by CAS proteins, and evidence for biological activity of CAS proteins in normal development, cancer, and other pathological conditions.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | |
Collapse
|