1
|
Neophytou C, Charalambous A, Voutouri C, Angeli S, Panagi M, Stylianopoulos T, Mpekris F. Sonopermeation combined with stroma normalization enables complete cure using nano-immunotherapy in murine breast tumors. J Control Release 2025; 382:113722. [PMID: 40233830 PMCID: PMC12076078 DOI: 10.1016/j.jconrel.2025.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Nano-immunotherapy shows great promise in improving patient outcomes, as seen in advanced triple-negative breast cancer, but it does not cure the disease, with median survival under two years. Therefore, understanding resistance mechanisms and developing strategies to enhance its effectiveness in breast cancer is crucial. A key resistance mechanism is the pronounced desmoplasia in the tumor microenvironment, which leads to dysfunction of tumor blood vessels and thus, to hypoperfusion, limited drug delivery and hypoxia. Ultrasound sonopermeation and agents that normalize the tumor stroma have been employed separately to restore vascular abnormalities in tumors with some success. Here, we performed in vivo studies in two murine, orthotopic breast tumor models to explore if combination of ultrasound sonopermeation with a stroma normalization drug can synergistically improve tumor perfusion and enhance the efficacy of nano-immunotherapy. We found that the proposed combinatorial treatment can drastically reduce primary tumor growth and in many cases tumors were no longer measurable. Overall survival studies showed that all mice that received the combination treatment survived and rechallenge experiments revealed that the survivors obtained immunological memory. Employing ultrasound elastography and contrast enhanced ultrasound along with proteomics analysis, flow cytometry and immunofluorescene staining, we found the combinatorial treatment reduced tumor stiffness to normal levels, restoring tumor perfusion and oxygenation. Furthermore, it increased infiltration and activity of immune cells and altered the levels of immunosupportive chemokines. Finally, using machine learning analysis, we identified that tumor stiffness, CD8+ T cells and M2-type macrophages were strong predictors of treatment response.
Collapse
Affiliation(s)
- Constantina Neophytou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus; Cancer Genetics, Therapeutics & Ultrastructural Pathology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Stella Angeli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus; Cancer Genetics, Therapeutics & Ultrastructural Pathology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus; Cancer Genetics, Therapeutics & Ultrastructural Pathology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
2
|
Neophytou C, Stylianopoulos T, Mpekris F. The synergistic potential of mechanotherapy and sonopermeation to enhance cancer treatment effectiveness. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:13. [PMID: 40337117 PMCID: PMC12052595 DOI: 10.1038/s44341-025-00017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/04/2025] [Indexed: 05/09/2025]
Abstract
Inefficient drug delivery in tumors, especially in desmoplastic cancers, arises from blood vessel collapse due to tumor stiffening and mechanical compression. Vessel collapse also leads to hypoxia, immune evasion, and metastasis, reducing treatment efficacy. Mechanotherapeutics and ultrasound sonopermeation, which address tumor stiffness and enhance vessel permeability, respectively, show promise in restoring tumor microenvironment abnormalities and improving drug delivery. This perspective highlights their independent and combined potential to optimize cancer therapy.
Collapse
Affiliation(s)
- Constantina Neophytou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
3
|
Harkos C, Hadjigeorgiou AG, Voutouri C, Kumar AS, Stylianopoulos T, Jain RK. Using mathematical modelling and AI to improve delivery and efficacy of therapies in cancer. Nat Rev Cancer 2025; 25:324-340. [PMID: 39972158 DOI: 10.1038/s41568-025-00796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
Mathematical modelling has proven to be a valuable tool in predicting the delivery and efficacy of molecular, antibody-based, nano and cellular therapy in solid tumours. Mathematical models based on our understanding of the biological processes at subcellular, cellular and tissue level are known as mechanistic models that, in turn, are divided into continuous and discrete models. Continuous models are further divided into lumped parameter models - for describing the temporal distribution of medicine in tumours and normal organs - and distributed parameter models - for studying the spatiotemporal distribution of therapy in tumours. Discrete models capture interactions at the cellular and subcellular levels. Collectively, these models are useful for optimizing the delivery and efficacy of molecular, nanoscale and cellular therapy in tumours by incorporating the biological characteristics of tumours, the physicochemical properties of drugs, the interactions among drugs, cancer cells and various components of the tumour microenvironment, and for enabling patient-specific predictions when combined with medical imaging. Artificial intelligence-based methods, such as machine learning, have ushered in a new era in oncology. These data-driven approaches complement mechanistic models and have immense potential for improving cancer detection, treatment and drug discovery. Here we review these diverse approaches and suggest ways to combine mechanistic and artificial intelligence-based models to further improve patient treatment outcomes.
Collapse
Affiliation(s)
- Constantinos Harkos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreas G Hadjigeorgiou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ashwin S Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Oh JM, Park Y, Lee J, Shen K. Microfabricated Organ-Specific Models of Tumor Microenvironments. Annu Rev Biomed Eng 2025; 27:307-333. [PMID: 40310890 DOI: 10.1146/annurev-bioeng-110222-103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Despite the advances in detection, diagnosis, and treatments, cancer remains a lethal disease, claiming the lives of more than 600,000 people in the United States alone in 2024. To accelerate the development of new therapeutic strategies with improved responses, significant efforts have been made to develop microfabricated in vitro models of tumor microenvironments (TMEs) that address the limitations of animal-based cancer models. These models incorporate several advanced tissue engineering techniques to better reflect the organ- and patient-specific TMEs. Additionally, microfabricated models integrated with next-generation single-cell omics technologies provide unprecedented insights into patient's cellular and molecular heterogeneity and complexity. This review provides an overview of the recent understanding of cancer development and outlines the key TME elements that can be captured in microfabricated models to enhance their physiological relevance. We highlight the recent advances in microfabricated cancer models that reflect the unique characteristics of their organs of origin or sites of dissemination.
Collapse
Affiliation(s)
- Jeong Min Oh
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA;
| | - Yongkuk Park
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, USA;
| | - Jungwoo Lee
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, USA;
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keyue Shen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA;
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Mierke CT. Softness or Stiffness What Contributes to Cancer and Cancer Metastasis? Cells 2025; 14:584. [PMID: 40277910 PMCID: PMC12026216 DOI: 10.3390/cells14080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Beyond the genomic and proteomic analysis of bulk and single cancer cells, a new focus of cancer research is emerging that is based on the mechanical analysis of cancer cells. Therefore, several biophysical techniques have been developed and adapted. The characterization of cancer cells, like human cancer cell lines, started with their mechanical characterization at mostly a single timepoint. A universal hypothesis has been proposed that cancer cells need to be softer to migrate and invade tissues and subsequently metastasize in targeted organs. Thus, the softness of cancer cells has been suggested to serve as a universal physical marker for the malignancy of cancer types. However, it has turned out that there exists the opposite phenomenon, namely that stiffer cancer cells are more migratory and invasive and therefore lead to more metastases. These contradictory results question the universality of the role of softness of cancer cells in the malignant progression of cancers. Another problem is that the various biophysical techniques used can affect the mechanical properties of cancer cells, making it even more difficult to compare the results of different studies. Apart from the instrumentation, the culture and measurement conditions of the cancer cells can influence the mechanical measurements. The review highlights the main advances of the mechanical characterization of cancer cells, discusses the strength and weaknesses of the approaches, and questions whether the passive mechanical characterization of cancer cells is still state-of-the art. Besides the cell models, conditions and biophysical setups, the role of the microenvironment on the mechanical characteristics of cancer cells is presented and debated. Finally, combinatorial approaches to determine the malignant potential of tumors, such as the involvement of the ECM, the cells in a homogeneous or heterogeneous association, or biological multi-omics analyses, together with the dynamic-mechanical analysis of cancer cells, are highlighted as new frontiers of research.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Wang W, Zhai Y, Yang X, Ye L, Lu G, Shi X, Zhai G. Effective design of therapeutic nanovaccines based on tumor neoantigens. J Control Release 2025; 380:17-35. [PMID: 39892648 DOI: 10.1016/j.jconrel.2025.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Neoantigen vaccines are among the most potent immunotherapies for personalized cancer treatment. Therapeutic vaccines containing tumor-specific neoantigens that elicit specific T cell responses offer the potential for long-term clinical benefits to cancer patients. Unlike immune-checkpoint inhibitors (ICIs), which rely on pre-existing specific T cell responses, personalized neoantigen vaccines not only promote existing specific T cell responses but importantly stimulate the generation of neoantigen-specific T cells, leading to the establishment of a persistent specific memory T cell pool. The review discusses the current state of clinical research on neoantigen nanovaccines, focusing on the application of vectors, adjuvants, and combinational strategies to address a range of challenges and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Weilin Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States of America
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
7
|
Yu F, Zhang G, Sun J, Zhao Y, Qi Y, Han X, Ai C, Sun W, Duan J, Yu D. Nanotension Relief Agent Enhances Tissue Penetration by Reducing Solid Stress in Pancreatic Ductal Adenocarcinoma via Rho/ROCK Pathway Inhibition. Biomater Res 2025; 29:0173. [PMID: 40207257 PMCID: PMC11979343 DOI: 10.34133/bmr.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
The formidable contractile tension exerted by cancer-associated fibroblasts (CAFs) in pancreatic ductal adenocarcinoma (PDAC) tissue is crucial for maintaining high tissue solid stress (TSS), which impedes the delivery and penetration of chemotherapeutic drugs. To address this obstacle, we constructed a pH-responsive nanotension relief agent (FS@MMS), in which fasudil (FS) was ingeniously conjugated to mesoporous silica encapsulated with magnetic iron oxide (MMS). The nanotension relief agent was demonstrated to inhibit the synthesis of phosphorylated myosin light chain by blocking the Rho/Rho-associated serine/threonine kinase (ROCK) pathway, triggering the swift transformation of high-tension CAFs into low-tension CAFs in PDAC tissue, which relieves TSS and enhances drug penetration in Panc02/NIH-3T3 multicellular tumor spheroids. When the nanotension relief agent was further loaded with the chemotherapeutic drug gemcitabine (GEM), as FS@MMS-GEM, the enhanced permeation of GEM progressively killed tumor cells and amplified their TSS-relief properties, thereby maximizing the anticancer efficacy of chemotherapeutic agents in Panc02/NIH-3T3 coplanted model mice. The magnetic resonance imaging results revealed that the synergistic effect substantially improved drug delivery and penetration efficiency. The developed approach holds great potential for improving chemotherapy efficacy in PDAC and provides a novel therapeutic approach for the treatment of related stroma-rich tumors.
Collapse
Affiliation(s)
- Feiran Yu
- Department of Radiology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan 250012, China
- Research Center for Basic Medical Sciences,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Gaorui Zhang
- Department of Radiology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan 250012, China
- Research Center for Basic Medical Sciences,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jintang Sun
- Research Center for Basic Medical Sciences,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yuxuan Zhao
- Department of Radiology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan 250012, China
- Research Center for Basic Medical Sciences,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yafei Qi
- Department of Radiology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan 250012, China
- Research Center for Basic Medical Sciences,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiaoyu Han
- Department of Radiology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan 250012, China
- Research Center for Basic Medical Sciences,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Chen Ai
- Department of Radiology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan 250012, China
- Research Center for Basic Medical Sciences,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Weikai Sun
- Department of Radiology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan 250012, China
- Research Center for Basic Medical Sciences,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jiazhi Duan
- Institute for Advanced Interdisciplinary Research,
University of Jinan, Jinan 250022, China
| | - Dexin Yu
- Department of Radiology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Parshad B, Arora S, Singh B, Pan Y, Tang J, Hu Z, Patra HK. Towards precision medicine using biochemically triggered cleavable conjugation. Commun Chem 2025; 8:100. [PMID: 40175511 PMCID: PMC11965331 DOI: 10.1038/s42004-025-01491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/13/2025] [Indexed: 04/04/2025] Open
Abstract
Personalised and precision medicines are emerging as the future of therapeutic strategies. Biochemically triggered cleavable conjugation is thus crucial and timely due to its potential to response as per the loco-regional environment. It enables targeted release of therapeutic agents in response to specific biochemical signals and thus minimizing off-target effects and improving treatment precision. It holds promise in a range of biomedical applications, including cancer therapy, senolytic therapy, gene therapy, and regenerative medicine. The focus of this review is to offer comprehensive insight into the significance of biochemically cleavable conjugations within intrinsically stimuli-responsive architectures. Pathological conditions and alteration in tissues microenvironment in the body exhibit distinct biochemical settings characterized by change in redox potential, pH level, hypoxia, reactive oxygen species (ROS), and various catalytic protein/enzyme overexpression. Understanding these intrinsic features is crucial for researchers aiming to develop intelligent cleavable bio-engineered systems for biomedicines. By strategically designing cleavable linkage, researchers can leverage the variations in the tumor, infection, inflammation, and senescence microenvironments. Through an extensive examination of relevant literature, we present a comprehensive classification of the intrinsic physicochemical differences found in pathological areas and their applications in drug delivery, prodrug activation, imaging, and theranostics for future personalised medicines. This review will provide comprehensive guidance and critical insights to researchers in both industry and academia who are involved in the design of advanced, functional biochemically cleavable conjugations.
Collapse
Affiliation(s)
- Badri Parshad
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Nano Medical Sciences, University of Delhi, Delhi, India
| | - Smriti Arora
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, Berlin, Germany
| | - Balram Singh
- Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhigang Hu
- Center for Hydrogen Science, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hirak K Patra
- Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK.
| |
Collapse
|
9
|
Shaw S, Pore SK, Liu D, Kumeria T, Nayak R, Bose S. Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery. Biochim Biophys Acta Rev Cancer 2025; 1880:189261. [PMID: 39798822 DOI: 10.1016/j.bbcan.2025.189261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc. This review proposes an advanced nanotechnological technique precisely targeting molecular determinants of chemoresistance which holds promise for enhancing cancer treatment efficacy. Further, the review explores various cancer hallmarks and pathways implicated in chemoresistance, current therapeutic modalities, and their limitations. It advocates the combination of nanoparticle-conjugated conventional drugs and natural compounds to specifically target molecular pathways that can potentially reverse or minimize chemoresistance incidences in cancer patients.
Collapse
Affiliation(s)
- Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Dutong Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India.
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
10
|
Dong Y, Qian S, Wang X, Zhang W, Lu W, Qu J, Cui M, Chen L, Zhao Y, Gao Y, Giomo M, Urciuolo A, Feng J, Zheng Y, Jiang B, Shen R, Zhu X, Elvassore N. In situ tailored confining microenvironment for lung cancer spheroids. Mater Today Bio 2025; 31:101602. [PMID: 40070872 PMCID: PMC11894329 DOI: 10.1016/j.mtbio.2025.101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The mechanical properties and physical confinement of the extracellular matrix (ECM) are crucial roles in regulating tumor growth and progression. Extensive efforts have been dedicated to replicating the physical characteristics of tumor tissue by developing two-dimensional (2D) and three-dimensional (3D) in vitro models. However, it remains a significant challenge to modulate the local microenvironment around the specific cells according to the culture progress. In this study, we develop a 3D culture platform for multicellular lung cancer spheroids using a gelatin-based hydrogel with adjustable density and stiffness. Then, by utilizing a two-photon mediated bioprinting technique, we construct 3D confining microstructures with micrometer accuracy to enclose the selected spheroids within the hydrogel matrix. Diverse transcriptional profilings of cells are observed in response to the increased ECM density and stiffness compared to the additional confining stress. In addition, changed confining stress can regulate the tumor cells with contrary impacts on the cell cycle-related pathways. Our model not only allows for modifications to the mechanical microenvironment of the overall matrix but also facilitates localized adjustments throughout the culture evolution. This approach serves as a valuable tool for investigating tumor progression and understanding cell-ECM interactions.
Collapse
Affiliation(s)
- Yixiao Dong
- Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- Shanghai Academy of Sciences & Technology Institute of Model Animals Transformation, Shanghai, 201203, China
| | - Shuyi Qian
- Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuechun Wang
- Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wang Zhang
- Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Weisheng Lu
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China
| | - Ju Qu
- Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Meihua Cui
- Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
| | - Linzhi Chen
- Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yingshuai Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuehua Gao
- Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Monica Giomo
- Department of Industrial Engineering, University of Padova, Padova, 35131, Italy
| | - Anna Urciuolo
- Department of Industrial Engineering, University of Padova, Padova, 35131, Italy
- Department of Molecular Medicine, University of Padova, Padova, 35127, Italy
| | - Jian Feng
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Biao Jiang
- Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China
| | - Xianmin Zhu
- Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- Shanghai Academy of Sciences & Technology Institute of Model Animals Transformation, Shanghai, 201203, China
| | - Nicola Elvassore
- Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- Department of Industrial Engineering, University of Padova, Padova, 35131, Italy
| |
Collapse
|
11
|
Gupta R, Schärer P, Liao Y, Roy B, Benoit RM, Shivashankar GV. Regulation of p65 nuclear localization and chromatin states by compressive force. Mol Biol Cell 2025; 36:ar37. [PMID: 39908115 PMCID: PMC12005105 DOI: 10.1091/mbc.e23-11-0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The tumor microenvironment (TME) is a dynamic ecosystem, that evolves with the developing tumor to support its growth and metastasis. A key aspect of TME evolution is the recruitment of stromal fibroblasts, carried out via the release of various tumor signals including tumor necrosis factor (TNFα). These tumor signals in turn alter the mechanical properties of the TME as the tumor grows. Because of the important role of stromal cells in supporting tumor progression, new therapies aim to target stromal fibroblasts. However, these therapies have been unsuccessful in part due to the limited understanding of cross-talk between chemical and altered mechanical signaling within stromal fibroblasts. To investigate this, we designed a coculture assay with YFP-TNFα releasing spheroids embedded within collagen gels alongside fibroblasts to mimic the stromal response within the TME. This resulted in the nuclear translocation of p65 in the stromal fibroblasts which was further intensified by the addition of compressive stress. The combination of mechanical and chemical signals led to cytoskeletal disruption and induced a distinct chromatin state in the stromal fibroblasts. These results highlight the important cross-talk between cytokine signaling and mechanical forces on stromal cells within the TME and facilitate the development of a better spheroid model for therapeutic interventions.
Collapse
Affiliation(s)
- Rajshikhar Gupta
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland 8092
| | - Paulina Schärer
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
| | - Yawen Liao
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland 8092
| | - Bibhas Roy
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Biological Science, BITS-Pilani Hyderabad Campus, Secunderabad, Telngana, India 500078
| | - Roger M. Benoit
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
| | - G. V. Shivashankar
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland 8092
| |
Collapse
|
12
|
Alqosiri HM, Alqasiri HM, Alqasire SE, Nava VE, Bandyopadhyay BC, Raub CB. Breast cancer extracellular matrix invasion depends on local mechanical loading of the collagen network. J Mater Chem B 2025. [PMID: 40135428 DOI: 10.1039/d4tb01474j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Active mechanical stresses in and around tumors affect cancer cell behavior and independently regulate cancer progression. To investigate the role of mechanical stress in breast cancer cell invasion, magnetic alginate beads loaded with iron oxide nanoparticles were coated with MDA-MB-231 breast cancer cells and embedded in a three-dimensional extracellular matrix (ECM) model subjected to an external magnetic field during culture. Bead displacement, cell shape and patterns of invasion of the collagen gel, and cell proliferation were assessed over 7 days of culture. The alginate beads swelled over the first 24 h in culture, creating circumferential stress akin to that created by tumor growth, while bead magnetic properties enabled local mechanical loading (compression, tension, and relaxation) and motion within the in vitro tissue constructs upon exposure to an external magnetic field. Beads displaced 0.2-1.6 mm through the collagen gels, depending on magnet size and distance, compressing the collagen network microstructure without gel mechanical failure. Invading cells formed a spatulate pattern as they moved into the compressed ECM region, with individual cells aligned parallel to the bead surface. During the first 24 hours of compressive magnetic force loading, invading cancer cells became round, losing elongation and ability to invade out from the bead surface, while still actively dividing. In contrast, cell invasion in unloaded constructs and in loaded constructs away from the compression region invaded as single cells, transversely outward from the bead surface. Finally, cell proliferation was 1.3× higher only after external magnet removal, which caused relaxation of mechanical stress in the collagen network. These findings indicate effects on breast cancer invasion of mechanical loading of ECM, both from compressive loading and from load relaxation. Findings point to the influence of mechanical stress on cancer cell behavior and suggest that relaxing mechanical stress in and around a tumor may promote cancer progression through higher proliferation and invasion.
Collapse
Affiliation(s)
- Hanadi M Alqosiri
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Hadeel M Alqasiri
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Sara E Alqasire
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Victor E Nava
- Veterans Affairs Medical Center, Washington, DC, 20422, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Bidhan C Bandyopadhyay
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
- Veterans Affairs Medical Center, Washington, DC, 20422, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Christopher B Raub
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
13
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
14
|
Faure LM, Venturini V, Roca-Cusachs P. Cell compression - relevance, mechanotransduction mechanisms and tools. J Cell Sci 2025; 138:jcs263704. [PMID: 40145202 DOI: 10.1242/jcs.263704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
From border cell migration during Drosophila embryogenesis to solid stresses inside tumors, cells are often compressed during physiological and pathological processes, triggering major cell responses. Cell compression can be observed in vivo but also controlled in vitro through tools such as micro-channels or planar confinement assays. Such tools have recently become commercially available, allowing a broad research community to tackle the role of cell compression in a variety of contexts. This has led to the discovery of conserved compression-triggered migration modes, cell fate determinants and mechanosensitive pathways, among others. In this Review, we will first address the different ways in which cells can be compressed and their biological contexts. Then, we will discuss the distinct mechanosensing and mechanotransducing pathways that cells activate in response to compression. Finally, we will describe the different in vitro systems that have been engineered to compress cells.
Collapse
Affiliation(s)
- Laura M Faure
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Valeria Venturini
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University of Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
15
|
Zhang Y, Fu Q, Sun W, Yue Q, He P, Niu D, Zhang M. Mechanical forces in the tumor microenvironment: roles, pathways, and therapeutic approaches. J Transl Med 2025; 23:313. [PMID: 40075523 PMCID: PMC11899831 DOI: 10.1186/s12967-025-06306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Tumors often exhibit greater stiffness compared to normal tissues, primarily due to increased deposition within the tumor stroma. Collagen, proteoglycans, laminin, and fibronectin are key components of the extracellular matrix (ECM), interacting to facilitate ECM assembly. Enhanced fiber density and cross-linking within the ECM result in elevated matrix stiffness and interstitial fluid pressure, subjecting tumors to significant physical stress during growth. This mechanical stress is transduced intracellularly via integrins, the Rho signaling pathway, and the Hippo signaling pathway, thereby promoting tumor invasion. Additionally, mechanical pressure fosters glycolysis in tumor cells, boosting energy production to support metastasis. Mechanical cues also regulate macrophage polarization, maintaining an inflammatory microenvironment conducive to tumor survival. In summary, mechanical signals within tumors play a crucial role in tumor growth and invasion. Understanding these signals and their involvement in tumor progression is essential for advancing our knowledge of tumor biology and enhancing therapeutic approaches.
Collapse
Affiliation(s)
- Yanli Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| | - Qi Fu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Wenyue Sun
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Qiujuan Yue
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Ping He
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Dong Niu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Min Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| |
Collapse
|
16
|
Jaroch DB, Liu Y, Kim AY, Katz SC, Cox BF, Hullinger TG. Pressure-Enabled Drug Delivery Significantly Increases Intra-Arterial Delivery of Embolic Microspheres to Liver Tumors in a Porcine Model. J Vasc Interv Radiol 2025; 36:499-504.e1. [PMID: 39586533 DOI: 10.1016/j.jvir.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
This study aimed to test the hypothesis that pressure-enabled drug delivery (PEDD) with a pressure-modulating microcatheter device (TriNav; TriSalus Life Sciences, Westminster, Colorado) would increase delivery of microspheres via hepatic arterial infusion to liver tumors in an Oncopig model (Sus Clinicals, Chicago, Illinois) when compared with a conventional end-hole microcatheter. Trisacryl gelatin microspheres (100-300 μm in size) were fluorescently labeled and infused into porcine liver tumors using conventional technique (n = 8) or by PEDD (n = 8). Liver tissue was harvested, and images were analyzed with a custom deep learning algorithm (Visiopharm, Hørsholm, Denmark) to quantitate signal intensity. PEDD increased microsphere penetration into the tumor by 227% (P = .029) when compared with conventional methodology and improved the tumor-to-normal tissue ratio from 2.7 to 4.2. These data demonstrate improved delivery into tumor tissue using PEDD, along with improved selectivity by minimizing relative off-target deposition.
Collapse
Affiliation(s)
| | - Yujia Liu
- TriSalus Life Sciences, Westminster, Colorado
| | | | - Steven C Katz
- TriSalus Life Sciences, Westminster, Colorado; Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Bryan F Cox
- TriSalus Life Sciences, Westminster, Colorado
| | | |
Collapse
|
17
|
Zhou Y, He Q, Huang G, Ouyang P, Wang H, Deng J, Chen P, Liang X, Hong Z, Zhang X, Qi S, Li Y. Malignant Cells Beyond the Tumor Core: The Non-Negligible Factor to Overcome the Refractory of Glioblastoma. CNS Neurosci Ther 2025; 31:e70333. [PMID: 40104956 PMCID: PMC11920816 DOI: 10.1111/cns.70333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is one of the most aggressive primary brain tumors in adults. Over 95% of GBM patients experience recurrence in the peritumoral brain tissue or distant regions, indicating the presence of critical factors in these areas that drive tumor recurrence. Current clinical treatments primarily focus on tumor cells from the tumor core (TC), while the role of neoplastic cells beyond the TC has been largely neglected. METHODS We conducted a comprehensive review of existing literature and studies on GBM, focusing on the identification and characterization of questionable cells (Q cells). Advanced imaging techniques, such as diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET), were utilized to identify Q cells beyond the tumor core. We also analyzed the functional properties, cellular microenvironment, and physical characteristics of Q cells, as well as their implications for surgical resection. RESULTS Our review revealed that Q cells exhibit unique functional attributes, including enhanced invasiveness, metabolic adaptations, and resistance mechanisms. These cells reside in a distinct cellular microenvironment and are influenced by physical properties such as solid stress and stiffness. Advanced imaging techniques have improved the identification of Q cells, enabling more precise surgical resection. Targeting Q cells in therapeutic strategies could significantly reduce the risk of GBM recurrence. CONCLUSION The presence of Q cells in the peritumoral brain zone (PBZ) and beyond is a critical factor in GBM recurrence. Current treatments, which primarily target tumor cells in the TC, are insufficient to prevent recurrence due to the neglect of Q cells. Future research should focus on understanding the mechanisms influencing Q cells and developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Yuyang Zhou
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qilin He
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Guanglong Huang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Pei Ouyang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hai Wang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiapeng Deng
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Pengyu Chen
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xuan Liang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhisheng Hong
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xian Zhang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yaomin Li
- Department of Neurosurgery, Institute of Brain Disease, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
18
|
Moradi Kashkooli F, Mirala F, H H Tehrani M, Alirahimi M, Souri M, Golzaryan A, Kar S, Soltani M. Mechanical Forces in Tumor Growth and Treatment: Perspectives From Biology, Physics, Engineering, and Mathematical Modeling. WIREs Mech Dis 2025; 17:e70000. [PMID: 40170456 DOI: 10.1002/wsbm.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/14/2024] [Accepted: 01/23/2025] [Indexed: 04/03/2025]
Abstract
The progression of tumors is influenced by mechanical forces and biological elements, such as hypoxia and angiogenesis. Mechanical factors, including stress, pressure, interstitial fluid pressure, and cellular traction forces, compromise normal tissue architecture, augmenting stiffness and thus promoting tumor growth and invasion. The selective elimination of specific tumor components can reduce growth-induced mechanical stress, thereby improving therapeutic efficacy. Furthermore, stress-relief drugs have the potential in enhancing chemotherapy outcomes. In this setting, computational modeling functions as an essential tool for quantitatively elucidating the mechanical principles underlying tumor formation. These models can precisely replicate the impact of mechanical pressures on solid tumors, offering insight into the regulation of tumor behavior by these forces. Tumor growth produces mechanical forces, including compression, displacement, and deformation, leading to irregular stress patterns, expedited tumor advancement, and reduced treatment efficacy. This review analyzes the impact of mechanical forces on carcinogenesis and solid tumor proliferation, emphasizing the significance of stress alleviation in regulating tumor growth. Furthermore, we investigate the influence of mechanical forces on tumor dissemination and emphasize the promise of integrating computational modeling with force-targeted cancer therapies to improve treatment efficacy by tackling the fundamental mechanics of tumor proliferation.
Collapse
Affiliation(s)
| | - Fatemeh Mirala
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Masoud H H Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mahvash Alirahimi
- Department of Obstetrics & Gynecology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Aryan Golzaryan
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
19
|
Wu X, Fei W, Shen T, Ye L, Li C, Chu S, Liu M, Cheng X, Qin J. Unveiling the potential of biomechanics in pioneering innovative strategies for cancer therapy. Theranostics 2025; 15:2903-2932. [PMID: 40083943 PMCID: PMC11898300 DOI: 10.7150/thno.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/02/2025] [Indexed: 03/16/2025] Open
Abstract
Mechanical force transmission is pivotal in tumor biology, profoundly affecting cancer cell behaviors such as proliferation, metastasis, and resistance to therapy. To explore novel biomechanical-based therapeutic strategies for cancer treatment, this paper deciphers the advances in biomechanical measurement approaches and the impact of biomechanical signals on fundamental oncological processes such as tumor microenvironment remodeling, angiogenesis, metastasis, and drug resistance. Then, the mechanisms of biomechanical signal transduction of tumor cells are demonstrated to identify novel targets for tumor therapy. Additionally, this study proposes a novel tumor treatment strategy, the biomechanical regulation tumor nanotherapeutics, including smart biomaterials designed to disturb mechanical signaling pathways and innovative nanodrugs that interfere transduction of biomechanical signals to improve tumor therapeutic outcomes. These methods mark a departure from conventional pharmacological therapies to novel strategies that utilize mechanical forces to impede tumor progression and enhance tumor responsiveness to treatment. In general, this review highlights the critical role of biomechanical signals in cancer biology from a holistic perspective and underscores the potential of biomechanical interventions as a transformative class of therapeutics. By integrating mechanobiology into the development of cancer treatments, this paper paves the way for more precise and effective strategies that leverage the inherent physical properties of the tumor microenvironment.
Collapse
Affiliation(s)
- Xiaodong Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Weidong Fei
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Tao Shen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lei Ye
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chaoqun Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Siran Chu
- Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Mingqi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Hangzhou, 310006, China
| | - Jiale Qin
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Hangzhou, 310006, China
| |
Collapse
|
20
|
Lv Y, Chen Z, Wang S, Zou M. Macrophage-Mediated Liquid Metal Nanoparticles for Enhanced Tumor Accumulation and Inhibition. ACS Biomater Sci Eng 2025; 11:903-915. [PMID: 39855913 DOI: 10.1021/acsbiomaterials.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
In most studies, the penetration of nanoparticles into tumors was mainly dependent on the enhanced permeability and retention (ERP) effect. However, the penetration of nanoparticles would be limited by tumor-dense structure, immune system, and other factors. To solve these problems, macrophages with active tropism to tumor tissues, loaded nanoparticles with photothermal therapy, and chemotherapy were designed. In detail, liquid metal (gallium indium alloy) nanoparticles were modified with mesoporous silica and then embedded with the chemotherapeutic drug sorafenib (LM@Si/SO) for photothermal therapy and chemotherapy. After that, the LM@Si/SO nanoparticles were carried by the mouse macrophage RAW264.7 cell line (LM@Si/SO@R) to increase the accumulation of the nanoparticles in the tumor site and improve the tumor immune microenvironment. With the enhanced tumor accumulation, LM@Si/SO@R exhibited excellent antitumor ability in vitro and in vivo. Thus, these strategies via the cell carrier to enhance tumor therapeutic efficiency had the potential for the improvement of tumor therapy.
Collapse
Affiliation(s)
- Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Zhenghang Chen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Shuai Wang
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Meizhen Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
21
|
Salavati H, Pullens P, Debbaut C, Ceelen W. Image-guided patient-specific prediction of interstitial fluid flow and drug transport in solid tumors. J Control Release 2025; 378:899-911. [PMID: 39716662 DOI: 10.1016/j.jconrel.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Tumor fluid dynamics and drug delivery simulations in solid tumors are highly relevant topics in clinical oncology. The current study introduces a novel method combining computational fluid dynamics (CFD) modeling, quantitative magnetic resonance imaging (MRI; including dynamic contrast-enhanced (DCE) MRI and diffusion-weighted (DW) MRI), and a novel ex-vivo protocol to generate patient-specific models of solid tumors in four patients with peritoneal metastases. DCE-MRI data were analyzed using the extended Tofts model to estimate the spatial distribution of tumor capillary permeability using the Ktrans parameter. DW-MRI data analysis provided a 3D representation of drug diffusivity, and DW-MRI coupled to an ex-vivo measurement protocol informed the spatial heterogeneity of the hydraulic conductivity of tumor tissue. The patient-specific data were subsequently incorporated into a computational fluid dynamics (CFD) model to simulate individualized tumor perfusion and drug transport maps. The results on interstitial fluid flow demonstrated noticeable heterogeneity of interstitial fluid pressure and velocity within the tumor, along with heterogeneous drug penetration profiles among different tumors, even with a similar drug administration regimen.
Collapse
Affiliation(s)
- Hooman Salavati
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; IBiTech - BioMMedA, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent CRIG, Ghent, Belgium
| | - Pim Pullens
- Department of Radiology, Ghent University Hospital, Ghent, Belgium; Ghent Institute of Functional and Metabolic Imaging GIFMI, Ghent University, Ghent, Belgium; IBiTech - Medisip, Ghent University, Ghent, Belgium
| | - Charlotte Debbaut
- IBiTech - BioMMedA, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent CRIG, Ghent, Belgium
| | - Wim Ceelen
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent CRIG, Ghent, Belgium.
| |
Collapse
|
22
|
Moazzeni S, Kyker-Snowman K, Cohen RI, Wang H, Li R, Shreiber DI, Zahn JD, Shi Z, Lin H. N-Cadherin based adhesion and Rac1 activity regulate tension polarization in the actin cortex. Sci Rep 2025; 15:4296. [PMID: 39905109 PMCID: PMC11794589 DOI: 10.1038/s41598-025-88537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
Tension-adhesion interplay is a crucial mechanism in multicellular organisms that determines the tension differential among internal and external interfaces, which in turn, mediates tissue surface tension and cell sorting, morphogenesis and remodeling, and cancer progression. Cadherins are widely believed to be involved, yet key aspects of the process are neither well characterized nor quantified. This study demonstrates the critical role of N-cadherin in driving tension polarization throughout the actin cortical network. N-cadherin regulates both tension increase at the cell-medium (external) interface and decrease at the cell-cell (internal) interface, and their quantitative magnitudes, both absolute and relative, strongly depend on the surface density of N-cadherin. Furthermore, the strength of tension polarization also increases with respect to the number of cell-cell interfaces for cells within a multicellular cluster. The cadherin-actin contractility linkage is mediated by Rac1, which serves as a molecular switch to trigger cortex remodeling and contraction via myosin II. Inhibition of Rac1 activity decreases tension polarization and leads to reduced coherence in both small clusters and spheroids. These results provide a pathway to reconcile opposing theories for tissue surface tension generation and perspectives in cancer treatment.
Collapse
Affiliation(s)
- Seyedsajad Moazzeni
- Department of Mechanical & Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Kelly Kyker-Snowman
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Rick I Cohen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Ran Li
- Department of Mechanical & Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ, 08854, USA.
| | - Hao Lin
- Department of Mechanical & Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
23
|
Zhu Y, Chen J, Chen C, Tang R, Xu J, Shi S, Yu X. Deciphering mechanical cues in the microenvironment: from non-malignant settings to tumor progression. Biomark Res 2025; 13:11. [PMID: 39849659 PMCID: PMC11755887 DOI: 10.1186/s40364-025-00727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein. This activation initiates cascades of intrinsic signaling pathways, effectively linking the physical properties of tissues to their physiological and pathophysiological processes like morphogenesis, regeneration, and immunity. This mechanistic insight offers a novel perspective on how the mechanical cues within the tumor microenvironment impact tumor behaviors. While the intricacies of the mechanical tumor microenvironment are yet to be fully elucidated, it exhibits distinct physical attributes from non-malignant tissues, including elevated solid stresses, interstitial hypertension, augmented matrix stiffness, and enhanced viscoelasticity. These traits exert notable influences on tumor progression and treatment responses, enriching our comprehension of the multifaceted nature of the microenvironment. Through this innovative review, we aim to provide a new lens to decipher the mechanical attributes within the tumor microenvironment from non-malignant contexts, broadening our knowledge on how these factors promote or inhibit tumor behaviors, and thus offering valuable insights to identify potential targets for anti-tumor strategies.
Collapse
Affiliation(s)
- Yicheng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Nia HT, Munn LL, Jain RK. Probing the physical hallmarks of cancer. Nat Methods 2025:10.1038/s41592-024-02564-4. [PMID: 39815103 DOI: 10.1038/s41592-024-02564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025]
Abstract
The physical microenvironment plays a crucial role in tumor development, progression, metastasis and treatment. Recently, we proposed four physical hallmarks of cancer, with distinct origins and consequences, to characterize abnormalities in the physical tumor microenvironment: (1) elevated compressive-tensile solid stresses, (2) elevated interstitial fluid pressure and the resulting interstitial fluid flow, (3) altered material properties (for example, increased tissue stiffness) and (4) altered physical micro-architecture. As this emerging field of physical oncology is being advanced by tumor biologists, cell and developmental biologists, engineers, physicists and oncologists, there is a critical need for model systems and measurement tools to mechanistically probe these physical hallmarks. Here, after briefly defining these physical hallmarks, we discuss the tools and model systems available for probing each hallmark in vitro, ex vivo, in vivo and in clinical settings. We finally review the unmet needs for mechanistic probing of the physical hallmarks of tumors and discuss the challenges and unanswered questions associated with each hallmark.
Collapse
Affiliation(s)
- Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Zou J, Jiang C, Hu Q, Jia X, Wang S, Wan S, Mao Y, Zhang D, Zhang P, Dai B, Li Y. Tumor microenvironment-responsive engineered hybrid nanomedicine for photodynamic-immunotherapy via multi-pronged amplification of reactive oxygen species. Nat Commun 2025; 16:424. [PMID: 39762214 PMCID: PMC11704041 DOI: 10.1038/s41467-024-55658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Reactive oxygen species (ROS) is promising in cancer therapy by accelerating tumor cell death, whose therapeutic efficacy, however, is greatly limited by the hypoxia in the tumor microenvironment (TME) and the antioxidant defense. Amplification of oxidative stress has been successfully employed for tumor therapy, but the interactions between cancer cells and the other factors of TME usually lead to inadequate tumor treatments. To tackle this issue, we develop a pH/redox dual-responsive nanomedicine based on the remodeling of cancer-associated fibroblasts (CAFs) for multi-pronged amplification of ROS (ZnPP@FQOS). It is demonstrated that ROS generated by ZnPP@FQOS is endogenously/exogenously multiply amplified owing to the CAFs remodeling and down-regulation of anti-oxidative stress in cancer cells, ultimately achieving the efficient photodynamic therapy in a female tumor-bearing mouse model. More importantly, ZnPP@FQOS is verified to enable the stimulation of enhanced immune responses and systemic immunity. This strategy remarkably potentiates the efficacy of photodynamic-immunotherapy, thus providing a promising enlightenment for tumor therapy.
Collapse
Grants
- This work was financially supported by the National Key Research and Development Program of China (No. 2022YFC2403203, Y.L.), the National Natural Science Foundation of China (No. 22305081, D.Z.), Basic Research Program of Shanghai (No. 21JC1406003, Y.L.), Leading Talents in Shanghai in 2018, the Key Field Research Program (No. 2023AB054, Y.L.), Shanghai Sailing Program (23YF1408600, D.Z.) and the Innovation Program of Shanghai Municipal Education Commission (No. 2023ZKZD33, P.Z.)
Collapse
Affiliation(s)
- Jinglin Zou
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinlin Jia
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqi Wang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dapeng Zhang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| |
Collapse
|
26
|
Xue SL. Tissue stresses caused by invasive tumour: a biomechanical model. J R Soc Interface 2025; 22:20240797. [PMID: 39837483 PMCID: PMC11750364 DOI: 10.1098/rsif.2024.0797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Malignant tumorigenesis is a complex process involving growth, invasion and mechanical deformation of a cancerous tissue. In this paper, a biomechanical model is proposed to couple the mechanical and biological mechanisms governing invasive tumour development. As an example, this model is applied to investigate the spatio-temporal evolution of tissue stresses in an invasive tumour spheroid and its host tissue. I show that cancer invasiveness lowers the compressive tissue stresses and blurs the stress distribution across the cancerous-normal tissue boundary, both consistent with experimental observations. Importantly, with the steady propagation of the cancerous region driven by persistent cancer invasion, tumour stresses are predicted to saturate rather than keep increasing as in benign tumour growth. The model is further used to analyse the deformation and stress state of a cancerous tissue being cut into two pieces, and reproduces the bulge of the cut surface observed in experiments. I hope this study can pave the way for the quantitative evaluation of mechanical states in cancer.
Collapse
Affiliation(s)
- Shi-Lei Xue
- Department of Materials Science and Engineering, School of Engineering, Westlake University, Hangzhou, Zhejiang310030, People’s Republic of China
| |
Collapse
|
27
|
Khan MHR, Righetti R. A Novel Poroelastography Method for High-Quality Estimation of Lateral Strain, Solid Stress, and Fluid Pressure In Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:232-243. [PMID: 39102319 DOI: 10.1109/tmi.2024.3438564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Assessment of mechanical and transport properties of tissues using ultrasound elasticity imaging requires accurate estimations of the spatiotemporal distribution of volumetric strain. Due to physical constraints such as pitch limitation and the lack of phase information in the lateral direction, the quality of lateral strain estimation is typically significantly lower than the quality of axial strain estimation. In this paper, a novel lateral strain estimation technique based on the physics of compressible porous media is developed, tested and validated. This technique is referred to as "Poroelastography-based Ultrasound Lateral Strain Estimation" (PULSE). PULSE differs from previously proposed lateral strain estimators as it uses the underlying physics of internal fluid flow within a local region of the tissue as theoretical foundation. PULSE establishes a relation between spatiotemporal changes in the axial strains and corresponding spatiotemporal changes in the lateral strains, effectively allowing assessment of lateral strains with comparable quality of axial strain estimators. We demonstrate that PULSE can also be used to accurately track compression-induced solid stresses and fluid pressure in cancers using ultrasound poroelastography (USPE). In this study, we report the theoretical formulation for PULSE and validation using finite element (FE) and ultrasound simulations. PULSE-generated results exhibit less than 5% percentage relative error (PRE) and greater than 90% structural similarity index (SSIM) compared to ground truth simulations. Experimental results are included to qualitatively assess the performance of PULSE in vivo. The proposed method can be used to overcome the inherent limitations of non-axial strain imaging and improve clinical translatability of USPE.
Collapse
|
28
|
Kim OH, Tulip IJ, Kang H, Chang ES, Lee HJ. Compression force promotes glioblastoma progression through the Piezo1‑GDF15‑CTLA4 axis. Oncol Rep 2025; 53:2. [PMID: 39513613 PMCID: PMC11541303 DOI: 10.3892/or.2024.8835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Glioma, a type of brain tumor, is influenced by mechanical forces in its microenvironment that affect cancer progression. However, our understanding of the contribution of compression and its associated mechanisms remains limited. The objective of the present study was to create an environment in which human brain glioma H4 cells experience pressure and thereby investigate the compressive mechanosensors and signaling pathways. Subsequent time‑lapse imaging and wound healing assays confirmed that 12 h of compression significantly increased cell migration, thereby linking compression with enhanced cell motility. Compression upregulated the expression of Piezo1, a mechanosensitive ion channel, and growth differentiation factor 15 (GDF15), a TGF‑β superfamily member. Knockdown experiments targeting PIEZO1 or GDF15 using small interfering RNA resulted in reduced cell motility, with Piezo1 regulating GDF15 expression. Compression also upregulated CTLA4, a critical immune checkpoint protein. The findings of the present study therefore suggest that compression enhances glioma progression by stimulating Piezo1, promoting GDF15 expression and increasing CTLA4 expression. Thus, these findings provide important insights into the influence of mechanical compression on glioma progression and highlight the involvement of the Piezo1‑GDF15 signaling pathway. Understanding tumor responses to mechanical forces in the brain microenvironment may guide the development of targeted therapeutic strategies to mitigate tumor progression and improve patient outcomes.
Collapse
Affiliation(s)
- Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Israt Jahan Tulip
- Department of Global Innovative Drugs, Graduate School of Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Hana Kang
- Department of Global Innovative Drugs, Graduate School of Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Eun Seo Chang
- Department of Global Innovative Drugs, Graduate School of Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung‑Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
29
|
Li F, Wei Y, Li L, Chen F, Bao C, Bu H, Zhang Z. Collagen Density Is Associated With Pathological Complete Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients. J Surg Oncol 2024. [PMID: 39699940 DOI: 10.1002/jso.28046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND OBJECTIVES The tumor-associated stroma is an essential compartment in breast cancer, and collagen fiber organization in the stroma has been reported to be correlated with prognosis. In this study, we sought to evaluate collagen fiber characteristics in relation to pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients. METHODS A total of 388 breast cancer patients receiving NAC were enrolled. The stroma type was manually assessed on pretreatment hematoxylin and eosin (HE)-stained slides, and the collagen fiber features were quantified by a computer tool. The relationship between syndecan-1 expression and collagen fibers and its correlation with treatment efficacy were detected by immunohistochemistry. RESULTS The pCR rate of patients with collagen-dominant stroma was lower than that of patients with lymphocyte-dominant stroma (19.6% vs. 40.0%, p = 0.001). Patients who achieved pCR had straighter and less dense fibers in pretreatment biopsied tissue than non-pCR patients (p = 0.031, p = 0.044). Additionally, the pCR group had greater syndecans-1 expression on the tumor epithelium than the non-pCR group (p < 0.001), while there was no statistically significant difference in the stroma (p = 0.333). Collagen fiber density was the only factor associated with pCR after correction for other clinicopathological variables in triple-negative breast cancer (TNBC) patients (OR 0.466, 95% CI 0.227-0.956, p = 0.037); patients with lower fiber density had a greater pCR rate (37.5% vs. 12.5%, p = 0.021). CONCLUSIONS Collagen fiber density was associated with pCR in patients with breast cancer, and it could be a potential candidate for discriminating between responders and nonresponders for TNBC patients receiving NAC.
Collapse
Affiliation(s)
- Fengling Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yani Wei
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunjuan Bao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Rosas J, Campanale JP, Harwood JL, Li L, Bae R, Cheng S, Tsou JM, Kaiser KM, Engle DD, Montell DJ, Pitenis AA. Differential Effects of Confinement on the Dynamics of Normal and Tumor-Derived Pancreatic Ductal Organoids. ACS APPLIED BIO MATERIALS 2024; 7:8489-8502. [PMID: 39576883 PMCID: PMC11653396 DOI: 10.1021/acsabm.4c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer of the epithelia comprising the ductal network of the pancreas. During disease progression, PDAC tumors recruit fibroblasts that promote fibrosis, increasing local tissue stiffness and subjecting epithelial cells to increased compressive forces. Previous in vitro studies have documented cytoskeletal and nuclear adaptation following compressive stresses in two-dimensional (2D) and three-dimensional (3D) environments. However, a comparison of the responses of normal and tumor-derived ductal epithelia to physiologically relevant confinement remains underexplored, especially in 3D organoids. Here we control confinement with an engineered 3D microenvironment composed of Matrigel mixed with a low yield stress granular microgel. Normal and tumor-derived murine pancreas organoids (normal and tumor) were cultured for 48 h within this composite 3D environment or in pure Matrigel to investigate the effects of confinement on morphogenesis and lumen expansion. In confinement, tumor organoids (mT) formed a lumen that expanded rapidly, whereas normal organoids (mN) expanded more slowly. Moreover, a majority of normal organoids in more-confined conditions exhibited an inverted apicobasal polarity compared to those in less-confined conditions. Tumor organoids exhibited a collective "pulsing" behavior that increased in confinement. These pulses generated forces sufficient to locally overcome the yield stress of the microgels in the direction of organoid expansion. Normal organoids more commonly exhibit unidirectional rotation. Our in vitro microgel confinement platform enabled the discovery of two distinct modes of collective force generation in organoids that may shed light on the mutual interactions between tumors and the microenvironment. These insights into in vitro dynamics may deepen our understanding of how the confinement of healthy cells within a fibrotic tumor niche disrupts tissue organization and function in vivo.
Collapse
Affiliation(s)
- Jonah
M. Rosas
- Department
of Biomolecular Science & Engineering Program, University of California, Santa
Barbara, California 93106, United States
| | - Joseph P. Campanale
- Department
of Molecular, Cellular, and Developmental Biology, University of California, Santa
Barbara, California 93106, United States
| | - Jacob L. Harwood
- Department
of Molecular, Cellular, and Developmental Biology, University of California, Santa
Barbara, California 93106, United States
| | - Lufei Li
- Department
of Statistics and Applied Probability, University
of California, Santa Barbara, California 93106, United States
| | - Rachel Bae
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Shujun Cheng
- Department
of Molecular, Cellular, and Developmental Biology, University of California, Santa
Barbara, California 93106, United States
| | - Julia M. Tsou
- Department
of Molecular, Cellular, and Developmental Biology, University of California, Santa
Barbara, California 93106, United States
| | - Kathi M. Kaiser
- Department
of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Dannielle D. Engle
- Salk Institute
for Biological Studies, La Jolla, California 92037, United States
| | - Denise J. Montell
- Department
of Biomolecular Science & Engineering Program, University of California, Santa
Barbara, California 93106, United States
- Department
of Molecular, Cellular, and Developmental Biology, University of California, Santa
Barbara, California 93106, United States
| | - Angela A. Pitenis
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
31
|
Millen JL, Luyten LJ, Dieu M, Bové H, Ameloot M, Bongaerts E, Demazy C, Fransolet M, Martens DS, Renard P, Reimann B, Plusquin M, Nawrot TS, Debacq-Chainiaux F. Alterations in the placental proteome in association with the presence of black carbon particles: A discovery study. ENVIRONMENTAL RESEARCH 2024; 263:120214. [PMID: 39442658 DOI: 10.1016/j.envres.2024.120214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Exposure to ambient air pollution is known to cause direct and indirect molecular expression changes in the placenta, on the DNA, mRNA, and protein levels. Ambient black carbon (BC) particles can be found in the human placenta already very early in gestation. However, the effect of in utero BC exposure on the entire placental proteome has never been studied to date. OBJECTIVES We explored whether placental proteome differs between mothers exposed to either high or low BC levels throughout the entire pregnancy. METHODS We used placental tissue samples from the ENVIRONAGE birth cohort, of 20 non-smoking, maternal- and neonate characteristic-matched women exposed to high (n = 10) or low (n = 10) levels of ambient BC throughout pregnancy. We modeled prenatal BC exposure levels based on the mother's home address and measured BC levels in the fetal side of the placenta. The placental proteome was analyzed by nano-liquid chromatography Q-TOF mass spectrometry. PEAKS software was used for protein identification and label-free quantification. Protein-protein interaction and functional pathway enrichment analyses were performed with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) software. RESULTS The accumulation of BC particles in placenta was 2.19 times higher in the high versus low exposure group (20943.4 vs 9542.7 particles/mm³; p = 0.007). Thirteen proteins showed a ≥2-fold expression difference between the two exposure groups, all overexpressed in the placentas of women prenatally exposed to high BC levels. Three protein-protein interactions were enriched within this group, namely between TIMP3 and COL4A2, SERPINE2 and COL4A2, and SERPINE2 and GP1BB. Functional pathway enrichment analysis put forward pathways involved in extracellular matrix-receptor interaction, fibrin clot formation, and sodium ion transport regulation. DISCUSSION Prenatal BC exposure affects the placental proteome. Future research should focus on the potential consequences of these alterations on placental functioning, and health and disease during early childhood development.
Collapse
Affiliation(s)
- Joline L Millen
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Leen J Luyten
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marc Dieu
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Catherine Demazy
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Maude Fransolet
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Patricia Renard
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium; Department of Public Health & Primary Care, Occupational and Environmental Medicine, Leuven University (KULeuven), Leuven, Belgium.
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
32
|
Baena JC, Pérez LM, Toro-Pedroza A, Kitawaki T, Loukanov A. CAR T Cell Nanosymbionts: Revealing the Boundless Potential of a New Dyad. Int J Mol Sci 2024; 25:13157. [PMID: 39684867 DOI: 10.3390/ijms252313157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named "CAR T nanosymbiosis", offers new opportunities to overcome these challenges. Nanomaterials can enhance CAR T cell delivery, manufacturing, activity modulation, and targeting of the tumor microenvironment, providing better control and precision. This approach aims to improve the efficacy of CAR T cells against solid tumors, reduce associated toxicities, and ultimately enhance patient outcomes. Several studies have shown promising results, and developing this therapy further is essential for increasing its accessibility and effectiveness. Our "addition by subtraction model" synthesizes these multifaceted elements into a unified strategy to advance cancer treatment paradigms.
Collapse
Affiliation(s)
- Juan C Baena
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Lucy M Pérez
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Alejandro Toro-Pedroza
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Toshio Kitawaki
- Department of Hematology, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Alexandre Loukanov
- Department of Chemistry and Materials Science, National Institute of Technology, Gunma College, Maebashi 371-8530, Japan
- Laboratory of Engineering Nanobiotechnology, University of Mining and Geology "St. Ivan Rilski", 1700 Sofia, Bulgaria
| |
Collapse
|
33
|
Nia HT, Datta M, Kumar AS, Siri S, Ferraro GB, Chatterjee S, McHugh JM, Ng PR, West TR, Rapalino O, Choi BD, Nahed BV, Munn LL, Jain RK. Solid stress estimations via intraoperative 3D navigation in patients with brain tumors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.28.24318104. [PMID: 39677483 PMCID: PMC11643154 DOI: 10.1101/2024.11.28.24318104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background Physical forces exerted by expanding brain tumors - specifically the compressive stresses propagated through solid tissue structures - reduces brain perfusion and neurological function, but heretofore has not been directly measured in patients in vivo . Solid stress levels estimated from tumor growth patterns are negatively correlated with neurological performance in patients. We hypothesize that measurements of solid stress can be used to inform clinical management of brain tumors. Methods We developed an intraoperative technique to quantitatively estimate solid stress and brain replacement by the tumor. In 30 patients we made topographic measurements of brain deformation through the craniotomy site with a neuronavigation system during surgical workflows immediately preceding tumor resection (< 5 minutes in the OR). Utilizing these measurements in conjunction with finite element modeling, we calculated solid stress within the tumor and the brain, and estimated the amount of brain tissue replaced, i.e., lost, by the tumor growth. Results Mean solid stresses were in the range of 10 to 600 Pa, and the amount of tissue replacement was up to 10% of the brain. Brain tissue loss in patients delineated glioblastoma from brain metastatic tumors, and in mice solid stress was a sensitive biomarker of chemotherapy response. Conclusions We present here a quantitative approach to intraoperatively measure solid stress in patients that can be readily adopted into standard clinical workflows. Brain tissue loss due to tumor growth is a novel mechanical-based biomarker that, in addition to solid stress, may inform personalized management in future clinical studies in brain cancer. Key Points Intraoperative and computational technique quantified solid stress and tissue loss in 30 patients Solid stress and tissue loss distinguished tumor types, showing potential as clinical biomarkers. Importance of the Study This study addresses a critical gap, as solid stress has been implicated in tumor progression and treatment resistance but not directly measured in patients with brain cancers before. Here, we present a novel intraoperative technique to quantitatively measure solid stress and brain tissue replacement in brain tumor patients. By combining intraoperative neuro-navigation with finite element modeling, we estimate solid stress and quantify the loss of brain tissue replaced by tumor growth. Importantly, higher tissue replacement was associated with glioblastoma compared to metastatic tumors. In mice, solid stress is a sensitive biomarker of treatment response. These findings establish solid stress and tissue replacement as potential physical biomarkers to inform personalized management of brain tumors. Quantifying these mechanical forces during surgery could help predict patient outcomes and guide clinical decision-making.
Collapse
|
34
|
Feng X, Cao F, Wu X, Xie W, Wang P, Jiang H. Targeting extracellular matrix stiffness for cancer therapy. Front Immunol 2024; 15:1467602. [PMID: 39697341 PMCID: PMC11653020 DOI: 10.3389/fimmu.2024.1467602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
The physical characteristics of the tumor microenvironment (TME) include solid stress, interstitial fluid pressure, tissue stiffness and microarchitecture. Among them, abnormal changes in tissue stiffness hinder drug delivery, inhibit infiltration of immune killer cells to the tumor site, and contribute to tumor resistance to immunotherapy. Therefore, targeting tissue stiffness to increase the infiltration of drugs and immune cells can offer a powerful support and opportunities to improve the immunotherapy efficacy in solid tumors. In this review, we discuss the mechanical properties of tumors, the impact of a stiff TME on tumor cells and immune cells, and the strategies to modulate tumor mechanics.
Collapse
Affiliation(s)
- Xiuqin Feng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fujun Cao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangji Wu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Xie
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Pan S, Yuan H, Zhai Q, Zhang Y, He H, Yin T, Tang X, Gou J. The journey of nanoparticles in the abdominal cavity: Exploring their in vivo fate and impact factors. J Control Release 2024; 376:266-285. [PMID: 39396710 DOI: 10.1016/j.jconrel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal carcinomatosis (PC) is caused by metastasis of primary tumor cells from intra-abdominal organs to the peritoneal surface. Intraperitoneal (IP) chemotherapy allows close contact of high concentrations of therapeutic agents with cancer cells in the peritoneal cavity to prolong patient survival. However, conventional IP chemotherapy is prone to rapid elimination from the peritoneal cavity and lacks specificity towards cancer cells. To address these challenges, there is an imperative demand for exploiting novel drug delivery systems to enhance drug retention in the peritoneal cavity and target PC cells. Therefore, in this review, we first recapitulate the physiological structures and barriers associated with IP drug delivery, highlighting the in vivo fate of nanoparticles (NPs) after IP administration. Furthermore, the influence of physicochemical properties (particle size, charge, surface modification, and carrier composition) on the in vivo fate of NPs is discussed. Perspectives on the rational design of NPs for IP therapy and recent clinical progress are also provided.
Collapse
Affiliation(s)
- Shu Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Qiyao Zhai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
36
|
Gong N, Zhong W, Alameh MG, Han X, Xue L, El-Mayta R, Zhao G, Vaughan AE, Qin Z, Xu F, Hamilton AG, Kim D, Xu J, Kim J, Teng X, Li J, Liang XJ, Weissman D, Guo W, Mitchell MJ. Tumour-derived small extracellular vesicles act as a barrier to therapeutic nanoparticle delivery. NATURE MATERIALS 2024; 23:1736-1747. [PMID: 39223270 PMCID: PMC11838174 DOI: 10.1038/s41563-024-01961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
Nanoparticles are promising for drug delivery applications, with several clinically approved products. However, attaining high nanoparticle accumulation in solid tumours remains challenging. Here we show that tumour cell-derived small extracellular vesicles (sEVs) block nanoparticle delivery to tumours, unveiling another barrier to nanoparticle-based tumour therapy. Tumour cells secrete large amounts of sEVs in the tumour microenvironment, which then bind to nanoparticles entering tumour tissue and traffic them to liver Kupffer cells for degradation. Knockdown of Rab27a, a gene that controls sEV secretion, decreases sEV levels and improves nanoparticle accumulation in tumour tissue. The therapeutic efficacy of messenger RNAs encoding tumour suppressing and proinflammatory proteins is greatly improved when co-encapsulated with Rab27a small interfering RNA in lipid nanoparticles. Together, our results demonstrate that tumour cell-derived sEVs act as a defence system against nanoparticle tumour delivery and that this system may be a potential target for improving nanoparticle-based tumour therapies.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Wenqun Zhong
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rakan El-Mayta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhiyuan Qin
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Fengyuan Xu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Dongyoon Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Xucong Teng
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Jinghong Li
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
| | - Wei Guo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Siri S, Burchett A, Datta M. Simulating the impact of tumor mechanical forces on glymphatic networks in the brain parenchyma. Biomech Model Mechanobiol 2024; 23:2229-2241. [PMID: 39298038 PMCID: PMC11554883 DOI: 10.1007/s10237-024-01890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
The brain glymphatic system is currently being explored in the context of many neurological disorders and diseases, including traumatic brain injury, Alzheimer's disease, and ischemic stroke. However, little is known about the impact of brain tumors on glymphatic function. Mechanical forces generated during tumor development and growth may be responsible for compromised glymphatic transport pathways, reducing waste clearance and cerebrospinal fluid (CSF) transport in the brain parenchyma. One such force is solid stress, i.e., growth-induced forces from cell hyperproliferation and excess matrix deposition. Because there are no prior studies assessing the impact of tumor-derived solid stress on glymphatic system structure and performance in the brain parenchyma, this study serves to fill an important gap in the field. We adapted a previously developed Electrical Analog Model using MATLAB Simulink for glymphatic transport coupled with Finite Element Analysis for tumor mechanical stresses and strains in COMSOL. This allowed simulation of the impact of tumor mechanical force generation on fluid transport within brain parenchymal glymphatic units-which include perivascular spaces, astrocytic networks, interstitial spaces, and capillary basement membranes. We conducted a parametric analysis to compare the contributions of tumor size, tumor proximity, and ratio of glymphatic subunits to the stress and strain experienced by the glymphatic unit and corresponding reduction in flow rate of CSF. Mechanical stresses intensify with proximity to the tumor and increasing tumor size, highlighting the vulnerability of nearby glymphatic units to tumor-derived forces. Our stress and strain profiles reveal compressive deformation of these surrounding glymphatics and demonstrate that varying the relative contributions of astrocytes vs. interstitial spaces impact the resulting glymphatic structure significantly under tumor mechanical forces. Increased tumor size and proximity caused increased stress and strain across all glymphatic subunits, as does decreased astrocyte composition. Indeed, our model reveals an inverse correlation between extent of astrocyte contribution to the composition of the glymphatic unit and the resulting mechanical stress. This increased mechanical strain across the glymphatic unit decreases the venous efflux rate of CSF, dependent on the degree of strain and the specific glymphatic subunit of interest. For example, a 20% mechanical strain on capillary basement membranes does not significantly decrease venous efflux (2% decrease in flow rates), while the same magnitude of strain on astrocyte networks and interstitial spaces decreases efflux flow rates by 7% and 22%, respectively. Our simulations reveal that solid stress from growing brain tumors directly reduces glymphatic fluid transport, independently from biochemical effects from cancer cells. Understanding these pathophysiological implications is crucial for developing targeted interventions aimed at restoring effective waste clearance mechanisms in the brain. This study opens potential avenues for future experimental research in brain tumor-related glymphatic dysfunction.
Collapse
Affiliation(s)
- Saeed Siri
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Alice Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
38
|
Kalli M, Mpekris F, Charalambous A, Michael C, Stylianou C, Voutouri C, Hadjigeorgiou AG, Papoui A, Martin JD, Stylianopoulos T. Mechanical forces inducing oxaliplatin resistance in pancreatic cancer can be targeted by autophagy inhibition. Commun Biol 2024; 7:1581. [PMID: 39604540 PMCID: PMC11603328 DOI: 10.1038/s42003-024-07268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignancies, with limited treatment options and poor prognosis. A common characteristic among pancreatic cancer patients is the biomechanically altered tumor microenvironment (TME), which among others is responsible for the elevated mechanical stresses in the tumor interior. Although significant research has elucidated the effect of mechanical stress on cancer cell proliferation and migration, it has not yet been investigated how it could affect cancer cell drug sensitivity. Here, we demonstrated that mechanical stress triggers autophagy activation, correlated with increased resistance to oxaliplatin treatment in pancreatic cancer cells. Our results demonstrate that inhibition of autophagy using hydroxychloroquine (HCQ) enhanced the oxaliplatin-induced apoptotic cell death in pancreatic cancer cells exposed to mechanical stress. The combined treatment of HCQ with losartan, a known modulator of mechanical abnormalities in tumors, synergistically enhanced the therapeutic efficacy of oxaliplatin in murine pancreatic tumor models. Furthermore, our study revealed that the use of HCQ enhanced the efficacy of losartan to alleviate mechanical stress levels and restore blood vessel integrity beyond its role in autophagy modulation. These findings underscore the potential of co-targeting mechanical stresses and autophagy as a promising therapeutic strategy to overcome drug resistance and increase chemotherapy efficacy.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrystalla Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreas G Hadjigeorgiou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Antonia Papoui
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
39
|
Sun X, Zhou Y, Sun S, Qiu S, Peng M, Gong H, Guo J, Wen C, Zhang Y, Xie Y, Li H, Liang L, Luo G, Wu W, Liu J, Tan W, Ye M. Cancer cells sense solid stress to enhance metastasis by CKAP4 phase separation-mediated microtubule branching. Cell Discov 2024; 10:114. [PMID: 39528501 PMCID: PMC11554681 DOI: 10.1038/s41421-024-00737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024] Open
Abstract
Solid stress, originating from rigid and elastic components of extracellular matrix and cells, is a typical physical hallmark of tumors. Mounting evidence indicates that elevated solid stress drives metastasis and affects prognosis. However, the molecular mechanism of how cancer cells sense solid stress, thereby exacerbating malignancy, remains elusive. In this study, our clinical data suggest that elevated stress in metastatic solid tumors is highly associated with the expression of cytoskeleton-associated protein 4 (CKAP4). Intriguingly, CKAP4, as a sensitive intracellular mechanosensor, responds specifically to solid stress in a subset of studied tumor micro-environmental elements through liquid-liquid phase separation. These micron-scaled CKAP4 puncta adhere tightly onto microtubules and dramatically reorchestrate their curvature and branching to enhance cell spreading, which, as a result, boosts cancer cell motility and facilitates distant metastasis in vivo. Mechanistically, the intrinsically disordered region 1 (IDR1) of CKAP4 binds to microtubules, while IDR2 governs phase separation due to the Cav1.2-dependent calcium influx, which collectively remodels microtubules. These findings reveal an unprecedented mechanism of how cancer cells sense solid stress for cancer malignancy and bridge the gap between cancer physics and cancer cell biology.
Collapse
Grants
- 92253201, 22334005, 21890744, 82203880, 82404104, 82100137, and 32350026 National Natural Science Foundation of China (National Science Foundation of China)
- the National Key Research and Development Program of China (2021YFA0909400), the fellowship of the China Postdoctoral Science Foundation (2022M720174, 2023T160740, and BX2021096), the Natural Science Foundation of Hunan Province for Distinguished Young Scholars (2023JJ10096), the Science and Technology Innovation Program of Hunan Province (2022RC1215), Natural Science Foundation of Hunan Province (2022JJ30183, 2024JJ6492, and 2024JJ3037), and the Fundamental Research Funds for the Central Universities of Central South University (2023ZZTS0572).
- fellowship of the China Postdoctoral Science Foundation (2022M720174, 2023T160740)
Collapse
Affiliation(s)
- Xing Sun
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Yangyang Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Shengjie Sun
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Siyuan Qiu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Menglan Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Han Gong
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Junxiao Guo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Chengcai Wen
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Yibin Zhang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Yifang Xie
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Hui Li
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Guoyan Luo
- Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wencan Wu
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China.
- Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China.
| |
Collapse
|
40
|
Charalambous A, Mpekris F, Panagi M, Voutouri C, Michael C, Gabizon AA, Stylianopoulos T. Tumor Microenvironment Reprogramming Improves Nanomedicine-Based Chemo-Immunotherapy in Sarcomas. Mol Cancer Ther 2024; 23:1555-1567. [PMID: 38940284 DOI: 10.1158/1535-7163.mct-23-0772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Sarcomas are a heterogeneous group of rare cancers that originate in soft tissues or bones. Their complexity and tendency for metastases make treatment challenging, highlighting the need for new therapeutic approaches to improve patient survival. The difficulties in treating these cancers primarily stem from abnormalities within the tumor microenvironment (TME), which leads to reduced blood flow and oxygen levels in tumors. Consequently, this hampers the effective delivery of drugs to tumors and diminishes treatment efficacy despite higher toxic doses of chemotherapy. In this study, we tested the mechanotherapeutic ketotifen combined with either pegylated liposomal doxorubicin (PLD) or pegylated liposomal coencapsulated alendronate-doxorubicin (PLAD) plus anti-programmed cell death protein 1 antibody in mouse models of fibrosarcoma and osteosarcoma. We found that ketotifen successfully reprogrammed the TME by reducing tumor stiffness and increasing perfusion, proven by changes measured by shear-wave elastography and contrast-enhanced ultrasound, respectively, and enhanced the therapeutic efficacy of our nanomedicine-based chemo-immunotherapy protocols. Furthermore, we observed a trend toward improved antitumor responses when nano-chemotherapy is given alongside anti-programmed cell death protein 1 and when the immunomodulator alendronate was present in the treatment. We next investigated the mechanisms of action of this combination. Ketotifen combined with nanomedicine-based chemo-immunotherapy increased T-cell infiltration, specifically cytotoxic CD8+ T cells and CD4+ T helper cells, and decreased the number of regulatory T cells. In addition, the combination also altered the polarization of tumor-associated macrophages, favoring the M1 immune-supportive phenotype over the M2 immunosuppressive phenotype. Collectively, our findings provide evidence that ketotifen-induced TME reprogramming can improve the efficacy of nanomedicine-based chemo-immunotherapy in sarcomas.
Collapse
Affiliation(s)
- Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Alberto A Gabizon
- Nano-Oncology Research Center, Department of Medical Oncology, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
41
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Rey JA, Spanick KG, Cabral G, Rivera-Santiago IN, Nagaraja TN, Brown SL, Ewing JR, Sarntinoranont M. Heterogeneous Mechanical Stress and Interstitial Fluid Flow Predictions Derived from DCE-MRI for Rat U251N Orthotopic Gliomas. Ann Biomed Eng 2024; 52:3053-3066. [PMID: 39048699 DOI: 10.1007/s10439-024-03569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Mechanical stress and fluid flow influence glioma cell phenotype in vitro, but measuring these quantities in vivo continues to be challenging. The purpose of this study was to predict these quantities in vivo, thus providing insight into glioma physiology and potential mechanical biomarkers that may improve glioma detection, diagnosis, and treatment. Image-based finite element models of human U251N orthotopic glioma in athymic rats were developed to predict structural stress and interstitial flow in and around each animal's tumor. In addition to accounting for structural stress caused by tumor growth, our approach has the advantage of capturing fluid pressure-induced structural stress, which was informed by in vivo interstitial fluid pressure (IFP) measurements. Because gliomas and the brain are soft, elevated IFP contributed substantially to tumor structural stress, even inverting this stress from compressive to tensile in the most compliant cases. The combination of tumor growth and elevated IFP resulted in a concentration of structural stress near the tumor boundary where it has the greatest potential to influence cell proliferation and invasion. MRI-derived anatomical geometries and tissue property distributions resulted in heterogeneous interstitial fluid flow with local maxima near cerebrospinal fluid spaces, which may promote tumor invasion and hinder drug delivery. In addition, predicted structural stress and interstitial flow varied markedly between irradiated and radiation-naïve animals. Our modeling suggests that relative to tumors in stiffer tissues, gliomas experience unusual mechanical conditions with potentially important biological (e.g., proliferation and invasion) and clinical consequences (e.g., drug delivery and treatment monitoring).
Collapse
Affiliation(s)
- Julian A Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA
| | | | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Isabel N Rivera-Santiago
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA
| | - Tavarekere N Nagaraja
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Stephen L Brown
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
43
|
Demuytere J, Ernst S, Ceelen W. Pathophysiology of Peritoneal Metastasis. J Surg Oncol 2024; 130:1299-1305. [PMID: 39400354 DOI: 10.1002/jso.27890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal metastasis is the result of a complex, stepwise process that involves multiple, spatially and temporally distinct interactions between the primary cancer, disseminated cancer cells or clusters, and the mesothelial lining of the peritoneal cavity and intraperitoneal organs. The biology of peritoneal metastasis, long a neglected field of research, is now increasingly being unraveled. Here, we provide an update on the mechanisms that drive the journey that eventually leads to widespread peritoneal metastatic disease.
Collapse
Affiliation(s)
- Jesse Demuytere
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sam Ernst
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
44
|
Voutouri C, Englezos D, Zamboglou C, Strouthos I, Papanastasiou G, Stylianopoulos T. A convolutional attention model for predicting response to chemo-immunotherapy from ultrasound elastography in mouse tumor models. COMMUNICATIONS MEDICINE 2024; 4:203. [PMID: 39420199 PMCID: PMC11487255 DOI: 10.1038/s43856-024-00634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND In the era of personalized cancer treatment, understanding the intrinsic heterogeneity of tumors is crucial. Despite some patients responding favorably to a particular treatment, others may not benefit, leading to the varied efficacy observed in standard therapies. This study focuses on the prediction of tumor response to chemo-immunotherapy, exploring the potential of tumor mechanics and medical imaging as predictive biomarkers. We have extensively studied "desmoplastic" tumors, characterized by a dense and very stiff stroma, which presents a substantial challenge for treatment. The increased stiffness of such tumors can be restored through pharmacological intervention with mechanotherapeutics. METHODS We developed a deep learning methodology based on shear wave elastography (SWE) images, which involved a convolutional neural network (CNN) model enhanced with attention modules. The model was developed and evaluated as a predictive biomarker in the setting of detecting responsive, stable, and non-responsive tumors to chemotherapy, immunotherapy, or the combination, following mechanotherapeutics administration. A dataset of 1365 SWE images was obtained from 630 tumors from our previous experiments and used to train and successfully evaluate our methodology. SWE in combination with deep learning models, has demonstrated promising results in disease diagnosis and tumor classification but their potential for predicting tumor response prior to therapy is not yet fully realized. RESULTS We present strong evidence that integrating SWE-derived biomarkers with automatic tumor segmentation algorithms enables accurate tumor detection and prediction of therapeutic outcomes. CONCLUSIONS This approach can enhance personalized cancer treatment by providing non-invasive, reliable predictions of therapeutic outcomes.
Collapse
Affiliation(s)
- Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Demetris Englezos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Constantinos Zamboglou
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- Department of Radiation Oncology, German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Iosif Strouthos
- Department of Radiation Oncology, German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Giorgos Papanastasiou
- Archimedes Unit, Athena Research Centre, Athens, Greece
- School of Computer Science and Electronic Engineering University of Essex, Wivenhoe Park, UK
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
45
|
Nguyen TNH, Horowitz LF, Nguyen B, Lockhart E, Zhu S, Gujral TS, Folch A. Microfluidic Modulation of Microvasculature in Microdissected Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615278. [PMID: 39386436 PMCID: PMC11463410 DOI: 10.1101/2024.09.26.615278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The microvasculature within the tumor microenvironment (TME) plays an essential role in cancer signaling beyond nutrient delivery. However, it has been challenging to control the generation and/or maintenance of microvasculature in ex vivo systems, a critical step for establishing cancer models of high clinical biomimicry. There have been great successes in engineering tissues incorporating microvasculature de novo (e.g., organoids and organs-on-chip), but these reconstituted tissues are formed with non-native cellular and molecular components that can skew certain outcomes such as drug efficacy. Microdissected tumors, on the other hand, show promise in preserving the TME, which is key for creating cancer models that can bridge the gap between bench and bedside. However, microdissected tumors are challenging to perfuse. Here, we developed a microfluidic platform that allows for perfusing the microvasculature of microdissected tumors. We demonstrate that, compared to diffusive transport, microfluidically perfused tissues feature larger and longer microvascular structures, with a better expression of CD31, a marker for endothelial cells, as analyzed by 3D imaging. This study also explores the effects of nitric oxide pathway-related drugs on endothelial cells, which are sensitive to shear stress and can activate endothelial nitric oxide synthase, producing nitric oxide. Our findings highlight the critical role of controlled perfusion and biochemical modulation in preserving tumor microvasculature, offering valuable insights for developing more effective cancer treatments.
Collapse
Affiliation(s)
- Tran N. H. Nguyen
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Brandon Nguyen
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Ethan Lockhart
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Songli Zhu
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, United States
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, United States
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| |
Collapse
|
46
|
Burchett A, Siri S, Li J, Lu X, Datta M. Novel 3-D Macrophage Spheroid Model Reveals Reciprocal Regulation of Immunomechanical Stress and Mechano-Immunological Response. Cell Mol Bioeng 2024; 17:329-344. [PMID: 39513012 PMCID: PMC11538219 DOI: 10.1007/s12195-024-00824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose In many diseases, an overabundance of macrophages contributes to adverse outcomes. While numerous studies have compared macrophage phenotype after mechanical stimulation or with varying local stiffness, it is unclear if and how macrophages directly contribute to mechanical forces in their microenvironment. Methods Raw 264.7 murine macrophages were embedded in a confining agarose gel, and proliferated to form spheroids over days/weeks. Gels were synthesized at various concentrations to tune stiffness and were shown to support cell viability and spheroid growth. These cell-agarose constructs were treated with media supplements to promote macrophage polarization. Spheroid geometries were used to computationally model the strain generated in the agarose by macrophage spheroid growth. Agarose-embedded macrophages were analyzed for viability, spheroid size, stress generation, and gene expression. Results Macrophages form spheroids and generate growth-induced mechanical forces (i.e., solid stress) within confining agarose gels, which can be maintained for at least 16 days in culture. Increasing agarose concentration increases gel stiffness, restricts spheroid expansion, limits gel deformation, and causes a decrease in Ki67 expression. Lipopolysaccharide (LPS) stimulation increases spheroid growth, though this effect is reversed with the addition of IFNγ. The mechanosensitive ion channels Piezo1 and TRPV4 have reduced expression with increased stiffness, externally applied compression, LPS stimulation, and M1-like polarization. Conclusions Macrophages alone both respond to and generate solid stress. Understanding how macrophage generation of growth-induced solid stress responds to different environmental conditions will help to inform treatment strategies for the plethora of diseases that involve macrophage accumulation and inflammation. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00824-z.
Collapse
Affiliation(s)
- Alice Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN USA
| | - Saeed Siri
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN USA
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN USA
| |
Collapse
|
47
|
Tan M, Song B, Zhao X, Du J. The role and mechanism of compressive stress in tumor. Front Oncol 2024; 14:1459313. [PMID: 39351360 PMCID: PMC11439826 DOI: 10.3389/fonc.2024.1459313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Recent research has revealed the important role of mechanical forces in the initiation and progression of tumors. The interplay between mechanical and biochemical cues affects the function and behavior of tumor cells during the development of solid tumors, especially their metastatic potential. The compression force generated by excessive cell proliferation and the tumor microenvironment widely regulates the progression of solid tumor disease. Tumor cells can sense alterations in compressive stress through diverse mechanosensitive components and adapt their mechanical characteristics accordingly to adapt to environmental changes. Here, we summarize the current role of compressive stress in regulating tumor behavior and its biophysical mechanism from the mechanobiological direction.
Collapse
Affiliation(s)
- Min Tan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Bingqi Song
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinbin Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jing Du
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
48
|
Gu Q, Zhu L. Heating Induced Nanoparticle Migration and Enhanced Delivery in Tumor Treatment Using Nanotechnology. Bioengineering (Basel) 2024; 11:900. [PMID: 39329642 PMCID: PMC11428587 DOI: 10.3390/bioengineering11090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Nanoparticles have been developed as imaging contrast agents, heat absorbers to confine energy into targeted tumors, and drug carriers in advanced cancer treatment. It is crucial to achieve a minimal concentration of drug-carrying nanostructures or to induce an optimized nanoparticle distribution in tumors. This review is focused on understanding how local or whole-body heating alters transport properties in tumors, therefore leading to enhanced nanoparticle delivery or optimized nanoparticle distributions in tumors. First, an overview of cancer treatment and the development of nanotechnology in cancer therapy is introduced. Second, the importance of particle distribution in one of the hyperthermia approaches using nanoparticles in damaging tumors is discussed. How intensive heating during nanoparticle hyperthermia alters interstitial space structure to induce nanoparticle migration in tumors is evaluated. The next section reviews major obstacles in the systemic delivery of therapeutic agents to targeted tumors due to unique features of tumor microenvironments. Experimental observations on how mild local or whole-body heating boosts systemic nanoparticle delivery to tumors are presented, and possible physiological mechanisms are explored. The end of this review provides the current challenges facing clinicians and researchers in designing effective and safe heating strategies to maximize the delivery of therapeutic agents to tumors.
Collapse
Affiliation(s)
- Qimei Gu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Liang Zhu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
49
|
Liu Z, Fan Y, Cui M, Wang X, Zhao P. Investigation of tumour environments through advancements in microtechnology and nanotechnology. Biomed Pharmacother 2024; 178:117230. [PMID: 39116787 DOI: 10.1016/j.biopha.2024.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer has a significant negative social and economic impact on both developed and developing countries. As a result, understanding the onset and progression of cancer is critical for developing therapies that can improve the well-being and health of individuals with cancer. With time, study has revealed, the tumor microenvironment has great influence on this process. Micro and nanoscale engineering techniques can be used to study the tumor microenvironment. Nanoscale and Microscale engineering use Novel technologies and designs with small dimensions to recreate the TME. Knowing how cancer cells interact with one another can help researchers develop therapeutic approaches that anticipate and counteract cancer cells' techniques for evading detection and fighting anti-cancer treatments, such as microfabrication techniques, microfluidic devices, nanosensors, and nanodevices used to study or recreate the tumor microenvironment. Nevertheless, a complicated action just like the growth and in cancer advancement, and their intensive association along the environment around it that has to be studied in more detail.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Radiology, Shengjing Hospital of China Medical University, China
| | - Yan Fan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyao Cui
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Pengfei Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
50
|
Fujimoto H, Yoshihara M, Rodgers R, Iyoshi S, Mogi K, Miyamoto E, Hayakawa S, Hayashi M, Nomura S, Kitami K, Uno K, Sugiyama M, Koya Y, Yamakita Y, Nawa A, Enomoto A, Ricciardelli C, Kajiyama H. Tumor-associated fibrosis: a unique mechanism promoting ovarian cancer metastasis and peritoneal dissemination. Cancer Metastasis Rev 2024; 43:1037-1053. [PMID: 38546906 PMCID: PMC11300578 DOI: 10.1007/s10555-024-10169-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 08/06/2024]
Abstract
Epithelial ovarian cancer (EOC) is often diagnosed in advanced stage with peritoneal dissemination. Recent studies indicate that aberrant accumulation of collagen fibers in tumor stroma has a variety of effects on tumor progression. We refer to remodeled fibrous stroma with altered expression of collagen molecules, increased stiffness, and highly oriented collagen fibers as tumor-associated fibrosis (TAF). TAF contributes to EOC cell invasion and metastasis in the intraperitoneal cavity. However, an understanding of molecular events involved is only just beginning to emerge. Further development in this field will lead to new strategies to treat EOC. In this review, we focus on the recent findings on how the TAF contributes to EOC malignancy. Furthermore, we will review the recent initiatives and future therapeutic strategies for targeting TAF in EOC.
Collapse
Affiliation(s)
- Hiroki Fujimoto
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Masato Yoshihara
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Raymond Rodgers
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Shohei Iyoshi
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Kazumasa Mogi
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Emiri Miyamoto
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sae Hayakawa
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maia Hayashi
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Nomura
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynaecology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kaname Uno
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University Graduate School of Medicine, Lund, Sweden
| | - Mai Sugiyama
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Koya
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiko Yamakita
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Nawa
- Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, Australia.
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|