1
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
2
|
Lu ZM, Qiu ZW, Li YM, Zhang KY, Wu YY, Yan N, Cheng H. PD-L1-Targeting Autophagy Modulator to Upregulate MHC-I and Activate Photo-Immunotherapy for Metastatic Tumor Eradication. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20820-20832. [PMID: 40132080 DOI: 10.1021/acsami.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Breast cancer cells are characterized by heightened autophagy, which impairs tumor-associated antigen presentation and represents a significant barrier to the antitumor immunity. In this study, a PD-L1-targeting autophagy modulator (PFC@CQ) is fabricated to activate the photoimmunotherapy against breast cancer. Specifically, the hydrophobic photosensitizer protoporphyrin IX (PpIX) is covalently linked to the hydrophobic peptide FFVLK and a PD-L1-targeting peptide sequence CLQKTPKQC, resulting in the formation of an amphiphilic photosensitizer-peptide conjugate (PpIX-FFVLK-CLQKTPKQC, called PFC), which is capable of encapsulating the autophagy inhibitor chloroquine (CQ). PFC@CQ can not only facilitate the targeted drug codelivery to PD-L1-overexpressing breast cancer cells, but also effectively disrupt their immune evasion by blocking PD-1/PD-L1 pathway. Upon light irradiation, the photodynamic therapy (PDT) of PFC@CQ induces tumor cell destruction and immunogenic cell death (ICD), causing the release of damage-associated molecular patterns (DAMPs). Simultaneously, PFC@CQ can inhibit autophagy pathway to mediate the upregulation of MHC-I, thereby enhancing antigen presentation. This cascade immunomodulation promotes the dendritic cell maturation and CD8+ T cell activation, leading to a synergistic suppression of both primary and metastatic tumors. This work introduces an innovative autophagy modulation strategy with potent immunomodulatory capability, demonstrating a potential to trigger systemic antitumor immune responses through local treatment.
Collapse
Affiliation(s)
- Zhen-Ming Lu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zi-Wen Qiu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yan-Mei Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ke-Yan Zhang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ye-Yang Wu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ni Yan
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
3
|
Zielińska MK, Ciążyńska M, Sulejczak D, Rutkowski P, Czarnecka AM. Mechanisms of Resistance to Anti-PD-1 Immunotherapy in Melanoma and Strategies to Overcome It. Biomolecules 2025; 15:269. [PMID: 40001572 PMCID: PMC11853485 DOI: 10.3390/biom15020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Resistance to anti-PD-1 therapy in melanoma remains a major obstacle in achieving effective and durable treatment outcomes, highlighting the need to understand and address the underlying mechanisms. The first key factor is innate anti-PD-1 resistance signature (IPRES), an expression of a group of genes associated with tumor plasticity and immune evasion. IPRES promotes epithelial-to-mesenchymal transition (EMT), increasing melanoma cells' invasiveness and survival. Overexpressed AXL, TWIST2, and WNT5a induce phenotypic changes. The upregulation of pro-inflammatory cytokines frequently coincides with EMT-related changes, further promoting a resistant and aggressive tumor phenotype. Inflamed tumor microenvironment may also drive the expression of resistance. The complexity of immune resistance development suggests that combination therapies are necessary to overcome it. Furthermore, targeting epigenetic regulation and exploring novel approaches such as miR-146a modulation may provide new strategies to counter resistance in melanoma.
Collapse
Affiliation(s)
- Magdalena K. Zielińska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Magdalena Ciążyńska
- Chemotherapy Unit and Day Chemotherapy Ward, Specialised Oncology Hospital, 97-200 Tomaszów Mazowiecki, Poland;
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Łódź, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
4
|
Cho H, Kwon H, Kim SH, Ahn HM, Choi BK, Lee GK, Park SY, Lim HJ, Hwang JA, Lim J, Han JY, Lee Y. Seasonal influences on the efficacy of anti-programmed cell death (ligand) 1 inhibitors in lung cancer. Cancer 2024; 130:3647-3657. [PMID: 38941496 DOI: 10.1002/cncr.35454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Seasonal variations in systemic immunity have been reported. This study aimed to evaluate whether seasonality affects the efficacy of anticancer immunotherapy. METHODS A total of 604 patients with lung cancer receiving single anti-programmed cell death (ligand) 1 (anti-PD-[L]1) inhibitors from two prospective observational cohorts were screened. Primary outcomes were progression-free survival (PFS) and overall survival (OS). Patients were classified into two groups according to the season when the treatment started: winter (November-February) and other seasons (March-October). Kaplan-Meier analysis and Cox proportional hazards models were fitted to evaluate the impact of seasonality on survival. For validation, propensity score matching was performed. RESULTS A total of 484 patients with advanced non-small cell lung cancer were included. In an unmatched population, multivariable analysis demonstrated that the winter group (n = 173) had a significantly lower risk of progression or death from immunotherapy than the other group (n = 311) (PFS: hazard ratio [HR], 0.77 [95% confidence interval (CI), 0.62-0.96]; p = .018; OS: HR, 0.77 [95% CI, 0.1-0.98]; p = .032). In a propensity score-matched population, the winter group (n = 162) showed significantly longer median PFS (2.8 months [95% CI, 1.9-4.1 months] vs. 2.0 months [95% CI, 1.4-2.7 months]; p = .009) than the other group (n = 162). The winter group's median OS was also significantly longer than that of the other group (13.4 months [95% CI, 10.2-18.0 months] vs. 8.0 months [95% CI, 3.6-8.7 months]; p = .012). The trend toward longer survival in the winter group continued in subgroup analyses. CONCLUSIONS Starting an anti-PD-(L)1 inhibitor in winter was associated with better treatment outcomes in patients with lung cancer compared to other seasons.
Collapse
Affiliation(s)
- Hyunsoon Cho
- Department of Cancer AI and Digital Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
- Integrated Biostatistics Branch, Division of Cancer Data Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Hoejun Kwon
- Department of Cancer AI and Digital Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyung-Min Ahn
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Beom K Choi
- Biomedicine Production Branch, National Cancer Center, Goyang, Republic of Korea
| | - Geon Kook Lee
- Department of Pathology, National Cancer Center, Goyang, Republic of Korea
| | - Seog-Yun Park
- Department of Pathology, National Cancer Center, Goyang, Republic of Korea
| | - Hyun-Ju Lim
- Department of Radiology, National Cancer Center, Goyang, Republic of Korea
| | - Jung-Ah Hwang
- Genomics Core Facility, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jiyeon Lim
- Immuno-Oncology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Ji-Youn Han
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
- Division of Hematology and Oncology, Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea
| | - Youngjoo Lee
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
- Division of Hematology and Oncology, Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
5
|
Shiraishi Y, Nomura S, Sugawara S, Horinouchi H, Yoneshima Y, Hayashi H, Azuma K, Hara S, Niho S, Morita R, Yamaguchi M, Yokoyama T, Yoh K, Kurata T, Okamoto H, Okamoto M, Kijima T, Kasahara K, Fujiwara Y, Murakami S, Kanda S, Akamatsu H, Takemoto S, Kaneda H, Kozuki T, Ando M, Sekino Y, Fukuda H, Ohe Y, Okamoto I. Comparison of platinum combination chemotherapy plus pembrolizumab versus platinum combination chemotherapy plus nivolumab-ipilimumab for treatment-naive advanced non-small-cell lung cancer in Japan (JCOG2007): an open-label, multicentre, randomised, phase 3 trial. THE LANCET. RESPIRATORY MEDICINE 2024; 12:877-887. [PMID: 39159638 DOI: 10.1016/s2213-2600(24)00185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND The combination of platinum-based chemotherapy and an antibody to PD-1 or to its ligand PD-L1, with or without an antibody to CTLA-4, has improved the survival of individuals with metastatic non-small-cell lung cancer (NSCLC). However, no randomised controlled trial has evaluated the survival benefit of adding a CTLA-4 inhibitor to platinum-based chemotherapy plus a PD-1 or PD-L1 inhibitor. METHODS This open-label, randomised, phase 3 trial was conducted at 48 hospitals in Japan. Eligible patients were aged 20 years or older with previously untreated advanced NSCLC and an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients with known driver oncogenes were excluded. Participants were randomly assigned (1:1) to receive platinum-based chemotherapy (four cycles) plus pembrolizumab (pembrolizumab group) or platinum-based chemotherapy (two cycles) plus nivolumab-ipilimumab (nivolumab-ipilimumab group). The primary endpoint was overall survival and assessed in all randomly assigned patients on an intention-to-treat basis. The trial is registered in the Japan Registry for Clinical Trials, jRCTs031210013, and is now closed to new enrolment and is ongoing. FINDINGS Between patient accrual initiation on April 6, 2021, and discontinuation of the trial on March 30, 2023, 11 (7%) of 148 patients in the nivolumab-ipilimumab group had a treatment-related death. Because of the high number of treatment-related deaths, patient accrual was terminated early, resulting in 295 patients (236 [80%] male and 59 [20%] female) enrolled; the primary analysis was done on the basis of 117 deaths (fewer than the required 329 deaths). By May 25, 2023 (data cutoff), overall survival did not differ significantly between the nivolumab-ipilimumab group and the pembrolizumab group (median 23·7 months [95% CI 17·6-not estimable] vs 20·5 months [17·6-not estimable], respectively; hazard ratio 0·98 [90% CI 0·72-1·34]; p=0·46). Non-haematological adverse events of grade 3 or worse occurred in 87 (60%) of 146 patients in the nivolumab-ipilimumab group and 59 (41%) of 144 patients in the pembrolizumab group. The pembrolizumab group tended to have a better quality of life compared with the nivolumab-ipilimumab group. INTERPRETATION The safety and efficacy data suggest an unfavourable benefit-risk profile for nivolumab-ipilimumab combined with platinum-based chemotherapy relative to pembrolizumab combined with platinum-based chemotherapy as a first-line treatment for patients with advanced NSCLC, although a definitive conclusion awaits an updated analysis of overall survival. FUNDING The National Cancer Center Research and Development Fund and Japan Agency for Medical Research and Development.
Collapse
Affiliation(s)
- Yoshimasa Shiraishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Nomura
- Japan Clinical Oncology Group Data Center/Operations Office, National Cancer Center Hospital, Tokyo, Japan; Department of Biostatistics and Bioinformatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shunichi Sugawara
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Miyagi, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Satoshi Hara
- Department of Respiratory Medicine, Itami City Hospital, Hyogo, Japan
| | - Seiji Niho
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Ryo Morita
- Department of Respiratory Medicine, Akita Kousei Medical Center, Akita, Japan
| | - Masafumi Yamaguchi
- Department of Thoracic Oncology, NHO Kyushu Cancer Center, Fukuoka, Japan
| | - Toshihide Yokoyama
- Department of Respiratory Medicine, Ohara Healthcare Foundation, Kurashiki Central Hospital, Okayama, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Takayasu Kurata
- Department of Thoracic Oncology, Kansai Medical University, Osaka, Japan
| | - Hiroaki Okamoto
- Department of Respiratory Medicine, Yokohama Municipal Citizen's Hospital, Kanagawa, Japan
| | - Masaki Okamoto
- Department of Respirology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Hyogo, Japan
| | - Kazuo Kasahara
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yutaka Fujiwara
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Shuji Murakami
- Department of Thoracic Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Shintaro Kanda
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Nagano, Japan
| | - Hiroaki Akamatsu
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Shinnosuke Takemoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Toshiyuki Kozuki
- Department of Thoracic Oncology and Medicine, NHO Shikoku Cancer Center, Ehime, Japan
| | - Masahiko Ando
- Department of Advanced Medicine, Nagoya University Hospital, Aichi, Japan
| | - Yuta Sekino
- Japan Clinical Oncology Group Data Center/Operations Office, National Cancer Center Hospital, Tokyo, Japan
| | - Haruhiko Fukuda
- Japan Clinical Oncology Group Data Center/Operations Office, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
6
|
Bazzazan MA, Fattollazadeh P, Keshavarz Shahbaz S, Rezaei N. Polymeric nanoparticles as a promising platform for treating triple-negative breast cancer: Current status and future perspectives. Int J Pharm 2024; 664:124639. [PMID: 39187034 DOI: 10.1016/j.ijpharm.2024.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks expression of estrogen, progesterone, and HER2 receptor targets for therapy. Polymeric nanoparticles help address the challenges in treating TNBC by enabling tailored and targeted drug delivery. Biocompatible polymeric nanoparticles leverage enhanced tumor permeability for site-specific accumulation and ligand-mediated active targeting to boost specificity. Controlled, sustained intratumorally release of encapsulated chemotherapies, such as paclitaxel and curcumin, improves antitumor efficacy as demonstrated through preclinical TNBC models. However, the practical application of these nanomedicines still has room for improvement. Advancing personalized nanoparticle platforms that align treatments to TNBC's expanding molecular subtypes shows promise. Expanding the polymer range through novel copolymers or drug conjugates may improve tumor penetration, stability, and drug encapsulation. Incorporating gene therapies, imaging agents, or triggering stimuli responsiveness into polymeric nanoparticles can also overcome innate and acquired drug resistance in TNBC while monitoring outcomes. This article reviews the different types of nanoparticles used to treat TNBC and the different mechanisms of nanoparticles that can deliver drugs to tumor cells. Collaboration across different disciplines aimed at developing combination therapies, immuno-oncology, tumor-targeting ligands, and translating preclinical safety/efficacy via scalable manufacturing practices is essential. Well-designed polymeric nanoparticles offer immense potential for patient-centric TNBC treatment, but continued optimization across bench to bedside efforts is critical for clinical realization and transforming patient outcomes.
Collapse
Affiliation(s)
- Mohammad Amin Bazzazan
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Pouriya Fattollazadeh
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Sanaz Keshavarz Shahbaz
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran; Cellular and Molecular Research Center, Research Institute for Prevention of Noncommunicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
7
|
Chen X, Yi J, Xie L, Liu T, Liu B, Yan M. Integration of transcriptomics and machine learning for insights into breast cancer: exploring lipid metabolism and immune interactions. Front Immunol 2024; 15:1470167. [PMID: 39524444 PMCID: PMC11543460 DOI: 10.3389/fimmu.2024.1470167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background Breast cancer (BRCA) represents a substantial global health challenge marked by inadequate early detection rates. The complex interplay between the tumor immune microenvironment and fatty acid metabolism in BRCA requires further investigation to elucidate the specific role of lipid metabolism in this disease. Methods We systematically integrated nine machine learning algorithms into 184 unique combinations to develop a consensus model for lipid metabolism-related prognostic genes (LMPGS). Additionally, transcriptomics analysis provided a comprehensive understanding of this prognostic signature. Using the ESTIMATE method, we evaluated immune infiltration among different risk subgroups and assessed their responsiveness to immunotherapy. Tailored treatments were screened for specific risk subgroups. Finally, we verified the expression of key genes through in vitro experiments. Results We identified 259 differentially expressed genes (DEGs) related to lipid metabolism through analysis of the cancer genome atlas program (TCGA) database. Subsequently, via univariate Cox regression analysis and C-index analysis, we developed an optimal machine learning algorithm to construct a 21-gene LMPGS model. We used optimal cutoff values to divide the lipid metabolism prognostic gene scores into two groups according to high and low scores. Our study revealed distinct biological functions and mutation landscapes between high-scoring and low-scoring patients. The low-scoring group presented a greater immune score, whereas the high-scoring group presented enhanced responses to both immunotherapy and chemotherapy drugs. Single-cell analysis highlighted significant upregulation of CPNE3 in epithelial cells. Moreover, by employing molecular docking, we identified niclosamide as a potential targeted therapeutic drug. Finally, our experiments demonstrated high expression of MTMR9 and CPNE3 in BRCA and their significant correlation with prognosis. Conclusion By employing bioinformatics and diverse machine learning algorithms, we successfully identified genes associated with lipid metabolism in BRCA and uncovered potential therapeutic agents, thereby offering novel insights into the mechanisms and treatment strategies for BRCA.
Collapse
Affiliation(s)
- Xiaohan Chen
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Jinfeng Yi
- Department of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lili Xie
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Tong Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baogang Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Meisi Yan
- Department of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Scibilia KR, Schlicke P, Schneller F, Kuttler C. Predicting resistance and pseudoprogression: are minimalistic immunoediting mathematical models capable of forecasting checkpoint inhibitor treatment outcomes in lung cancer? Math Biosci 2024; 376:109287. [PMID: 39218211 DOI: 10.1016/j.mbs.2024.109287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The increased application of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 in lung cancer treatment generates clinical need to reliably predict individual patients' treatment outcomes. METHODS To bridge the prediction gap, we examine four different mathematical models in the form of ordinary differential equations, including a novel delayed response model. We rigorously evaluate their individual and combined predictive capabilities with regard to the patients' progressive disease (PD) status through equal weighting of model-derived outcome probabilities. RESULTS Fitting the complete treatment course, the novel delayed response model (R2=0.938) outperformed the simplest model (R2=0.865). The model combination was able to reliably predict patient PD outcome with an overall accuracy of 77% (sensitivity = 70%, specificity = 81%), solely through calibration with primary tumor longest diameter measurements. It autonomously identified a subset of 51% of patients where predictions with an overall accuracy of 81% (sensitivity = 81%, specificity = 81%) can be achieved. All models significantly outperformed a fully data-driven machine learning-based approach. IMPLICATIONS These modeling approaches provide a dynamic baseline framework to support clinicians in treatment decisions by identifying different treatment outcome trajectories with already clinically available measurement data. LIMITATIONS AND FUTURE DIRECTIONS Conjoint application of the presented approach with other predictive tools and biomarkers, as well as further disease information (e.g. metastatic stage), could further enhance treatment outcome prediction. We believe the simple model formulations allow widespread adoption of the developed models to other cancer types. Similar models can easily be formulated for other treatment modalities.
Collapse
Affiliation(s)
- Kevin Robert Scibilia
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, Garching, 85747, Germany
| | - Pirmin Schlicke
- Department of Mathematics, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, Garching, 85747, Germany.
| | - Folker Schneller
- Department of Internal Medicine III, Klinikum Rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Christina Kuttler
- Department of Mathematics, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, Garching, 85747, Germany
| |
Collapse
|
9
|
Li Z, Yu X, Yuan Z, Li L, Yin P. New horizons in the mechanisms and therapeutic strategies for PD-L1 protein degradation in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189152. [PMID: 38992509 DOI: 10.1016/j.bbcan.2024.189152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Programmed death-ligand 1 (PD-L1) has become a crucial focus in cancer immunotherapy considering it is found in many different cells. Cancer cells enhance the suppressive impact of programmed death receptor 1 (PD-1) through elevating PD-L1 expression, which allows them to escape immune detection. Although there have been significant improvements, the effectiveness of anti-PD-1/PD-L1 treatment is still limited to a specific group of patients. An important advancement in cancer immunotherapy involves improving the PD-L1 protein degradation. This review thoroughly examined the processes by which PD-L1 breaks down, including the intracellular pathways of ubiquitination-proteasome and autophagy-lysosome. In addition, the analysis revealed changes that affect PD-L1 stability, such as phosphorylation and glycosylation. The significant consequences of these procedures on cancer immunotherapy and their potential role in innovative therapeutic approaches are emphasised. Our future efforts will focus on understanding new ways in which PD-L1 degradation is controlled and developing innovative treatments, such as proteolysis-targeting chimeras designed specifically to degrade PD-L1. It is crucial to have a thorough comprehension of these pathways in order to improve cancer immunotherapy strategies and hopefully improve therapeutic effectiveness.
Collapse
Affiliation(s)
- Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xi Yu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
10
|
Zhang XC, Zhou YW, Wei GX, Luo YQ, Qiu M. Locoregional therapies combined with immune checkpoint inhibitors for liver metastases. Cancer Cell Int 2024; 24:302. [PMID: 39217341 PMCID: PMC11365172 DOI: 10.1186/s12935-024-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have achieved remarkable success in clinical research and practice. Notably, liver metastasis is not sensitive to ICIs. Liver locoregional therapies can cause irreversible damage to tumor cells and release tumor antigens, thereby providing a rationale for immunotherapy treatments in liver metastasis. The combination therapy of ICIs with locoregional therapies is a promising option for patients with liver metastasis. Preclinical studies have demonstrated that combining ICIs with locoregional therapies produces a significantly synergistic anti-tumor effect. However, the current evidence for the efficacy of ICIs combined with locoregional therapies remains insufficient. Therefore, we review the literature on the mechanisms of locoregional therapies in treating liver metastasis and the clinical research progress of their combination with ICIs.
Collapse
Affiliation(s)
- Xing-Chen Zhang
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
| | - Yu-Wen Zhou
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
| | - Gui-Xia Wei
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Qiao Luo
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
11
|
Okano S. Immunotherapy for head and neck cancer: Fundamentals and therapeutic development. Auris Nasus Larynx 2024; 51:684-695. [PMID: 38729034 DOI: 10.1016/j.anl.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) has been treated by multidisciplinary therapy consisting of surgery, radiotherapy, and cancer chemotherapy, but the recent advent of immunotherapy has produced significant changes in treatment systems and the results of these therapies. Immunotherapy has greatly improved the outcome of recurrent metastatic SCCHN, and the development of new treatment methods based on immunotherapy is now being applied not only to recurrent metastatic cases but also to locally advanced cases. To understand and practice cancer immunotherapy, it is important to understand the immune environment surrounding cancer, and the changes to which it is subject. Currently, the anti-PD-1 antibody drugs nivolumab and pembrolizumab are the only immunotherapies with proven efficacy in head and neck cancer. However, anti-PD-L1 and anti-CTLA-4 antibody drugs have also been shown to be useful in other types of cancer and are being incorporated into clinical practice. In head and neck cancer, numerous clinical trials have aimed to improve efficacy and safety by combining immunotherapy with other drug therapies and treatment modalities. Combinations of immunotherapy with cancer drugs with different mechanisms of action (cytotoxic agents, molecular-targeted agents, immune checkpoint inhibitors), as well as with radiation therapy and surgery are being investigated, and have the potential to significantly change medical care for these patients. The application of cancer immunotherapy not only to daily clinical practice but also to further therapeutic development requires a clear and complete understanding of the fundamentals of cancer immunotherapy, and knowledge of the numerous clinical studies conducted, both past and present. The results of these trials are numerous, both positive and negative, and a comprehensive understanding of this wide range of completed and ongoing clinical trials is critical to a systematic and comprehensive understanding of their scope and lessons learnt. In this article, after outlining the concepts of ``cancer immune cycle,'' ``cancer immune editing,'' and ``tumor microenvironment'' to provide an understanding of the basics of cancer immunity, we summarize the basics and clinical trial data on representative immune checkpoint inhibitors used in various cancer types, as well as recent therapeutic developments in cancer immunotherapy and the current status of these new treatments.
Collapse
Affiliation(s)
- Susumu Okano
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
| |
Collapse
|
12
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
13
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
14
|
Qian X, Ning W, Dunmall LC, Qu Y, Wang Y, Zhang H. Treatment of intracranial inflammatory myofibroblastic tumor with PD-L1 inhibitor and novel oncolytic adenovirus Ad-TD-nsIL12: a case report and literature review. Front Immunol 2024; 15:1427554. [PMID: 39114662 PMCID: PMC11303231 DOI: 10.3389/fimmu.2024.1427554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Inflammatory myofibroblastic tumor (IMT) is a rare pathological entity first described in 1939. This lesion is most commonly found in the lungs, but cases involving other systems, such as the central nervous system known as intracranial IMT (IIMT), have also been reported. Diagnosis currently relies on pathological results due to the lack of characteristic imaging changes. Surgical resection is an effective treatment, though the disease is invasive and may recur. Previous literature has reported a high level of programmed death 1 (PD-1) expression in IMT tissues, suggesting that immunotherapy may be effective for this condition. In this case report, we present a middle-aged male who received PD-1 inhibitor and oncolytic adenovirus (Ad-TD-nsIL12) treatment after IIMT resection surgery. This successful approach provides a new direction for the treatment of IIMT.
Collapse
Affiliation(s)
- Xiao Qian
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Dalle S. Targeting Protein Kinases to Protect Beta-Cell Function and Survival in Diabetes. Int J Mol Sci 2024; 25:6425. [PMID: 38928130 PMCID: PMC11203834 DOI: 10.3390/ijms25126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of diabetes is increasing worldwide. Massive death of pancreatic beta-cells causes type 1 diabetes. Progressive loss of beta-cell function and mass characterizes type 2 diabetes. To date, none of the available antidiabetic drugs promotes the maintenance of a functional mass of endogenous beta-cells, revealing an unmet medical need. Dysfunction and apoptotic death of beta-cells occur, in particular, through the activation of intracellular protein kinases. In recent years, protein kinases have become highly studied targets of the pharmaceutical industry for drug development. A number of drugs that inhibit protein kinases have been approved for the treatment of cancers. The question of whether safe drugs that inhibit protein kinase activity can be developed and used to protect the function and survival of beta-cells in diabetes is still unresolved. This review presents arguments suggesting that several protein kinases in beta-cells may represent targets of interest for the development of drugs to treat diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| |
Collapse
|
16
|
Zhou L, Wan Y, Zhang L, Meng H, Yuan L, Zhou S, Cheng W, Jiang Y. Beyond monotherapy: An era ushering in combinations of PARP inhibitors with immune checkpoint inhibitors for solid tumors. Biomed Pharmacother 2024; 175:116733. [PMID: 38754267 DOI: 10.1016/j.biopha.2024.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
The introduction of PARP inhibitors (PARPis) and immune checkpoint inhibitors (ICIs) has marked a significant shift in the treatment landscape for solid tumors. Emerging preclinical evidence and initial clinical trials have indicated that the synergistic application of PARPis and ICIs may enhance treatment efficacy and potentially improve long-term patient outcomes. Nonetheless, how to identify specific tumor types and molecular subgroups most likely to benefit from this combination remains an area of ongoing research. This review thoroughly examines current studies on the co-administration of PARPis and ICIs across various solid tumors. It explores the underlying mechanisms of action, evaluates clinical efficacy, identifies potential responder populations, and delineates common adverse events alongside strategic management approaches. The aim is to offer a detailed understanding of this combination therapy, potentially guiding future therapeutic strategies for solid tumors.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Yuan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
17
|
Ahn S, Kwak Y, Kwon GY, Kim KM, Kim M, Kim H, Park YS, Oh HJ, Lee K, Lee SH, Lee HS. Interpretation of PD-L1 expression in gastric cancer: summary of a consensus meeting of Korean gastrointestinal pathologists. J Pathol Transl Med 2024; 58:103-116. [PMID: 38653580 PMCID: PMC11106610 DOI: 10.4132/jptm.2024.03.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Nivolumab plus chemotherapy in the first-line setting has demonstrated clinical efficacy in patients with human epidermal growth factor receptor 2-negative advanced or metastatic gastric cancer, and is currently indicated as a standard treatment. Programmed death-ligand 1 (PD-L1) expression is an important biomarker for predicting response to anti-programmed death 1/PD-L1 agents in several solid tumors, including gastric cancer. In the CheckMate-649 trial, significant clinical improvements were observed in patients with PD-L1 combined positive score (CPS) ≥ 5, determined using the 28-8 pharmDx assay. Accordingly, an accurate interpretation of PD-L1 CPS, especially at a cutoff of 5, is important. The CPS method evaluates both immune and tumor cells and provides a comprehensive assessment of PD-L1 expression in the tumor microenvironment of gastric cancer. However, CPS evaluation has several limitations, one of which is poor interobserver concordance among pathologists. Despite these limitations, clinical indications relying on PD-L1 CPS are increasing. In response, Korean gastrointestinal pathologists held a consensus meeting for the interpretation of PD-L1 CPS in gastric cancer. Eleven pathologists reviewed 20 PD-L1 slides with a CPS cutoff close to 5, stained with the 28-8 pharmDx assay, and determined the consensus scores. The issues observed in discrepant cases were discussed. In this review, we present cases of gastric cancer with consensus PD-L1 CPS. In addition, we briefly touch upon current practices and clinical issues associated with assays used for the assessment of PD-L1 expression in gastric cancer.
Collapse
Affiliation(s)
- Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Gui Young Kwon
- Seoul Clinical Laboratories, Department of Pathology, Yongin, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyoungyul Lee
- Pathology Center, Seegene Medical Foundation, Seoul, Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Han EK, Woo JW, Suh KJ, Kim SH, Kim JH, Park SY. PD-L1 (SP142) Expression in Primary and Recurrent/Metastatic Triple-Negative Breast Cancers and Its Clinicopathological Significance. Cancer Res Treat 2024; 56:557-566. [PMID: 38097920 PMCID: PMC11016636 DOI: 10.4143/crt.2023.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE The programmed death-ligand 1 (PD-L1) SP142 assay identifies patients with triple-negative breast cancer (TNBC) who are most likely to respond to the anti-PD-L1 agent atezolizumab. We aimed to compare PD-L1 (SP142) expression between primary and recurrent/metastatic TNBCs and elucidate the clinicopathological features associated with its expression. MATERIALS AND METHODS Primary and recurrent/metastatic TNBCs tested with PD-L1 (SP142) were collected, and clinicopathological information of these cases was obtained through a review of slides and medical records. RESULTS PD-L1 (SP142) positivity was observed in 50.9% (144/283) of primary tumors and 37.8% (31/82) of recurrent/metastatic TNBCs with a significant difference. Recurrent or metastatic sites were associated with PD-L1 positivity, with high PD-L1 positivity in the lung, breast, and soft tissues, and low positivity in the bone, skin, liver, and brain. When comparing PD-L1 expression between primary and matched recurrent/metastatic TNBCs using 55 paired samples, 20 cases (36.4%) showed discordance; 10 cases revealed positive conversion, and another 10 cases revealed negative conversion during metastatic progression. In primary TNBCs, PD-L1 expression was associated with a higher histologic grade, lower T category, pushing border, and higher tumor-infiltrating lymphocyte infiltration. In survival analyses, PD-L1 positivity, especially high positivity, was found to be associated with favorable prognosis of patients. CONCLUSION PD-L1 (SP142) expression was lower in recurrent/metastatic TNBCs, and substantial cases showed discordance in its expression between primary and recurrent/metastatic sites, suggesting that multiple sites may need to be tested for PD-L1 (SP142) when considering atezolizumab therapy. PD-L1 (SP142)-positive TNBCs seems to be associated with favorable clinical outcomes.
Collapse
Affiliation(s)
- Eun Kyung Han
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji Won Woo
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Koung Jin Suh
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Se Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
19
|
Middha P, Thummalapalli R, Betti MJ, Yao L, Quandt Z, Balaratnam K, Bejan CA, Cardenas E, Falcon CJ, Faleck DM, Gubens MA, Huntsman S, Johnson DB, Kachuri L, Khan K, Li M, Lovly CM, Murray MH, Patel D, Werking K, Xu Y, Zhan LJ, Balko JM, Liu G, Aldrich MC, Schoenfeld AJ, Ziv E. Polygenic risk score for ulcerative colitis predicts immune checkpoint inhibitor-mediated colitis. Nat Commun 2024; 15:2568. [PMID: 38531883 PMCID: PMC10966072 DOI: 10.1038/s41467-023-44512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/15/2023] [Indexed: 03/28/2024] Open
Abstract
Immune checkpoint inhibitor-mediated colitis (IMC) is a common adverse event of treatment with immune checkpoint inhibitors (ICI). We hypothesize that genetic susceptibility to Crohn's disease (CD) and ulcerative colitis (UC) predisposes to IMC. In this study, we first develop a polygenic risk scores for CD (PRSCD) and UC (PRSUC) in cancer-free individuals and then test these PRSs on IMC in a cohort of 1316 patients with ICI-treated non-small cell lung cancer and perform a replication in 873 ICI-treated pan-cancer patients. In a meta-analysis, the PRSUC predicts all-grade IMC (ORmeta=1.35 per standard deviation [SD], 95% CI = 1.12-1.64, P = 2×10-03) and severe IMC (ORmeta=1.49 per SD, 95% CI = 1.18-1.88, P = 9×10-04). PRSCD is not associated with IMC. Furthermore, PRSUC predicts severe IMC among patients treated with combination ICIs (ORmeta=2.20 per SD, 95% CI = 1.07-4.53, P = 0.03). Overall, PRSUC can identify patients receiving ICI at risk of developing IMC and may be useful to monitor patients and improve patient outcomes.
Collapse
Affiliation(s)
- Pooja Middha
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rohit Thummalapalli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Betti
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lydia Yao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zoe Quandt
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Cosmin A Bejan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eduardo Cardenas
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christina J Falcon
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David M Faleck
- Gastroenterology, Hepatology & Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew A Gubens
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University of Medicine, Stanford, CA, USA
| | - Khaleeq Khan
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Min Li
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christine M Lovly
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Megan H Murray
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Kristin Werking
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luna Jia Zhan
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Temerty School of Medicine, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Melinda C Aldrich
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam J Schoenfeld
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Center for Genes, Environment and Health, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Yousefi A, Sotoodehnejadnematalahi F, Nafissi N, Zeinali S, Azizi M. MicroRNA-561-3p indirectly regulates the PD-L1 expression by targeting ZEB1, HIF1A, and MYC genes in breast cancer. Sci Rep 2024; 14:5845. [PMID: 38462658 PMCID: PMC10925600 DOI: 10.1038/s41598-024-56511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Atena Yousefi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
21
|
Lan HR, Chen M, Yao SY, Chen JX, Jin KT. Novel immunotherapies for breast cancer: Focus on 2023 findings. Int Immunopharmacol 2024; 128:111549. [PMID: 38266449 DOI: 10.1016/j.intimp.2024.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Immunotherapy has emerged as a revolutionary approach in cancer therapy, and recent advancements hold significant promise for breast cancer (BCa) management. Employing the patient's immune system to combat BCa has become a focal point in immunotherapeutic investigations. Strategies such as immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT), and targeting the tumor microenvironment (TME) have disclosed encouraging clinical outcomes. ICIs, particularly programmed cell death protein 1 (PD-1)/PD-L1 inhibitors, exhibit efficacy in specific BCa subtypes, including triple-negative BCa (TNBC) and human epidermal growth factor receptor 2 (HER2)-positive cancers. ACT approaches, including tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapy, showed promising clinical outcomes in enhancing tumor recognition and elimination. Targeting the TME through immune agonists and oncolytic viruses signifies a burgeoning field of research. While challenges persist in patient selection, resistance mechanisms, and combination therapy optimization, these novel immunotherapies hold transformative potential for BCa treatment. Continued research and clinical trials are imperative to refine and implement these innovative approaches, paving the way for improved outcomes and revolutionizing the management of BCa. This review provides a concise overview of the latest immunotherapies (2023 studies) in BCa, highlighting their potential and current status.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China
| | - Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Shi-Ya Yao
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China
| | - Jun-Xia Chen
- Department of Gynecology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Ke-Tao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
22
|
Luo YH, Shen CI, Chiang CL, Huang HC, Chen YM. Dynamic immune signatures of patients with advanced non-small-cell lung cancer for infection prediction after immunotherapy. Front Immunol 2024; 15:1269253. [PMID: 38343550 PMCID: PMC10853389 DOI: 10.3389/fimmu.2024.1269253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Background Pulmonary infections are a crucial health concern for patients with advanced non-small-cell lung cancer (NSCLC). Whether the clinical outcome of pulmonary infection is influenced by immunotherapy(IO) remains unclear. By evaluating immune signatures, this study investigated the post-immunotherapy risk of pulmonary infection in patients with lung cancer and identified circulating biomarkers that predict post-immunotherapy infection. Methods Blood specimens were prospectively collected from patients with NSCLC before and after chemotherapy(C/T) and/or IO to explore dynamic changes in immune signatures. Real-world clinical data were extracted from medical records for outcome evaluation. Mass cytometry and ELISA were employed to analyze immune signatures and cytokine profiles to reveal potential correlations between immune profiles and the risk of infection. Results The retrospective cohort included 283 patients with advanced NSCLC. IO was associated with a lower risk of pneumonia (odds ratio=0.46, p=0.012). Patients receiving IO and remained pneumonia-free exhibited the most favorable survival outcomes compared with those who received C/T or developed pneumonia (p<0.001). The prospective cohort enrolled 30 patients. The proportion of circulating NK cells significantly increased after treatment in IO alone (p<0.001) and C/T+IO group (p<0.01). An increase in cell densities of circulating PD-1+CD8+(cytotoxic) T cells (p<0.01) and PD-1+CD4+ T cells (p<0.01) were observed in C/T alone group after treatment. In IO alone group, a decrease in cell densities of TIM-3+ and PD-1+ cytotoxic T cells (p<0.05), and PD-1+CD4+ T cells (p<0.01) were observed after treatment. In C/T alone and C/T+IO groups, cell densities of circulating PD-1+ cytotoxic T cells significantly increased in patients with pneumonia after treatment(p<0.05). However, in IO alone group, cell density of PD-1+ cytotoxic T cells significantly decreased in patients without pneumonia after treatment (p<0.05). TNF-α significantly increased after treatment with IO alone (p<0.05) but decreased after C/T alone (p<0.01). Conclusions Our results indicate that the incorporation of immunotherapy into treatment regimens may potentially offer protective effects against pulmonary infection. Protective effects are associated with reduction of exhausted T-cells and augmentation of TNF-α and NK cells. Exhausted T cells, NK cells, and TNF-α may play crucial roles in immune responses against infections. These observations highlight the potential utility of certain circulating biomarkers, particularly exhausted T cells, for predicting post-treatment infections.
Collapse
Affiliation(s)
- Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-I Shen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Lu Chiang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsu-Ching Huang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
23
|
Singh R, Srivastava P, Manna PP. Evaluation of regulatory T-cells in cancer immunotherapy: therapeutic relevance of immune checkpoint inhibition. Med Oncol 2024; 41:59. [PMID: 38238513 DOI: 10.1007/s12032-023-02289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
The evolution of the complex immune system is equipped to defend against perilous intruders and concurrently negatively regulate the deleterious effect of immune-mediated inflammation caused by self and nonself antigens. Regulatory T-cells (Tregs) are specialized cells that minimize immune-mediated inflammation, but in malignancies, this feature has been exploited toward cancer progression by keeping the antitumor immune response in check. The modulation of Treg cell infiltration and their induction in the TME (tumor microenvironment) alongside associated inhibitory molecules, both soluble or membranes tethered in the TME, have proven clinically beneficial in boosting the tumoricidal activity of the immune system. Moreover, Treg-associated immune checkpoints pose a greater obstruction in cancer immunotherapy. Inhibiting or blocking active immune checkpoint signaling in combination with other therapies has proven clinically beneficial. This review summarizes the ontogeny of Treg cells and their migration, stability, and function in the TME. We also elucidate the Treg-associated checkpoint moieties that impede effective antitumor activity and harness these molecules for effective and targeted immunotherapy against cancer nuisance.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
24
|
Xi J, Liu K, Peng Z, Dai X, Wang Y, Cai C, Yang D, Yan C, Li X. Toxic warhead-armed antibody for targeted treatment of glioblastoma. Crit Rev Oncol Hematol 2024; 193:104205. [PMID: 38036153 DOI: 10.1016/j.critrevonc.2023.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Glioblastoma is a fatal intracranial tumor with a poor prognosis, exhibiting uninterrupted malignant progression, widespread invasion throughout the brain leading to the destruction of normal brain tissue and inevitable death. Monoclonal antibodies alone or conjugated with cytotoxic payloads to treat patients with different solid tumors showed effective. This treatment strategy is being explored for patients with glioblastoma (GBM) to obtain meaningful clinical responses and offer new drug options for the treatment of this devastating disease. In this review, we summarize clinical data (from pubmed.gov database and clinicaltrial.gov database) on the efficacy and toxicity of naked antibodies and antibody-drug conjugates (ADCs) against multiple targets on GBM, elucidate the mechanisms that ADCs act at the site of GBM lesions. Finally, we discuss the potential strategies for ADC therapies currently used to treat GBM patients.
Collapse
Affiliation(s)
- Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
25
|
Usta SZ, Uchihashi T, Kodama S, Kurioka K, Inubushi T, Shimooka T, Sugauchi A, Seki S, Tanaka S. Current Status and Molecular Mechanisms of Resistance to Immunotherapy in Oral Malignant Melanoma. Int J Mol Sci 2023; 24:17282. [PMID: 38139110 PMCID: PMC10743423 DOI: 10.3390/ijms242417282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) antibodies, have initiated a new era in the treatment of malignant melanoma. ICIs can be used in various settings, including first-line, adjuvant, and neo-adjuvant therapy. In the scope of this review, we examined clinical studies utilizing ICIs in the context of treating oral mucosal melanoma, a rare disease, albeit with an extremely poor prognosis, with a specific focus on unraveling the intricate web of resistance mechanisms. The absence of a comprehensive review focusing on ICIs in oral mucosal melanoma is notable. Therefore, this review seeks to address this deficiency by offering a novel and thorough analysis of the current status, potential resistance mechanisms, and future prospects of applying ICIs specifically to oral malignant melanoma. Clarifying and thoroughly understanding these mechanisms will facilitate the advancement of effective therapeutic approaches and enhance the prospects for patients suffering from oral mucosal melanoma.
Collapse
Affiliation(s)
- Sena Zeynep Usta
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan; (S.Z.U.); (S.K.); (K.K.); (T.S.); (A.S.); (S.S.); (S.T.)
| | - Toshihiro Uchihashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan; (S.Z.U.); (S.K.); (K.K.); (T.S.); (A.S.); (S.S.); (S.T.)
| | - Shingo Kodama
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan; (S.Z.U.); (S.K.); (K.K.); (T.S.); (A.S.); (S.S.); (S.T.)
| | - Kyoko Kurioka
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan; (S.Z.U.); (S.K.); (K.K.); (T.S.); (A.S.); (S.S.); (S.T.)
| | - Toshihiro Inubushi
- Department of Orthodontics & Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Takuya Shimooka
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan; (S.Z.U.); (S.K.); (K.K.); (T.S.); (A.S.); (S.S.); (S.T.)
| | - Akinari Sugauchi
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan; (S.Z.U.); (S.K.); (K.K.); (T.S.); (A.S.); (S.S.); (S.T.)
- Unit of Dentistry, Osaka University Hospital, 2-15, Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan; (S.Z.U.); (S.K.); (K.K.); (T.S.); (A.S.); (S.S.); (S.T.)
| | - Susumu Tanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan; (S.Z.U.); (S.K.); (K.K.); (T.S.); (A.S.); (S.S.); (S.T.)
| |
Collapse
|
26
|
Luo H, Ma W, Chen Q, Yang Z, Dai Y. Radiotherapy-activated tumor immune microenvironment: Realizing radiotherapy-immunity combination therapy strategies. NANO TODAY 2023; 53:102042. [DOI: 10.1016/j.nantod.2023.102042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Fujiwara M, Shimizu M, Okano T, Maejima Y, Shimomura K. Successful treatment of nivolumab and ipilimumab triggered type 1 diabetes by using sodium-glucose transporter 2 inhibitor: a case report and systematic review. Front Public Health 2023; 11:1264056. [PMID: 38106883 PMCID: PMC10725247 DOI: 10.3389/fpubh.2023.1264056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023] Open
Abstract
Objective Checkpoint inhibitors (CPIs) can trigger complications related to the autoimmune process such as CPI-triggered diabetes mellitus. The typical treatment for CPI-triggered diabetes is insulin, but a detailed therapeutic method has not yet been established. To prevent severe symptoms and mortality of diabetic ketoacidosis in advanced-stage cancer patients, the establishment of effective treatment of CPI-triggered diabetes, other than insulin therapy, is required. Methods We present a case of a 76-year-old man with CPI-triggered diabetes who was treated with nivolumab and ipilimumab for lung cancer. We also conducted a systematic review of 48 case reports of type 1 diabetes associated with nivolumab and ipilimumab therapy before June 2023. Results The patient's hyperglycemia was not sufficiently controlled by insulin therapy, and after the remission of ketoacidosis, the addition of a sodium-glucose transporter (SGLT) 2 inhibitor, dapagliflozin, improved glycemic control. Most of the reported nivolumab/ipilimumab-induced type 1 diabetes was treatable with insulin, but very few cases required additional oral anti-diabetic agents to obtain good glucose control. Conclusion Although SGLT2 inhibitors have been reported to have adverse effects on ketoacidosis, recent studies indicate that the occurrence of ketoacidosis is relatively rare. Considering the pathological mechanism of CPI-triggered diabetes, SGLT2 inhibitors could be an effective choice if they are administered while carefully monitoring the patient's ketoacidosis.
Collapse
Affiliation(s)
- Makoto Fujiwara
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Diabetes, Endocrinology and Metabolism, Tsukuba Medical Center, Ibaraki, Japan
| | - Masaru Shimizu
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Neurology, Matsumura General Hospital, Fukushima, Japan
| | - Tatsuya Okano
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
28
|
Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka M. Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron 2023; 240:115644. [PMID: 37660460 DOI: 10.1016/j.bios.2023.115644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
29
|
Wagner A, Schlicke P, Fritz M, Kuttler C, Oden JT, Schumann C, Wohlmuth B. A phase-field model for non-small cell lung cancer under the effects of immunotherapy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:18670-18694. [PMID: 38052574 DOI: 10.3934/mbe.2023828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Formulating mathematical models that estimate tumor growth under therapy is vital for improving patient-specific treatment plans. In this context, we present our recent work on simulating non-small-scale cell lung cancer (NSCLC) in a simple, deterministic setting for two different patients receiving an immunotherapeutic treatment. At its core, our model consists of a Cahn-Hilliard-based phase-field model describing the evolution of proliferative and necrotic tumor cells. These are coupled to a simplified nutrient model that drives the growth of the proliferative cells and their decay into necrotic cells. The applied immunotherapy decreases the proliferative cell concentration. Here, we model the immunotherapeutic agent concentration in the entire lung over time by an ordinary differential equation (ODE). Finally, reaction terms provide a coupling between all these equations. By assuming spherical, symmetric tumor growth and constant nutrient inflow, we simplify this full 3D cancer simulation model to a reduced 1D model. We can then resort to patient data gathered from computed tomography (CT) scans over several years to calibrate our model. Our model covers the case in which the immunotherapy is successful and limits the tumor size, as well as the case predicting a sudden relapse, leading to exponential tumor growth. Finally, we move from the reduced model back to the full 3D cancer simulation in the lung tissue. Thereby, we demonstrate the predictive benefits that a more detailed patient-specific simulation including spatial information as a possible generalization within our framework could yield in the future.
Collapse
Affiliation(s)
- Andreas Wagner
- School of Computation, Information and Technology, Technical University of Munich, Munich, Bavaria, Germany
| | - Pirmin Schlicke
- School of Computation, Information and Technology, Technical University of Munich, Munich, Bavaria, Germany
| | - Marvin Fritz
- Computational Methods for PDEs, Johann Radon Institute for Computational and Applied Mathematics, Linz, Upper Austria, Austria
| | - Christina Kuttler
- School of Computation, Information and Technology, Technical University of Munich, Munich, Bavaria, Germany
| | - J Tinsley Oden
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Christian Schumann
- Clinic of Pneumology, Thoracic Oncology, Sleep and Respiratory Critical Care, Klinikverbund Allgäu, Kempten, Bavaria, Germany
| | - Barbara Wohlmuth
- School of Computation, Information and Technology, Technical University of Munich, Munich, Bavaria, Germany
| |
Collapse
|
30
|
Zhao D, Mo Y, Neganova ME, Aleksandrova Y, Tse E, Chubarev VN, Fan R, Sukocheva OA, Liu J. Dual effects of radiotherapy on tumor microenvironment and its contribution towards the development of resistance to immunotherapy in gastrointestinal and thoracic cancers. Front Cell Dev Biol 2023; 11:1266537. [PMID: 37849740 PMCID: PMC10577389 DOI: 10.3389/fcell.2023.1266537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Successful clinical methods for tumor elimination include a combination of surgical resection, radiotherapy, and chemotherapy. Radiotherapy is one of the crucial components of the cancer treatment regimens which allow to extend patient life expectancy. Current cutting-edge radiotherapy research is focused on the identification of methods that should increase cancer cell sensitivity to radiation and activate anti-cancer immunity mechanisms. Radiation treatment activates various cells of the tumor microenvironment (TME) and impacts tumor growth, angiogenesis, and anti-cancer immunity. Radiotherapy was shown to regulate signaling and anti-cancer functions of various TME immune and vasculature cell components, including tumor-associated macrophages, dendritic cells, endothelial cells, cancer-associated fibroblasts (CAFs), natural killers, and other T cell subsets. Dual effects of radiation, including metastasis-promoting effects and activation of oxidative stress, have been detected, suggesting that radiotherapy triggers heterogeneous targets. In this review, we critically discuss the activation of TME and angiogenesis during radiotherapy which is used to strengthen the effects of novel immunotherapy. Intracellular, genetic, and epigenetic mechanisms of signaling and clinical manipulations of immune responses and oxidative stress by radiotherapy are accented. Current findings indicate that radiotherapy should be considered as a supporting instrument for immunotherapy to limit the cancer-promoting effects of TME. To increase cancer-free survival rates, it is recommended to combine personalized radiation therapy methods with TME-targeting drugs, including immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Margarita E. Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Vladimir N. Chubarev
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Olga A. Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Rezayi M, Hosseini A. Structure of PD1 and its mechanism in the treatment of autoimmune diseases. Cell Biochem Funct 2023; 41:726-737. [PMID: 37475518 DOI: 10.1002/cbf.3827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
PD-1 and CTLA-4 can play an important role in addressing the issue of autoimmune diseases. PD-1 is a transmembrane glycoprotein expressed on T, B, and Dentric cells. This molecule functions as a checkpoint in T cell proliferation. Ligation of PD-1 with its ligands inhibits the production of IL-2, IL-7, IL-10, and IL-12 as well as other cytokines by macrophages, natural killer (NK) cells, and T cells, which can suppress cell proliferation and inflammation. Today, scientists attempt to protect against autoimmune diseases by PD-1 inhibitory signals. In this review, we discuss the structure, expression, and signaling pathway of PD-1. In addition, we discuss the importance of PD-1 in regulating several autoimmune diseases, reflecting how manipulating this molecule can be an effective method in the immunotherapy of some autoimmune diseases.
Collapse
Affiliation(s)
- Mahdi Rezayi
- Department of Medical Sciences, Marand Baranch, Islamic Azad University, Marand, Iran
| | - Arezoo Hosseini
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
32
|
Wu S, Xu L, He C, Wang P, Qin J, Guo F, Wang Y. Lactate Efflux Inhibition by Syrosingopine/LOD Co-Loaded Nanozyme for Synergetic Self-Replenishing Catalytic Cancer Therapy and Immune Microenvironment Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300686. [PMID: 37386815 PMCID: PMC10502866 DOI: 10.1002/advs.202300686] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Indexed: 07/01/2023]
Abstract
An effective systemic mechanism regulates tumor development and progression; thus, a rational design in a one-stone-two-birds strategy is meant for cancer treatment. Herein, a hollow Fe3 O4 catalytic nanozyme carrier co-loading lactate oxidase (LOD) and a clinically-used hypotensor syrosingopine (Syr) are developed and delivered for synergetic cancer treatment by augmented self-replenishing nanocatalytic reaction, integrated starvation therapy, and reactivating anti-tumor immune microenvironment. The synergetic bio-effects of this nanoplatform stemmed from the effective inhibition of lactate efflux through blocking the monocarboxylate transporters MCT1/MCT4 functions by the loaded Syr as a trigger. Sustainable production of hydrogen peroxide by catalyzation of the increasingly residual intracellular lactic acid by the co-delivered LOD and intracellular acidification enabled the augmented self-replenishing nanocatalytic reaction. Large amounts of produced reactive oxygen species (ROS) damaged mitochondria to inhibit oxidative phosphorylation as the substituted energy supply upon the hampered glycolysis pathway of tumor cells. Meanwhile, remodeling anti-tumor immune microenvironment is implemented by pH gradient reversal, promoting the release of proinflammatory cytokines, restored effector T and NK cells, increased M1-polarize tumor-associated macrophages, and restriction of regulatory T cells. Thus, the biocompatible nanozyme platform achieved the synergy of chemodynamic/immuno/starvation therapies. This proof-of-concept study represents a promising candidate nanoplatform for synergetic cancer treatment.
Collapse
Affiliation(s)
- Shengming Wu
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092P. R. China
| | - Lehua Xu
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092P. R. China
| | - Chenlong He
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092P. R. China
| | - Peng Wang
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092P. R. China
| | - Jingwen Qin
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092P. R. China
| | - Fangfang Guo
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092P. R. China
| | - Yilong Wang
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092P. R. China
| |
Collapse
|
33
|
Dai YW, Wang WM, Zhou X. Development of a CD8 + T cell-based molecular classification for predicting prognosis and heterogeneity in triple-negative breast cancer by integrated analysis of single-cell and bulk RNA-sequencing. Heliyon 2023; 9:e19798. [PMID: 37810147 PMCID: PMC10559128 DOI: 10.1016/j.heliyon.2023.e19798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC), although the most intractable subtype, is characterized by abundant immunogenicity, which enhances responsiveness to immunotherapeutic measures. Methods First, we identified CD8+ T cell core genes (TRCG) based on single-cell sequence and traditional transcriptome sequencing and then used this data to develop a first-of-its-kind classification system based on CD8+ T cells in patients with TNBC. Next, TRCG-related patterns were systematically analyzed, and their correlation with genomic features, immune activity (microenvironment associated with immune infiltration), and clinicopathological characteristics were assessed in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), the Cancer Genome Atlas (TCGA), GSE103091, GSE96058 databases. Additionally, a CD8+ T cell-related prognostic signature (TRPS) was developed to quantify a patient-specific TRCG pattern. What's more, the genes-related TRPS was validated by polymerase chain reaction (PCR) experiment. Results This study, for the first time, distinguished two subsets in patients with TNBC based on the TRCG. The immune microenvironment and prognostic stratification between these have distinct heterogeneity. Furthermore, this study constructed a novel scoring system named TRPS, which we show to be a robust prognostic marker for TNBC that is related to the intensity of immune infiltration and immunotherapy. Moreover, the levels of genes related the TRPS were validated by quantitative Real-Time PCR. Conclusions Consequently, this study unraveled an association between the TRCG and the tumor microenvironment in TNBC. TRPS model represents an effective tool for survival prediction and treatment guidance in TNBC that can also help identify individual variations in TME and stratify patients who are sensitive to anticancer immunotherapy.
Collapse
Affiliation(s)
- Yin-wei Dai
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei-ming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, China
| |
Collapse
|
34
|
Kim M, Jeong JY, Seo AN. Biomarkers for Predicting Response to Personalized Immunotherapy in Gastric Cancer. Diagnostics (Basel) 2023; 13:2782. [PMID: 37685320 PMCID: PMC10487043 DOI: 10.3390/diagnostics13172782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite advances in diagnostic imaging, surgical techniques, and systemic therapy, gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Unfortunately, molecular heterogeneity and, consequently, acquired resistance in GC are the major causes of failure in the development of biomarker-guided targeted therapies. However, by showing promising survival benefits in some studies, the recent emergence of immunotherapy in GC has had a significant impact on treatment-selectable procedures. Immune checkpoint inhibitors (ICIs), widely indicated in the treatment of several malignancies, target inhibitory receptors on T lymphocytes, including the programmed cell death protein (PD-1)/programmed death-ligand 1 (PD-L1) axis and cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and release effector T-cells from negative feedback signals. In this article, we review currently available predictive biomarkers (including PD-L1, microsatellite instability, Epstein-Barr virus, and tumor mutational burden) that affect the ICI treatment response, focusing on PD-L1 expression. We further briefly describe other potential biomarkers or mechanisms for predicting the response to ICIs in GC. This review may facilitate the expansion of the understanding of biomarkers for predicting the response to ICIs and help select the appropriate therapeutic approaches for patients with GC.
Collapse
Affiliation(s)
- Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, 136-gil 90, Chilgokjungang-daero, Buk-gu, Daegu 41405, Republic of Korea; (M.K.); (J.Y.J.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, 807 Hogukno, Buk-gu, Daegu 41404, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, 136-gil 90, Chilgokjungang-daero, Buk-gu, Daegu 41405, Republic of Korea; (M.K.); (J.Y.J.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, 807 Hogukno, Buk-gu, Daegu 41404, Republic of Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, 136-gil 90, Chilgokjungang-daero, Buk-gu, Daegu 41405, Republic of Korea; (M.K.); (J.Y.J.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, 807 Hogukno, Buk-gu, Daegu 41404, Republic of Korea
| |
Collapse
|
35
|
Hyun JW, Kim KH, Kim SH, Kim HJ. Severe neuromuscular immune-related adverse events of immune checkpoint inhibitors at national cancer center in Korea. J Cancer Res Clin Oncol 2023; 149:5583-5589. [PMID: 36495331 PMCID: PMC10356664 DOI: 10.1007/s00432-022-04516-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Neuromuscular immune-related adverse events (irAEs) associated with immune checkpoint inhibitors (ICIs) have been increasingly recognized as a consequence of expanding use of ICIs in advanced cancers. We aimed to evaluate the frequency, phenotypes, rescue treatment, and clinical outcomes of severe neuromuscular irAEs of ICIs at National Cancer Center (NCC), Korea. MATERIALS AND METHODS Consecutive patients with newly developed severe neuromuscular irAEs (common terminology criteria for adverse events grade 3 or greater) after ICI treatment at NCC in Korea between December 2018 and April 2022 were included by searching neuromuscular diagnostic codes in electronic medical records and/or reviewing neurological consultation documentations. RESULTS Of the 1,503 ICI-treated patients, nine (0.6%) experienced severe neuromuscular irAEs; five with pembrolizumab and four with atezolizumab. The patients included five women and four men; their median age at onset was 59 years. The irAEs included Guillain-Barre syndrome (n = 5) and myasthenia gravis (MG) crisis with myositis (n = 4), and developed after a median of one (range 1-5) ICI cycle. The median modified Rankin score (mRS) was 4 (range 3-5) at the nadir. ICIs were discontinued in all patients, and rescue immunotherapy included corticosteroids (n = 9), intravenous immunoglobulin (n = 7), and plasmapheresis (n = 2). Eight patients showed improvements, with a median mRS of 3 (range 1-4); however, one patient (who had MG crisis with myocarditis) died. CONCLUSIONS In this real-world monocentric study, ICI-induced neuromuscular irAEs were rare but potentially devastating; thus, physicians should remain vigilant to enable prompt recognition and management of irAEs.
Collapse
Affiliation(s)
- Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, 323 Ilsan-Ro, Ilsandong-gu, Goyang, Korea.
| | - Ki Hoon Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, 323 Ilsan-Ro, Ilsandong-gu, Goyang, Korea
| | - Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, 323 Ilsan-Ro, Ilsandong-gu, Goyang, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, 323 Ilsan-Ro, Ilsandong-gu, Goyang, Korea
| |
Collapse
|
36
|
Chandrasekaran J, Elumalai S, Murugesan V, Kunjiappan S, Pavadai P, Theivendren P. Computational design of PD-L1 small molecule inhibitors for cancer therapy. Mol Divers 2023; 27:1633-1644. [PMID: 36006501 DOI: 10.1007/s11030-022-10516-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Drug repurposing opens new avenues in cancer therapy. Drug repurposing, or finding new uses for existing drugs, can substantially reduce drug discovery time and costs. Cheminformatics, genetics, and systems biology advances enable repositioning drugs. Clinical usage of PD-1/PD-L1 blocking has been approved because of its efficacy in improving prognosis in select groups. The PD-1/PD-L1 axis was considered to represent a mechanism for tumour evasion of host tumour antigen-specific T-cell immunity in early preclinical research. The expression of PD-L1 in cancer cells causes T lymphocytes to become exhausted by transmitting a co-inhibitory signal. A better understanding of how PD-L1 is regulated in cancer cells could lead to new therapeutic options. In this view, the study was aimed to repurpose the existing FDA-approved drugs as a potential PD-L1 inhibitor through e-Pharmacophore modelling, molecular docking and dynamic simulation. e-Pharmacophore screening retrieved 324 FDA-approved medications with the fitness score ≥ 1. The top 10-docked FDA candidates were compared with IN-35 (Clinical trial candidate) for its interaction pattern with critical amino acid residues. Mirabegron and Indacaterol exhibited a greater affinity for PD-L1 with docking scores of - 9.213 kcal mol-1 and - 8.023 kcal mol-1, respectively. Mirabegron retain interactions at all three major hotspots in the PD-L1 dimer interface similar to IN-35. MM-GBSA analyses indicated that Mirabegron uses less energy to create a more stable complex and retains all of the inhibitor's positive interactions found in clinical trial ligand IN-35. Molecular dynamics simulation analysis of the Mirabegron complex showed a similar pattern of deviation in correlation with IN-35, and it retains the interaction with the active key amino acids throughout the simulation time. Our present study has shown Mirabegron as a powerful inhibitor of PD-L1 expression in cancer cells using a drug-repurposing screen.
Collapse
Affiliation(s)
- Jaikanth Chandrasekaran
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS University, Secunderabad, 500017, India.
| | - Senthilkumar Elumalai
- Department of Pharmacology, PSG College of Pharmacy, Peelamedu, Coimbatore, 641004, India
| | - Vidya Murugesan
- Department of Chemistry and Biochemistry, Science and Commerce, M S Ramaiah College of Arts, Bengaluru, 560054, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengodu, 637205, India
| |
Collapse
|
37
|
Ollivier L, Moreau Bachelard C, Renaud E, Dhamelincourt E, Lucia F. The abscopal effect of immune-radiation therapy in recurrent and metastatic cervical cancer: a narrative review. Front Immunol 2023; 14:1201675. [PMID: 37539054 PMCID: PMC10394237 DOI: 10.3389/fimmu.2023.1201675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Despite human papillomavirus vaccination and screening, in about 5% of cases, cervical cancer (CC) is discovered at an initial metastatic stage. Moreover, nearly one-third of patients with locally advanced CC (LACC) will have a recurrence of their disease during follow-up. At the stage of recurrent or metastatic CC, there are very few treatment options. They are considered incurable with a very poor prognosis. For many years, the standard of care was the combination of platinum-based drug and paclitaxel with the possible addition of bevacizumab. The most recent years have seen the development of the use of immune checkpoint inhibitors (ICIs) (pembrolizumab, cemiplimab and others) in patients with CC. They have shown long term responses with improved overall survival of patients in 1st line (in addition to chemotherapy) or 2nd line (as monotherapy) treatment. Another emerging drug is tisotumab vedotin, an antibody-drug conjugate targeting tissue factor. Radiation therapy (RT) often has a limited palliative indication in metastatic cancers. However, it has been observed that RT can induce tumor shrinkage both in distant metastatic tumors beyond the radiation field and in primary irradiated tumors. This is a rarely observed phenomenon, called abscopal effect, which is thought to be related to the immune system and allows a tumor response throughout the body. It would be the activation of the immune system induced by the irradiation of cancer cells that would lead to a specific type of apoptosis, the immunogenic cell death. Today, there is a growing consensus that combining RT with ICIs may boost abscopal response or cure rates for various cancers. Here we will review the potential abscopal effect of immune-radiation therapy in metastatic cervical cancer.
Collapse
Affiliation(s)
- Luc Ollivier
- Department of Radiation Oncology, Institut De Cancérologie De L’Ouest (ICO), Saint-Herblain, France
| | | | - Emmanuelle Renaud
- Department of Medical Oncology, CHRU Morvan, University Hospital, Brest, France
| | | | - Francois Lucia
- Radiation Oncology Department, University Hospital, Brest, France
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| |
Collapse
|
38
|
Inno A, Tarantini L, Parrini I, Spallarossa P, Maurea N, Bisceglia I, Silvestris N, Russo A, Gori S. Cardiovascular Effects of Immune Checkpoint Inhibitors: More Than Just Myocarditis. Curr Oncol Rep 2023; 25:743-751. [PMID: 37017825 DOI: 10.1007/s11912-023-01411-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors have reshaped the treatment of cancer, but they are characterized by peculiar toxicity consisting of immune-related adverse events that may potentially affect any organ or system. In this review, we summarize data on clinical presentation, diagnosis, pathogenesis, and management of the main immune-related cardiovascular toxicities of immune checkpoint inhibitors. RECENT FINDINGS The most relevant immune-related cardiovascular toxicity is myocarditis, but other non-negligible reported events include non-inflammatory heart failure, conduction abnormalities, pericardial disease, and vasculitis. More recently, growing evidence suggests a role for immune checkpoint inhibitors in accelerating atherosclerosis and promoting plaque inflammation, thus leading to myocardial infarction. Immune checkpoint inhibitors are associated with several forms of cardiovascular toxicity; thus, an accurate cardiovascular baseline evaluation and periodical monitoring are required. Furthermore, the optimization of cardiovascular risk factors before, during, and after treatment may contribute to mitigating both short-term and long-term cardiovascular toxicity of these drugs.
Collapse
Affiliation(s)
- Alessandro Inno
- Oncologia Medica, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A Sempreboni 5, 37024, Negrar Di Valpolicella, VR, Italy.
| | - Luigi Tarantini
- Cardiologia Ospedaliera, AUSL - IRCCS in Tecnologie Avanzate E Modelli Assistenziali in Oncologia, Reggio Emilia, Italy
| | - Iris Parrini
- Dipartimento Di Cardiologia, Ospedale Mauriziano, Turin, Italy
| | - Paolo Spallarossa
- Clinica Di Malattie Dell'Apparato Cardiovascolare, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Maurea
- Struttura Complessa Cardiologia, Istituto Nazionale Tumori Di Napoli IRCCS Fondazione G. Pascale, Naples, Italy
| | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Nicola Silvestris
- Oncologia Medica, Dipartimento Di Patologia Umana "G. Barresi", Università Di Messina, Messina, Italy
| | - Antonio Russo
- Dipartimento Di Discipline Chirurgiche, Oncologiche E Stomatologiche, Università Di Palermo, Palermo, Italy
| | - Stefania Gori
- Oncologia Medica, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A Sempreboni 5, 37024, Negrar Di Valpolicella, VR, Italy
| |
Collapse
|
39
|
Sangkhamanon S, Kotano N, Sirithanaphol W, Rompsaithong U, Kiatsopit P, Sookprasert A, Wirasorn K, Twinprai P, Watcharenwong P, Chindaprasirt J. Programmed death‑ligand 1 expression in tumor cells and tumor‑infiltrating lymphocytes are associated with depth of tumor invasion in penile cancer. Biomed Rep 2023; 19:44. [PMID: 37324166 PMCID: PMC10265570 DOI: 10.3892/br.2023.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
The present study aimed to demonstrate the proportion of the programmed death-ligand 1 (PD-L1) expression in penile cancer patients and the association with clinicopathological parameters. Formalin-fixed paraffin-embedded specimens were obtained from 43 patients with primary penile squamous cell carcinoma treated at Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, between 2008 and 2018. PD-L1 expression was evaluated by the immunohistochemistry using an SP263 monoclonal antibody. PD-L1 positivity was defined as >25% tumor cell staining or >25% tumor-associated immune cell staining. The correlation between PD-L1 expression and clinicopathological parameters was analyzed. A total of eight of 43 patients (18.6%) were identified as positive for PD-L1 expression in tumor cells and tumor-infiltrating lymphocytes. In the PD-L1 positive group, there was a significant association with pathological T stage (P=0.014) with a higher percentage of PD-L1 positive tumors in T1 stage compared with T2-T4 stage. In this cohort, there was a trend towards longer survival in patients with positive PD-L1 expression (5-year OS: 75% vs. 61.2%, P=0.19). Lymph node involvement and the location of tumor at the shaft of penis were two independent prognostic factors for survival. In conclusion, the PD-L1 expression was detected in 18% of penile cancer patients and high expression of PD-L1 was associated with the early T stage.
Collapse
Affiliation(s)
- Sakkarn Sangkhamanon
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natcha Kotano
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wichien Sirithanaphol
- Division of Urologic Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ukrit Rompsaithong
- Division of Urologic Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pakorn Kiatsopit
- Division of Urologic Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aumkhae Sookprasert
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kosin Wirasorn
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prin Twinprai
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piyakarn Watcharenwong
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jarin Chindaprasirt
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
40
|
Alturki NA. Review of the Immune Checkpoint Inhibitors in the Context of Cancer Treatment. J Clin Med 2023; 12:4301. [PMID: 37445336 DOI: 10.3390/jcm12134301] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Checkpoint proteins are an integral part of the immune system and are used by the tumor cells to evade immune response, which helps them grow uncontrollably. By blocking these proteins, immune checkpoint inhibitors can restore the capability of the immune system to attack cancer cells and stop their growth. These findings are backed by adequate clinical trial data and presently, several FDA-approved immune checkpoint inhibitors exist in the market for treating various types of cancers, including melanoma, hepatocellular, endometrial, lung, kidney and others. Their mode of action is inhibition by targeting the checkpoint proteins CTLA-4, PD-1, PD-L1, etc. They can be used alone as well as in amalgamation with other cancer treatments, like surgery, radiation or chemotherapy. Since these drugs target only specific immune system proteins, their side effects are reduced in comparison with the traditional chemotherapy drugs, but may still cause a few affects like fatigue, skin rashes, and fever. In rare cases, these inhibitors are known to have caused more serious side effects, such as cardiotoxicity, and inflammation in the intestines or lungs. Herein, we provide an overview of these inhibitors and their role as biomarkers, immune-related adverse outcomes and clinical studies in the treatment of various cancers, as well as present some future perspectives.
Collapse
Affiliation(s)
- Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
41
|
Kuzmenko OV, Sorochan PP, Gromakova IS, Shevtsov VG, Ivanenko MO, Polozova MV. EXPRESSION OF PROGRAMMED CELL DEATH RECEPTOR IN ENDOMETRIAL CANCER PATIENTS WITH METABOLIC DISORDERS. Exp Oncol 2023; 45:44-50. [PMID: 37417283 DOI: 10.15407/exp-oncology.2023.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 07/08/2023]
Abstract
AIM To study the expression of the programmed cell death receptor (PD-1) and its ligand (PD-L1) by immunocompetent cells in endometrial cancer patients with metabolic disorders. MATERIALS AND METHODS Populations and subpopulations of lymphocytes were analyzed by flow cytometry. Antibodies against CD279 were used to detect PD-1 on the CD4+ and CD8+ T cells. Antibodies against CD14 and CD274 were used to detect PD-L1 on monocytes. RESULTS In patients with severe metabolic disorders, the expression of PD-1 on CD8+ and CD4+ lymphocytes and the expression of the corresponding PD-L1 on CD14+ cells before treatment and after radiation therapy were higher than in the control group. CONCLUSION Theincreased expression of PD-1 and PD-L1 receptors by immunocompetent cells can be considered a new prognostic marker in endometrial cancer patients with morbid obesity.
Collapse
Affiliation(s)
- O V Kuzmenko
- Grigoriev Institute for Medical Radiology and Oncology, NAMS of Ukraine, Kharkiv 61024, Ukraine
| | - P P Sorochan
- Grigoriev Institute for Medical Radiology and Oncology, NAMS of Ukraine, Kharkiv 61024, Ukraine
| | - I S Gromakova
- Grigoriev Institute for Medical Radiology and Oncology, NAMS of Ukraine, Kharkiv 61024, Ukraine
| | - V G Shevtsov
- Grigoriev Institute for Medical Radiology and Oncology, NAMS of Ukraine, Kharkiv 61024, Ukraine
| | - M O Ivanenko
- Grigoriev Institute for Medical Radiology and Oncology, NAMS of Ukraine, Kharkiv 61024, Ukraine
| | - M V Polozova
- Grigoriev Institute for Medical Radiology and Oncology, NAMS of Ukraine, Kharkiv 61024, Ukraine
| |
Collapse
|
42
|
Liu YC, Liu H, Zhao SL, Chen K, Jin P. Clinical and HLA genotype analysis of immune checkpoint inhibitor-associated diabetes mellitus: a single-center case series from China. Front Immunol 2023; 14:1164120. [PMID: 37359544 PMCID: PMC10288983 DOI: 10.3389/fimmu.2023.1164120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Objective To investigate the clinical characteristics and HLA genotypes of patients with immune checkpoint inhibitor-associated diabetes mellitus (ICI-DM) in China. Methods We enrolled 23 patients with ICI-DM and 51 patients with type 1 diabetes (T1D). Clinical characteristics of the patients were collected. HLA-DRB1, HLA-DQA1, and HLA-DQB1 genotyping was conducted via next-generation sequencing. Results The ICI-DM patients had a male predominance (70.6%), a mean body mass index (BMI) of 21.2 ± 3.5 kg/m2, and a mean onset of ICI-DM in 5 (IQR, 3-9) cycles after ICI therapy. Most (78.3%) ICI-DM patients were treated with anti-PD-1, 78.3% presented with diabetic ketoacidosis, and all had low C-peptide levels and received multiple insulin injections. Compared to T1D patients, ICI-DM patients were significantly older (57.2 ± 12.4 vs 34.1 ± 15.7 years) and had higher blood glucose but lower HbA1c levels (P<0.05). Only two (8.7%) ICI-DM patients were positive for islet autoantibodies, which was lower than that in T1D patients (66.7%, P<0.001). A total of 59.1% (13/22) of ICI-DM patients were heterozygous for an HLA T1D risk haplotype, and DRB1*0901-DQA1*03-DQB1*0303 (DR9) and DRB1*0405-DQA1*03-DQB1*0401 were the major susceptible haplotypes. Compared to T1D, the susceptible DR3-DQA1*0501-DQB1*0201 (DR3) and DR9 haplotypes were less frequent (17.7% vs 2.3%; P=0.011 and 34.4% vs 15.9%; P=0.025), whereas the protective haplotypes (DRB1*1101-DQA1*05-DQB1*0301 and DRB1*1202-DQA1*0601-DQB1*0301) were more frequent in ICI-DM patients (2.1% vs 13.6%; P=0.006 and 4.2% vs 15.9%; P=0.017). None of the ICI-DM patients had T1D-associated high-risk genotypes DR3/DR3, DR3/DR9, and DR9/DR9. Among the 23 ICI-DM patients, 7 (30.4%) presented with ICI-associated fulminant type 1 diabetes (IFD), and 16 (69.6%) presented with ICI-associated type 1 diabetes (IT1D). Compared to IT1D patients, IFD patients exhibited marked hyperglycemia and low C-peptide and HbA1c levels (P<0.05). Up to 66.7% (4/6) of IFD patients were heterozygous for reported fulminant type 1 diabetes susceptibility HLA haplotypes (DRB1*0405-DQB1*0401 or DRB1*0901-DQB1*0303). Conclusion ICI-DM shares similar clinical features with T1D, such as acute onset, poor islet function and insulin dependence. However, the lack of islet autoantibodies, the low frequencies of T1D susceptibility and high frequencies of protective HLA haplotypes indicate that ICI-DM represents a new model distinct from classical T1D.
Collapse
|
43
|
Yang J, Wei M, Liu X, Shao X, Yan J, Liu J, Wen J, Zhang X, Dong R, Min M. PD-L1 expression downregulation by RNF43 in gastric carcinoma enhances antitumour activity of T cells. Scand J Immunol 2023; 97:e13268. [PMID: 39007965 DOI: 10.1111/sji.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Ring finger protein 43 (RNF43), a transmembrane E3 ubiquitin ligase, has been indicated to be a potential biomarker for gastric cancer treatment, as this protein increases tumour cell apoptosis and suppresses cellular proliferation. The role of RNF43 in cellular immunotherapy remains unclear. Herein, we aimed to explore the expression level of RNF43 in gastric cancer cell lines and its role in cellular immunotherapy. The expression level of RNF43 and PD-L1 and their correlation in gastric cancer cell lines were analysed. The expression of PD-L1 was negatively correlated with that of RNF43 in gastric cancer cell lines. RNF43 interacted with PD-L1 to augment both K48- and K63-linked ubiquitination of PD-L1 in gastric cancer cell lines. In addition, RNF43 expression in gastric cancer cell lines could enhance the antitumour activity of T cells. In conclusion, this study reveals that RNF43 can inhibit PD-L1 expression to enhance the antitumour activity of cellular immunotherapy.
Collapse
Affiliation(s)
- Jing Yang
- Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Meng Wei
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xin Liu
- Department of Laboratory Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Shao
- Department of Pharmacology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingshuang Yan
- Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jialong Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Wen
- Department of Gastroenterology, Chinese PLA 984 Hospital, Beijing, China
| | - Xueting Zhang
- Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruihua Dong
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Min Min
- Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
44
|
Shen T, Yang S, Qu X, Chen Z, Zeng L, Sun X, Lin Y, Luo M, Lei B, Yue C, Ma C, Hu N, Wang W, Zhang L. A bionic "Trojan horse"-like gene delivery system hybridized with tumor and macrophage cell membrane for cancer therapy. J Control Release 2023; 358:204-218. [PMID: 37121518 DOI: 10.1016/j.jconrel.2023.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
MiRNA-based gene therapy as a novel targeted therapy has yielded promising results in experimental cancer treatment, however, the inefficient delivery of miRNA to target tissues has limited its application in vivo. Here a unique dual-membrane-camouflaged miRNA21 antagomir delivery nanoplatform (M@NPs/miR21) with immune escape and homologous targeting properties was constructed by cancer cell membrane and macrophage membrane. Different from the single-cell membrane camouflage strategy, the dual-membrane camouflage miRNA21 antagomir delivery nanoplatform based on modification of CD47 protein with immune escape signal and galectin-3 protein with tumor cell aggregation enables efficient, safe and targeted therapy for colon cancer and lung metastases. Camouflaged with the dual-cell membrane, the "Trojan horse" like "pseudo-tumor cell" and/or "pseudo-macrophage" (M@NPs/miR21) carried the target gene miR21 antagomir to the tumor site and showed significant anti-tumor properties at the periphery and the core of subcutaneous tumor tissues. In addition, M@NPs/miR21 was more likely to penetrate dense tumor tissues and function within the tumor mass than NPs/miR21 without membrane coating. M@NPs/miR21 can deliver miR21 antagomir into MC38 cancer cells and tumor tissues, promote tumor apoptosis, and regulate the expression of Bcl2 and Ki67. Moreover, the M@NPs/miR21 gene delivery system not only can effectively inhibit the progression of subcutaneous tumors and lung metastases, but also showed minimal toxicity and good biosafety, making this delivery system particularly attractive for future translational research.
Collapse
Affiliation(s)
- Tianli Shen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyao Lin
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Luo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Chenyang Yue
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Chunhong Ma
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
45
|
Zarrabi M, Hamilton C, French SW, Federman N, Nowicki TS. Successful treatment of severe immune checkpoint inhibitor associated autoimmune hepatitis with basiliximab: a case report. Front Immunol 2023; 14:1156746. [PMID: 37325672 PMCID: PMC10262312 DOI: 10.3389/fimmu.2023.1156746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting programmed cell death-1 (PD-1) and its corresponding ligand PD-L1 are being increasingly used for a wide variety of cancers, including refractory sarcomas. Autoimmune hepatitis is a known side effect of ICIs, and is typically managed with broad, non-specific immunosuppression. Here, we report a case of severe autoimmune hepatitis occurring after anti-PD-1 therapy with nivolumab in a patient with osteosarcoma. Following prolonged unsuccessful treatment with intravenous immunoglobulin, steroids, everolimus, tacrolimus, mycophenolate, and anti-thymoglobulin, the patient was eventually treated with the anti-CD25 monoclonal antibody basiliximab. This resulted in prompt, sustained resolution of her hepatitis without significant side effects. Our case demonstrates that basiliximab may be an effective therapy for steroid-refractory severe ICI-associated hepatitis.
Collapse
Affiliation(s)
- Maiah Zarrabi
- Department of Pediatrics, University of California, Los Angeles Mattel Children’s Hospital, Los Angeles, CA, United States
| | - Camille Hamilton
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of California, Los Angeles Mattel Children’s Hospital, Los Angeles, CA, United States
| | - Samuel W. French
- Department of Pathology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Noah Federman
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of California, Los Angeles Mattel Children’s Hospital, Los Angeles, CA, United States
| | - Theodore S. Nowicki
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of California, Los Angeles Mattel Children’s Hospital, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
46
|
Kirtane K, Hoogland AI, Li X, Rodriguez Y, Scheel K, Small BJ, Oswald LB, Muzaffar J, Kish JA, Bonomi M, Bhateja P, Saba NF, Steuer CE, Chung CH, Jim HSL. Patient-reported outcomes in immunotherapy for head and neck cancer. Head Neck 2023. [PMID: 37141438 DOI: 10.1002/hed.27388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Data about patient-reported outcomes (PROs) among patients with head and neck squamous cell carcinoma (HNSCC) treated with immune checkpoint inhibitors are sparse. Our exploratory study evaluated PROs in patients with HNSCC starting treatment with immune checkpoint inhibitor monotherapy or combination therapy with cetuximab. METHODS Patients were recruited prior to receipt of their first checkpoint inhibitor therapy infusion. Participants completed measures of checkpoint inhibitor toxicities and quality of life (QOL) at on-treatment clinic visits. RESULTS Among patients treated with checkpoint inhibitor monotherapy (n = 48) or combination therapy (n = 38) toxicity increased over time (p < 0.05), while overall QOL improved from baseline to 12 weeks, with stable or declining QOL thereafter (p < 0.05). There were no group differences in change in toxicity index or QOL. Toxicity index scores were significantly higher in the combination group at 18-20 weeks and 6 months post-initiation of immune checkpoint inhibitor (p < 0.05). There were no significant group differences at baseline, the 6-8 week (p = 0.13) or 3-month (p = 0.09) evaluations. The combination group reported better emotional well-being at baseline than the monotherapy group (p = 0.04), There were no other group differences QOL at baseline or later timepoints. CONCLUSIONS Despite increasing patient-reported toxicity, checkpoint inhibitor monotherapy and combination therapy were associated with similar transient improvements, then worsening, of QOL in patients with HNSCC.
Collapse
Affiliation(s)
- Kedar Kirtane
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Aasha I Hoogland
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida, USA
| | - Xiaoyin Li
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida, USA
| | - Yvelise Rodriguez
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida, USA
| | - Kelsey Scheel
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida, USA
| | - Brent J Small
- School of Aging Studies, University of South Florida, Tampa, Florida, USA
| | - Laura B Oswald
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jameel Muzaffar
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Julie A Kish
- Department of Personalized Medicine, Moffitt Cancer Center, Tampa, Florida, USA
| | - Marcelo Bonomi
- Department of Internal Medicine and The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Priyanka Bhateja
- Department of Internal Medicine and The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Conor E Steuer
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Heather S L Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
47
|
Inoue S, Takeuchi Y, Horiuchi Y, Murakami T, Odaka A. CD69 on Tumor-Infiltrating Cells Correlates With Neuroblastoma Suppression by Simultaneous PD-1 and PD-L1 Blockade. J Surg Res 2023; 289:190-201. [PMID: 37141702 DOI: 10.1016/j.jss.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Tumor-infiltrating cells play an important role in tumor immunology, and tumor-infiltrating lymphocytes (TILs) are critical in antitumor reaction related to immune checkpoint inhibition targeting programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1). METHODS In nude mice, which are immune deficient because they lack T cells, and inbred A/J mice, which are syngeneic to neuroblastoma cells (Neuro-2a) and have normal T cell function, we investigated the importance of T lymphocytes in immune checkpoint inhibition in mouse neuroblastoma and analyzed the immune cells in the tumor microenvironment. Then, we subcutaneously injected mouse Neuro-2ainto nude mice and A/J mice, administered anti-PD-1 and anti-PD-L1 antibodies by intraperitoneal injection, and evaluated tumor growth. At 16 d after Neuro-2a cells injection, mice were euthanized, tumors and spleens were harvested, and immune cells were analyzed by flow cytometry. RESULTS The antibodies suppressed tumor growth in A/J but not in nude mice. The co-administration of antibodies did not affect regulatory T cells (culster of differentiation [CD]4+CD25+FoxP3+ cells) or activated CD4+ lymphocytes (expressing CD69). No changes in activated CD8+ lymphocytes (expressing CD69) were observed in spleen tissue. However, increased infiltration of activated CD8+ TILs was seen in tumors weighing less than 300 mg, and the amount of activated CD8+ TILs was negatively correlated with tumor weight. CONCLUSIONS Our study confirms that lymphocytes are essential for the antitumor immune reaction induced by blocking PD-1/PD-L1 and raises the possibility that promoting the infiltration of activated CD8+ TIL into tumors may be an effective treatment for neuroblastoma.
Collapse
Affiliation(s)
- Seiichiro Inoue
- Department of Hepato-Biliary-Pancreatic and Pediatric Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.
| | - Yuta Takeuchi
- Department of Hepato-Biliary-Pancreatic and Pediatric Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yutaka Horiuchi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takashi Murakami
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Akio Odaka
- Department of Hepato-Biliary-Pancreatic and Pediatric Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
48
|
Liu Y, Hu P, Xu L, Zhang X, Li Z, Li Y, Qiu H. Current Progress on Predictive Biomarkers for Response to Immune Checkpoint Inhibitors in Gastric Cancer: How to Maximize the Immunotherapeutic Benefit? Cancers (Basel) 2023; 15:2273. [PMID: 37190201 PMCID: PMC10137150 DOI: 10.3390/cancers15082273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Gastric cancer is the fifth most prevalent cancer and the fourth leading cause of cancer death globally. Delayed diagnosis and pronounced histological and molecular variations increase the complexity and challenge of treatment. Pharmacotherapy, which for a long time was systemic chemotherapy based on 5-fluorouracil, is the mainstay of management for advanced gastric cancer. Trastuzumab and programmed cell death 1 (PD-1) inhibitors have altered the therapeutic landscape, contributing to noticeably prolonged survivorship in patients with metastatic gastric cancer. However, research has revealed that immunotherapy is only beneficial to some individuals. Biomarkers, such as programmed cell death ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational load (TMB), have been shown to correlate with immune efficacy in numerous studies and are increasingly employed for the selection of patients most likely to respond to immunotherapy. Gut microorganisms, genetic mutations like POLE/POLD1 and NOTCH4, tumor lymphoid infiltrating cells (TILs), and other novel biomarkers have the potential to develop into new predictors. Prospective immunotherapy for gastric cancer should be guided by a biomarker-driven precision management paradigm, and multidimensional or dynamic marker testing could be the way to go.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Qiu
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.)
| |
Collapse
|
49
|
Abstract
Head and neck cancers are a heterogeneous group of highly aggressive tumors and collectively represent the sixth most common cancer worldwide. Most head and neck cancers are squamous cell carcinomas (HNSCCs). Current multimodal treatment concepts combine surgery, chemotherapy, irradiation, immunotherapy, and targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of HNSCC and revealed novel therapeutic targets and prognostic/predictive biomarkers. Notably, HNSCC is characterized by complex relations between stromal, epithelial, and immune cells within the tumor microenvironment (TME). The TME consists of different subsets of immune cells that infiltrate the tumors and interact with the tumor cells or with each other. Understanding multiple pivotal factors in HNSCC tumorigenesis and tumor progression may help define novel targets and develop more effective therapies for patients. This review provides a comprehensive overview of the latest advances in the molecular biology of HNSCC and their effects on clinical oncology; it is meant for a broad readership in the head and neck cancers field.
Collapse
Affiliation(s)
- Subramanya Pandruvada
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - Remi Kessler
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Ann Thai
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
50
|
Verma RS, Singh G, Singh A, Singh P. Assessment of tumor microenvironment expression and clinical significance of immune inhibitory molecule CTLA-4, ligand B7-1, and tumor-infiltrating regulatory cells in Hodgkin lymphoma. J Med Life 2023; 16:599-609. [PMID: 37305822 PMCID: PMC10251379 DOI: 10.25122/jml-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/16/2023] [Indexed: 06/13/2023] Open
Abstract
Classical Hodgkin lymphoma represents a paradigm of tumor cell-microenvironment interactions as the neoplastic Hodgkin Reed-Sternberg (HRS) cells typically constitute less than 1% of the total tumor volume. CTLA-4, a member of the CD28/B7 immunoglobulin superfamily, and CD28 and their ligands B7-1 and B7-2 are critically important for the initial activation of naive T cells. Strategies aimed at interfering with the crosstalk between tumoral Reed-Sternberg cells and their cellular partners have been taken into account in the development of new immunotherapies that target different cell components of the HL microenvironment. The study included 50 histopathological confirmed cases of Hodgkin lymphoma. IHC staining for CTLA-4 and B7-1 was performed on archival paraffin-embedded biopsy. SPSS version 17 was used for statistical analysis. CTLA-4 IHC expression in HRS cells was negative in all cases, while in immune cells, CTLA-4 expression was observed in 45 (90%) cases. CD80 expression was present in all cases, both in HRS and immune cells. There was a significant association between HRS cell percentage and IPS score (p-value=0.001). Mean survival duration was longer in <50% immune cells compared to >50% groups, with an overall mean survival of 67.633 months. Considering the CTLA4 expression in immune cells within the microenvironment and the availability of targeted drugs like Iplimumab, which act through CTLA4 blockade, it may be appropriate to use this as targeted therapy in HL cases, particularly in those with refractory disease who are unable to achieve cure prior to ASCT.
Collapse
Affiliation(s)
- Radhey Shyam Verma
- Department of Pathology, Maharaja SuhelDev Autonomous State Medical College, MaharshiBalark Hospital, Bahraich, Uttar Pradesh, India
| | - Gyanendra Singh
- All India Institute of Medical Sciences Rajkot, Gujarat, India
| | - Anurag Singh
- Department of Pathology, King George's Medical University, Lucknow Uttar Pradesh, India
| | - Pradyuman Singh
- Department of Pathology, Dr Ram ManoharLohia Institute of Medical Sciences, Lucknow Uttar Pradesh, India
| |
Collapse
|