1
|
Liang H, Zhou B, Li P, Zhang X, Zhang S, Zhang Y, Yao S, Qu S, Chen J. Stemness regulation in prostate cancer: prostate cancer stem cells and targeted therapy. Ann Med 2025; 57:2442067. [PMID: 39711287 DOI: 10.1080/07853890.2024.2442067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that cancer stem cells (CSCs) and cancer stem-like cells form a special subpopulation of cells that are ubiquitous in tumors. These cells exhibit similar characteristics to those of normal stem cells in tissues; moreover, they are capable of self-renewal and differentiation, as well as high tumorigenicity and drug resistance. In prostate cancer (PCa), it is difficult to kill these cells using androgen signaling inhibitors and chemotherapy drugs. Consequently, the residual prostate cancer stem cells (PCSCs) mediate tumor recurrence and progression. OBJECTIVE This review aims to provide a comprehensive and up-to-date overview of PCSCs, with a particular emphasis on potential therapeutic strategies targeting these cells. METHODS After searching in PubMed and Embase databases using 'prostate cancer' and 'cancer stem cells' as keywords, studies related were compiled and examined. RESULTS In this review, we detail the origin and characteristics of PCSCs, introduce the regulatory pathways closely related to CSC survival and stemness maintenance, and discuss the link between epithelial-mesenchymal transition, tumor microenvironment and tumor stemness. Furthermore, we introduce the currently available therapeutic strategies targeting CSCs, including signaling pathway inhibitors, anti-apoptotic protein inhibitors, microRNAs, nanomedicine, and immunotherapy. Lastly, we summarize the limitations of current CSC research and mention future research directions. CONCLUSION A deeper understanding of the regulatory network and molecular markers of PCSCs could facilitate the development of novel therapeutic strategies targeting these cells. Previous preclinical studies have demonstrated the potential of this treatment approach. In the future, this may offer alternative treatment options for PCa patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Bin Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Peixin Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyi Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shijie Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaozhong Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengwen Yao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Sifeng Qu
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jun Chen
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
2
|
Yang C, Qin Z, Ma H, Liu H, Hou M, Wei J, Guo H, An X, Yang F, Yang A, Dang Y, Zhang F. Epithelial cells and fibroblasts are both activated via TGF-β1 and GSK-3β pathways differentially in the comorbidity of pulmonary fibrosis with lung adenocarcinoma. Life Sci 2025; 374:123696. [PMID: 40349653 DOI: 10.1016/j.lfs.2025.123696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/06/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
AIMS Pulmonary fibrosis (PF) is always exacerbated by the comorbidity of lung adenocarcinoma (LUAD), and patients frequently died from the complications of PF instead of lung cancer. Although many studies have unveiled the mechanisms underlying PF exacerbation due to lung cancer resection and radiotherapy, the influence of lung cancer itself on PF remains enigmatic. MATERIALS AND METHODS We cocultivated mouse pulmonary cells with mouse LUAD cells to explore the influence of LUAD on the pathogenesis and progression of PF. Additionally, a comorbidity model of PF with LUAD was established in mice via intratracheal injection of bleomycin (BLM) followed by in situ transplantation of LUAD cells. Furthermore, immunofluorescence, immunohistochemistry, and molecular analyses were employed to elucidate the mechanisms underlying the exacerbation of PF by the comorbidity of LUAD. KEY FINDINGS We found that PF was significantly exacerbated by LUAD. In the microenvironment of LUAD, the epithelial-mesenchymal transition (EMT) was predominantly activated in lung epithelial cells, while the transformation of lung fibroblasts into myofibroblasts was markedly induced. The TGF-β and GSK-3β pathways were differentially activated in lung epithelial cells and fibroblasts. Furthermore, clinical samples confirmed the involvement of these pathways in the process of PF exacerbation induced by LUAD in patients' lung lesions of PF with LUAD. SIGNIFICANCE This study initially reveals that LUAD exacerbates PF by modulating epithelial cells and fibroblasts through TGF-β and GSK-3β pathways differentially. Practically, targeting the pathways of TGF-β and GSK-3β may promise a potential strategy for the prophylaxis of PF exacerbation in patients with LUAD.
Collapse
Affiliation(s)
- Chenguang Yang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China; School of Medicine, Tarim University, Alar 843300, Xinjiang, China
| | - Zijian Qin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China; Lanzhou University First Affiliated Hospital, Lanzhou 730000, Gansu, China
| | - Hu Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Huanqin Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Mengdan Hou
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jing Wei
- Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Hongyan Guo
- Gansu Second Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Xiang An
- Lanzhou University First Affiliated Hospital, Lanzhou 730000, Gansu, China
| | - Feng Yang
- Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Aijun Yang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yamei Dang
- Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Fangfang Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
3
|
Mikolaskova I, Gidron Y, Durmanova V, Suchankova M, Bucova M, Hunakova L. Mental distress and inflammation in bladder cancer: The nerve makes things less vague. Brain Behav Immun Health 2025; 46:100995. [PMID: 40343109 PMCID: PMC12059323 DOI: 10.1016/j.bbih.2025.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/14/2025] [Accepted: 04/12/2025] [Indexed: 05/11/2025] Open
Abstract
Objectives This study aimed to explore the interaction between perceived stress, life satisfaction, heart rate variability (HRV), and immune-inflammatory markers in bladder cancer patients. We investigated how HRV moderates the relationship between psychological distress and levels of TNF-α and TGF-β cytokines. We hypothesized that high vagal nerve activity, as indicated by higher HRV, mitigates the impact of perceived stress and life dissatisfaction on inflammation. Methods The study included 73 patients with bladder cancer. HRV was determined from a 5-min ECG recording, focusing on the standard deviation of normal-to-normal interbeat intervals (SDNN). Psychological distress was measured using the Perceived Stress Scale (PSS), and life satisfaction was evaluated with the Life Satisfaction Questionnaire (LSQ). Serum concentrations of TNF-α and plasma levels of TGF-β were determined using sandwich ELISA. Results We found evidence that HRV modulates the relation between perceived stress and inflammation. In patients with low HRV (SDNN <20 ms), PSS was positively correlated with serum level of TNF-α and negatively with the level of TGF-β, while life satisfaction was positively correlated with TGF-β. These relationships were not significant in patients with high HRV (SDNN ≥20 ms). Conclusion Our findings suggest that high vagal activity, as indicated by higher HRV, may mitigate the adverse effects of psychological distress on immune-inflammatory responses in patients with bladder cancer. Stress-related inflammation took place under conditions of low HRV, highlighting the potential role of autonomic regulation in cancer prognosis. Future research should further explore these relationships to develop interventions aimed at improving patient outcomes through stress management and enhanced vagal nerve activity to regulate inflammation in cancer.
Collapse
Affiliation(s)
- Iveta Mikolaskova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske namestie 14, 811 08, Bratislava, Slovakia
| | - Yori Gidron
- Department of Nursing, Faculty of Welfare and Health Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Vladimira Durmanova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske namestie 14, 811 08, Bratislava, Slovakia
| | - Magda Suchankova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske namestie 14, 811 08, Bratislava, Slovakia
| | - Maria Bucova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske namestie 14, 811 08, Bratislava, Slovakia
| | - Luba Hunakova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske namestie 14, 811 08, Bratislava, Slovakia
| |
Collapse
|
4
|
Li K, Chen J, Li W, Zhang Z, Xue Y, Zheng Y, Zhang Y, Zhang C, Bergan R, Zhao L. KBU2046 exerts inhibition on chemokine gradient-mediated motility of esophageal squamous cell carcinoma through reducing integrin expression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167800. [PMID: 40118292 DOI: 10.1016/j.bbadis.2025.167800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) cells migrate from their initial site of origin, ultimately forming metastasis and causing death. The selective inhibition of ESCC cell movement has not been possible to date. Here we demonstrate that the small molecule therapeutic agent KBU2046 inhibits the characteristic migration and invasion of ESCC cells induced by chemokine gradients, having no effect on cell proliferation. After demonstrating that KBU2046 inhibits human ESCC metastasis in a murine model, we showed that it doesn't inhibit the in vitro efficacy of chemotherapeutic agents used clinically, going on to demonstrate maintenance of cisplatin efficacy when combined with KBU2046 in a murine model. Mechanistic studies demonstrated that KBU2046 inhibited epidermal growth factor (EGF)-mediated phosphorylation of receptor-interacting serine/threonine protein kinase 1 (RIPK1) on its Ser166 activation motif. RIPK1 was shown to be necessary for KBU2046 efficacy. However, this was shown to be dependent upon cell context, and was also shown to be dependent upon level of RIPK1 expression, both supporting the presence of additional therapeutically sensitive regulatory pathways. Mass spectrometry analysis of ESCC cells demonstrated that KBU2046 selectively altered the expression of proteins involved in cell motility. Integrin αV (ITGAV) is overexpressed in ESCC, was decreased by KBU2046, and its knockdown inhibited ESCC cell migration and invasion, which was necessary for KBU2046 efficacy. We demonstrate that ESCC's motility can be inhibited, and KBU2046 inhibits motility in an Integrin αV-dependent manner, and that combining anti-motility and cytotoxic agents is a high valuable therapeutic strategy for ESCC that should be further developed.
Collapse
Affiliation(s)
- Kexin Li
- Research center, The Key Laboratory of Tumor Gene Diagnosis and Treatment, the Fourth Hospital of Hebei University, Shijiazhuang 050011, China
| | - Jinxia Chen
- Research center, The Key Laboratory of Tumor Gene Diagnosis and Treatment, the Fourth Hospital of Hebei University, Shijiazhuang 050011, China
| | - Wendi Li
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Zhenzhen Zhang
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Yongxian Xue
- Research center, The Key Laboratory of Tumor Gene Diagnosis and Treatment, the Fourth Hospital of Hebei University, Shijiazhuang 050011, China
| | - Yang Zheng
- Research center, The Key Laboratory of Tumor Gene Diagnosis and Treatment, the Fourth Hospital of Hebei University, Shijiazhuang 050011, China
| | - Ying Zhang
- Department of Pathology, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Cong Zhang
- Research center, The Key Laboratory of Tumor Gene Diagnosis and Treatment, the Fourth Hospital of Hebei University, Shijiazhuang 050011, China
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States.
| | - Lianmei Zhao
- Research center, The Key Laboratory of Tumor Gene Diagnosis and Treatment, the Fourth Hospital of Hebei University, Shijiazhuang 050011, China; Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States.
| |
Collapse
|
5
|
Zhang M, Yu T, Liu Y, Lu X, Chen W, Zhou L, Xu Y, Yang M, Miller AD, Lin H. SMAD2 S-palmitoylation promotes its linker region phosphorylation and T H17 cell differentiation in a mouse model of multiple sclerosis. Sci Signal 2025; 18:eadr2008. [PMID: 40424363 DOI: 10.1126/scisignal.adr2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
The transcriptional regulators SMAD2 and SMAD3 share the same primary signaling pathway in response to the cytokine TGFβ. However, whereas SMAD2 stimulates the differentiation of naive CD4+ T cells into proinflammatory T helper 17 cells (TH17 cells), SMAD3 stimulates the differentiation of anti-inflammatory regulatory T cells (Treg cells). Here, we report a dynamic SMAD2-specific posttranslational modification important for TH17 cell differentiation. SMAD2, but not SMAD3, was reversibly S-palmitoylated at cysteine-41 and cysteine-81 by the palmitoyltransferase DHHC7 and depalmitoylated by the acyl protein thioesterase APT2. As a result, SMAD2 was recruited to intracellular membranes where its linker region was phosphorylated, leading to its interaction with the transcriptional regulator STAT3. Nuclear translocation of the SMAD2-STAT3 complex induced the expression of their target genes that promoted TH17 cell differentiation. Perturbation of SMAD2-STAT3 binding by inhibiting the palmitoylation-depalmitoylation cycle suppressed TH17 cell differentiation and reduced disease severity in mice with experimental autoimmune encephalomyelitis, a model of multiple sclerosis (MS). Thus, the S-palmitoylation-depalmitoylation cycle mediated by DHHC7 and APT2 specifically regulates SMAD2, providing insights into the functional differences between SMAD2 and SMAD3 and the distinct role of SMAD2 in TH17 cell differentiation. The findings further highlight DHHC7 and APT2 as potential therapeutic targets for the treatment of TH17 cell-mediated inflammatory diseases, including MS.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Smad2 Protein/metabolism
- Smad2 Protein/genetics
- Smad2 Protein/immunology
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Th17 Cells/pathology
- Th17 Cells/cytology
- Mice
- Lipoylation
- Phosphorylation
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/immunology
- Disease Models, Animal
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Multiple Sclerosis/genetics
- Humans
- Mice, Inbred C57BL
- Acyltransferases/metabolism
- Acyltransferases/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Mingming Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tao Yu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yinong Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Xuan Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Wenzhe Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Lixing Zhou
- Center of Gerontology and Geriatrics/National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuejie Xu
- Department of Gastroenterology, Drum Tower Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Min Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Andrew D Miller
- Section of Anatomic Pathology, Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Mozalbat S, Nashef A, Maalouf N, Abdol-Elraziq M, El-naaj IA, Tadmor H, Ghantous Y. The Interplay of SMAD4 and EMT in Oral Squamous Cell Carcinoma. Cancers (Basel) 2025; 17:1761. [PMID: 40507242 PMCID: PMC12153904 DOI: 10.3390/cancers17111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 06/16/2025] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is a prevalent malignancy with a poor prognosis. Surgical removal of the primary tumor and regional lymph nodes (LNs) remains the fundamental treatment for OSCC, although 40% of patients are negative for LN metastasis. The epithelial-mesenchymal transition (EMT) plays a crucial role in OSCC progression by enabling epithelial cells to acquire mesenchymal traits, thereby facilitating migration and metastasis. Smad4, a tumor suppressor protein, is known to mediate EMT and is associated with poor prognosis and metastasis; however, its precise pro-metastatic role in OSCC via EMT remains unclear. Aims: We hypothesize that EMT and Smad4 could serve as practical diagnostic tools for personalized OSCC treatment. Methods: In this study, we analyzed 23 OSCC samples from Tzafon Medical Center, comparing the expression of Smad4 and EMT markers with clinical and histopathological data. Additionally, an OSCC cell model with and without Smad4 mutation was used to investigate tumor phenotypes, including proliferation and invasion, in relation to EMT markers. Results and Conclusion: Our findings reveal a strong correlation between EMT markers, Smad4 expression, and OSCC pathological staging, with the cell model further confirming the link between Smad4 and EMT markers. The combined influence of Smad4 and EMT markers on OSCC progression highlights their potential as diagnostic tools and as guides for personalized treatment strategies.
Collapse
Affiliation(s)
- Shiraz Mozalbat
- Molecular Biology of Oral Cancer Laboratory, Tzafon Medical Center, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (S.M.); (H.T.)
| | - Aysar Nashef
- Department of Oral and Maxillofacial Surgery, Tzafon Medical Center, Faculty of Medicine, Bar-Ilan University, Ramat Gan 5290002, Israel; (A.N.); (N.M.); (M.A.-E.); (I.A.E.-n.)
| | - Naseem Maalouf
- Department of Oral and Maxillofacial Surgery, Tzafon Medical Center, Faculty of Medicine, Bar-Ilan University, Ramat Gan 5290002, Israel; (A.N.); (N.M.); (M.A.-E.); (I.A.E.-n.)
| | - Murad Abdol-Elraziq
- Department of Oral and Maxillofacial Surgery, Tzafon Medical Center, Faculty of Medicine, Bar-Ilan University, Ramat Gan 5290002, Israel; (A.N.); (N.M.); (M.A.-E.); (I.A.E.-n.)
| | - Imad Abu El-naaj
- Department of Oral and Maxillofacial Surgery, Tzafon Medical Center, Faculty of Medicine, Bar-Ilan University, Ramat Gan 5290002, Israel; (A.N.); (N.M.); (M.A.-E.); (I.A.E.-n.)
| | - Hagar Tadmor
- Molecular Biology of Oral Cancer Laboratory, Tzafon Medical Center, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (S.M.); (H.T.)
| | - Yasmin Ghantous
- Molecular Biology of Oral Cancer Laboratory, Tzafon Medical Center, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (S.M.); (H.T.)
| |
Collapse
|
7
|
Cheng W, Zheng Y, Tang Q, Qi L, Shi Z, Yu Q, Li M, Wei X, Zhou Y, Jiang X. Discovery of Novel Cyclic Peptides as SMAD2-SMAD4 Interaction Inhibitors for the Treatment of Hepatic Fibrosis. J Med Chem 2025; 68:9958-9972. [PMID: 40320643 DOI: 10.1021/acs.jmedchem.4c02938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Hepatic fibrosis, characterized by the excessive deposition of the extracellular matrix, represents a common consequence of various chronic liver disorders. However, no specific drugs are available for antifibrotic therapy to date. SMAD2 is phosphorylated by transforming growth factor-β and subsequently binds to SMAD4 to generate a heteromeric complex, which then translocates into the nucleus and aggravates liver fibrosis. Herein, based on molecular docking simulation and structure-activity relationship study, we report the discovery of a novel cyclic peptide CMF9 that targets SMAD2 and potently interferes with the SMAD2-SMAD4 interaction. The subsequent in vivo and in vitro pharmacological studies demonstrated that CMF9 dramatically suppressed hepatic stellate cells activation and collagen synthesis, alleviating CCl4-induced hepatic inflammation and fibrosis. Overall, we first demonstrated that the novel cyclic peptide CMF9 could efficiently block the SMAD2-SMAD4 interaction via selectively inhibiting SMAD2 phosphorylation, providing a promising therapeutic strategy for targeting SMAD2 and an alternative candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Wei Cheng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yawen Zheng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qinglin Tang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liang Qi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zihan Shi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qihong Yu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingmin Li
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xianzhi Wei
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yifeng Zhou
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xianxing Jiang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Hao Z, Zhang M, Du Y, Liu J, Zeng G, Li H, Peng X. Invadopodia in cancer metastasis: dynamics, regulation, and targeted therapies. J Transl Med 2025; 23:548. [PMID: 40380267 PMCID: PMC12083038 DOI: 10.1186/s12967-025-06526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/21/2025] [Indexed: 05/19/2025] Open
Abstract
Pseudopodia and invadopodia are dynamic, actin-rich membrane structures extending from the cell surface. While pseudopodia are found in various cell types, invadopodia are exclusive to tumor cells and play a key role in cancer progression. These specialized structures enable tumor cells to degrade the extracellular matrix, breach tissue barriers, and invade surrounding tissues and blood vessels, thus facilitating metastasis. Extensive research has elucidated the distinct structure of invadopodia, the signaling pathways driving their formation, and their interaction with the tumor microenvironment. Integrin- and Src kinase-mediated signaling pathways regulate invadopodia dynamics. This review explores the mechanisms underlying invadopodia stabilization and highlights recent insights into their regulation by the tumor microenvironment. Particular emphasis is placed on the role of cell surface signaling in modulating invadopodia activity and the intracellular targeting of matrix metalloproteinases (MMPs) in enhancing invasive potential. A deeper understanding of invadopodia-driven cancer cell migration and metastasis provides valuable implications for therapeutic development. These findings support the potential for receptor-mediated and molecularly targeted therapies to inhibit tumor metastasis, improve clinical outcomes, and enhance the efficacy of existing cancer treatments.
Collapse
Affiliation(s)
- Zhixiong Hao
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Manru Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yao Du
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guolong Zeng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China.
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
9
|
Pol M, Gao H, Fox JM, Jia X. TGFβ1 and RGD Cooperatively Regulate SMAD2/3-Mediated Oncogenic Effects in Prostate Cancer Cells in Bio-Orthogonally Constructed Hydrogels. ACS Biomater Sci Eng 2025; 11:3003-3018. [PMID: 40214406 DOI: 10.1021/acsbiomaterials.5c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
To recapitulate prostate cancer metastasis, DU145 cells were cultured in a hyaluronic acid-based, bio-orthogonally constructed, protease-degradable hydrogels. In the presence of a covalently conjugated integrin-binding peptide (GRGDSP), DU145 cells formed tumoroids and exhibited small protrusions. Upon addition of soluble transforming growth factor beta 1 (TGFβ1), cells underwent morphological changes to form extended interconnected cellular networks. Contrarily, in RGD-free hydrogels, cells maintained spherical structures even in the presence of TGFβ1. In RGD-conjugated hydrogels, TGFβ1 induced nuclear localization of SMAD2/3, upregulating a wide range of TGFβ1 target genes and proteins. Prolonged exposure to TGFβ1 led to matrix remodeling and induced epithelial-to-mesenchymal transition in DU145 cells, with loss of epithelial markers and gain of mesenchymal markers. A pharmacological inhibitor of TGFβRI/ALK5, SB-431542, attenuated TGFβ1-induced morphological changes, abrogated nuclear localization of SMAD2/3, and restored the expression of key epithelial markers. Our findings highlight the cooperative role of TGFβ1 signaling and integrin-binding peptide in the acquisition of an aggressive phenotype and the promotion of tumor progression.
Collapse
Affiliation(s)
- Mugdha Pol
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Xinqiao Jia
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, Newark, Delaware 19713, United States
| |
Collapse
|
10
|
Surakhy M, Matheson J, Barnes DJ, Carter EJ, Hughes J, Bühnemann C, Sanegre S, Morreau H, Metz P, Imianowski CJ, Hassan AB. Smad4 and TGFβ1 dependent gene expression signatures in conditional intestinal adenoma, organoids and colorectal cancer. Sci Rep 2025; 15:16330. [PMID: 40348815 PMCID: PMC12065906 DOI: 10.1038/s41598-025-00908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/02/2025] [Indexed: 05/14/2025] Open
Abstract
TGF-β ligands suppress growth yet can paradoxically and potently promote cancer invasion and metastasis depending on downstream pathway mutational context, such as loss of Mothers against decapentaplegic homolog 4 (Smad4). Here, we characterised phenotypes and associated gene expression signatures in conditional murine intestinal adenoma with and without Smad4. Conditional Lgr5-CreERT2 activation in Apcfl/flSmad4fl/fl mice resulted in homozygote floxed alleles (ApcΔ/ΔSmad4Δ/Δ) and adenoma formation. The adenoma phenotype was discordant, with reduced small intestinal adenoma burden yet development of large non-metastatic caecal adenoma with nuclear localisation of phospho-Smad2/3. Derived ApcΔ/ΔSmad4Δ/Δ adenoma organoids resisted TGF-β1 dose dependent growth arrest and cell death (IC50 534 pM) compared to ApcΔ/ΔSmad4+/+ (IC50 24 pM). TGF-β1 (390 pM) altered adenoma bulk mRNA expression most significantly for Id1low and Spp1high in ApcΔ/ΔSmad4Δ/Δ. Single cell RNAseq of caecal adenoma identified expansion of Lgr5low, Pak3high and Id1low progenitor populations in ApcΔ/ΔSmad4Δ/Δ. Of the 76 Smad4 and TGF-β1 dependent genes identified in Apcfl/flSmad4fl/fl adenoma organoids, only 7 human equivalent genes were differentially expressed in SMAD4 mutated colorectal cancer (TCGA cohorts), including ID1low. SMAD4low, ID1low SPP1high and PAK3high all correlated with poorer survival. Murine adenoma identified Smad4 dependent gene expression signatures that require further evaluation as functional biomarker classifiers of SMAD4 mutated cancer subtypes.
Collapse
Affiliation(s)
- Mirvat Surakhy
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Julia Matheson
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - David J Barnes
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Emma J Carter
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Jennifer Hughes
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Claudia Bühnemann
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sabina Sanegre
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Paul Metz
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Charlotte J Imianowski
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Andrew Bassim Hassan
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
11
|
Jayaprakash JP, Karemore P, Khandelia P. METTL3 promotes oral squamous cell carcinoma by regulating miR-146a-5p/SMAD4 axis. Oncotarget 2025; 16:291-309. [PMID: 40338154 PMCID: PMC12060920 DOI: 10.18632/oncotarget.28717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
N6-methyladenosine (m6A), one of the most prominent and reversible internal modifications of eukaryotic RNAs, has emerged as a critical regulator of gene expression in various cancers including oral squamous cell carcinoma (OSCC), wherein it shapes the tumor-specific epitranscriptomic gene-regulatory networks. METTL3, the primary m6A RNA methyltransferase, is significantly upregulated in OSCC cells leading to increased global m6A levels. Interestingly, METTL3 positively regulates miRNA biogenesis by modulating the processing of primary miRNAs in a m6A-dependent manner. We identified miR-146a-5p, an oncogenic miRNA as one of the METTL3-regulated miRNAs in OSCC. METTL3-depletion or inhibition of its catalytic activity leads to a reduction of miR-146a-5p and an appreciable accumulation of primary miR-146a in OSCC cells. Functional assays examining the effects of miR-146a-5p inhibition or overexpression confirm its oncogenic role in OSCC pathophysiology. Further, SMAD4, a central transducer in TGF-β signaling, was identified as a miR-146a-5p target. In OSCC cells, SMAD4-depletion exacerbates the oncogenic traits, whereas its overexpression exerts the opposite effect. Additionally, METTL3-depletion dysregulates SMAD4-regulated genes suggesting its potential involvement in SMAD4-dependent TGF-β signaling. Taken together, we report that METTL3, an oncogene regulates the expression of SMAD4, a tumor-suppressor via miR-146a-5p, thus unveiling a novel regulatory axis of METTL3/miR-146a-5p/SMAD4 in OSCC, which can potentially have therapeutic implications.
Collapse
Affiliation(s)
- Jayasree Peroth Jayaprakash
- Laboratory of Molecular Medicine, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad 500078, India
| | - Pragati Karemore
- Laboratory of Molecular Medicine, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad 500078, India
| | - Piyush Khandelia
- Laboratory of Molecular Medicine, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
12
|
Pei D, Ma Z, Qiu Y, Wang M, Wang Z, Liu X, Zhang L, Zhang Z, Li R, Yan D. MRI-based machine learning reveals proteasome subunit PSMB8-mediated malignant glioma phenotypes through activating TGFBR1/2-SMAD2/3 axis. MOLECULAR BIOMEDICINE 2025; 6:28. [PMID: 40335825 PMCID: PMC12058589 DOI: 10.1186/s43556-025-00268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/09/2025] Open
Abstract
Gliomas are the most prevalent and aggressive neoplasms of the central nervous system, representing a major challenge for effective treatment and patient prognosis. This study identifies the proteasome subunit beta type-8 (PSMB8/LMP7) as a promising prognostic biomarker for glioma. Using a multiparametric radiomic model derived from preoperative magnetic resonance imaging (MRI), we accurately predicted PSMB8 expression levels. Notably, radiomic prediction of poor prognosis was highly consistent with elevated PSMB8 expression. Our findings demonstrate that PSMB8 depletion not only suppressed glioma cell proliferation and migration but also induced apoptosis via activation of the transforming growth factor beta (TGF-β) signaling pathway. This was supported by downregulation of key receptors (TGFBR1 and TGFBR2). Furthermore, interference with PSMB8 expression impaired phosphorylation and nuclear translocation of SMAD2/3, critical mediators of TGF-β signaling. Consequently, these molecular alterations resulted in reduced tumor progression and enhanced sensitivity to temozolomide (TMZ), a standard chemotherapeutic agent. Overall, our findings highlight PSMB8's pivotal role in glioma pathophysiology and its potential as a prognostic marker. This study also demonstrates the clinical utility of MRI radiomics for preoperative risk stratification and pre-diagnosis. Targeted inhibition of PSMB8 may represent a therapeutic strategy to overcome TMZ resistance and improve glioma patient outcomes.
Collapse
Affiliation(s)
- Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zilong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Ran Li
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
13
|
Wang S, Xu D, Wang Y, Zhou Y, Xiao L, Li F, Tu J, Qin W, Tian S, Zheng B, Wang Y, Yuan XL, Liu Y, Liu B. A Bifunctional Antibody Targeting PD-1 and TGF-β Signaling Has Antitumor Activity in Combination with Radiotherapy and Attenuates Radiation-Induced Lung Injury. Cancer Immunol Res 2025; 13:767-784. [PMID: 39878763 PMCID: PMC12046334 DOI: 10.1158/2326-6066.cir-23-0903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/03/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Radio-immunotherapy has antitumor activity but also causes toxicity, which limits its clinical application. JS-201 is a dual antibody targeting PD-1 and TGF-β signaling. We investigated the antitumor effect of JS-201 combined with radiotherapy (RT) and the effect on radiation-induced lung injury (RILI). Different tumor models were established to detect the antitumor effects of the combination of JS-201 and RT, and RILI models were established to observe the effects of JS-201. Transcriptome sequencing showed that JS-201 optimized the tumor microenvironment by inhibiting extracellular matrix formation and angiogenesis. Combining JS-201 with RT further increased the inflammatory response and immune infiltration and showed great abscopal effects in Lewis lung cancer luciferase-positive models. Single-cell sequencing demonstrated that JS-201 reduced fibroblast proliferation by inhibiting the TGF-β/Smad pathway and the release of neutrophil extracellular traps mediated by ROS, thereby relieving radiation-induced pulmonary fibrosis. In conclusion, the JS-201 and RT combination enhances antitumor effects while mitigating acute and chronic RILI, and it may have potential for translational investigation as a cancer treatment strategy.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuehua Zhou
- Top Alliance Biosciences Inc., Suzhou, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bolong Zheng
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Xiang-lin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Accogli T, Hibos C, Milian L, Geindreau M, Richard C, Humblin E, Mary R, Chevrier S, Jacquin E, Bernard A, Chalmin F, Paul C, Ryffel B, Apetoh L, Boidot R, Bruchard M, Ghiringhelli F, Vegran F. The intrinsic expression of NLRP3 in Th17 cells promotes their protumor activity and conversion into Tregs. Cell Mol Immunol 2025; 22:541-556. [PMID: 40195474 PMCID: PMC12041534 DOI: 10.1038/s41423-025-01281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Th17 cells can perform either regulatory or inflammatory functions depending on the cytokine microenvironment. These plastic cells can transdifferentiate into Tregs during inflammation resolution, in allogenic heart transplantation models, or in cancer through mechanisms that remain poorly understood. Here, we demonstrated that NLRP3 expression in Th17 cells is essential for maintaining their immunosuppressive functions through an inflammasome-independent mechanism. In the absence of NLRP3, Th17 cells produce more inflammatory cytokines (IFNγ, Granzyme B, TNFα) and exhibit reduced immunosuppressive activity toward CD8+ cells. Moreover, the capacity of NLRP3-deficient Th17 cells to transdifferentiate into Treg-like cells is lost. Mechanistically, NLRP3 in Th17 cells interacts with the TGF-β receptor, enabling SMAD3 phosphorylation and thereby facilitating the acquisition of immunosuppressive functions. Consequently, the absence of NLRP3 expression in Th17 cells from tumor-bearing mice enhances CD8 + T-cell effectiveness, ultimately inhibiting tumor growth.
Collapse
Affiliation(s)
- Théo Accogli
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
| | | | - Lylou Milian
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | | | - Corentin Richard
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | | | | | - Sandy Chevrier
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Elise Jacquin
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
| | | | - Fanny Chalmin
- Cancer Biology Transfer Platform, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Catherine Paul
- LIIC, EA7269, Université de Bourgogne Franche Comté, Dijon, France
- Immunology and Immunotherapy of Cancer Laboratory, EPHE, PSL Research University, Paris, France
| | - Berhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Romain Boidot
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | | | - François Ghiringhelli
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
- Cancer Biology Transfer Platform, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Frédérique Vegran
- INSERM, Dijon, France.
- University of Burgundy, Dijon, France.
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France.
- Cancer Biology Transfer Platform, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France.
| |
Collapse
|
15
|
Yuan J, Dong J, Li W, Zu Y, Guo Y, Zhang Y, Chen Y. Association between aquaporin 3 and transforming growth factor-beta 1 levels in decidual tissue and serum of patients with missed abortion. Front Med (Lausanne) 2025; 12:1540257. [PMID: 40375933 PMCID: PMC12078160 DOI: 10.3389/fmed.2025.1540257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/07/2025] [Indexed: 05/18/2025] Open
Abstract
Objective To investigate the expression of aquaporin 3 (AQP3) and transforming growth factor-β1 (TGF-β1) in the decidual tissue and serum of patients with missed abortion (MA) and explore their clinical significance, evaluating their potential as diagnostic biomarkers for MA. Methods A total of 40 MA patients (case group) and 40 induced abortion (IA) patients (control group) were included. Immunohistochemistry (IHC), Western blot (WB), and reverse transcription quantitative PCR (RT-qPCR) were used to detect the protein and mRNA expression of AQP3 and TGF-β1 in decidual tissue. Serum levels of AQP3 and TGF-β1 were measured by ELISA. The diagnostic efficacy was assessed using receiver operating characteristic (ROC) curve analysis. Results The protein expression of AQP3 and TGF-β1 in the decidual tissue of the MA group was significantly higher than that of the IA group, with a 2.3-fold and 2.5-fold increase, respectively (p < 0.01), and their mRNA expression was also significantly upregulated (p < 0.01). Serum levels of AQP3 and TGF-β1 increased by 2.3-fold and 3.3-fold, respectively (p < 0.01). ROC analysis demonstrated that serum AQP3 (AUC = 0.887) and TGF-β1 (AUC = 0.949) exhibited high diagnostic accuracy for MA, with the combined detection achieving an AUC of 0.976, sensitivity of 92.5%, and specificity of 97.5%. Conclusion AQP3 and TGF-β1 are significantly overexpressed in the decidual tissue and serum of MA patients and may play a role in the pathogenesis of MA by regulating trophoblast function. The combined detection of these two biomarkers holds promise as potential diagnostic tools for MA, offering new directions for early clinical management.
Collapse
Affiliation(s)
- JinLing Yuan
- Gynaecology and Obstetrics,North China of Science and Technology University Affiliated Hospital, Tangshan Hebei, China
| | - JianXin Dong
- Gynaecology and Obstetrics,North China of Science and Technology University Affiliated Hospital, Tangshan Hebei, China
| | - Wanting Li
- Guangzhou University of Chinese Medicine, Guangdong Guangzhou, China
| | - YingMo Zu
- Gynaecology and Obstetrics, The First Hospital of Qinhuangdao, Qinhuangdao Hebei, China
| | - YanJuan Guo
- Gynaecology and Obstetrics,North China of Science and Technology University Affiliated Hospital, Tangshan Hebei, China
| | - Ying Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Capital Medical University, Gynecology Minimally Invasive Center, Beijing, China
| | - Yan Chen
- Gynaecology and Obstetrics,North China of Science and Technology University Affiliated Hospital, Tangshan Hebei, China
| |
Collapse
|
16
|
Jiang J, Wu Q, Rajasekaran S, Wu R. MMP3 at the crossroads: Linking molecular pathways to disease diagnosis and therapy. Pharmacol Res 2025; 216:107750. [PMID: 40311957 DOI: 10.1016/j.phrs.2025.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Matrix metalloproteinase 3 (MMP-3) is a multifaceted enzyme that plays a critical role in the regulation of extracellular matrix (ECM) dynamics, influencing both normal physiological and pathological processes. In addition to its established role in ECM degradation, MMP-3 is gaining recognition for modulating cellular behaviors such as inflammation, migration, and proliferation. Recent research has uncovered its capacity to activate latent signaling molecules, release growth factors from the ECM and interact with various cell surface receptors, linking MMP-3 to the progression of various diseases, including inflammatory diseases, infection diseases, cardiovascular diseases, neurodegenerative disorders, and cancer. The review provides an overview of MMP-3's molecular regulation, emphasizing the mechanisms controlling its expression and activity. We discuss MMP3's involvement in both ECM-dependent and independent pathways, and its potential as a diagnostic, prognostic biomarker in various diseases. Additionally, we explore therapeutic strategies targeting MMP-3, summarizing ongoing efforts to develop specific inhibitors and modulate its activity in different pathologic conditions. Through this review, we aim to consolidate the diverse functions of MMP-3 and provide new insights into future research directions, particularly in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jing Jiang
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Binzhou Medical University, Yantai, China
| | - Qiong Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Snekha Rajasekaran
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
17
|
Avila-Rodríguez D, Ibarra-Sánchez A, Sosa-Garrocho M, Vázquez-Victorio G, Caligaris C, Anaya-Rubio I, Segura-Villalobos D, Blank U, González-Espinosa C, Macias-Silva M. An Autocrine Regulator Loop Involving Tumor Necrosis Factor and Chemokine (C-C motif) Ligand-2 Is Activated by Transforming Growth Factor-β in Rat Basophilic Leukemia-2H3 Mast Cells. Int J Mol Sci 2025; 26:4263. [PMID: 40362499 PMCID: PMC12071771 DOI: 10.3390/ijms26094263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
TGF-β is a pleiotropic cytokine with both stimulatory and inhibitory effects on immune cells, depending on the microenvironmental context. It targets mast cells (MCs) in different physio-pathological conditions, such as inflammation and cancer. Besides acting as a potent chemoattractant for MCs, TGF-β regulates many other aspects of MCs' physiology, including the secretion of many regulatory molecules. MCs secrete a variety of mediators, either pre-formed or newly synthesized, upon appropriate stimulation. CCL-2 chemokine and TNF cytokine act as potent chemoattractants for several immune cells and participate in the initiation of inflammatory responses by recruiting them to injured tissues. TGF-β regulates CCL-2 and TNF secretion in different cell types and under distinct cellular contexts. Here, we report that the treatment with TGF-β alone induces the secretion of both pre-formed and newly synthesized CCL-2 in the rat RBL-2H3 mast cells but not in mouse bone marrow-derived mast cells (BMMCs). TGF-β-induced CCL-2 secretion depends on rapid rearrangements of the actin cytoskeleton and, remarkably, on the early secretion of soluble TNF that triggers an autocrine TNF signaling. In conclusion, we found cooperation between TGF-β and TNF signaling pathways to promote the secretion of CCL-2 chemokine by MCs in a cell-context specific manner.
Collapse
Affiliation(s)
- Dulce Avila-Rodríguez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (D.A.-R.); (M.S.-G.); (C.C.); (I.A.-R.)
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología del Centro de Investigación y de Estudios Avanzados (Cinvestav, sede Sur), y Centro de Investigación sobre Envejecimiento, Ciudad de México 14400, Mexico; (A.I.-S.); (D.S.-V.)
| | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (D.A.-R.); (M.S.-G.); (C.C.); (I.A.-R.)
| | - Genaro Vázquez-Victorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Cassandre Caligaris
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (D.A.-R.); (M.S.-G.); (C.C.); (I.A.-R.)
| | - Isabel Anaya-Rubio
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (D.A.-R.); (M.S.-G.); (C.C.); (I.A.-R.)
| | - Deisy Segura-Villalobos
- Departamento de Farmacobiología del Centro de Investigación y de Estudios Avanzados (Cinvestav, sede Sur), y Centro de Investigación sobre Envejecimiento, Ciudad de México 14400, Mexico; (A.I.-S.); (D.S.-V.)
| | - Ulrich Blank
- Centre de Recherche sur l’Inflammation, Laboratoire d’Excellence Inflamex, Université Paris Cité, INSERM U1149, CNRS EMR8252, 75018 Paris, France;
| | - Claudia González-Espinosa
- Departamento de Farmacobiología del Centro de Investigación y de Estudios Avanzados (Cinvestav, sede Sur), y Centro de Investigación sobre Envejecimiento, Ciudad de México 14400, Mexico; (A.I.-S.); (D.S.-V.)
| | - Marina Macias-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (D.A.-R.); (M.S.-G.); (C.C.); (I.A.-R.)
| |
Collapse
|
18
|
Higuchi Y, Teo JL, Yi D, Kahn M. Safely Targeting Cancer, the Wound That Never Heals, Utilizing CBP/Beta-Catenin Antagonists. Cancers (Basel) 2025; 17:1503. [PMID: 40361430 PMCID: PMC12071182 DOI: 10.3390/cancers17091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cells, both normal somatic (SSC) and cancer stem cells (CSC) exist in minimally two states, i.e., quiescent and activated. Regulation of these two states, including their reliance on different metabolic processes, i.e., FAO and glycolysis in quiescent versus activated stem cells respectively, involves the analysis of a complex array of factors (nutrient and oxygen levels, adhesion molecules, cytokines, etc.) to initiate the epigenetic changes to either depart or enter quiescence. Quiescence is a critical feature of SSC that is required to maintain the genomic integrity of the stem cell pool, particularly in long lived complex organisms. Quiescence in CSC, whether they are derived from mutations arising in SSC, aberrant microenvironmental regulation, or via dedifferentiation of more committed progenitors, is a critical component of therapy resistance and disease latency and relapse. At the beginning of vertebrate evolution, approximately 450 million years ago, a gene duplication generated the two members of the Kat3 family, CREBBP (CBP) and EP300 (p300). Despite their very high degree of homology, these two Kat3 coactivators play critical and non-redundant roles at enhancers and super-enhancers via acetylation of H3K27, thereby controlling stem cell quiescence versus activation and the cells metabolic requirements. In this review/perspective, we discuss the unique regulatory roles of CBP and p300 and how specifically targeting the CBP/β-catenin interaction utilizing small molecule antagonists, can correct lineage infidelity and safely eliminate quiescent CSC.
Collapse
Affiliation(s)
- Yusuke Higuchi
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Jia-Ling Teo
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Daniel Yi
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| |
Collapse
|
19
|
Jing H, Gao Y, Jing L, Yang H, Liu S. Recent advances in therapeutic use of transforming growth factor-beta inhibitors in cancer and fibrosis. Front Oncol 2025; 15:1489701. [PMID: 40352593 PMCID: PMC12061708 DOI: 10.3389/fonc.2025.1489701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
Transforming growth factor-beta (TGF-β) has long been known to be associated with early embryonic development and organogenesis, immune supervision, and tissue repair and homeostasis in adults. TGF-β has complex roles in fibrosis and cancer that may be opposing at different stages of these diseases. Under pathological conditions, overexpression of TGF-β causes epithelial-mesenchymal transition, deposition of extracellular matrix, and formation of cancer-associated fibroblasts, leading to fibrotic disease or cancer. Fibroblasts, epithelial cells, and immune cells are the most common targets of TGF-β, while fibrosis and cancer are the most common TGF-β-associated diseases. Given the critical role of TGF-β and its downstream molecules in fibrosis and progression of cancer, therapies targeting TGF-β signaling appear to be a promising strategy. Preclinical and clinical studies have investigated therapies targeting TGF-β, including antisense oligonucleotides, monoclonal antibodies, and ligand traps. However, development of targeted TGF-β therapy has been hindered by systemic cytotoxicity. This review discusses the molecular mechanisms of TGF-β signaling and highlights targeted TGF-β therapy for cancer and fibrosis as a therapeutic strategy for related diseases.
Collapse
Affiliation(s)
- Hanhui Jing
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Gao
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Linyuan Jing
- Department of Integrated Chinese and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hanyu Yang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
20
|
Amusan OT, Lopez R, Burks E, Trammel J, Raikhy G, Guo H, Bodily J. Stromal Interferon Regulatory Factor 3 Can Antagonize Human Papillomavirus Replication by Supporting Epithelial-to-Mesenchymal Transition. Viruses 2025; 17:598. [PMID: 40431610 PMCID: PMC12115382 DOI: 10.3390/v17050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 05/29/2025] Open
Abstract
Epithelia contribute to the innate immune system through barrier formation and through signaling to immune cells. When the barrier is breached, epithelial cells undergo epithelial-to-mesenchymal transition (EMT) as part of the wound healing process. EMT is largely directed by signals from the stromal microenvironment, including transforming growth factor beta (TGFβ1), and antagonizes normal epithelial differentiation. How EMT and innate immunity may be connected molecularly has not been explored, although both processes are likely to occur simultaneously. Keratinocytes are the host cell type for human papillomaviruses (HPV), which can induce EMT in certain conditions but also depend on differentiation for their replication. We previously found that the innate immune factor interferon regulatory factor 3 (IRF3) inhibits epithelial differentiation and reduces the expression of HPV16 late genes. Here we report that IRF3 in the stroma compartment promotes an EMT-like pattern of gene expression in an HPV16-containing epithelium. The depletion of stromal IRF3 resulted in the downregulation of TGFβ1-related signaling in both the stroma and epithelium. IRF3 binds to the TGFB1 promoter in human foreskin fibroblasts and is necessary for TGFB1 mRNA production. Because an EMT-like state is unfavorable for differentiation-dependent HPV16, we observed that all EMT markers examined were reduced in the presence of episomal HPV16. Together, we show that stromal IRF3 can disrupt epithelial differentiation and act as an anti-HPV factor through the regulation of EMT, linking wound healing and immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jason Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (O.T.A.); (J.T.); (G.R.); (H.G.)
| |
Collapse
|
21
|
Song X, Xu S, Song D, Wang J, Bai B, An Y, Yang B, Wang S, Zhao Q, Yu P. TGFB1/CXCL5 axis regulation by LCN2 overexpression: a promising strategy to inhibit colorectal cancer metastasis and enhance prognosis. Front Immunol 2025; 16:1548635. [PMID: 40313933 PMCID: PMC12043584 DOI: 10.3389/fimmu.2025.1548635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Background Distant metastasis remains a major reason for the high recurrence and mortality of colorectal cancer (CRC). However, the underlying molecular mechanisms driving metastasis in CRC remain poorly understood. In this study, we investigated the mechanisms underlying the inhibitory effects of lipocalin-2 (LCN2) on CRC metastasis. Methods We assessed the expression and clinical significance of LCN2 in human CRC specimens and CRC cell lines using, immunohistochemistry, and western blot analyses. We evaluated the migratory and invasive capabilities of CRC cells influenced by LCN2 using in vitro transwell assays and in vivo lung metastatic models. RNA sequencing and proteome analysis were employed to identify potential downstream targets of LCN2. Rescue experiments were conducted to further elucidate the potential mechanisms of LCN2 and its downstream effectors in CRC. Results LCN2 exhibited high expression levels in human CRC tissues and an inverse correlation with N classification, advanced AJCC stages, and shorter overall survival. LCN2 expression independently predicted a more favorable outcome for CRC patients. Upregulation of LCN2 effectively suppressed CRC cell metastasis both in vitro and in vivo. Mechanistically, Transforming growth factor beta 1 (TGFB1) and C-X-C motif chemokine ligand 5 (CXCL5) were identified as downstream effectors of LCN2, with LCN2 inhibiting CRC metastasis through repression of the TGFB1/CXCL5 axis. Furthermore, either TGF-βR1 inhibitor SB431542 or CXCR2 antagonist SB225002 treatment moderately decreased the migratory and invasive capabilities of DLD-1-LV-shLCN2 cells, whereas the combination treatment of the two agents dramatically decreased the migratory and invasive capabilities of DLD-1-LV-shLCN2 cells. Conclusions This study underscores LCN2 as an independent protective factor and prognostic biomarker for CRC patients. Combined treatment with the SB431542 and the SB225002 significantly attenuated LCN2-related CRC metastasis. Targeting the LCN2/TGFB1/CXCL5 axis emerges as a promising therapeutic strategy for managing LCN2-related metastatic CRC.
Collapse
Affiliation(s)
- Xiaotian Song
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Shuai Xu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Dan Song
- Department of Gastrointestinal Surgery, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Bin Bai
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Bin Yang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Shiqi Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Qingchuan Zhao
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Pengfei Yu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
22
|
Zhang C, Zhu J, Lin H, Zhang Z, Kang B, Li F, Shan Y, Zhang Y, Xing Q, Gu J, Hu X, Cui Y, Huang J, Zhou T, Mai Y, Chen Q, Mao R, Li P, Pan G. HBO1 determines epithelial-mesenchymal transition and promotes immunotherapy resistance in ovarian cancer cells. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01055-8. [PMID: 40227530 DOI: 10.1007/s13402-025-01055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
PURPOSE Epithelial-mesenchymal transition (EMT) plays critical roles in tumor progress and treatment resistance of ovarian cancer (OC), resulting in the most deadly gynecological cancer in women. However, the cell-intrinsic mechanism underlying EMT in OC remains less illuminated. METHOD SKOV3, the OC cell line, was treated with TGF-β to induce EMT or with SB431542, an inhibitor of the TGF-β signaling pathway, to reduce migration. The function of HBO1 in EMT was confirmed by knock-down or overexpression of HBO1 in SKOV3 cells. The role of HBO1 in cell proliferation and apoptosis of SKOV3 cells was analyzed by flow cytometry. The whole-genome transcriptome was used to compare significantly different genes in control and HBO1-KD SKOV3 cells. T-cell cytotoxicity assays were measured by an IVIS spectrum. The chromatin binding of HBO1 was investigated using CUT&Tag-seq. RESULTS Here, we show that HBO1, a MYST histone acetyltransferase (HAT), is a cell-intrinsic determinant for EMT in OC cells. HBO1 is greatly elevated during TGF-β-triggered EMT in SKOV3 OC cells as well as in later stages of clinical OC samples. HBO1 Knock-down (KD) in SKOV3 cells blocks TGF-β-triggered EMT, migration, invasion and tumor formation in vivo. Interestingly, HBO1 KD in SKOV3 cells suppresses their resistance to CAR-T cells. Mechanistically, HBO1 co-binds the gene sets responsible for EMT with SMAD4 and orchestrates a gene regulatory network critical for tumor progression in SKOV3 cells. CONCLUSION HBO1 plays an essential onco-factor to drive EMT and promote the immunotherapy resistance in ovarian cancer cells. Together, we reveal a critical role of HBO1 mediated epigenetic mechanism in OC progression, providing an insight into designing new therapy strategies.
Collapse
Affiliation(s)
- Cong Zhang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinmin Zhu
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Huaisong Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhishuai Zhang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Baoqiang Kang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fei Li
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yongli Shan
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yanqi Zhang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qi Xing
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiaming Gu
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xing Hu
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanbin Cui
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jingxi Huang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tiancheng Zhou
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuchan Mai
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qianyu Chen
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rui Mao
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Peng Li
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Guangjin Pan
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou, 511436, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
23
|
Pan X, Che Q, Liu D, Xie Y, Li B, Zhang S, Li T, Li G, Li X, Zheng Q, Zhao K, Liu M. Development and validation of a novel endoplasmic reticulum stress-related lncRNA signature in laryngeal squamous cell carcinoma. Sci Rep 2025; 15:12497. [PMID: 40216868 PMCID: PMC11992065 DOI: 10.1038/s41598-025-96576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Endoplasmic reticulum stress (ERS) is an intracellular process in which improperly folded proteins lead to a cellular stress response. How endoplasmic reticulum stress contributes to the onset and progression of laryngeal squamous cell carcinoma remains unclear. Our research aimed to find an ERS signature to forecast the prognosis of laryngeal squamous cell carcinoma and to investigate its potential biological functions. LSCC sample data obtained from The Cancer Genome Atlas (TCGA) database were co-expressed with ERS- related genes, and then a prognostic signature on the basis of endoplasmic reticulum stress- related lncRNAs (ERS-related lncRNAs) was constructed by differential analysis and Cox regression analysis. Survival analysis, TMB, consensus cluster analysis, drug sensitivity analysis, immune analysis and clinical drug prediction were carried out on the model. Finally, the function of LHX1-DT was verified by in vitro experiments. From the TCGA-LSCC cohort, 35 significantly different ERS-related lncRNAs were identified. A prognostic signature consisting of three lncRNAs (AC110611.2, LHX1-DT, and AL157373.2) was identified. Kaplan-Meier analysis demonstrated the predictive ability of the model for overall survival. Calibration curves and receiver operating characteristic curves were validated and showed high predictive accuracy. Ultimately, the experimental results verified the expression of LHX1-DT in LSCC.
Collapse
Affiliation(s)
- Xiazhi Pan
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261042, China
| | - Qin Che
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Duanshali Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261042, China
| | - Yingli Xie
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Beicheng Li
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Shanshan Zhang
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin, 300100, China
| | - Gege Li
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Xiaohan Li
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Qiuchen Zheng
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Kai Zhao
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China.
| | - Mingbo Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261042, China.
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China.
- Senior Department of Otolaryngology Head and Neck Surgery, the 6Th Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China.
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
24
|
Ma X, Ma Y, Lin Z, Ji M. The role of the TGF-β1 signaling pathway in the process of amelogenesis. Front Physiol 2025; 16:1586769. [PMID: 40271211 PMCID: PMC12014465 DOI: 10.3389/fphys.2025.1586769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Amelogenesis is a highly regulated process involving multiple signaling pathways, among which the transforming growth factor-β1 (TGF-β1) signaling pathway plays a pivotal role in enamel formation. This review firstly elucidates the critical functions of TGF-β1 in regulating ameloblast behavior and enamel development, encompassing ameloblast proliferation, differentiation, apoptosis, enamel matrix protein synthesis, and mineralization. Secondly, based on emerging evidence, we further discuss potential interactions between TGF-β signaling and circadian regulation in enamel formation, although this relationship requires further experimental validation. Finally, future research directions are proposed to further investigate the relationship between TGF-β1 and the circadian clock in the context of amelogenesis.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Yunjing Ma
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Zhiyong Lin
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mei Ji
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
25
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
26
|
Li Z, Zhu T, Wu Y, Yu Y, Zang Y, Yu L, Zhang Z. Functions and mechanisms of non-histone post-translational modifications in cancer progression. Cell Death Discov 2025; 11:125. [PMID: 40164592 PMCID: PMC11958777 DOI: 10.1038/s41420-025-02410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Protein post-translational modifications (PTMs) refer to covalent and enzymatic alterations to folded or nascent proteins during or after protein biosynthesis to alter the properties and functions of proteins. PTMs are modified in a variety of types and affect almost all aspects of cell biology. PTMs have been reported to be involved in cancer progression by influencing multiple signaling pathways. The mechanism of action of histone PTMs in cancer has been extensively studied. Notably, evidence is mounting that PTMs of non-histone proteins also play a vital role in cancer progression. In this review, we provide a systematic description of main non-histone PTMs associated with cancer progression, including acetylation, lactylation, methylation, ubiquitination, phosphorylation, and SUMOylation, based on recent studies.
Collapse
Affiliation(s)
- Zongyang Li
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261041, China
| | - Tao Zhu
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Yushu Wu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261041, China
| | - Yongbo Yu
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Yunjiang Zang
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Lebo Yu
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Zhilei Zhang
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China.
| |
Collapse
|
27
|
Himani, Kaur C, Kumar R, Mishra R, Singh G. Targeting TGF-β: a promising strategy for cancer therapy. Med Oncol 2025; 42:142. [PMID: 40155496 DOI: 10.1007/s12032-025-02667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Transforming growth factor β (TGF-β) has important role in regulating the cellular processes including cell growth, differentiation, and migration. TGF-β exerts its effect by binding with transcellular membranes and kinases. Our findings demonstrate that TGF- β possess dual role as tumor suppressor and tumor promoter in different stages of cancer. TGF-β emerged as a promising anticancer agent that exhibits the apoptosis by acting on the suppressor of mothers against decapentaplegic (SMAD) and non-SMAD pathways. In this review we are focusing on the different types of TGF- β inhibitors active against skin cancer, breast cancer, colorectal cancer, lung cancer and ovarian cancer. TGF-β inhibitors includes ligand traps, monoclonal antibodies and receptor kinase inhibitors. In recent studies, TGF- β inhibitors have also been used in combination therapies in the treatment of cancer. The TGF-β has important role in vaccine therapy, Chemo and Radio Resistance in Cancer. TGF-β inhibitors present the novel therapeutic approach for the cancer therapy, highlighting the mechanism of action involved, clinical trials, challenges and exploring therapeutic opportunities. This will help to develop the novel TGF-β inhibitors as anticancer agents as well as help to resolve the problem of drug resistance by developing new drugs as anticancer agents.
Collapse
Affiliation(s)
- Himani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rakhi Mishra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
28
|
Carlson WD, Bosukonda D, Keck PC, Bey P, Tessier SN, Carlson FR. Cardiac preservation using ex vivo organ perfusion: new therapies for the treatment of heart failure by harnessing the power of growth factors using BMP mimetics like THR-184. Front Cardiovasc Med 2025; 12:1535778. [PMID: 40171539 PMCID: PMC11960666 DOI: 10.3389/fcvm.2025.1535778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
As heart transplantation continues to be the gold standard therapy for end-stage heart failure, the imbalance between the supply of hearts, and the demand for them, continues to get worse. In the US alone, with less than 4,000 hearts suitable for transplant and over 100,000 potential recipients, this therapy is only available to a very few. The use of hearts Donated after Circulatory Death (DCD) and Donation after Brain Death (DBD) using ex vivo machine perfusion (EVMP) is a promising approach that has already increased the availability of suitable organs for heart transplantation. EVMP offers the promise of enabling the expansion of the overall number of heart transplants and lower rates of early graft dysfunction. These are realized through (1) safe extension of the time between procurement and transplantation and (2) ex vivo assessment of preserved hearts. Notably, ex vivo perfusion has facilitated the donation of DCD hearts and improved the success of transplantation. Nevertheless, DCD hearts suffer from serious preharvest ischemia/reperfusion injury (IRI). Despite these developments, only 40% of hearts offered for transplantation can be utilized. These devices do offer an opportunity to evaluate donor hearts for transplantation, resuscitate organs previously deemed unsuitable for transplantation, and provide a platform for the development of novel therapeutics to limit cardiac injury. Bone Morphogenetic Protein (BMP) signaling is a new target which holds the potential for ameliorating myocardial IRI. Recent studies have demonstrated that BMP signaling has a significant role in blocking the deleterious effects of injury to the heart. We have designed novel small peptide BMP mimetics that act via activin receptor-like kinase (ALK3), a type I BMP receptor. They are capable of (1) inhibiting inflammation and apoptosis, (2) blocking/reversing the epithelial-mesenchymal transition (EMT) and fibrosis, and (3) promoting tissue regeneration. In this review, we explore the promise that novel therapeutics, including these BMP mimetics, offer for the protection of hearts against myocardial injury during ex vivo transportation for cardiac transplantation. This protection represents a significant advance and a promising ex vivo therapeutic approach to expanding the donor pool by increasing the number of transplantable hearts.
Collapse
Affiliation(s)
- William D. Carlson
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Therapeutics by Design, Weston, MA, United States
| | - Dattatreyamurty Bosukonda
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Therapeutics by Design, Weston, MA, United States
| | | | - Philippe Bey
- Therapeutics by Design, Weston, MA, United States
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children’s Hospital, Boston, MA, United States
| | | |
Collapse
|
29
|
Wang S, Xu D, Xiao L, Liu B, Yuan X. Radiation-induced lung injury: from mechanism to prognosis and drug therapy. Radiat Oncol 2025; 20:39. [PMID: 40082925 PMCID: PMC11907960 DOI: 10.1186/s13014-025-02617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Radiation induced lung injury, known as the main complication of thoracic radiation, remains to be a major resistance to tumor treatment. Based on the recent studies on radiation-induced lung injury, this review collated the possible mechanisms at the level of target cells and key pathways, corresponding prognostic models including predictors, patient size, number of centers, radiotherapy technology, construction methods and accuracy, and pharmacotherapy including drugs, targets, therapeutic effects, impact on anti-tumor treatment and research types. The research priorities and limitations are summarized to provide a reference for the research and management of radiation-induced lung injury.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, 210000, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
30
|
Wiley MB, Bauer J, Alvarez V, Kolics Z, Cheng W, Church DN, Kerr DJ, Kerr RS, Jung B. Activin A affects colorectal cancer progression and immunomodulation in a stage dependent manner. Sci Rep 2025; 15:8509. [PMID: 40075112 PMCID: PMC11903883 DOI: 10.1038/s41598-025-91853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Advanced colorectal cancer (CRC) continues to present with poor survival and treatment options remain limited. We have shown that increased activin A (activin) expression in the tumor microenvironment (TME) is associated with poor outcome in a cohort of stage III and IV CRC patients. Here, we hypothesized that activin promotes stage specific outcomes in CRC, enhancing metastasis and tolerance in late-stage CRC exclusively. We employed Digital Spatial Profiling (DSP) technology on a cohort of stage II and III CRC patient tissue samples obtained at the time of curative surgery to show that activin co-localization was associated with increased mitogenic signaling, proliferation, and immunosuppression in stage III, but not stage II, CRCs. Furthermore, we found strong linear correlations between markers of immunosuppression and signaling proteins in activin (+) areas, an effect that was not observed in activin (-) areas of tissue. Taken together these data suggest activin exerts pro-metastatic and immunosuppressive effects in stage III, but not stage II, CRC providing an attractive therapeutic target for advanced CRC.
Collapse
Affiliation(s)
- Mark B Wiley
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Jessica Bauer
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Valentina Alvarez
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Zoe Kolics
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Wenxuan Cheng
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - David N Church
- Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK
- NIHR Oxford Comprehensive Biomedical Research Center, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, OX1 4BH, UK
| | - David J Kerr
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK
| | - Rachel S Kerr
- Department of Oncology, University of Oxford, Oxford, OX1 4BH, UK
| | - Barbara Jung
- School of Medicine, University of California, San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
31
|
Lee D, Oh S, Lawler S, Kim Y. Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2025; 22:744-809. [PMID: 40296792 DOI: 10.3934/mbe.2025028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Neutrophils play a crucial role in the innate immune response as a first line of defense in many diseases, including cancer. Tumor-associated neutrophils (TANs) can either promote or inhibit tumor growth in various steps of cancer progression via mutual interactions with cancer cells in a complex tumor microenvironment (TME). In this study, we developed and analyzed mathematical models to investigate the role of natural killer cells (NK cells) and the dynamic transition between N1 and N2 TAN phenotypes in killing cancer cells through key signaling networks and how adjuvant therapy with radiation can be used in combination to increase anti-tumor efficacy. We examined the complex immune-tumor dynamics among N1/N2 TANs, NK cells, and tumor cells, communicating through key extracellular mediators (Transforming growth factor (TGF-$ \beta $), Interferon gamma (IFN-$ \gamma $)) and intracellular regulation in the apoptosis signaling network. We developed several tumor prevention strategies to eradicate tumors, including combination (IFN-$ \gamma $, exogenous NK, TGF-$ \beta $ inhibitor) therapy and optimally-controlled ionizing radiation in a complex TME. Using this model, we investigated the fundamental mechanism of radiation-induced changes in the TME and the impact of internal and external immune composition on the tumor cell fate and their response to different treatment schedules.
Collapse
Affiliation(s)
- Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunju Oh
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sean Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
32
|
Chen M, Liu H, Xiao Y, Liang R, Xu H, Hong B, Qian Y. Predictive biomarkers of pancreatic cancer metastasis: A comprehensive review. Clin Chim Acta 2025; 569:120176. [PMID: 39914505 DOI: 10.1016/j.cca.2025.120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
This review provides a comprehensive overview of predictive biomarkers associated with metastasis in pancreatic cancer (PC), one of the most aggressive malignancies characterized by late-stage diagnosis and poor prognosis. Metastasis, particularly to the liver, lungs, and lymph nodes, significantly worsens patient outcomes by compromising organ function and promoting disease progression. Reliable biomarkers for predicting and detecting metastasis at early stages are critical for improving survival rates and guiding personalized therapies. This paper highlights both general and specific biomarkers, including genetic mutations, protein expression changes, and carbohydrate tumor markers such as CA19-9. Immunological factors, including PD-L1, inflammatory cytokines, and chemokines, further influence the metastatic process within the tumor microenvironment (TME). Specific biomarkers play pivotal roles in promoting metastasis through mechanisms such as epithelial-to-mesenchymal transition (EMT), tumor microenvironment remodeling, and immune evasion. Emerging markers such as circulating tumor cells (CTCs) and volatile organic compounds (VOCs) offer promising non-invasive tools for metastasis detection and monitoring. This review not only consolidates existing knowledge but also highlights the mechanisms through which specific biomarkers facilitate metastasis. Despite recent progress, challenges such as biomarker standardization, technical variability, and clinical validation remain, and addressing these hurdles is essential for integrating predictive biomarkers into clinical practice. Ultimately, this review contributes to advancing early detection strategies, personalized treatment options, and improved prognosis for PC patients.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ruijin Liang
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Hong Xu
- Departments of Pathology, Quzhou Second People's Hospital, Quzhou 324022, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
33
|
Luo P, Hong H, Zhang B, Li J, Zhang S, Yue C, Cao J, Wang J, Dai Y, Liao Q, Xu P, Yang B, Liu X, Lin X, Yu Y, Feng XH. ERBB4 selectively amplifies TGF-β pro-metastatic responses. Cell Rep 2025; 44:115210. [PMID: 39854208 DOI: 10.1016/j.celrep.2024.115210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response. ERBB4 directly phosphorylates Tyr162 in the linker region of SMAD4, which enables SMAD4 to achieve a higher DNA-binding ability and potentiates TGF-β-induced gene transcription associated with epithelial-to-mesenchymal transition (EMT), cell migration, and invasion without affecting the genes involved in growth inhibition. These selective effects facilitate lung cancer metastasis in mouse models. This discovery sheds light on the previously unrecognized role of SMAD4 as a substrate of ERBB4 and highlights the selective involvement of the ERBB4-SMAD4 regulatory axis in tumor metastasis.
Collapse
Affiliation(s)
- Peihong Luo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huanyu Hong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoling Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuyi Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chaomin Yue
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin Cao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuhan Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qingqing Liao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pinglong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yi Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
34
|
Sharip A, Kunz J. Mechanosignaling via Integrins: Pivotal Players in Liver Fibrosis Progression and Therapy. Cells 2025; 14:266. [PMID: 39996739 PMCID: PMC11854242 DOI: 10.3390/cells14040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Liver fibrosis, a consequence of chronic liver injury, represents a major global health burden and is the leading cause of liver failure, morbidity, and mortality. The pathological hallmark of this condition is excessive extracellular matrix deposition, driven primarily by integrin-mediated mechanotransduction. Integrins, transmembrane heterodimeric proteins that serve as primary ECM receptors, orchestrate complex mechanosignaling networks that regulate the activation, differentiation, and proliferation of hepatic stellate cells and other ECM-secreting myofibroblasts. These mechanical signals create self-reinforcing feedback loops that perpetuate the fibrotic response. Recent advances have provided insight into the roles of specific integrin subtypes in liver fibrosis and revealed their regulation of key downstream effectors-including transforming growth factor beta, focal adhesion kinase, RhoA/Rho-associated, coiled-coil containing protein kinase, and the mechanosensitive Hippo pathway. Understanding these mechanotransduction networks has opened new therapeutic possibilities through pharmacological manipulation of integrin-dependent signaling.
Collapse
Affiliation(s)
- Aigul Sharip
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan;
- Laboratory of Bioinformatics and Systems Biology, National Laboratory Astana, Astana 020000, Kazakhstan
| | - Jeannette Kunz
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan;
| |
Collapse
|
35
|
Shi M, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. Long non-coding RNAs: Emerging regulators of invasion and metastasis in pancreatic cancer. J Adv Res 2025:S2090-1232(25)00073-6. [PMID: 39933650 DOI: 10.1016/j.jare.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The invasion and metastasis of pancreatic cancer (PC) are key factors contributing to disease progression and poor prognosis. This process is primarily driven by EMT, which has been the focus of recent studies highlighting the role of long non-coding RNAs (lncRNAs) as crucial regulators of EMT. However, the mechanisms by which lncRNAs influence invasive metastasis are multifaceted, extending beyond EMT regulation alone. AIM OF REVIEW This review primarily aims to characterize lncRNAs affecting invasion and metastasis in pancreatic cancer. We summarize the regulatory roles of lncRNAs across multiple molecular pathways and highlight their translational potential, considering the implications for clinical applications in diagnostics and therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal scientific themes. First, we primarily summarize lncRNAs orchestrate various signaling pathways, such as TGF-β/Smad, Wnt/β-catenin, and Notch, to regulate molecular changes associated with EMT, thereby enhancing cellular motility and invasivenes. Second, we summarize the effects of lncRNAs on autophagy and ferroptosis and discuss the role of exosomal lncRNAs in the tumor microenvironment to regulate the behavior of neighboring cells and promote cancer cell invasion. Third, we emphasize the effects of RNA modifications (such as m6A and m5C methylation) on stabilizing lncRNAs and enhancing their capacity to mediate invasive metastasis in PC. Lastly, we discuss the translational potential of these findings, emphasizing the inherent challenges in using lncRNAs as clinical biomarkers and therapeutic targets, while proposing prospective research strategies.
Collapse
Affiliation(s)
- Mengmeng Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
36
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
37
|
Joud H, Asgari M, Emerick V, Sun M, Avila MY, Margo CE, Espana EM. A Core of Keratocan-Negative Cells Survives in Old Corneal Scars. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:281-292. [PMID: 39566825 PMCID: PMC11773616 DOI: 10.1016/j.ajpath.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/15/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Corneal scars originate from keratocyte-derived fibroblasts and myofibroblasts that are ultimately cleared through apoptosis or revert to keratocytes. A mouse model expressing the keratocyte lineage-specific reporter KeraRT/tetO-Cre/mTmG (I-KeramTmG) was used to elucidate cell phenotype dynamics during scar maturation. In this model, tdTomato (red) is expressed in all keratocan-negative cells, while enhanced green fluorescent protein (green) is expressed only by keratocytes. A 1-mm full-thickness keratotomy was generated in adult I-KeramTmG mice. The presence of keratocytes was determined at 3, 6, and 10 months after injury. At 3 and 6 months, few green cells were visualized at the scar borders, while few or no green cells were seen in the central (core) scar. At 10 months, a few green cells and a majority of red cells were observed throughout the scar. Proliferation of stromal cells after injury was studied by 5-ethynyl-2'-deoxyuridine labeling and Ki-67 staining. Both assays showed proliferation only during the first 2 weeks after injury. Second harmonic generation microscopy showed thickened and irregularly arranged collagen fibers in scars, suggesting that neither extracellular matrix organization nor cell phenotype had changed significantly at 10 months after injury. Findings from in vivo experiments suggest that in old corneal scars, a nonkeratocyte phenotype persists in an abnormal matrix with unique characteristics that probably prevent the regression of fibroblasts and myofibroblasts to keratocytes or invasion of surrounding keratocytes.
Collapse
Affiliation(s)
- Hadi Joud
- Department of Ophthalmology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Meisam Asgari
- Department of Medical Engineering, University of South Florida, Tampa, Florida
| | - Victoria Emerick
- Department of Ophthalmology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Mei Sun
- Department of Ophthalmology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Marcel Y Avila
- Department of Ophthalmology, Universidad Nacional de Colombia, Bogota, Colombia
| | - Curtis E Margo
- Department of Ophthalmology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida; Department of Pathology and Cell Biology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Edgar M Espana
- Department of Ophthalmology, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida.
| |
Collapse
|
38
|
Liu S, Wang F, Zhang C, Jiang H, Liu C. Synthesis and biological evaluation of 4-((3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl)oxy)quinoline derivatives as novel potential transforming growth factor-β type 1 receptor inhibitors for hepatocellular carcinoma. Bioorg Chem 2025; 155:108156. [PMID: 39809119 DOI: 10.1016/j.bioorg.2025.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The transforming growth factor β (TGF-β) type 1 receptor (ALK5) plays a key role in tumor microenvironment. Small-molecule inhibitors of TGFβR1 provides a prospective approach for the treatment of malignant tumors. In this study, a series of 4-((3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl)oxy)quinoline derivatives were identified as novel, potential TGFβR1 inhibitors. The most potent compound 16w inhibited SMAD2/3 phosphorylation and H22 cell viability with IC50 values of 12 and 65 nM, respectively. Further, compound 16w exhibited reasonable pharmacokinetic profiles and exhibited significant anti-tumor efficacy in a xenograft model of H22 cells, with TGI of 79.6 %. Additionally, compound 16w also showed a strong synergistic proapoptotic effect in combination with sorafenib, which provided a promising lead for further development of novel anticancer drugs.
Collapse
MESH Headings
- Humans
- Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Quinolines/pharmacology
- Quinolines/chemistry
- Quinolines/chemical synthesis
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Animals
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Structure-Activity Relationship
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Molecular Structure
- Drug Screening Assays, Antitumor
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemical synthesis
- Protein Kinase Inhibitors/chemistry
- Dose-Response Relationship, Drug
- Mice
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Apoptosis/drug effects
- Cell Line, Tumor
- Pyrazoles/pharmacology
- Pyrazoles/chemistry
- Pyrazoles/chemical synthesis
- Male
- Mice, Nude
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Siyuan Liu
- Department of General Surgery, the Second Xiang-Ya Hospital, Central South University, Changsha 410011 China; The First Central Clinical School, Tianjin Medical University, Tianjin 300190 China
| | - Fusheng Wang
- Department of General Surgery, Fuyang People's Hospital, Fuyang China
| | - Caifang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Chun Liu
- Department of General Surgery, the Second Xiang-Ya Hospital, Central South University, Changsha 410011 China.
| |
Collapse
|
39
|
Hong X, Wang S, Zhang Q, Li L, Liu H, Yang H, Wu D, Liu X, Shen T. Bisphenol A exacerbates colorectal cancer progression through enhancing ceramide synthesis. Toxicology 2025; 511:154054. [PMID: 39809339 DOI: 10.1016/j.tox.2025.154054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Bisphenol A (BPA) is a typical environmental endocrine disruptor which have been broadly confirmed to be associated with malignant tumors, including colorectal cancer (CRC). Lipid metabolism reprogramming performed important biological effects in cancer progression. While the role of lipid metabolism in CRC progression upon BPA exposure remain elusive. Here, we found that BPA exposure enhanced de novo ceramide synthesis in vitro, along with upregulated ceramide synthase in high-BPA tumor tissue of CRC patients. Simultaneously, we demonstrated that BPA exposure exacerbated tumor biological behavior and epithelial mesenchymal transition (EMT), concurrent with elevated EMT expression of CRC tissue in high BPA group. Subsequently, the inhibition of ceramide synthase and pharmacological stimulation experiments revealed that ceramide accumulation activated EMT and exacerbated CRC progression, including Cer (d18:1/16:0) and Cer (d18:1/24:1). Collectively our findings elucidated the pathogenesis of ceramide accumulation escalating tumor progression under environmental BPA exposure, providing a strong basis for further investigation of dysregulated ceramide metabolism to boost tumor development and avoid metastatic relapse.
Collapse
Affiliation(s)
- Xu Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Qing Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Lanlan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Hang Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Hongxu Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Danyang Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Xingcun Liu
- Department of Gastrointestinal surgery, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
40
|
Liu X, Liu K, Hu L, Liu Z, Liu X, Wang J. A novel TGFBR2 mutation causes Loeys-Dietz syndrome in a Chinese infant: A case report. Heliyon 2025; 11:e42116. [PMID: 39906804 PMCID: PMC11791283 DOI: 10.1016/j.heliyon.2025.e42116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Introduction Loeys-Dietz syndrome (LDS) is a rare autosomal dominant disorder with extensive connective tissue involvement. The diagnosis of this disease is mainly based on clinical features combined with the detection of pathogenic gene mutations, mainly mutations in the transforming growth factor-beta (TGF-β) signaling pathway. Methods The molecular pathogenesis of a LDS syndrome proband and his family members was analyzed using whole exome sequencing and validated using Sanger sequencing. Molecular dynamics simulations and in vitro cell experiments further analyzed the structural changes and functional abnormalities of the variation. Results This study describes the case of a 6-month-old infant diagnosed with LDS with typical craniofacial abnormalities, developmental delay, and a dilated aortic sinus (19 mm; Z-score 3.5). Genetic analysis showed the patient carried a novel de novo TGF-β receptor 2 (TGFBR2) mutation (NM_003242: c.1005_1007delGTA (p.Glu335_Tyr336delinsAsp)). Molecular dynamics simulation showed that the TGFBR2 c.1005_1007delGTA mutation changed the protein conformation, making the protein conformation more stable. The p.Glu335_Tyr336delinsAsp mutation significantly reduced TGF-β-induced gene transcription and phosphorylation of SMAD Family Member 2 (SMAD2) in vitro. Conclusions Our comprehensive genetic analysis suggested that the p.Glu335_Tyr336delinsAsp variant of TGFBR2 caused aberrant TGF-β signaling and contributed to LDS in the patient.
Collapse
Affiliation(s)
- Xin Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Kaiqing Liu
- Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lifu Hu
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Zixiao Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Xinhua Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| |
Collapse
|
41
|
Dong A, Yu X, Zhang Y, Liu L, Liu F, Song W, Zheng J. Anti-Müllerian hormone regulates ovarian granulosa cell growth in PCOS rats through SMAD4. Int J Gynaecol Obstet 2025. [PMID: 39865361 DOI: 10.1002/ijgo.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS. METHODS A DHEA-induced PCOS rat model was established, and ovarian granulosa cells were extracted and identified. Anti-Müllerian hormone (AMH) and SMAD family member 4 (SMAD4) expression was detected in the serum, ovarian tissue and ovarian granulosa cells of each group, and proliferating cell nuclear antigen (PCNA), BCL2-associated 2 (BAX), cleaved caspase-3 and BCL-2 protein expression was detected by Western blot in ovarian granulosa cells. Recombinant anti-Müllerian hormone (rAMH) was administered at different concentrations to act on normal rat ovarian granulosa cells, cell proliferation was detected by cell counting kit-8 (CCK-8), apoptosis was detected by flow cytometry, and SMAD4, caspase-3, BCL-2 and cyclin A proteins were detected by Western blot. SMAD4-siRNA was transfected into rat ovarian granulosa cells of the PCOS group, and PCNA and BAX were detected by Western blot. RESULTS Compared with those in the control group, the expression of AMH and SMAD4 was increased in the ovarian tissues and granulosa cells of rats in the PCOS group, the expression of PCNA and BCL-2 proteins was decreased in the ovarian granulosa cells of the PCOS group, the expression of BAX proteins was increased, and the expression of cleaved caspase-3 was increased. Western blot results indicated that rAMH upregulated SMAD4 and caspase-3 protein expression in granulosa cells and downregulated cyclin A and BCL-2 protein expression. CCK-8 and flow cytometry results indicated that AMH decreased granulosa cells proliferation and increased apoptosis. SiRNA knockdown of SMAD4 gene increased PCNA and BCL-2 protein expression in the granulosa cells of PCOS rats and decreased BAX and cleaved caspase-3 protein expression. CONCLUSION AMH may be involved in regulating impaired ovarian granulosa cells development in PCOS rats via SMAD4.
Collapse
Affiliation(s)
- Anqi Dong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiaomeng Yu
- Department of Obstetrics, Women and Children's Hospital of Jinzhou, Jinzhou, Liaoning, China
| | - Yun Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lili Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fanglin Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jindan Zheng
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
42
|
Cáceres-Calle D, Torre-Cea I, Marcos-Zazo L, Carrera-Aguado I, Guerra-Paes E, Berlana-Galán P, Muñoz-Félix JM, Sánchez-Juanes F. Integrins as Key Mediators of Metastasis. Int J Mol Sci 2025; 26:904. [PMID: 39940673 PMCID: PMC11816423 DOI: 10.3390/ijms26030904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Metastasis is currently becoming a major clinical concern, due to its potential to cause therapeutic resistance. Its development involves a series of phases that describe the metastatic cascade: preparation of the pre-metastatic niche, epithelial-mesenchymal transition, dissemination, latency and colonization of the new tissue. In the last few years, new therapeutic targets, such as integrins, are arising to face this disease. Integrins are transmembrane proteins found in every cell that have a key role in the metastatic cascade. They intervene in adhesion and intracellular signaling dependent on the extracellular matrix and cytokines found in the microenvironment. In this case, integrins can initiate the epithelial-mesenchymal transition, guide the formation of the pre-metastatic niche and increase tumor migration and survival. Integrins also take part in the tumor vascularization process necessary to sustain metastasis. This fact emphasizes the importance of inhibitory therapies capable of interfering with the function of integrins in metastasis.
Collapse
Affiliation(s)
- Daniel Cáceres-Calle
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Irene Torre-Cea
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Patricia Berlana-Galán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
43
|
Lin SY, Huang H, Yu JJ, Su F, Jiang T, Zhang SY, Lv L, Long T, Pan HW, Qi JQ, Zhou Q, Tang WF, Ding GW, Wang LM, Tan LJ, Yin J. Activin A receptor type 1C single nucleotide polymorphisms associated with esophageal squamous cell carcinoma risk in Chinese population. World J Gastrointest Oncol 2025; 17:96702. [PMID: 39817119 PMCID: PMC11664604 DOI: 10.4251/wjgo.v17.i1.96702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/01/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Transforming growth factor-β (TGF-β) superfamily plays an important role in tumor progression and metastasis. Activin A receptor type 1C (ACVR1C) is a TGF-β type I receptor that is involved in tumorigenesis through binding to different ligands. AIM To evaluate the correlation between single nucleotide polymorphisms (SNPs) of ACVR1C and susceptibility to esophageal squamous cell carcinoma (ESCC) in Chinese Han population. METHODS In this hospital-based cohort study, 1043 ESCC patients and 1143 healthy controls were enrolled. Five SNPs (rs4664229, rs4556933, rs77886248, rs77263459, rs6734630) of ACVR1C were assessed by the ligation detection reaction method. Hardy-Weinberg equilibrium test, genetic model analysis, stratified analysis, linkage disequilibrium test, and haplotype analysis were conducted. RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC, and those with rs77886248 TA mutant were related with higher risk, especially in older male smokers. In the haplotype analysis, ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC, while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC. CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC, which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.
Collapse
Affiliation(s)
- Si-Yun Lin
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Hou Huang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jin-Jie Yu
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Feng Su
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Shao-Yuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Lu Lv
- Department of Cardiothoracic Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu Province, China
| | - Tao Long
- Department of Cardiothoracic Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu Province, China
| | - Hui-Wen Pan
- Department of Cardiothoracic Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu Province, China
| | - Jun-Qing Qi
- Department of Cardiothoracic Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu Province, China
| | - Qiang Zhou
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Chengdu 610042, Sichuan Province, China
| | - Wei-Feng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, China
| | - Guo-Wen Ding
- Department of Cardiothoracic Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu Province, China
| | - Li-Ming Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Xuhui Central Hospital, Shanghai 200032, China
| | - Li-Jie Tan
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| |
Collapse
|
44
|
Lin TE, Chou CH, Wu YW, Sung TY, Hsu JY, Yen SC, Hsieh JH, Chang YW, Pan SL, Huang WJ, Hsu KC, Yang CR. Identification of a Potent CDK8 Inhibitor Using Structure-Based Virtual Screening. J Chem Inf Model 2025; 65:378-389. [PMID: 39740163 PMCID: PMC11733953 DOI: 10.1021/acs.jcim.4c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Pulmonary fibrosis is excessive scarring of the lung tissues. Transforming growth factor-beta (TGF-β) has been implicated in pulmonary fibrosis due to its ability to induce the epithelial-to-mesenchymal transition (EMT) and promote epithelial cell migration. Cyclin-dependent kinase 8 (CDK8) can mediate the TGF-β signaling pathways and could function as an alternative therapeutic target for treating pulmonary fibrosis. Here, we performed a structure-based virtual screening campaign to identify CDK8 inhibitors from a library of 1.6 million compounds. The screening process ended with the identification of a novel CDK8 inhibitor, P162-0948 (IC50: 50.4 nM). An interaction analysis highlighted important CDK8-ligand interactions that support its binding and inhibitory activity. Testing against a panel of 60 different kinases demonstrated P162-0948 selectivity toward CDK8. Crucially, the inhibitor was found to be structurally novel when compared to known CDK8 inhibitors. Testing in A549 human alveolar epithelial cell lines showed that the P162-0948 can reduce cell migration and protein expression of EMT-related proteins. When P162-0948 was treated in cells at 5 μM, phosphorylation of Smad in the nucleus was reduced, which suggests disruption of the TGF-β/Smad signaling pathway. The identification of P162-0948 shows that it is not only potent, but its structural novelty can inform future design studies for potential therapeutics targeting pulmonary fibrosis.
Collapse
Affiliation(s)
- Tony Eight Lin
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
for Cancer Molecular Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hsuan Chou
- School of
Pharmacy, College of Medicine, National
Taiwan University, Taipei 10051, Taiwan
| | - Yi-Wen Wu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tzu-Ying Sung
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Jui-Yi Hsu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
for Cancer Molecular Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Chung Yen
- Warshel
Institute
for Computational Biology, The Chinese University
of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, People’s Republic of China
| | - Jui-Hua Hsieh
- Division
of Translational Toxicology, National Institute of Environmental Health
Sciences, National Institutes of Health, Durham, North Carolina 27709-2233, United
States
| | - Yu-Wei Chang
- Ph.D. Program
for Cancer Molecular Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department
of Traditional Chinese Medicine, Chang Gung
Memorial Hospital, Keelung Medical Center, Keelung 20401,Taiwan
| | - Shiow-Lin Pan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
for Cancer Molecular Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research
Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031,Taiwan
| | - Wei-Jan Huang
- Ph.D. Program
in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- School of
Pharmacy, Taipei Medical University, Taipei 10051, Taiwan
| | - Kai-Cheng Hsu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
for Cancer Molecular Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research
Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031,Taiwan
- Cancer
Center, Wan Fang Hospital, Taipei Medical
University, Taipei 11696,Taiwan
| | - Chia-Ron Yang
- School of
Pharmacy, College of Medicine, National
Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
45
|
Xu Y, Lv J, Liu Y, Du J, Luo C, Wang Y, Liu L, Sakurai K, Tang Z, Chen X. Coagulation-Targeted TGF-β Signaling Pathway Inhibitor Nanomedicine for Inhibiting the Growth and Lung Metastasis of Breast Cancer. NANO LETTERS 2025; 25:504-513. [PMID: 39680715 DOI: 10.1021/acs.nanolett.4c05355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The transforming growth factor β (TGF-β) signaling pathway exerts a dual role in oncogenesis, acting as a suppressor in healthy and early stage neoplastic tissues while promoting malignancy and metastasis in advanced cancers. Tumor hemorrhage further exacerbates TGF-β-mediated metastasis by up-regulating its expression. Here, a coagulation-targeting peptide (A15)-decorated TGF-β inhibitor nanomedicine (A15-LY-NPs) was developed. The tumor colonization assays showed that the nanomedicine reduced 4T1-luc cell colonization in normal tissues. When combined with a vascular disrupting agent, A15-LY-NPs demonstrated three times greater drug accumulation in the tumor at 24 h compared to the control and showed a 93.7% tumor suppression rate in 4T1 tumors initiated at ∼500 mm3, significantly attenuating metastatic spread to the lungs and liver. This study presents an innovative approach for the precise and efficient delivery of TGF-β inhibitors to tumors, offering the potential to augment the efficacy of cancer therapeutics.
Collapse
Affiliation(s)
- Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jianlin Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ya Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jincheng Du
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Chuwen Luo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ying Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Kitakyushu 808-0135, Japan
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
46
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
47
|
Hu J, Zeng L, Hu R, Gong D, Liu M, Ding J. TENT5A Increases Glioma Malignancy and Promotes its Progression. Recent Pat Anticancer Drug Discov 2025; 20:45-54. [PMID: 38204269 DOI: 10.2174/0115748928280901231206102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Recent studies reported that terminal nucleotidyltransferase 5A (TENT5A) is highly expressed in glioblastoma and associated with poor prognosis. In this work, we aim to specify the expression level of TENT5A in different grades of glioma and explore its role in glioma progression. METHODS GEPIA online tools were used to perform the bioinformatic analysis. qRT-PCR, Western blot, and Immunohistochemistry were performed in glioma cells or tissues. Furthermore, CCK8, colony formation, transwell, flow cytometry and scratch assays were performed. RESULTS TENT5A was highly expressed in glioma and its level was associated with the pathological grade of glioma. Knockdown of TENT5A suppressed cell proliferation, colony formation ability, cell invasion and migration. Overexpression of TENT5A was lethal to the glioma cells. CONCLUSION Our data showed that the expression of TENT5A is associated with the pathological grade of glioma. Knockdown of TENT5A decreased the ability of proliferation, invasion and migration of glioma cells. High levels of TENT5A in glioma cells are lethal. Therefore, TENT5A could be a new target for glioma treatment.
Collapse
Affiliation(s)
- Jiali Hu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Oncology, Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| | - Lei Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Oncology, Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| | - Ronghuan Hu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Oncology, Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| | - Dan Gong
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Oncology, Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| | - Mengmeng Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Oncology, Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| | - Jianwu Ding
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Oncology, Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, China
| |
Collapse
|
48
|
Kishta MS, Khamis A, Am H, Elshaar AH, Gül D. Exploring the tumor-suppressive role of miRNA-200c in head and neck squamous cell carcinoma: Potential and mechanisms of exosome-mediated delivery for therapeutic applications. Transl Oncol 2025; 51:102216. [PMID: 39615277 DOI: 10.1016/j.tranon.2024.102216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a challenging malignancy due to its high rates of recurrence, metastasis, and resistance to conventional therapies. microRNA-200c (miRNA-200c) has emerged as a critical tumor suppressor in HNSCC, with the potential to inhibit epithelial-mesenchymal transition (EMT), which is considered as a key process in cancer metastasis and progression. Interestingly, there are also controversial findings in HNSCC characterizing miRNA-200c as oncogenic factor. This review article provides a comprehensive overview of the current understanding of miRNA-200c's general role in cancer, and particularly in HNSCC, highlighting its mechanisms of action, including the regulation of EMT and other oncogenic pathways. Additionally, the review explores the innovative approach of exosome-mediated delivery of miRNA-200c as a therapeutic strategy. Exosomes, as natural nanocarriers, offer a promising vehicle for the targeted delivery of miRNA-200c to tumor cells, potentially overcoming the limitations of traditional delivery methods and enhancing therapeutic efficacy. The review also discusses the challenges and future directions in the clinical application of miRNA-200c, particularly focusing on its potential to improve outcomes for HNSCC patients. This article seeks to provide valuable insights for researchers and clinicians working towards innovative treatments for this aggressive cancer type.
Collapse
Affiliation(s)
- Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, 12622 Cairo, Egypt.
| | - Aya Khamis
- Maxillofacial and Oral Surgery, University Medical Center, 55131 Mainz, Germany; Oral Pathology Department, Faculty of Dentistry, Alexandria University, 5372066 Alexandria, Egypt
| | - Hafez Am
- Medical Biochemistry Department Faculty of medicine KafrElSheikh University, Kafr El-Sheikh, Egypt
| | | | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
49
|
Din ZU, Cui B, Wang C, Zhang X, Mehmood A, Peng F, Liu Q. Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy. Mol Cell Biochem 2025; 480:103-118. [PMID: 38622439 DOI: 10.1007/s11010-024-04995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial-mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.
Collapse
Affiliation(s)
- Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
50
|
Zeng H, Wu Y, Long X. Cap-specific terminal N6-methyladeonsine methylation of RNA mediated by PCIF1 and possible therapeutic implications. Genes Dis 2025; 12:101181. [PMID: 39524541 PMCID: PMC11550742 DOI: 10.1016/j.gendis.2023.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2024] Open
Abstract
Posttranscriptional RNA modification is an important mode of epigenetic regulation in various biological and pathological contexts. N6, 2'-O-dimethyladenosine (m6Am) is one of the most abundant methylation modifications in mammals and usually occurs at the first transcribed nucleotide. Accumulating evidence indicates that m6Am modifications have important roles in RNA metabolism and physiological and pathological processes. PCIF1 (phosphorylated C-terminal domain interacting factor 1) is a protein that can bind to the phosphorylated C-terminal domain of RNA polymerase II through its WW domain. PCIF1 is named after this binding ability. Recently, PCIF1 has been identified as a cap-specific adenine N6-methyltransferase responsible for m6Am formation. Discovered as the sole m6Am methyltransferase for mammalian mRNA, PCIF1 has since received more extensive and in-depth study. Dysregulation of PCIF1 contributes to various pathological processes. Targeting PCIF1 may hold promising therapeutic significance. In this review, we provide an overview of the current knowledge of PCIF1. We explore the current understanding of the structure and the biological characteristics of PCIF1. We further review the molecular mechanisms of PCIF1 in cancer and viral infection and discuss its therapeutic potential.
Collapse
Affiliation(s)
- Hui Zeng
- Center of Clinical Laboratory, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang 311225, China
| | - Yidong Wu
- Center of Clinical Laboratory, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang 311225, China
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|