1
|
Zhou S, Yang H. Radiotherapy modulates autophagy to reshape the tumor immune microenvironment to enhance anti-tumor immunity in esophageal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189302. [PMID: 40120778 DOI: 10.1016/j.bbcan.2025.189302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
The combination of radiotherapy and immunotherapy exerts synergistic antitumor in a range of human cancers, and also in esophageal cancer. Radiotherapy-induced tumor immune microenvironment (TIME) reprogramming is an essential basis for the synergistic antitumor between radiotherapy and immunotherapy. Radiotherapy can induce autophagy in tumor cells and immune cells of TIME, and autophagy activation is involved in the modification of immunological characteristics of TIME. The TIME landscape of esophageal cancer, especially ESCC, can be affected by radiotherapy or autophagy regulation. In this review, we depicted that local radiotherapy-induced autophagy could promote the maturation, migration, infiltration, and function of immune cells by complicated mechanisms to make TIME from immune "cold" to "hot", resulting in the synergistic antitumor of RT and IO. We argue that unraveling the relevance of radiotherapy-initiated autophagy to driving radiotherapy reprogramming TIME will open new ideas to explore new targets or more efficiently multimodal therapeutic interventions in ESCC.
Collapse
Affiliation(s)
- Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China.
| |
Collapse
|
2
|
Zheng S, Chen J, Ren A, Long W, Zhang X, He J, Yang M, Wang F. CT Multidimensional Radiomics Combined with Inflammatory Immune Score For Preoperative Prediction of Pathological Grade in Esophageal Squamous Cell Carcinoma. Acad Radiol 2025; 32:2667-2678. [PMID: 39809604 DOI: 10.1016/j.acra.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
RATIONALE AND OBJECTIVES Inflammation and immune biomarkers can promote angiogenesis and proliferation and metastasis of esophageal squamous cell carcinoma (ESCC). The degree of pathological grade reflects the tumor heterogeneity of ESCC. The purpose is to develop and validate a nomogram based on enhanced CT multidimensional radiomics combined with inflammatory immune score (IIS) for predicting poorly differentiated ESCC. MATERIALS AND METHODS A total of 266 ESCC patients from the retrospective study were included and randomly divided into a training set (N=186) and a validation set (N=80), and a complete data set (N=266), and overall survival was determined to follow up after surgery. The tumor imaging was segmented to form intratumoral and peritumoral 3 mm areas of 3D volume of interest (VOI) on CT arterial and venous phases, and 3404 radiomics features were extracted. Finally, the radiomics scores were calculated for arterial phase intratumoral (aInRads), peritumoral 3 mm (aPeriRads3), and venous phase intratumoral (vInRads), peritumoral 3 mm (vPeriRads3). Logistic regression was used to fuse the four cohorts of scores to form a Stacking. Additionally, sixteen inflammatory-immune biomarkers were analyzed, including aspartate aminotransferase to lymphocyte ratio (ALRI), aspartate aminotransferase to alanine aminotransferase ratio (AAR), neutrophil times gamma-glutamyl transpeptidase to lymphocyte ratio (NγLR), and albumin plus 5 times lymphocyte sum (PNI), etc. Finally, IIS was constructed using ALRI, AAR, NγLR and PNI. Model performance was evaluated by area under receiver operating characteristic curve (AUC), calibration curve, and decision curve analyse (DCA). RESULTS Stacking and IIS were independent risk factors for predicting poorly differentiated ESCC (P<0.05). Ultimately, three models of the IIS, Stacking, and nomogram were developed. Compared with the Stacking and IIS models, nomogram achieved better diagnostic performance for predicting poorly differentiated ESCC in the training set (0.881vs 0.835 vs 0.750), validation set (0.808 vs 0.796 vs 0.595), and complete data set (0.857 vs 0.823 vs 0.703). The nomogram achieved an AUC of 0.881(95%CI 0.826-0.924) in the training set, and was well verified in the validation set (AUC: 0.808[95%CI 0.705-0.888]) and the complete data set (AUC: 0.857[95%CI 0.809-0.897]). Moreover, calibration curve and DCA showed that nomogram achieved good calibration and owned more clinical net benefits in the three cohorts. KaplanMeier survival curves indicated that nomogram achieved excellent stratification for ESCC grade status (P<0.0001). CONCLUSION The nomogram that integrates preoperative inflammatory-immune biomarkers, intratumoral and peritumoral CT radiomics achieves a high and stable diagnostic performance for predicting poorly differentiated ESCC, and may be promising for individualized surgical selection and management. AVAILABILITY OF DATA AND MATERIALS The original manuscript contained in the research is included in the article. Further inquiries can be made directly to the corresponding author.
Collapse
Affiliation(s)
- Shaokun Zheng
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Jun Chen
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Anwei Ren
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Weili Long
- Department of Pathology, Luzhou People's Hospital, Luzhou 646000, China (W.L.)
| | - Xiaojiao Zhang
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Jiqiang He
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Ming Yang
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Fei Wang
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.).
| |
Collapse
|
3
|
Jiang D, Wu X, Deng Y, Yang X, Wang Z, Tang Y, He L, He X. Single-Cell Profiling Reveals Conserved Differentiation and Partial EMT Programs Orchestrating Ecosystem-Level Antagonisms in Head and Neck Cancer. J Cell Mol Med 2025; 29:e70575. [PMID: 40318012 PMCID: PMC12049153 DOI: 10.1111/jcmm.70575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) exhibits profound intratumoral heterogeneity, driven by dynamic interactions between malignant cells and the tumour microenvironment (TME). Using consensus non-negative matrix factorisation (cNMF) on multi-site HNSC single-cell transcriptomes, we resolving conserved meta-programs define cellular ecosystems. Six major epithelial programmes emerged, including a differentiation-associated programme (Epi_Diff) correlated with SPDEF activity and favourable patient prognosis, and an invasive programme (Epi_pEMT) potentially controlled by TEAD4-mediated ECM remodelling, exhibiting partial EMT markers (VIM, TGFB1). Compartment-specific crosstalk analysis revealed Epi_pEMT cells may coordinate with mCAF1 fibroblasts and TAM(SPP1) through COL1A1-CD44 and SPP1-CD44 signalling, suggesting potential formation of a pro-invasive niche. Conversely, Epi_Diff cells may interact with NK/T cells through CEACAM5-CD8A and CCL5-ACKR2, and may contribute to inhibit immune infiltration. Multi-compartment correlation analysis revealed three ecosystem-level patterns: (1) Inverse association between Epi_Diff and Epi_pEMT (Spearman R = -0.43); (2) Negative correlation between mCAF1 abundance and cCAF frequency (R = -0.48); (3) TAM(SPP1) dominance inversely correlating with both TAM(C1Q) (R = -0.43) and NK/T infiltration (R = -0.36). These axes suggest a potential hierarchical ecology framework where lineage-specific polarisation and inter-compartment synergies may collectively govern disease progression.
Collapse
Affiliation(s)
- Donghui Jiang
- Department of Otolaryngology & Head and Neck SurgeryFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Xiaoguang Wu
- Department of Otolaryngology & Head and Neck SurgeryFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yuanyuan Deng
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Xi Yang
- Department of Otolaryngology & Head and Neck SurgeryFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Zhiqiang Wang
- Department of Radiation OncologyFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yong Tang
- Department of Otolaryngology & Head and Neck SurgeryFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Li He
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Xiaoguang He
- Department of Otolaryngology & Head and Neck SurgeryFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
4
|
Kazmi A, Gill R, Restrepo P, Ji AL. The spatial and single-cell landscape of skin: Charting the multiscale regulation of skin immune function. Semin Immunol 2025; 78:101958. [PMID: 40267702 DOI: 10.1016/j.smim.2025.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Immune regulation is a key function of the skin, a barrier tissue that exhibits spatial compartmentalization of innate and adaptive immune cells. Recent advances in single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) have facilitated systems-based investigations into the molecular and cellular features of skin immunity at single-cell resolution, identifying cell types that maintain homeostasis in a coordinated manner, and those that exhibit dysfunctional cell-cell interactions in disease. Here, we review how technological innovation is uncovering the multiple scales of heterogeneity in the immune landscape of the skin. The microanatomic scale encompasses the skin's diverse cellular components and multicellular spatial organization, which govern the functional cell interactions and behaviors necessary to protect the host. On the macroanatomic scale, understanding heterogeneity in cutaneous tissue architecture across anatomical sites promises to unearth additional functional immune variation and resulting disease consequences. We focus on how single-cell and spatial dissection of the immune system in experimental models and in humans has led to a deeper understanding of how each cell type in the skin contributes to overall immune function in a context-dependent manner. Finally, we highlight translational opportunities for adopting these technologies, and insights gleaned from them, into the clinic.
Collapse
Affiliation(s)
- Abiha Kazmi
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raman Gill
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Restrepo
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew L Ji
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Yuan Q, Shi Y, Wang J, Xie Y, Li X, Zhao J, Jiang Y, Qiao Y, Guo Y, Zhang C, Lu J, Zhao T, Dong Z, Li P, Dong Z, Liu K. p38 mediated ACSL4 phosphorylation drives stress-induced esophageal squamous cell carcinoma growth through Src myristoylation. Nat Commun 2025; 16:3319. [PMID: 40195298 PMCID: PMC11976994 DOI: 10.1038/s41467-025-58342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/18/2025] [Indexed: 04/09/2025] Open
Abstract
The comprehension of intricate molecular mechanisms underlying how external stimuli promote malignancy is conducive to cancer early prevention. Esophageal squamous cell carcinoma (ESCC) is considered as an external stimuli (hot foods, tobacco, chemo-compounds) induced cancer, characterized by stepwise progression from hyperplasia, dysplasia, carcinoma in situ and invasive carcinoma. However, the underlying molecular mechanism governing the transition from normal epithelium to neoplastic processes in ESCC under persistent external stimuli has remained elusive. Herein, we show that a positive correlation between p38 and ERK1/2 activation during the progression of ESCC. We identify that phosphorylation of ACSL4 at T679 by p38 enhances its enzymatic activity, resulting in increased production of myristoyl-CoA (C14:0 CoA). This subsequently promotes Src myristoylation and activates downstream ERK signaling. Our results partially elucidate the role of ACSL4 in mediating stress-induced signaling pathways that activate growth cascades and contribute to tumorigenesis.
Collapse
Affiliation(s)
- Qiang Yuan
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Yunshu Shi
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Junyong Wang
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
| | - Yifei Xie
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyu Li
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jimin Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yanan Jiang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yan Qiao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yaping Guo
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Chengjuan Zhang
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Lu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Tongjin Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai, China
| | - Ziming Dong
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Peng Li
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China.
| | - Zigang Dong
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China.
| | - Kangdong Liu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Song P, Tian W, Zheng Y, Xu S, Hu Z, Jin X, Zhu X, Tan L, Chen D, Chen Y. Genomic and Immune Profiling of Esophageal Squamous Cell Carcinoma Undergoing Neoadjuvant Therapy Versus Upfront Surgery Identifies Novel Immunogenic Cell Death-Based Signatures for Predicting Clinical Outcomes. MedComm (Beijing) 2025; 6:e70171. [PMID: 40182138 PMCID: PMC11965704 DOI: 10.1002/mco2.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
It remains undetermined regarding the impact of neoadjuvant therapy on immunogenic cell death (ICD) and subsequent tumor microenvironment (TME) remodeling in esophageal squamous cell carcinoma (ESCC). And it is of paramount significance to identify beneficiaries from neoadjuvant therapy in treatment-naïve ESCC. In this study, 88 ESCC samples undergoing neoadjuvant therapy plus surgery (NA+S) or surgery alone (SA) were subjected to bulk-RNA sequencing. A five-gene RINscore incorporating ICD-related signature genes with TME-based hub genes was established to predict clinical outcomes and pharmacological responses, in which SLAMF7 and IL1R1 were selected out as co-expressed genes. The regulatory mechanism of the repressive co-transcription factor BATF of SLAMF7 and IL1R1 was further demonstrated. Our data demonstrated that NA+S led to high abundance in kinds of T helper cells, nature killer T cells and M1-like macrophages with increased CD8+T cells infiltration compared with SA. ICD phenotypes were further characterized in treatment-naïve ESCC to determine their differences in TME and potential benefits from NA. Our findings not only offered novel insights into the distinct TME and ICD profiles of ESCC undergoing different therapeutic modes, but also provided the RINscore, which may aid oncologists in determining individualized (neo)adjuvant immunotherapy regimen.
Collapse
Affiliation(s)
- Peidong Song
- Department of Thoracic Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wenze Tian
- Department of Thoracic Surgerythe Affiliated Huai'an First People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Yujia Zheng
- Department of Thoracic Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Sukai Xu
- Department of Thoracic Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zihao Hu
- Department of Thoracic Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xing Jin
- Department of Thoracic Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuejuan Zhu
- Department of Thoracic Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lijie Tan
- Department of Thoracic SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Donglai Chen
- Department of Thoracic SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Yongbing Chen
- Department of Thoracic Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
7
|
Kong S, Pan H, Zhang YW, Wang F, Chen J, Dong J, Yin C, Wu J, Zhou D, Peng J, Ma J, Zhou J, Ge D, Lu Y, Wei DD, Fang J, Han W, Shen C, Koeffler HP, Wang B, Jiang Y, Jiang YY. Targeting aldehyde dehydrogenase ALDH3A1 increases ferroptosis vulnerability in squamous cancer. Oncogene 2025; 44:1037-1050. [PMID: 39863749 DOI: 10.1038/s41388-025-03277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/15/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Ferroptosis is a unique modality of regulated cell death induced by excessive lipid peroxidation, playing a crucial role in tumor suppression and providing potential therapeutic strategy for cancer treatment. Here, we find that aldehyde dehydrogenase-ALDH3A1 tightly links to ferroptosis in squamous cell carcinomas (SCCs). Functional assays demonstrate the enzymatic activity-dependent regulation of ALDH3A1 in protecting SCC cells against ferroptosis through catalyzing aldehydes and mitigating lipid peroxidation. Furthermore, a specific covalent inhibitor of ALDH3A1-EN40 significantly enhances the ferroptosis sensitivity induced by the ferroptosis inducer. The combination of EN40 and a ferroptosis inducer exhibits a synergistic effect, effectively inhibiting the proliferation of SCC cells/organoids and suppressing tumor growth both in vitro and in vivo. On mechanism, high expression of ALDH3A1 is transcriptionally governed by TP63, which binds to super-enhancer of ALDH3A1. Collectively, our findings reveal a yet-unrecognized function of ALDH3A1 exploited by SCC cells to evade ferroptosis, and targeting ALDH3A1 may enhance the effect of ferroptosis-induced therapy in SCCs.
Collapse
Affiliation(s)
- Shuai Kong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Huaguang Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yuan-Wei Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Fei Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jian Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jinxiu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Chuntong Yin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiaqi Wu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Dan Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jingyi Peng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Junboya Ma
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jianian Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Dianlong Ge
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yan Lu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Dan-Dan Wei
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jinman Fang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wei Han
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Chengyin Shen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Boshi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Yuan Jiang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230026, China.
| | - Yan-Yi Jiang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
8
|
Hodge N, Tétreault MP. Epithelial Ikkβ deletion modulates immune responses and the IFNγ/CXCL9 axis during early esophageal carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643566. [PMID: 40166246 PMCID: PMC11957055 DOI: 10.1101/2025.03.18.643566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Esophageal cancer is a major cause of cancer-related death, often preceded with chronic inflammation and injuries. The NFκB/IKKβ pathway plays a central role in inflammation, yet its role in early esophageal carcinogenesis remains unclear. This study investigated the role of epithelial IKKβ in early esophageal carcinogenesis. Mice were treated with the carcinogen 4-nitroquinoline-1-oxide (4-NQO) or a vehicle for one month to induce precancerous lesions. Esophagi were harvested and examined through histological, protein, flow cytometry, and RNA analyses. Histological analysis revealed that 4-NQO treatment led to increased inflammation, intraepithelial CD45+ immune cells, and elevated IKKβ phosphorylation levels. Mice with esophageal epithelial-specific Ikkβ deletion (4-NQO/Ikkβ EEC-KO ) showed delayed progression to a precancerous state, with reduced immune cell recruitment compared to 4-NQO/controls. Immunophenotyping showed decreased recruitment of T cells, including CD4+, CD8+ and regulatory (Tregs) T cells, and increased recruitment of macrophages in 4-NQO/Ikkβ EEC-KO mice compared to 4-NQO/controls. RNA sequencing data identified 262 differentially expressed genes in 4-NQO/Ikkβ EEC-KO mice, implicating pathways related to inflammation and wound healing. Notably, the chemokine CXCL9, a T cell chemoattractant, was significantly upregulated in 4-NQO control mice, but not in 4-NQO/Ikkβ EEC-KO mice. Further analysis identified IFNγ as an upstream regulator of Cxcl9 expression, and neutralization of IFNγ reduced Cxcl9 expression levels in 4-NQO treated mice. Additionally, in vitro studies demonstrated that IFNγ upregulates Cxcl9 in an NF-κB dependent manner in esophageal keratinocytes. These findings suggest that epithelial IKKβ regulates the immune microenvironment in early esophageal carcinogenesis through the IFNγ/CXCL9 axis and influencing T cell recruitment and inflammatory responses.
Collapse
Affiliation(s)
- Nathan Hodge
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611-3010, USA
| | - Marie-Pier Tétreault
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611-3010, USA
| |
Collapse
|
9
|
Chang J, Lu J, Liu Q, Xiang T, Zhang S, Yi Y, Li D, Liu T, Liu Z, Chen X, Dong Z, Li C, Yi H, Yu S, Huang L, Qu F, Wang M, Wang D, Dong H, Cheng G, Zhu L, Li J, Li C, Wu P, Xie X, Teschendorff AE, Lin D, Wang X, Wu C. Single-cell multi-stage spatial evolutional map of esophageal carcinogenesis. Cancer Cell 2025; 43:380-397.e7. [PMID: 40068596 DOI: 10.1016/j.ccell.2025.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025]
Abstract
Cancer development involves the co-evolution of cancer cells and their surrounding microenvironment, yet the dynamics of this interaction within the physical architecture remains poorly understood. Here, we present a spatial transcriptomic map at single-cell resolution, encompassing 127 multi-stage fields of view from 43 patients, to chart the evolutionary trajectories of human esophageal squamous cell carcinoma (ESCC). By analyzing 6.4 million cells, we reveal that ESCC progression is driven by a proliferative epithelial cell subpopulation that acquires dedifferentiated and invasive characteristics. At the late precancerous stage, these cells disrupt the epithelial-stromal interface and recruit normal fibroblasts via JAG1-NOTCH1 signaling, transforming them into cancer-associated fibroblasts (CAFs). This interaction leads to the formation of a "CAF-Epi" (CAF and epithelial cell) niche at the tumor edge that shields the tumor from immune surveillance. The CAF-Epi niche formation is a key indicator of progression in ESCC and other squamous cell carcinomas and patient outcomes.
Collapse
Affiliation(s)
- Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Junting Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingyi Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxu Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Zeyuan Liu
- Changping Laboratory, Beijing 102206, China
| | - Xinjie Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenghao Dong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Cainan Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - HanZhang Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Siqi Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Luwei Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Fangfei Qu
- Changping Laboratory, Beijing 102206, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Dehe Wang
- Changping Laboratory, Beijing 102206, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liang Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiachen Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chenying Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pujie Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoting Xie
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Xiaoqun Wang
- Changping Laboratory, Beijing 102206, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
10
|
Jang J, Ko KP, Zhang J, Jun S, Park JI. Deciphering Precursor Cell Dynamics in Esophageal Preneoplasia via Genetic Barcoding and Single-Cell Transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.637920. [PMID: 40060545 PMCID: PMC11888434 DOI: 10.1101/2025.02.26.637920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Cancer cells exhibit high heterogeneity and lineage plasticity, complicating studies of tumorigenesis and development of therapies. Recently, preneoplastic cells, although histologically normal, have been shown to possess high plasticity and early genetic alterations, yet their origins and lineage trajectories remain unclear. Herein, we introduce a lineage-tracing tool integrating genetic barcoding with single-cell RNA sequencing to map preneoplastic esophageal cell lineages. We identified preneoplastic precursor cells (PNPCs) as a distinct progenitor-like population with unique transcriptional profiles and high plasticity, contributing to proliferative and basal cell populations. To enhance lineage mapping, we developed the eXamined Ridge (XR) score, accurately identifying high-plasticity cells. Nfib and Qk emerged as conserved PNPC markers, peaking in early preneoplasia and declining after malignant transformation. These findings reveal PNPCs as key players in early tumorigenesis and highlight their potential as biomarkers for early cancer detection and therapeutic intervention, offering new strategies for preventing esophageal cancer progression.
Collapse
Affiliation(s)
- Jinho Jang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
11
|
Henick BS, Taylor AM, Nakagawa H, Wong KK, Diehl JA, Rustgi AK. Squamous cell cancers of the aero-upper digestive tract: A unified perspective on biology, genetics, and therapy. Cancer Cell 2025; 43:178-194. [PMID: 39933897 PMCID: PMC11875029 DOI: 10.1016/j.ccell.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Squamous cell cancers (SCCs) of the head and neck, esophagus, and lung, referred to as aero-upper digestive SCCs, are prevalent in the United States and worldwide. Their incidence and mortality are projected to increase at alarming rates, posing diagnostic, prognostic, and therapeutic challenges. These SCCs share certain epigenetic, genomic, and genetic alterations, immunologic properties, environmental exposures, as well as lifestyle and nutritional risk factors, which may underscore common complex gene-environmental interactions across them. This review focuses upon the frequent shared epigenetic, genomic, and genetic alterations, emerging preclinical model systems, and how this collective knowledge can be leveraged into perspectives on standard of care therapies and mechanisms of resistance, nominating new potential directions in translational therapeutics.
Collapse
Affiliation(s)
- Brian S Henick
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Hematology-Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kwok-Kin Wong
- Division of Hematology-Oncology, Department of Medicine, NYU Perlmutter Cancer Center, New York, NY, USA
| | - J Alan Diehl
- Department of Biochemistry, Case Western Reserve Comprehensive Cancer Center, Cleveland, OH, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Qi L, Wang J, Hou S, Liu S, Zhang Q, Zhu S, Liu S, Zhang S. Unraveling the tumor microenvironment of esophageal squamous cell carcinoma through single-cell sequencing: A comprehensive review. Biochim Biophys Acta Rev Cancer 2025; 1880:189264. [PMID: 39805342 DOI: 10.1016/j.bbcan.2025.189264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous and aggressive malignancy. The progression, invasiveness, and metastatic potential of ESCC are shaped by a multitude of cells within the tumor microenvironment (TME), including tumor cells, immune cells, endothelial cells, as well as fibroblasts and other cell types. Recent advancements in single-cell sequencing technologies have significantly enhanced our comprehension of the diverse landscape of ESCC. Single-cell multi-omics technology, particularly single-cell transcriptome sequencing, have shed light on the expression profiles of individual cells and the molecular characteristics of distinct tumor cell populations. This review summarizes the latest literature on single-cell research in the field of ESCC, aiming to elucidate the heterogeneity of tumor cells, immune cells, and stromal cells at the single-cell level. Furthermore, it explores the impact of cellular interactions within the TME on the progression of ESCC. By compiling a comprehensive overview of single-cell omics research on ESCC, this article aims to enhance our understanding of ESCC diagnosis and treatment by elucidating the intricate interplay within the TME. It explores the cellular composition, spatial arrangement, and functional attributes of the ESCC TME, offering potential therapeutic targets and biomarkers for personalized treatment strategies.
Collapse
Affiliation(s)
- Lingyu Qi
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Jiaxin Wang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Songyuan Hou
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Siying Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Qian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Shengtao Zhu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Si Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| | - Shutian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| |
Collapse
|
13
|
Wang H, Ma S, Yang Z, Niu R, Zhu H, Li S, Gao S, Li Z, Tian Y. Revolutionizing ESCC prognosis: the efficiency of tumor-infiltrating immune cells (TIIC) signature score. Discov Oncol 2025; 16:65. [PMID: 39833504 PMCID: PMC11747060 DOI: 10.1007/s12672-024-01709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Patients suffer from esophageal squamous cell carcinoma (ESCC), which is the ninth highly aggressive malignancy. Tumor-infiltrating immune cells (TIIC) exert as major component of the tumor microenvironment (TME), showing possible prognostic value in ESCC. METHODS Transcriptome data and scRNA-seq data of ESCC samples were extracted from the GEO and TCGA databases. Tissue Specific Index (TSI) was defined to identify potential TIIC-RNAs from the TME. Twenty machine learning algorithms were further applied to evaluate the prognostic efficacy of TIIC signature score. Gene colocalization analysis was performed. Differences in CNV on chromosomes and SNP sites of prognostic model genes were calculated. RESULTS The most reliable model of TIIC signature score was developed based on three prognostic TIIC-RNAs. It showed a higher C-index than any other reported prognostic models. ESCC patients with high TIIC signature score showed poorer survival outcomes than low TIIC signature score. The activity of most immune cells decreased with the increase of TIIC score. TIIC signature score showed difference in the expression levels and methylation levels of DEGs. There was also significant different correlation with the degree of CNV amplification and CNV deletion of the immune checkpoint genes. Gene colocalization analysis showed two prognostic model genes (ATP6V0E1 and BIRC2). MR analysis found that rs148710154 and rs75146099 SNP sites of TIIC-RNA gene had a significant correlation between them gastro-oesophageal reflux and ESCC. CONCLUSION TIIC signature score was the first time developed which provided a novel strategy and guidance for the prognosis and immunotherapy of ESCC. It also gave the evidence in the important role of immune cells from the TME in the treatment of cancers.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Radiation Oncology, The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou People's Hospital, Zhengzhou, 450003, China
| | - Shaowei Ma
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zixin Yang
- Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ren Niu
- Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Haiyong Zhu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shaolin Gao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Zhirong Li
- Clinical Laboratory Center, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Yanhua Tian
- Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
14
|
Bi S, Wu Y, Ding N, Zhou Y, Liu H, Weng Y, Song Q, Zhang L, Cheng MY, Cui H, Zhang W, Cui Y. Three-dimensional characteristics of T cells and vasculature in the development of mouse esophageal cancer. iScience 2024; 27:111380. [PMID: 39660057 PMCID: PMC11629339 DOI: 10.1016/j.isci.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/26/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignancy, characterized by a multistep pathogenic process regulated spatiotemporally within the esophageal epithelial microenvironment, including vessel normalization and immune infiltration. However, empirical evidence elucidating esophageal vascular remodeling and immune infiltration during ESCC tumorigenesis in situ is lacking. In this study, utilizing a mouse model recapitulating progressive human ESCC stages, we established a tissue clearing workflow for three-dimensional visualization and analysis of esophageal vessels and T cell distribution. Through this workflow, we delineated the spatial dynamics of vascular remodeling, CD3+ T cells, and characteristic T cell aggregates employing high-resolution light-sheet fluorescence microscopy across five ESCC pathogenic stages. Vessel remodeling might be coupled with T cell infiltration, and their interactions predominantly occurred at the inflammatory stage. These findings provided insights into research methodologies of esophageal cancer and spatiotemporal landscapes of vascular and T cell during ESCC initiation and progression.
Collapse
Affiliation(s)
- Shanshan Bi
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Yueguang Wu
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Ning Ding
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Yan Zhou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Huijuan Liu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Yongjia Weng
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Qiqin Song
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Li Zhang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Matthew Yibo Cheng
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Heyang Cui
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Weimin Zhang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, P.R. China
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100142, P.R. China
| | - Yongping Cui
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, P.R. China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, P.R. China
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100142, P.R. China
| |
Collapse
|
15
|
Li R, Li N, Yang Q, Tong X, Wang W, Li C, Zhao J, Jiang D, Huang H, Fang C, Xie K, Yuan J, Chen S, Li G, Luo H, Gao Z, Wu D, Cui X, Jiang W, Guo L, Ma H, Feng Y. Spatial transcriptome profiling identifies DTX3L and BST2 as key biomarkers in esophageal squamous cell carcinoma tumorigenesis. Genome Med 2024; 16:148. [PMID: 39696540 DOI: 10.1186/s13073-024-01422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Understanding the stepwise progression of esophageal squamous cell carcinoma (ESCC) is crucial for developing customized strategies for early detection and optimal clinical management. Herein, we aimed to unravel the transcriptional and immunologic alterations occurring during malignant transformation and identify clinically significant biomarkers of ESCC. METHODS Digital spatial profiling (DSP) was performed on 11 patients with early-stage ESCC (pT1) to explore the transcriptional alterations in epithelial, immune cell, and non-immune cell stromal compartments across regions of distinct histology, including normal tissues, low- and high-grade dysplasia, and cancerous tissues. Furthermore, single-cell spatial transcriptomics was performed using the CosMx Spatial Molecular Imaging (SMI) system on 4 additional patients with pT1 ESCC. Immunohistochemical (IHC) analysis was performed on consecutive histological sections of 20 pT1 ESCCs. Additionally, public bulk and single-cell RNA-sequencing (scRNA-seq) datasets were analyzed, and in vitro and in vivo functional studies were conducted. RESULTS Spatial transcriptional reprogramming and dynamic cell signaling pathways that determined ESCC progression were delineated. Increased infiltration of macrophages from normal tissues through dysplasia to cancerous tissues occurred. Macrophage subtypes were characterized using the scRNA-seq dataset. Cell-cell communication analysis of scRNA-seq and SMI data indicated that the migration inhibitory factor (MIF)-CD74 axis may exhibit pro-tumor interactions between macrophages and epithelial cells. DSP, SMI, and IHC data demonstrated that DTX3L expression in epithelial cells and BST2 expression in stromal cells increased gradually with ESCC progression. Functional studies demonstrated that DTX3L or BST2 knockdown inhibited ESCC proliferation and migration and decreased M2 polarization of tumor-associated macrophages. CONCLUSIONS Spatial profiling comprehensively characterized the molecular and immunological hallmarks from normal tissue to ESCC, guiding the way to a deeper understanding of the tumorigenesis and progression of this disease and contributing to the prevention of ESCC. Within this exploration, we uncovered biomarkers that exhibit a robust correlation with ESCC progression, offering potential new avenues for insightful therapeutic approaches.
Collapse
Affiliation(s)
- Rutao Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China.
| | - Qianqian Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xing Tong
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wei Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Chang Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jun Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Dong Jiang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Haitao Huang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Chen Fang
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Kai Xie
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Jiamin Yuan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Shaomu Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guangbin Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Zhibo Gao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Dongfang Wu
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Xiaoli Cui
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Wei Jiang
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Haitao Ma
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China.
| | - Yu Feng
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
16
|
Zhou S, Lin N, Yu L, Su X, Liu Z, Yu X, Gao H, Lin S, Zeng Y. Single-cell multi-omics in the study of digestive system cancers. Comput Struct Biotechnol J 2024; 23:431-445. [PMID: 38223343 PMCID: PMC10787224 DOI: 10.1016/j.csbj.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024] Open
Abstract
Digestive system cancers are prevalent diseases with a high mortality rate, posing a significant threat to public health and economic burden. The diagnosis and treatment of digestive system cancer confront conventional cancer problems, such as tumor heterogeneity and drug resistance. Single-cell sequencing (SCS) emerged at times required and has developed from single-cell RNA-seq (scRNA-seq) to the single-cell multi-omics era represented by single-cell spatial transcriptomics (ST). This article comprehensively reviews the advances of single-cell omics technology in the study of digestive system tumors. While analyzing and summarizing the research cases, vital details on the sequencing platform, sample information, sampling method, and key findings are provided. Meanwhile, we summarize the commonly used SCS platforms and their features, as well as the advantages of multi-omics technologies in combination. Finally, the development trends and prospects of the application of single-cell multi-omics technology in digestive system cancer research are prospected.
Collapse
Affiliation(s)
- Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, China
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Nanfei Lin
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research, Jewish General Hospital, & Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xiaowan Yu
- Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| |
Collapse
|
17
|
Zhou R, Tang X, Wang Y. Emerging strategies to investigate the biology of early cancer. Nat Rev Cancer 2024; 24:850-866. [PMID: 39433978 DOI: 10.1038/s41568-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/23/2024]
Abstract
Early detection and intervention of cancer or precancerous lesions hold great promise to improve patient survival. However, the processes of cancer initiation and the normal-precancer-cancer progression within a non-cancerous tissue context remain poorly understood. This is, in part, due to the scarcity of early-stage clinical samples or suitable models to study early cancer. In this Review, we introduce clinical samples and model systems, such as autochthonous mice and organoid-derived or stem cell-derived models that allow longitudinal analysis of early cancer development. We also present the emerging techniques and computational tools that enhance our understanding of cancer initiation and early progression, including direct imaging, lineage tracing, single-cell and spatial multi-omics, and artificial intelligence models. Together, these models and techniques facilitate a more comprehensive understanding of the poorly characterized early malignant transformation cascade, holding great potential to unveil key drivers and early biomarkers for cancer development. Finally, we discuss how these new insights can potentially be translated into mechanism-based strategies for early cancer detection and prevention.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiwen Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Wu L, Li W, Ma X, Yuan M, Wang Y, Li S. Predictive model for acute radiation esophagitis in esophageal carcinoma based on prognostic nutritional index and systemic inflammatory index and its application. Oncol Lett 2024; 28:597. [PMID: 39483962 PMCID: PMC11525611 DOI: 10.3892/ol.2024.14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/11/2024] [Indexed: 11/03/2024] Open
Abstract
Acute radiation esophagitis (ARE) is a common complication in patients with esophageal cancer undergoing radiotherapy. Therefore, it is important to construct an effective ARE risk-prediction model for clinical treatment. The present study performed a retrospective analysis of 225 patients with esophageal cancer who received radiotherapy at the First Affiliated Hospital of Anhui Medical University (Hefei, China) from January 2018 to December 2022. Univariate and logistic regression analyses were performed to screen patients with esophageal cancer after radiotherapy. The results revealed that 147 patients developed radiation esophagitis. Logistic regression analysis results demonstrated that the prognostic nutritional index [odds ratio (OR), 0.864; 95% confidence interval (CI), 0.809-0.924], neutrophil to lymphocyte ratio (OR, 1.795; 95% CI, 1.209-2.667) and platelet to lymphocyte ratio (OR, 1.011; 95% CI, 1.000-1.022) were independent predictors of ARE in patients receiving intensity-modulated conformal radiotherapy for esophagus cancer (P<0.05). A nomogram model for predicting the occurrence of ARE was established based on the three risk factors. The decision curve suggested a high net benefit value when the threshold probability was within 0.25-1.0. External verification confirmed the reproducibility and generalizability of the nomogram model. In general, the calibration curve of this model was close to the ideal curve and had excellent prediction accuracy. Therefore, it may be used as a new tool for early prediction of the ARE risk.
Collapse
Affiliation(s)
- Lijun Wu
- School of Nursing, Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wen Li
- School of Nursing, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xuanxuan Ma
- School of Nursing, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Mengmeng Yuan
- School of Nursing, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yichun Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Shuwen Li
- School of Nursing, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
19
|
Prakash PG, Kumar N, Gurumurthy RK, Chumduri C. Temporal single-cell RNA sequencing dataset of gastroesophagus development from embryonic to post-natal stages. Sci Data 2024; 11:1238. [PMID: 39550363 PMCID: PMC11569200 DOI: 10.1038/s41597-024-04081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Gastroesophageal disorders and cancers impose a significant global burden. Particularly, the prevalence of esophageal adenocarcinoma (EAC) has increased dramatically in recent years. Barrett's esophagus, a precursor of EAC, features a unique tissue adaptation at the gastroesophageal squamo-columnar junction (GE-SCJ), where the esophagus meets the stomach. Investigating the evolution of GE-SCJ and understanding dysregulation in its homeostasis are crucial for elucidating cancer pathogenesis. Here, we present the technical quality of the comprehensive single-cell RNA sequencing (scRNA-seq) dataset from mice that captures the transcriptional dynamics during the development of the esophagus, stomach and the GE-SCJ at embryonic, neonatal and adult stages. Through integration with external scRNA-seq datasets and validations using organoid and animal models, we demonstrate the dataset's consistency in identified cell types and transcriptional profiles. This dataset will be a valuable resource for studying developmental patterns and associated signaling networks in the tissue microenvironment. By offering insights into cellular programs during homeostasis, it facilitates the identification of changes leading to conditions like metaplasia and cancer, crucial for developing effective intervention strategies.
Collapse
Affiliation(s)
- Pon Ganish Prakash
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | - Naveen Kumar
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | | | - Cindrilla Chumduri
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
- Department of Microbiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
20
|
Yang J, Wu B, Li G, Zhang C, Xie Y, Kong W, Zeng Z. Landscape of epithelial cell subpopulations in the human esophageal squamous cell carcinoma microenvironment. Heliyon 2024; 10:e38091. [PMID: 39391485 PMCID: PMC11466536 DOI: 10.1016/j.heliyon.2024.e38091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Aims We sought to reveal the landscape of epithelial cell subpopulations in the human esophageal squamous cell carcinoma microenvironment and investigate their parts on esophageal squamous carcinoma (ESCC) development. Background Epithelial cells play an important role in the occurrence and development of ESCC through multiple mechanisms. While the landscape of epithelial cell subpopulations in ESCC, remains unclear. Objective Exploring the role of epithelial cell subpopulations in ESCC progression. Methods Seurat R package was used for single-cell RNA sequencing (scRNA-seq) data filtering, dimensionality reduction, clustering and differentially expressed genes analysis. Cellmarker database was adopted for cell cluster annotation. Functional enrichment analysis was carried out by Gene Ontology (GO) analysis. InferCNV package was conducted for copy number variation (CNV) of epithelial cell subpopulations in all chromosomal regions. Pseudotime trajectory analysis was implemented for exploring differentiation trajectory of epithelial cells subgroups during the cancer progression. CellChat analysis was used for probing the interactions between epithelial cells and NK/T cells. cellular experiments were performed using Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR), Wound-Healing Assay and transwell. Results 11 major cell subpopulations were identified in ESCC and adjunct tissues. Further reclassification of epithelial cells uncovered 4 subpopulations. Enrichment analysis revealed that highly expressed genes in 4 epithelial cell subpopulations were related to cell proliferation, immune response and angiogenesis. CNV analysis found that UBD + epithelial cells and GAS2L3+ epithelial cells had a higher proportion of CNV. Cell differentiation trajectories disclosed that KRT6C+ and GSTA1+ epithelial cells were in an intermediate state of differentiation, while UBD+ and GAS2L3+ epithelial cells are in an end state of differentiation during ESCC progression. Finally, we found that four epithelial cell subpopulations all inhibited NK/T cells through NECTIN2-TIGIT and CLEC2B-KLRB1. Low ATF3 and DDIT3 mRNA expression inhibited ESCC cell migration and invasion. Conclusion Here, we obtained a through epithelial cell atlas of ESCC at single-cell resolution, explored the role of epithelial cell in ESCC progression, and unveiled immunosuppressive signals to NK/T cells in promoting ESCC. Our findings expand the comprehension of epithelial cells and offer a theoretical guidance for future anti-epithelial cell treatment of ESCC.
Collapse
Affiliation(s)
- Jingrong Yang
- Department of Cardiothoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
| | - Bo Wu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
- Department of Emergency, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Guo Li
- Department of Cardiothoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
| | - Chenxi Zhang
- Department of Cardiothoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
| | - Yongwei Xie
- Department of Cardiothoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
| | - Wencui Kong
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
- Department of Respiratory Medicine and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Zhiyong Zeng
- Department of Cardiothoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
21
|
Huang M, Li J, Wang Y, Jia L, Guo J, Wu Z, Gao S, Li J, Zhang Y. Ethanol exposure exacerbates 4-nitroquinoline-1-oxide induced esophageal carcinogenesis and induces invasive carcinoma with muscularis propria infiltration in a mouse model. Toxicol Appl Pharmacol 2024; 489:117006. [PMID: 38880189 DOI: 10.1016/j.taap.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most fatal cancers worldwide. Most ESCC patients are diagnosed at an advanced stage; however, current research on in vivo animal models accurately reflecting their clinical presentation is lacking. Alcohol consumption is a major risk factor for ESCC and has been used in several disease models for disease induction. In this study, we used 4-nitroquinoline-1-oxide in combination with ethanol to induce an in vivo ESCC mouse model. Esophageal tissues were stained with hematoxylin and eosin for histopathological examination and lesion scoring. In cellular experiments, cell adhesion and migration invasion ability were observed using phalloidin staining, cell scratch and transwell assays, respectively, and the expression of epithelial-mesenchymal transition-related markers was detected using quantitative reverse transcription polymerase chain reaction and western blotting. The results showed that ethanol-exposed mice lost more weight and had an increased number of esophageal nodules. Histological examination revealed that the lesion scores of the ethanol-exposed esophageal samples were significantly higher than those of the unexposed esophageal samples. Furthermore, ethanol-exposed esophageal cancer samples had more severe lesions with infiltration of tumor cells into the muscularis propria. In vitro cellular experiments showed that ethanol exposure induced cytoskeletal microfilament formation, promoted cell migration invasion elevated the expression of N-cadherin and Snail, and decreased the expression of E-cadherin. In conclusion, ethanol exposure exacerbates ESCC, promotes tumor cell infiltration into the muscularis propria, and could be an effective agent for establishing innovative models of invasive carcinoma.
Collapse
Affiliation(s)
- Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China; Institute of Integrated Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China; The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yu Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China; Institute of Integrated Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Jia
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China; Institute of Integrated Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jinge Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yushuang Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| |
Collapse
|
22
|
Gong K, Lin J, Chen X, Duan Y, Zhang J, Yu J, Wang J, Sun R, Li J, Duan Y. Thermosensitive gel-nano system against esophageal cancer via restoring p53 activity and boosting T-cell immunity. J Control Release 2024; 371:111-125. [PMID: 38782064 DOI: 10.1016/j.jconrel.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
In esophageal cancer (EC), clinical specimen testing has uncovered a significant increase in BTB and CNC homolog 1 (BACH1) expression and a shift towards an immunosuppressive environment, alongside a notable decrease in p53 protein expression. Therefore, therapeutic strategies focusing on BACH1 inhibition and p53 upregulation appear promising. Traditional oral treatments for EC lack precision and efficacy. Here, we propose a novel approach employing tumor-targeted nanoparticles (NPs) for drug delivery. However, the formation of a drug reservoir at the esophageal site, crucial for the sustained release of therapeutics, presents significant challenges in nano-delivery systems for EC treatment. To address this, we developed a thermosensitive hydrogel composed of F127 and tannic acid, serving as a vehicle for NP loading. These NPs, synthesized through the emulsion/volatization methods of mPEG-PLGA-PLL-cRGD, facilitate in situ drug delivery. Upon contacting esophageal tissue, the hydrogel transitions to a gel, adhering to the lining and enabling sustained release of encapsulated therapeutics. The formulation encompasses NPs laden with small interfering RNA targeting BACH1 (siBACH1) and the p53 activator PRIMA-1, creating a cohesive gel-nano system. Preliminary biological assessments demonstrate that this injectable, thermosensitive gel-nano system adheres effectively to esophageal tissue and targets EC cells. For better modeling clinical outcomes, a patient-derived organoid xenograft (PDOX) model was innovated, involving transplantation of EC-derived organoids into humanized mice, reconstructed with peripheral blood mononuclear cells (PBMCs). Post-treatment analysis showed substantial EC growth inhibition (89.51% tumor inhibition rate), significant BACH1 level reduction, restored anti-tumor immune responses, and pronounced tumor apoptosis. In summary, our study introduces a thermosensitive gel-nano system for EC treatment via restoring p53 activity and boosting T-cell immunity, with potential for clinical application.
Collapse
Affiliation(s)
- Ke Gong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Jiali Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Jian Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Jing Wang
- Department of Radiation Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, China
| | - Ruifang Sun
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, China.
| | - Jie Li
- Department of Radiation Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.
| |
Collapse
|
23
|
Teschendorff AE. Computational single-cell methods for predicting cancer risk. Biochem Soc Trans 2024; 52:1503-1514. [PMID: 38856037 DOI: 10.1042/bst20231488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Despite recent biotechnological breakthroughs, cancer risk prediction remains a formidable computational and experimental challenge. Addressing it is critical in order to improve prevention, early detection and survival rates. Here, I briefly summarize some key emerging theoretical and computational challenges as well as recent computational advances that promise to help realize the goals of cancer-risk prediction. The focus is on computational strategies based on single-cell data, in particular on bottom-up network modeling approaches that aim to estimate cancer stemness and dedifferentiation at single-cell resolution from a systems-biological perspective. I will describe two promising methods, a tissue and cell-lineage independent one based on the concept of diffusion network entropy, and a tissue and cell-lineage specific one that uses transcription factor regulons. Application of these tools to single-cell and single-nucleus RNA-seq data from stages prior to invasive cancer reveal that they can successfully delineate the heterogeneous inter-cellular cancer-risk landscape, identifying those cells that are more likely to turn cancerous. Bottom-up systems biological modeling of single-cell omic data is a novel computational analysis paradigm that promises to facilitate the development of preventive, early detection and cancer-risk prediction strategies.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
24
|
Chen X, Cheng G, Zhu L, Liu T, Yang X, Liu R, Ou Z, Zhang S, Tan W, Lin D, Wu C. Alarmin S100A8 imparts chemoresistance of esophageal cancer by reprogramming cancer-associated fibroblasts. Cell Rep Med 2024; 5:101576. [PMID: 38776909 PMCID: PMC11228400 DOI: 10.1016/j.xcrm.2024.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Chemotherapy remains the first-line treatment for advanced esophageal cancer. However, durable benefits are achieved by only a limited subset of individuals due to the elusive chemoresistance. Here, we utilize patient-derived xenografts (PDXs) from esophageal squamous-cell carcinoma to investigate chemoresistance mechanisms in preclinical settings. We observe that activated cancer-associated fibroblasts (CAFs) are enriched in the tumor microenvironment of PDXs resistant to chemotherapy. Mechanistically, we reveal that cancer-cell-derived S100A8 triggers the intracellular RhoA-ROCK-MLC2-MRTF-A pathway by binding to the CD147 receptor of CAFs, inducing CAF polarization and leading to chemoresistance. Therapeutically, we demonstrate that blocking the S100A8-CD147 pathway can improve chemotherapy efficiency. Prognostically, we found the S100A8 levels in peripheral blood can serve as an indicator of chemotherapy responsiveness. Collectively, our study offers a comprehensive understanding of the molecular mechanisms underlying chemoresistance in esophageal cancer and highlights the potential value of S100A8 in the clinical management of esophageal cancer.
Collapse
Affiliation(s)
- Xinjie Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Liang Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Xinyu Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Rucheng Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Zhengjie Ou
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
25
|
Hatakeyama K, Muramatsu K, Nagashima T, Ichida H, Kawanishi Y, Fukumura R, Ohshima K, Shimoda Y, Ohnami S, Ohnami S, Maruyama K, Naruoka A, Kenmotsu H, Urakami K, Akiyama Y, Sugino T, Yamaguchi K. Tumor cell enrichment by tissue suspension improves sensitivity to copy number variation in diffuse gastric cancer with low tumor content. Sci Rep 2024; 14:13699. [PMID: 38871991 DOI: 10.1038/s41598-024-64541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
The detection of copy number variations (CNVs) and somatic mutations in cancer is important for the selection of specific drugs for patients with cancer. In cancers with sporadic tumor cells, low tumor content prevents the accurate detection of somatic alterations using targeted sequencing. To efficiently identify CNVs, we performed tumor cell enrichment using tissue suspensions of formalin-fixed paraffin-embedded (FFPE) tissue sections with low tumor cell content. Tumor-enriched and residual fractions were separated from FFPE tissue suspensions of intestinal and diffuse-type gastric cancers containing sporadic tumor cells, and targeted sequencing was performed on 225 cancer-related genes. Sequencing of a targeted panel of cancer-related genes using tumor-enriched fractions increased the number of detectable CNVs and the copy number of amplified genes. Furthermore, CNV analysis using the normal cell-enriched residual fraction as a reference for CNV scoring allowed targeted sequencing to detect CNV characteristics of diffuse-type gastric cancer with low tumor content. Our approach improves the CNV detection rate in targeted sequencing with tumor enrichment and the accuracy of CNV detection in archival samples without paired blood.
Collapse
Affiliation(s)
- Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Koji Muramatsu
- Division of Pathology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
- SRL Inc., Shinjuku-ku, Tokyo, 163-0409, Japan
| | - Hiroyuki Ichida
- SRL and Shizuoka Cancer Center Collaborative Laboratories Inc., Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yuichi Kawanishi
- SRL and Shizuoka Cancer Center Collaborative Laboratories Inc., Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ryutaro Fukumura
- SRL and Shizuoka Cancer Center Collaborative Laboratories Inc., Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Koji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Hirotsugu Kenmotsu
- Division of Thoracic Oncology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yasuto Akiyama
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
26
|
Ko KP, Zhang S, Huang Y, Kim B, Zou G, Jun S, Zhang J, Zhao Y, Martin C, Dunbar KJ, Efe G, Rustgi AK, Nakagawa H, Zhang H, Liu Z, Park JI. Tumor niche network-defined subtypes predict immunotherapy response of esophageal squamous cell cancer. iScience 2024; 27:109795. [PMID: 38741711 PMCID: PMC11089351 DOI: 10.1016/j.isci.2024.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/16/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Despite the promising outcomes of immune checkpoint inhibitors (ICIs), resistance to ICI presents a new challenge. Therefore, selecting patients for specific ICI applications is crucial for maximizing therapeutic efficacy. Herein, we curated 69 human esophageal squamous cell cancer (ESCC) patients' tumor microenvironment (TME) single-cell transcriptomic datasets to subtype ESCC. Integrative analyses of the cellular network and transcriptional signatures of T cells and myeloid cells define distinct ESCC subtypes characterized by T cell exhaustion, and interleukin (IL) and interferon (IFN) signaling. Furthermore, this approach classifies ESCC patients into ICI responders and non-responders, as validated by whole tumor transcriptomes and liquid biopsy-based single-cell transcriptomes of anti-PD-1 ICI responders and non-responders. Our study stratifies ESCC patients based on TME transcriptional network, providing novel insights into tumor niche remodeling and potentially predicting ICI responses in ESCC patients.
Collapse
Affiliation(s)
- Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Cecilia Martin
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karen J. Dunbar
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gizem Efe
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Haiyang Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Li H, Wang Y, Wan Y, Li M, Xu J, Wang Q, Wu D. Stimuli-responsive incremental DNA machine auto-catalyzed CRISPR-Cas12a feedback amplification permits ultrasensitive molecular diagnosis of esophageal cancer-related microRNA. Talanta 2024; 271:125675. [PMID: 38245957 DOI: 10.1016/j.talanta.2024.125675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Development of new diagnostic methods is essential for disease diagnosis and treatment. In this work, we present a stimuli-responsive incremental DNA machine auto-catalyzed CRISPR-Cas12a (SRI-DNA machine/CRISPR-Cas12a) feedback amplification for ultrasensitive molecular detection of miRNA-21, which is an important biomarker related closely to the initiation and development of cancers, such as esophageal cancer. Strategically, the powerful SRI-DNA machine and efficient trans-cleavage activity of the CRISPR-Cas12a system are ingeniously integrated via a rationally designed probe termed as stem-elongated functional hairpin probe (SEF-HP). The SRI-DNA machine begins with the target miRNA, the trigger of the reaction, binding complementarily to the SEF-HP, followed by autonomously performed mechanical strand replication, cleavage, and displacement circuit at multiple sites. This conversion process led to the amplified generation of numerous DNA activators that are complementary with CRISPR RNA (CrRNA). Once formed the DNA activator/CrRNA heteroduplex, the trans-cleavage activity of the CRISPR-Cas12a was activated to nonspecific cleavage of single-stranded areas of a reporter probe for fluorescence emission. Under optimal conditions, the target miRNA can be detected with a wide linear range and an excellent specificity. As a proof-of-concept, this SRI-DNA machine/CRISPR-Cas12a feedback amplification system is adaptable and scalable to higher-order artificial amplification circuits for biomarkers detection, highlighting its promising potential in early diagnosis and disease treatment.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Yi Wang
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Yu Wan
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Meimei Li
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Jianguo Xu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang, Jiaxing, 314001, PR China; Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological, Hefei University of Technology, Hefei, 230009, PR China.
| | - Qi Wang
- Key Laboratory of Embryo Development and Reproductive Regulation, Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Donglei Wu
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
28
|
Sun JR, Chen DM, Huang R, Wang RT, Jia LQ. Transcriptome sequencing reveals novel biomarkers and immune cell infiltration in esophageal tumorigenesis. World J Gastrointest Oncol 2024; 16:1500-1513. [PMID: 38660641 PMCID: PMC11037066 DOI: 10.4251/wjgo.v16.i4.1500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 02/04/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide, and its development comprises a multistep process from intraepithelial neoplasia (IN) to carcinoma (CA). However, the critical regulators and underlying molecular mechanisms remain largely unknown. AIM To explore the genes and infiltrating immune cells in the microenvironment that are associated with the multistage progression of ESCC to facilitate diagnosis and early intervention. METHODS A mouse model mimicking the multistage development of ESCC was established by providing warter containing 4-nitroquinoline 1-oxide (4NQO) to C57BL/6 mice. Moreover, we established a control group without 4NQO treatment of mice. Then, transcriptome sequencing was performed for esophageal tissues from patients with different pathological statuses, including low-grade IN (LGIN), high-grade IN (HGIN), and CA, and controlled normal tissue (NOR) samples. Differentially expressed genes (DEGs) were identified in the LGIN, HGIN, and CA groups, and the biological functions of the DEGs were analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The CIBERSORT algorithm was used to detect the pattern of immune cell infiltration. Immunohistochemistry (IHC) was also conducted to validate our results. Finally, the Luminex multiplex cytokine analysis was utilized to measure the serum cytokine levels in the mice. RESULTS Compared with those in the NOR group, a total of 681541, and 840 DEGs were obtained in the LGIN, HGIN, and CA groups, respectively. Using the intersection of the three sets of DEGs, we identified 86 genes as key genes involved in the development of ESCC. Enrichment analysis revealed that these genes were enriched mainly in the keratinization, epidermal cell differentiation, and interleukin (IL)-17 signaling pathways. CIBERSORT analysis revealed that, compared with those in the NOR group, M0 and M1 macrophages in the 4NQO group showed stronger infiltration, which was validated by IHC. Serum cytokine analysis revealed that, compared with those in the NOR group, IL-1β and IL-6 were upregulated, while IL-10 was downregulated in the LGIN, HGIN, and CA groups. Moreover, the expression of the representative key genes, such as S100a8 and Krt6b, was verified in external human samples, and the results of immunohistochemical staining were consistent with the findings in mice. CONCLUSION We identified a set of key genes represented by S100a8 and Krt6b and investigated their potential biological functions. In addition, we found that macrophage infiltration and abnormal alterations in the levels of inflammation-associated cytokines, such as IL-1β, IL-6, and IL-10, in the peripheral blood may be closely associated with the development of ESCC.
Collapse
Affiliation(s)
- Jian-Rong Sun
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong-Mei Chen
- Integrated Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rong Huang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui-Tao Wang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li-Qun Jia
- Integrated Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
29
|
Zhang Z, Wang J, Shi Y, Wang B, Wang D. Cathepsin L promotes oesophageal squamous cell carcinoma development and may be associated with tumour-associated macrophages. Heliyon 2024; 10:e29273. [PMID: 38601581 PMCID: PMC11004422 DOI: 10.1016/j.heliyon.2024.e29273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Background Oesophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths worldwide because existing treatments are often insufficient. Therefore, new, reliable biomarkers must be identified. CTSL overexpression is closely associated with tumour progression and poor prognosis. However, the role and mechanism of CTSL as an oncogene in ESCC remain unclear. Methods Genome-wide association study (GWAS) data were used for Mendelian randomization analysis to investigate the possible relationships between CTSL and ESCC. The correlation between CTSL expression and prognosis was analysed using GEO, TCGA, and GEPIA data. We compared CTSL expression among the cell types using single-cell sequencing. Correlations between CTSL and the tumour microenvironment, immune cell infiltration, tumour mutational load, immunological checkpoints, and treatment sensitivity in patients with ESCC were investigated. Finally, using mouse models and cellular investigations, we assessed the effects of CTSL on the growth, apoptosis, and metastasis of ESCC tumour cells. Results CTSL was overexpressed in ESCC and correlated with prognosis. We also discovered its close association with cell immunity, especially with tumour-associated macrophages and immune checkpoints in the tumour microenvironment. CTSL may play a key role in ESCC development by affecting M2 macrophage polarisation. CTSL and the M2 macrophage marker genes showed significant positive correlations. Mendelian randomization analysis confirmed a relationship between CTSL and ESCC. Finally, our in vitro and in vivo experiments demonstrated that CTSL promoted the proliferation and migration of ESCC cells, validating our bioinformatic analysis. Conclusion CTSL emerged as a crucial gene in ESCC that influences patient prognosis and immunity, particularly in association with M2 macrophages. Therefore, targeting or modulating CTSL levels may provide new therapeutic strategies for patients with ESCC.
Collapse
Affiliation(s)
- Zhenhu Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jianyu Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yamin Shi
- School of Foreign Languages, Shandong University of Finance and Economics, Jinan, 250014, China
| | - Ben Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Dong Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| |
Collapse
|
30
|
Kumar N, Prakash PG, Wentland C, Kurian SM, Jethva G, Brinkmann V, Mollenkopf HJ, Krammer T, Toussaint C, Saliba AE, Biebl M, Jürgensen C, Wiedenmann B, Meyer TF, Gurumurthy RK, Chumduri C. Decoding spatiotemporal transcriptional dynamics and epithelial fibroblast crosstalk during gastroesophageal junction development through single cell analysis. Nat Commun 2024; 15:3064. [PMID: 38594232 PMCID: PMC11004180 DOI: 10.1038/s41467-024-47173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
The gastroesophageal squamocolumnar junction (GE-SCJ) is a critical tissue interface between the esophagus and stomach, with significant relevance in the pathophysiology of gastrointestinal diseases. Despite this, the molecular mechanisms underlying GE-SCJ development remain unclear. Using single-cell transcriptomics, organoids, and spatial analysis, we examine the cellular heterogeneity and spatiotemporal dynamics of GE-SCJ development from embryonic to adult mice. We identify distinct transcriptional states and signaling pathways in the epithelial and mesenchymal compartments of the esophagus and stomach during development. Fibroblast-epithelial interactions are mediated by various signaling pathways, including WNT, BMP, TGF-β, FGF, EGF, and PDGF. Our results suggest that fibroblasts predominantly send FGF and TGF-β signals to the epithelia, while epithelial cells mainly send PDGF and EGF signals to fibroblasts. We observe differences in the ligands and receptors involved in cell-cell communication between the esophagus and stomach. Our findings provide insights into the molecular mechanisms underlying GE-SCJ development and fibroblast-epithelial crosstalk involved, paving the way to elucidate mechanisms during adaptive metaplasia development and carcinogenesis.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | - Gaurav Jethva
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | - Volker Brinkmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Christophe Toussaint
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Würzburg, Germany
| | - Matthias Biebl
- Surgical Clinic Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Christian Jürgensen
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rajendra Kumar Gurumurthy
- Department of Microbiology, University of Würzburg, Würzburg, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Cindrilla Chumduri
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
- Department of Microbiology, University of Würzburg, Würzburg, Germany.
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany.
| |
Collapse
|
31
|
Ji G, Yang Q, Wang S, Yan X, Ou Q, Gong L, Zhao J, Zhou Y, Tian F, Lei J, Mu X, Wang J, Wang T, Wang X, Sun J, Zhang J, Jia C, Jiang T, Zhao MG, Lu Q. Single-cell profiling of response to neoadjuvant chemo-immunotherapy in surgically resectable esophageal squamous cell carcinoma. Genome Med 2024; 16:49. [PMID: 38566201 PMCID: PMC10985969 DOI: 10.1186/s13073-024-01320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The efficacy of neoadjuvant chemo-immunotherapy (NAT) in esophageal squamous cell carcinoma (ESCC) is challenged by the intricate interplay within the tumor microenvironment (TME). Unveiling the immune landscape of ESCC in the context of NAT could shed light on heterogeneity and optimize therapeutic strategies for patients. METHODS We analyzed single cells from 22 baseline and 24 post-NAT treatment samples of stage II/III ESCC patients to explore the association between the immune landscape and pathological response to neoadjuvant anti-PD-1 combination therapy, including pathological complete response (pCR), major pathological response (MPR), and incomplete pathological response (IPR). RESULTS Single-cell profiling identified 14 major cell subsets of cancer, immune, and stromal cells. Trajectory analysis unveiled an interesting link between cancer cell differentiation and pathological response to NAT. ESCC tumors enriched with less differentiated cancer cells exhibited a potentially favorable pathological response to NAT, while tumors enriched with clusters of more differentiated cancer cells may resist treatment. Deconvolution of transcriptomes in pre-treatment tumors identified gene signatures in response to NAT contributed by specific immune cell populations. Upregulated genes associated with better pathological responses in CD8 + effector T cells primarily involved interferon-gamma (IFNγ) signaling, neutrophil degranulation, and negative regulation of the T cell apoptotic process, whereas downregulated genes were dominated by those in the immune response-activating cell surface receptor signaling pathway. Natural killer cells in pre-treatment tumors from pCR patients showed a similar upregulation of gene expression in response to IFNγ but a downregulation of genes in the neutrophil-mediated immunity pathways. A decreased cellular contexture of regulatory T cells in ESCC TME indicated a potentially favorable pathological response to NAT. Cell-cell communication analysis revealed extensive interactions between CCL5 and its receptor CCR5 in various immune cells of baseline pCR tumors. Immune checkpoint interaction pairs, including CTLA4-CD86, TIGIT-PVR, LGALS9-HAVCR2, and TNFSF4-TNFRSF4, might serve as additional therapeutic targets for ICI therapy in ESCC. CONCLUSIONS This pioneering study unveiled an intriguing association between cancer cell differentiation and pathological response in esophageal cancer patients, revealing distinct subgroups of tumors for which neoadjuvant chemo-immunotherapy might be effective. We also delineated the immune landscape of ESCC tumors in the context of clinical response to NAT, which provides clinical insights for better understanding how patients respond to the treatment and further identifying novel therapeutic targets for ESCC patients in the future.
Collapse
Affiliation(s)
- Gang Ji
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Song Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, 210000, Jiangsu, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, 210000, Jiangsu, China
| | - Li Gong
- Department of Pathology, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Yongan Zhou
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Feng Tian
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Xiaorong Mu
- Department of Pathology, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Jian Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Tao Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Xiaoping Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Jianyong Sun
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Jipeng Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
| | - Chenghui Jia
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Medical College, Xi'an, 710000, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China.
| | - Ming-Gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China.
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
32
|
Guo X, Ning J, Chen Y, Liu G, Zhao L, Fan Y, Sun S. Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies. Brief Funct Genomics 2024; 23:95-109. [PMID: 37022699 DOI: 10.1093/bfgp/elad011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Differential expression (DE) analysis is a necessary step in the analysis of single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) data. Unlike traditional bulk RNA-seq, DE analysis for scRNA-seq or SRT data has unique characteristics that may contribute to the difficulty of detecting DE genes. However, the plethora of DE tools that work with various assumptions makes it difficult to choose an appropriate one. Furthermore, a comprehensive review on detecting DE genes for scRNA-seq data or SRT data from multi-condition, multi-sample experimental designs is lacking. To bridge such a gap, here, we first focus on the challenges of DE detection, then highlight potential opportunities that facilitate further progress in scRNA-seq or SRT analysis, and finally provide insights and guidance in selecting appropriate DE tools or developing new computational DE methods.
Collapse
Affiliation(s)
- Xiya Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Ning
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuanze Chen
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guoliang Liu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liyan Zhao
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yue Fan
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shiquan Sun
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
33
|
Jiang Y, Zheng Y, Zhang YW, Kong S, Dong J, Wang F, Ziman B, Gery S, Hao JJ, Zhou D, Zhou J, Ho AS, Sinha UK, Chen J, Zhang S, Yin C, Wei DD, Hazawa M, Pan H, Lu Z, Wei WQ, Wang MR, Koeffler HP, Lin DC, Jiang YY. Reciprocal inhibition between TP63 and STAT1 regulates anti-tumor immune response through interferon-γ signaling in squamous cancer. Nat Commun 2024; 15:2484. [PMID: 38509096 PMCID: PMC10954759 DOI: 10.1038/s41467-024-46785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Squamous cell carcinomas (SCCs) are common and aggressive malignancies. Immune check point blockade (ICB) therapy using PD-1/PD-L1 antibodies has been approved in several types of advanced SCCs. However, low response rate and treatment resistance are common. Improving the efficacy of ICB therapy requires better understanding of the mechanism of immune evasion. Here, we identify that the SCC-master transcription factor TP63 suppresses interferon-γ (IFNγ) signaling. TP63 inhibition leads to increased CD8+ T cell infiltration and heighten tumor killing in in vivo syngeneic mouse model and ex vivo co-culture system, respectively. Moreover, expression of TP63 is negatively correlated with CD8+ T cell infiltration and activation in patients with SCC. Silencing of TP63 enhances the anti-tumor efficacy of PD-1 blockade by promoting CD8+ T cell infiltration and functionality. Mechanistically, TP63 and STAT1 mutually suppress each other to regulate the IFNγ signaling by co-occupying and co-regulating their own promoters and enhancers. Together, our findings elucidate a tumor-extrinsic function of TP63 in promoting immune evasion of SCC cells. Over-expression of TP63 may serve as a biomarker predicting the outcome of SCC patients treated with ICB therapy, and targeting TP63/STAT/IFNγ axis may enhance the efficacy of ICB therapy for this deadly cancer.
Collapse
Affiliation(s)
- Yuan Jiang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuan-Wei Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shuai Kong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jinxiu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Fei Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Benjamin Ziman
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sigal Gery
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institutes of Physical Science and Technology, Anhui University, Hefei, 230601, China
| | - Jianian Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Allen S Ho
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Uttam K Sinha
- Department of otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shuo Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Chuntong Yin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dan-Dan Wei
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Huaguang Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wen-Qiang Wei
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Yan-Yi Jiang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
34
|
Klochkova A, Karami AL, Fuller AD, Parham LR, Panchani SR, Natarajan S, Jackson JL, Mu A, Tan Y, Cai KQ, Klein-Szanto AJ, Muir AB, Tétreault MP, Graña X, Hamilton KE, Whelan KA. Autophagy Contributes to Homeostasis in Esophageal Epithelium Where High Autophagic Vesicle Level Marks Basal Cells With Limited Proliferation and Enhanced Self-Renewal Potential. Cell Mol Gastroenterol Hepatol 2024; 18:15-40. [PMID: 38452871 PMCID: PMC11126828 DOI: 10.1016/j.jcmgh.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND & AIMS Autophagy plays roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelial homeostasis. METHODS We generated tamoxifen-inducible, squamous epithelial-specific Atg7 (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histologic and biochemical analyses. We fluorescence-activated cell sorted esophageal basal cells based on fluorescence of the autophagic vesicle (AV)-identifying dye Cyto-ID and then subjected these cells to transmission electron microscopy, image flow cytometry, three-dimensional organoid assays, RNA sequencing, and cell cycle analysis. Three-dimensional organoids were subjected to passaging, single-cell RNA sequencing, cell cycle analysis, and immunostaining. RESULTS Genetic autophagy inhibition in squamous epithelium resulted in increased proliferation of esophageal basal cells under homeostatic conditions and also was associated with significant weight loss in mice treated with 4NQO that further displayed perturbed epithelial tissue architecture. Esophageal basal cells with high AV level (Cyto-IDHigh) displayed limited organoid formation capability on initial plating but passaged more efficiently than their counterparts with low AV level (Cyto-IDLow). RNA sequencing suggested increased autophagy in Cyto-IDHigh esophageal basal cells along with decreased cell cycle progression, the latter of which was confirmed by cell cycle analysis. Single-cell RNA sequencing of three-dimensional organoids generated by Cyto-IDLow and Cyto-IDHigh cells identified expansion of 3 cell populations and enrichment of G2/M-associated genes in the Cyto-IDHigh group. Ki67 expression was also increased in organoids generated by Cyto-IDHigh cells, including in basal cells localized beyond the outermost cell layer. CONCLUSIONS Autophagy contributes to maintenance of the esophageal proliferation-differentiation gradient. Esophageal basal cells with high AV level exhibit limited proliferation and generate three-dimensional organoids with enhanced self-renewal capacity.
Collapse
Affiliation(s)
- Alena Klochkova
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Adam L Karami
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Annie D Fuller
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Louis R Parham
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Surali R Panchani
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Shruthi Natarajan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Jazmyne L Jackson
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Anbin Mu
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Amanda B Muir
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Marie-Pier Tétreault
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xavier Graña
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Cancer & Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly A Whelan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Cancer & Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
35
|
Yang S, Wang M, Hua Y, Li J, Zheng H, Cui M, Huang N, Liu Q, Liao Q. Advanced insights on tumor-associated macrophages revealed by single-cell RNA sequencing: The intratumor heterogeneity, functional phenotypes, and cellular interactions. Cancer Lett 2024; 584:216610. [PMID: 38244910 DOI: 10.1016/j.canlet.2024.216610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) is an emerging technology used for cellular transcriptome analysis. The application of scRNA-seq has led to profoundly advanced oncology research, continuously optimizing novel therapeutic strategies. Intratumor heterogeneity extensively consists of all tumor components, contributing to different tumor behaviors and treatment responses. Tumor-associated macrophages (TAMs), the core immune cells linking innate and adaptive immunity, play significant roles in tumor progression and resistance to therapies. Moreover, dynamic changes occur in TAM phenotypes and functions subject to the regulation of the tumor microenvironment. The heterogeneity of TAMs corresponding to the state of the tumor microenvironment has been comprehensively recognized using scRNA-seq. Herein, we reviewed recent research and summarized variations in TAM phenotypes and functions from a developmental perspective to better understand the significance of TAMs in the tumor microenvironment.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Huaijin Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Nan Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
36
|
Lin G, Gao Z, Wu S, Zheng J, Guo X, Zheng X, Chen R. scRNA-seq revealed high stemness epithelial malignant cell clusters and prognostic models of lung adenocarcinoma. Sci Rep 2024; 14:3709. [PMID: 38355636 PMCID: PMC10867035 DOI: 10.1038/s41598-024-54135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the sole causes of death in lung cancer patients. This study combined with single-cell RNA-seq analysis to identify tumor stem-related prognostic models to predict the prognosis of lung adenocarcinoma, chemotherapy agents, and immunotherapy efficacy. mRNA expression-based stemness index (mRNAsi) was determined by One Class Linear Regression (OCLR). Differentially expressed genes (DEGs) were detected by limma package. Single-cell RNA-seq analysis in GSE123902 dataset was performed using Seurat package. Weighted Co-Expression Network Analysis (WGCNA) was built by rms package. Cell differentiation ability was determined by CytoTRACE. Cell communication analysis was performed by CellCall and CellChat package. Prognosis model was constructed by 10 machine learning and 101 combinations. Drug predictive analysis was conducted by pRRophetic package. Immune microenvironment landscape was determined by ESTIMATE, MCP-Counter, ssGSEA analysis. Tumor samples have higher mRNAsi, and the high mRNAsi group presents a worse prognosis. Turquoise module was highly correlated with mRNAsi in TCGA-LUAD dataset. scRNA analysis showed that 22 epithelial cell clusters were obtained, and higher CSCs malignant epithelial cells have more complex cellular communication with other cells and presented dedifferentiation phenomenon. Cellular senescence and Hippo signaling pathway are the major difference pathways between high- and low CSCs malignant epithelial cells. The pseudo-temporal analysis shows that cluster1, 2, high CSC epithelial cells, are concentrated at the end of the differentiation trajectory. Finally, 13 genes were obtained by intersecting genes in turquoise module, Top200 genes in hdWGCNA, DEGs in high- and low- mRNAsi group as well as DEGs in tumor samples vs. normal group. Among 101 prognostic models, average c-index (0.71) was highest in CoxBoost + RSF model. The high-risk group samples had immunosuppressive status, higher tumor malignancy and low benefit from immunotherapy. This work found that malignant tumors and malignant epithelial cells have high CSC characteristics, and identified a model that could predict the prognosis, immune microenvironment, and immunotherapy of LUAD, based on CSC-related genes. These results provided reference value for the clinical diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- GuoYong Lin
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - ZhiSen Gao
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - Shun Wu
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - JianPing Zheng
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - XiangQiong Guo
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - XiaoHong Zheng
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - RunNan Chen
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China.
| |
Collapse
|
37
|
Chen L, Zhu S, Liu T, Zhao X, Xiang T, Hu X, Wu C, Lin D. Aberrant epithelial cell interaction promotes esophageal squamous-cell carcinoma development and progression. Signal Transduct Target Ther 2023; 8:453. [PMID: 38097539 PMCID: PMC10721848 DOI: 10.1038/s41392-023-01710-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and proliferation play important roles in epithelial cancer formation and progression, but what molecules and how they trigger EMT is largely unknown. Here we performed spatial transcriptomic and functional analyses on samples of multistage esophageal squamous-cell carcinoma (ESCC) from mice and humans to decipher these critical issues. By investigating spatiotemporal gene expression patterns and cell-cell interactions, we demonstrated that the aberrant epithelial cell interaction via EFNB1-EPHB4 triggers EMT and cell cycle mediated by downstream SRC/ERK/AKT signaling. The aberrant epithelial cell interaction occurs within the basal layer at early precancerous lesions, which expands to the whole epithelial layer and strengthens along the cancer development and progression. Functional analysis revealed that the aberrant EFNB1-EPHB4 interaction is caused by overexpressed ΔNP63 due to TP53 mutation, the culprit in human ESCC tumorigenesis. Our results shed new light on the role of TP53-TP63/ΔNP63-EFNB1-EPHB4 axis in EMT and cell proliferation in epithelial cancer formation.
Collapse
Affiliation(s)
- Liping Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Hu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing, 100006, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| |
Collapse
|
38
|
Huang Q, Wang F, Hao D, Li X, Li X, Lei T, Yue J, Liu C. Deciphering tumor-infiltrating dendritic cells in the single-cell era. Exp Hematol Oncol 2023; 12:97. [PMID: 38012715 PMCID: PMC10680280 DOI: 10.1186/s40164-023-00459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Dendritic cells (DCs) serve as a pivotal link connecting innate and adaptive immunity by processing tumor-derived antigens and activating T cells. The advent of single-cell sequencing has revolutionized the categorization of DCs, enabling a high-resolution characterization of the previously unrecognized diversity of DC populations infiltrating the intricate tumor microenvironment (TME). The application of single-cell sequencing technologies has effectively elucidated the heterogeneity of DCs present in the tumor milieu, yielding invaluable insights into their subpopulation structures and functional diversity. This review provides a comprehensive summary of the current state of knowledge regarding DC subtypes in the TME, drawing from single-cell studies conducted across various human tumors. We focused on the categorization, functions, and interactions of distinct DC subsets, emphasizing their crucial roles in orchestrating tumor-related immune responses. Additionally, we delve into the potential implications of these findings for the identification of predictive biomarkers and therapeutic targets. Enhanced insight into the intricate interplay between DCs and the TME promises to advance our comprehension of tumor immunity and, in turn, pave the way for the development of more efficacious cancer immunotherapies.
Collapse
Affiliation(s)
- Qingyu Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Fuhao Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Di Hao
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xinyu Li
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xiaohui Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Chao Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
39
|
Yang X, Chen X, Zhang S, Fan W, Zhong C, Liu T, Cheng G, Zhu L, Liu Q, Xi Y, Tan W, Lin D, Wu C. Collagen 1-mediated CXCL1 secretion in tumor cells activates fibroblasts to promote radioresistance of esophageal cancer. Cell Rep 2023; 42:113270. [PMID: 37851572 DOI: 10.1016/j.celrep.2023.113270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/12/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Esophageal squamous-cell carcinoma (ESCC) is commonly treated with radiotherapy; however, radioresistance hinders its clinical effectiveness, and the underlying mechanism remains elusive. Here, we develop patient-derived xenografts (PDXs) from 19 patients with ESCC to investigate the mechanisms driving radioresistance. Using RNA sequencing, cytokine arrays, and single-cell RNA sequencing, we reveal an enrichment of cancer-associated fibroblast (CAF)-derived collagen type 1 (Col1) and tumor-cell-derived CXCL1 in non-responsive PDXs. Col1 not only promotes radioresistance by augmenting DNA repair capacity but also induces CXCL1 secretion in tumor cells. Additionally, CXCL1 further activates CAFs via the CXCR2-STAT3 pathway, establishing a positive feedback loop. Directly interfering with tumor-cell-derived CXCL1 or inhibiting the CXCL1-CXCR2 pathway effectively restores the radiosensitivity of radioresistant xenografts in vivo. Collectively, our study provides a comprehensive understanding of the molecular mechanisms underlying radioresistance and identifies potential targets to improve the efficacy of radiotherapy for ESCC.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Xinjie Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Wenyi Fan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100091, China; Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University (PKU), Beijing 100871, China
| | - Ce Zhong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Liang Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Qingyi Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Yiyi Xi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
40
|
Yu X, Yuan H, Yang Y, Zheng W, Zheng X, Lu SH, Jiang W, Yu X. Mammalian esophageal stratified tissue homeostasis is maintained distinctively by the epithelial pluripotent p63 +Sox2 + and p63 -Sox2 + cell populations. Cell Mol Life Sci 2023; 80:305. [PMID: 37752383 PMCID: PMC11072776 DOI: 10.1007/s00018-023-04952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/30/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Self-renewing, damage-repair and differentiation of mammalian stratified squamous epithelia are subject to tissue homeostasis, but the regulation mechanisms remain elusive. Here, we investigate the esophageal squamous epithelial tissue homeostasis in vitro and in vivo. We establish a rat esophageal organoid (rEO) in vitro system and show that the landscapes of rEO formation, development and maturation trajectories can mimic those of rat esophageal epithelia in vivo. Single-cell RNA sequencing (scRNA-seq), snapshot immunostaining and functional analyses of stratified "matured" rEOs define that the epithelial pluripotent stem cell determinants, p63 and Sox2, play crucial but distinctive roles for regulating mammalian esophageal tissue homeostasis. We identify two cell populations, p63+Sox2+ and p63-Sox2+, of which the p63+Sox2+ population presented at the basal layer is the cells of origin required for esophageal epithelial stemness maintenance and proliferation, whereas the p63-Sox2+ population presented at the suprabasal layers is the cells of origin having a dual role for esophageal epithelial differentiation (differentiation-prone fate) and rapid tissue damage-repair responses (proliferation-prone fate). Given the fact that p63 and Sox2 are developmental lineage oncogenes and commonly overexpressed in ESCC tissues, p63-Sox2+ population could not be detected in organoids formed by esophageal squamous cell carcinoma (ESCC) cell lines. Taken together, these findings reveal that the tissue homeostasis is maintained distinctively by p63 and/or Sox2-dependent cell lineage populations required for the tissue renewing, damage-repair and protection of carcinogenesis in mammalian esophagi.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Yuan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanan Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Zheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuejing Zheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shih-Hsin Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiying Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
41
|
Klochkova A, Karami AL, Fuller AD, Parham LR, Panchani SR, Natarajan S, Jackson JL, Mu A, Tan Y, Cai KQ, Klein-Szanto AJ, Muir AB, Tétreault MP, Hamilton KE, Whelan KA. Autophagy contributes to homeostasis in esophageal epithelium where high autophagic vesicle content marks basal cells with limited proliferation and enhanced self-renewal potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558614. [PMID: 37781581 PMCID: PMC10541137 DOI: 10.1101/2023.09.20.558614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Background & Aims Autophagy has been demonstrated to play roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelium under homeostatic conditions. Methods We generated tamoxifen-inducible, squamous epithelial-specific Atg7 (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histological and biochemical analyses. We FACS sorted esophageal basal cells based upon fluorescence of the autophagic vesicle (AV)-identifying dye Cyto-ID, then subjected these cells to transmission electron microscopy, image flow cytometry, 3D organoid assays, RNA-Sequencing (RNA-Seq), and cell cycle analysis. 3D organoids were subjected to passaging, single cell (sc) RNA-Seq, cell cycle analysis, and immunostaining. Results Genetic autophagy inhibition in squamous epithelium resulted in increased proliferation of esophageal basal cells. Esophageal basal cells with high AV level (Cyto-ID High ) displayed limited organoid formation capability upon initial plating but passaged more efficiently than their counterparts with low AV level (Cyto-ID Low ). RNA-Seq suggested increased autophagy in Cyto- ID High esophageal basal cells along with decreased cell cycle progression, the latter of which was confirmed by cell cycle analysis. scRNA-Seq of 3D organoids generated by Cyto-ID Low and Cyto- ID High cells identified expansion of 3 cell populations, enrichment of G2/M-associated genes, and aberrant localization of cell cycle-associated genes beyond basal cell populations in the Cyto- ID High group. Ki67 expression was also increased in organoids generated by Cyto-ID High cells, including in cells beyond the basal cell layer. Squamous epithelial-specific autophagy inhibition induced significant weight loss in mice treated with 4NQO that further displayed perturbed epithelial tissue architecture. Conclusions High AV level identifies esophageal epithelium with limited proliferation and enhanced self-renewal capacity that contributes to maintenance of the esophageal proliferation- differentiation gradient in vivo .
Collapse
|
42
|
Xu X, Xie J, Ling R, Ouyang S, Xiong G, Lu Y, Yun B, Zhang M, Wang W, Liu X, Chen D, Wang C. Single-cell transcriptomic analysis uncovers the origin and intratumoral heterogeneity of parotid pleomorphic adenoma. Int J Oral Sci 2023; 15:38. [PMID: 37679344 PMCID: PMC10484943 DOI: 10.1038/s41368-023-00243-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Pleomorphic adenoma (PA) is the most common benign tumour in the salivary gland and has high morphological complexity. However, the origin and intratumoral heterogeneity of PA are largely unknown. Here, we constructed a comprehensive atlas of PA at single-cell resolution and showed that PA exhibited five tumour subpopulations, three recapitulating the epithelial states of the normal parotid gland, and two PA-specific epithelial cell (PASE) populations unique to tumours. Then, six subgroups of PASE cells were identified, which varied in epithelium, bone, immune, metabolism, stemness and cell cycle signatures. Moreover, we revealed that CD36+ myoepithelial cells were the tumour-initiating cells (TICs) in PA, and were dominated by the PI3K-AKT pathway. Targeting the PI3K-AKT pathway significantly inhibited CD36+ myoepithelial cell-derived tumour spheres and the growth of PA organoids. Our results provide new insights into the diversity and origin of PA, offering an important clinical implication for targeting the PI3K-AKT signalling pathway in PA treatment.
Collapse
Affiliation(s)
- Xiuyun Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jiaxiang Xie
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Shengqi Ouyang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Gan Xiong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yanwen Lu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bokai Yun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ming Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenjin Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
43
|
Ko KP, Huang Y, Zhang S, Zou G, Kim B, Zhang J, Jun S, Martin C, Dunbar KJ, Efe G, Rustgi AK, Nakagawa H, Park JI. Key Genetic Determinants Driving Esophageal Squamous Cell Carcinoma Initiation and Immune Evasion. Gastroenterology 2023; 165:613-628.e20. [PMID: 37257519 PMCID: PMC10527250 DOI: 10.1053/j.gastro.2023.05.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND & AIMS Despite recent progress in identifying aberrant genetic and epigenetic alterations in esophageal squamous cell carcinoma (ESCC), the mechanism of ESCC initiation remains unknown. METHODS Using CRISPR/Cas 9-based genetic ablation, we targeted 9 genes (TP53, CDKN2A, NOTCH1, NOTCH3, KMT2D, KMT2C, FAT1, FAT4, and AJUBA) in murine esophageal organoids. Transcriptomic phenotypes of organoids and chemokine released by organoids were analyzed by single-cell RNA sequencing. Tumorigenicity and immune evasion of organoids were monitored by allograft transplantation. Human ESCC single-cell RNA sequencing data sets were analyzed to classify patients and find subsets relevant to organoid models and immune evasion. RESULTS We established 32 genetically engineered esophageal organoids and identified key genetic determinants that drive ESCC initiation. A single-cell transcriptomic analysis uncovered that Trp53, Cdkn2a, and Notch1 (PCN) triple-knockout induces neoplastic features of ESCC by generating cell lineage heterogeneity and high cell plasticity. PCN knockout also generates an immunosuppressive niche enriched with exhausted T cells and M2 macrophages via the CCL2-CCR2 axis. Mechanistically, CDKN2A inactivation transactivates CCL2 via nuclear factor-κB. Moreover, comparative single-cell transcriptomic analyses stratified patients with ESCC and identified a specific subtype recapitulating the PCN-type ESCC signatures, including the high expression of CCL2 and CD274/PD-L1. CONCLUSIONS Our study unveils that loss of TP53, CDKN2A, and NOTCH1 induces esophageal neoplasia and immune evasion for ESCC initiation and proposes the CCL2 blockade as a viable option for targeting PCN-type ESCC.
Collapse
Affiliation(s)
- Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cecilia Martin
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Karen J Dunbar
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Gizem Efe
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
44
|
Jacobse J, Aziz Z, Sun L, Chaparro J, Pilat JM, Kwag A, Buendia M, Wimbiscus M, Nasu M, Saito T, Mine S, Orita H, Revetta F, Short SP, Kay Washington M, Hiremath G, Gibson MK, Coburn LA, Koyama T, Goettel JA, Williams CS, Choksi YA. Eosinophils Exert Antitumorigenic Effects in the Development of Esophageal Squamous Cell Carcinoma. Cell Mol Gastroenterol Hepatol 2023; 16:961-983. [PMID: 37574015 PMCID: PMC10630122 DOI: 10.1016/j.jcmgh.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND AIMS Eosinophils are present in several solid tumors and have context-dependent function. Our aim is to define the contribution of eosinophils in esophageal squamous cell carcinoma (ESCC), as their role in ESCC is unknown. METHODS Eosinophils were enumerated in tissues from 2 ESCC cohorts. Mice were treated with 4-NQO for 8 weeks to induce precancer or 16 weeks to induce carcinoma. The eosinophil number was modified by a monoclonal antibody to interleukin-5 (IL5mAb), recombinant IL-5 (rIL-5), or genetically with eosinophil-deficient (ΔdblGATA) mice or mice deficient in eosinophil chemoattractant eotaxin-1 (Ccl11-/-). Esophageal tissue and eosinophil-specific RNA sequencing was performed to understand eosinophil function. Three-dimensional coculturing of eosinophils with precancer or cancer cells was done to ascertain direct effects of eosinophils. RESULTS Activated eosinophils are present in higher numbers in early-stage vs late-stage ESCC. Mice treated with 4-NQO exhibit more esophageal eosinophils in precancer vs cancer. Correspondingly, epithelial cell Ccl11 expression is higher in mice with precancer. Eosinophil depletion using 3 mouse models (Ccl11-/- mice, ΔdblGATA mice, IL5mAb treatment) all display exacerbated 4-NQO tumorigenesis. Conversely, treatment with rIL-5 increases esophageal eosinophilia and protects against precancer and carcinoma. Tissue and eosinophil RNA sequencing revealed eosinophils drive oxidative stress in precancer. In vitro coculturing of eosinophils with precancer or cancer cells resulted in increased apoptosis in the presence of a degranulating agent, which is reversed with NAC, a reactive oxygen species scavenger. ΔdblGATA mice exhibited increased CD4 T cell infiltration, IL-17, and enrichment of IL-17 protumorigenic pathways. CONCLUSION Eosinophils likely protect against ESCC through reactive oxygen species release during degranulation and suppression of IL-17.
Collapse
Affiliation(s)
- Justin Jacobse
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee
| | - Zaryab Aziz
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lili Sun
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jasmine Chaparro
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer M Pilat
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Aaron Kwag
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew Buendia
- Division of Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Nashville, Tennessee
| | - Mae Wimbiscus
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Motomi Nasu
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan; International Collaborative Research Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Mine
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Orita
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan; International Collaborative Research Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Frank Revetta
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah P Short
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Girish Hiremath
- Division of Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Nashville, Tennessee
| | - Michael K Gibson
- Department of Internal Medicine, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Hematology/Oncology, Department of Internal Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher S Williams
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville Tennessee
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Research and Development, Veterans Affairs Tennessee Valley Health System, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
45
|
Liu X, Zhao S, Wang K, Zhou L, Jiang M, Gao Y, Yang R, Yan S, Zhang W, Lu B, Liu F, Zhao R, Liu W, Zhang Z, Liu K, Li X, Dong Z. Spatial transcriptomics analysis of esophageal squamous precancerous lesions and their progression to esophageal cancer. Nat Commun 2023; 14:4779. [PMID: 37553345 PMCID: PMC10409784 DOI: 10.1038/s41467-023-40343-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Esophageal squamous precancerous lesions (ESPL) are the precursors of esophageal squamous cell carcinoma (ESCC) including low-grade and high-grade intraepithelial neoplasia. Due to the absence of molecular indicators, which ESPL will eventually develop into ESCC and thus should be treated is not well defined. Indicators, for predicting risks of ESCC at ESPL stages, are an urgent need. We perform spatial whole-transcriptome atlas analysis, which can eliminate other tissue interference by sequencing the specific ESPL regions. In this study, the expression of TAGLN2 significantly increases, while CRNN expression level decreases along the progression of ESCC. Additionally, TAGLN2 protein level significantly increases in paired after-progression tissues compared with before-progression samples, while CRNN expression decreases. Functional studies suggest that TAGLN2 promotes ESCC progression, while CRNN inhibits it by regulating cell proliferation. Taken together, TAGLN2 and CRNN are suggested as candidate indicators for the risk of ESCC at ESPL stages.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Keke Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Liting Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Jiang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Yunfeng Gao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Ran Yang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Shiwen Yan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wen Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Wenting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Zihan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
46
|
Muthupalani S, Annamalai D, Feng Y, Ganesan SM, Ge Z, Whary MT, Nakagawa H, Rustgi AK, Wang TC, Fox JG. IL-1β transgenic mouse model of inflammation driven esophageal and oral squamous cell carcinoma. Sci Rep 2023; 13:12732. [PMID: 37543673 PMCID: PMC10404242 DOI: 10.1038/s41598-023-39907-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023] Open
Abstract
Chronic inflammation is integral to the development of esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), although the latter has not been associated with reflux esophagitis. The L2-IL-1β transgenic mice, expressing human interleukin (IL)-1β in the oral, esophageal and forestomach squamous epithelia feature chronic inflammation and a stepwise development of Barrett's esophagus-like metaplasia, dysplasia and adenocarcinoma at the squamo-columnar junction. However, the functional consequences of IL-1β-mediated chronic inflammation in the oral and esophageal squamous epithelia remain elusive. We report for the first time that in addition to the previously described Barrett's esophagus-like metaplasia, the L2-IL-1β mice also develop squamous epithelial dysplasia with progression to squamous cell carcinoma (SCC) in the esophagus and the tongue. L2-IL-1β showed age-dependent progression of squamous dysplasia to SCC with approximately 40% (n = 49) and 23.5% (n = 17) incidence rates for esophageal and tongue invasive SCC respectively, by 12-15 months of age. Interestingly, SCC development and progression in L2-IL-1β was similar in both Germ Free (GF) and Specific Pathogen Free (SPF) conditions. Immunohistochemistry revealed a T cell predominant inflammatory profile with enhanced expression of Ki67, Sox2 and the DNA double-strand break marker, γ-H2AX, in the dysplastic squamous epithelia of L2-IL-1β mice. Pro-inflammatory cytokines, immunomodulatory players, chemoattractants for inflammatory cells (T cells, neutrophils, eosinophils, and macrophages) and oxidative damage marker, iNOS, were significantly increased in the esophageal and tongue tissues of L2-IL-1β mice. Our recent findings have expanded the translational utility of the IL-1β mouse model to aid in further characterization of the key pathways of inflammation driven BE and EAC as well as ESCC and Oral SCC.
Collapse
Affiliation(s)
- Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA.
- StageBio, 5930 Main St, Mount Jackson, VA, 22842, USA.
| | - Damodaran Annamalai
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA
| | - Suresh M Ganesan
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA
| | - Mark T Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825C, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
47
|
Ahmed SBM, Radwan N, Amer S, Saheb Sharif-Askari N, Mahdami A, Samara KA, Halwani R, Jelinek HF. Assessing the Link between Diabetic Metabolic Dysregulation and Breast Cancer Progression. Int J Mol Sci 2023; 24:11816. [PMID: 37511575 PMCID: PMC10380477 DOI: 10.3390/ijms241411816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus is a burdensome disease that affects various cellular functions through altered glucose metabolism. Several reports have linked diabetes to cancer development; however, the exact molecular mechanism of how diabetes-related traits contribute to cancer progression is not fully understood. The current study aimed to explore the molecular mechanism underlying the potential effect of hyperglycemia combined with hyperinsulinemia on the progression of breast cancer cells. To this end, gene dysregulation induced by the exposure of MCF7 breast cancer cells to hyperglycemia (HG), or a combination of hyperglycemia and hyperinsulinemia (HGI), was analyzed using a microarray gene expression assay. Hyperglycemia combined with hyperinsulinemia induced differential expression of 45 genes (greater than or equal to two-fold), which were not shared by other treatments. On the other hand, in silico analysis performed using a publicly available dataset (GEO: GSE150586) revealed differential upregulation of 15 genes in the breast tumor tissues of diabetic patients with breast cancer when compared with breast cancer patients with no diabetes. SLC26A11, ALDH1A3, MED20, PABPC4 and SCP2 were among the top upregulated genes in both microarray data and the in silico analysis. In conclusion, hyperglycemia combined with hyperinsulinemia caused a likely unique signature that contributes to acquiring more carcinogenic traits. Indeed, these findings might potentially add emphasis on how monitoring diabetes-related metabolic alteration as an adjunct to diabetes therapy is important in improving breast cancer outcomes. However, further detailed studies are required to decipher the role of the highlighted genes, in this study, in the pathogenesis of breast cancer in patients with a different glycemic index.
Collapse
Affiliation(s)
- Samrein B M Ahmed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Health, Wellbeing and Life Sciences, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Nada Radwan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sara Amer
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amena Mahdami
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kamel A Samara
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rabih Halwani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Herbert F Jelinek
- Department of Biomedical Engineering and Health Engineering Innovation Center, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
48
|
Koncina E, Nurmik M, Pozdeev VI, Gilson C, Tsenkova M, Begaj R, Stang S, Gaigneaux A, Weindorfer C, Rodriguez F, Schmoetten M, Klein E, Karta J, Atanasova VS, Grzyb K, Ullmann P, Halder R, Hengstschläger M, Graas J, Augendre V, Karapetyan YE, Kerger L, Zuegel N, Skupin A, Haan S, Meiser J, Dolznig H, Letellier E. IL1R1 + cancer-associated fibroblasts drive tumor development and immunosuppression in colorectal cancer. Nat Commun 2023; 14:4251. [PMID: 37460545 DOI: 10.1038/s41467-023-39953-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Fibroblasts have a considerable functional and molecular heterogeneity and can play various roles in the tumor microenvironment. Here we identify a pro-tumorigenic IL1R1+, IL-1-high-signaling subtype of fibroblasts, using multiple colorectal cancer (CRC) patient single cell sequencing datasets. This subtype of fibroblasts is linked to T cell and macrophage suppression and leads to increased cancer cell growth in 3D co-culture assays. Furthermore, both a fibroblast-specific IL1R1 knockout and IL-1 receptor antagonist Anakinra administration reduce tumor growth in vivo. This is accompanied by reduced intratumoral Th17 cell infiltration. Accordingly, CRC patients who present with IL1R1-expressing cancer-associated-fibroblasts (CAFs), also display elevated levels of immune exhaustion markers, as well as an increased Th17 score and an overall worse survival. Altogether, this study underlines the therapeutic value of targeting IL1R1-expressing CAFs in the context of CRC.
Collapse
Affiliation(s)
- E Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Nurmik
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - V I Pozdeev
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - C Gilson
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Tsenkova
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - R Begaj
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - S Stang
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - A Gaigneaux
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - C Weindorfer
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - F Rodriguez
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Schmoetten
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - E Klein
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - J Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - V S Atanasova
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - K Grzyb
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - P Ullmann
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - R Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - M Hengstschläger
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - J Graas
- Clinical and Epidemiological Investigation Center, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - V Augendre
- National Center of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg
| | | | - L Kerger
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - N Zuegel
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - A Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - S Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - J Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - H Dolznig
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | - E Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg.
| |
Collapse
|
49
|
Jacobse J, Aziz Z, Sun L, Chaparro J, Pilat JM, Kwag A, Buendia M, Wimbiscus M, Nasu M, Saito T, Mine S, Orita H, Revetta F, Short SP, Washington MK, Hiremath G, Gibson MK, Coburn L, Koyama T, Goettel JA, Williams CS, Choksi YA. Eosinophils exert direct and indirect anti-tumorigenic effects in the development of esophageal squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543287. [PMID: 37333285 PMCID: PMC10274643 DOI: 10.1101/2023.06.01.543287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background/Aims Eosinophils are present in several solid tumors and have context-dependent function. Our aim is to define the contribution of eosinophils in esophageal squamous cell carcinoma (ESCC), since their role in ESCC is unknown. Methods Eosinophils were enumerated in tissues from two ESCC cohorts. Mice were treated with 4-nitroquinolone-1-oxide (4-NQO) for 8 weeks to induce pre-cancer or 16 weeks to induce carcinoma. Eosinophil number was modified by monoclonal antibody to IL-5 (IL5mAb), recombinant IL-5 (rIL-5), or genetically with eosinophil-deficient (ΔdblGATA) mice or mice deficient in eosinophil chemoattractant eotaxin-1 ( Ccl11 -/- ). Esophageal tissue and eosinophil specific RNA-sequencing was performed to understand eosinophil function. 3-D co-culturing of eosinophils with pre-cancer or cancer cells was done to ascertain direct effects of eosinophils. Results Activated eosinophils are present in higher numbers in early stage versus late stage ESCC. Mice treated with 4-NQO exhibit more esophageal eosinophils in pre-cancer versus cancer. Correspondingly, epithelial cell Ccl11 expression is higher in mice with pre-cancer. Eosinophil depletion using three mouse models ( Ccl11 -/- mice, ΔdblGATA mice, IL5mAb treatment) all display exacerbated 4-NQO tumorigenesis. Conversely, treatment with rIL-5 increases esophageal eosinophilia and protects against pre-cancer and carcinoma. Tissue and eosinophil RNA-sequencing revealed eosinophils drive oxidative stress in pre-cancer. In vitro co-culturing of eosinophils with pre-cancer or cancer cells resulted in increased apoptosis in the presence of a degranulating agent, which is reversed with N-acetylcysteine, a reactive oxygen species (ROS) scavenger. ΔdblGATA mice exhibited increased CD4 T cell infiltration, IL-17, and enrichment of IL-17 pro-tumorigenic pathways. Conclusion Eosinophils likely protect against ESCC through ROS release during degranulation and suppression of IL-17.
Collapse
|
50
|
Li K, Sun YH, Ouyang Z, Negi S, Gao Z, Zhu J, Wang W, Chen Y, Piya S, Hu W, Zavodszky MI, Yalamanchili H, Cao S, Gehrke A, Sheehan M, Huh D, Casey F, Zhang X, Zhang B. scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing. BMC Genomics 2023; 24:228. [PMID: 37131143 PMCID: PMC10155351 DOI: 10.1186/s12864-023-09332-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/25/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Single-cell RNA sequencing is a state-of-the-art technology to understand gene expression in complex tissues. With the growing amount of data being generated, the standardization and automation of data analysis are critical to generating hypotheses and discovering biological insights. RESULTS Here, we present scRNASequest, a semi-automated single-cell RNA-seq (scRNA-seq) data analysis workflow which allows (1) preprocessing from raw UMI count data, (2) harmonization by one or multiple methods, (3) reference-dataset-based cell type label transfer and embedding projection, (4) multi-sample, multi-condition single-cell level differential gene expression analysis, and (5) seamless integration with cellxgene VIP for visualization and with CellDepot for data hosting and sharing by generating compatible h5ad files. CONCLUSIONS We developed scRNASequest, an end-to-end pipeline for single-cell RNA-seq data analysis, visualization, and publishing. The source code under MIT open-source license is provided at https://github.com/interactivereport/scRNASequest . We also prepared a bookdown tutorial for the installation and detailed usage of the pipeline: https://interactivereport.github.io/scRNAsequest/tutorial/docs/ . Users have the option to run it on a local computer with a Linux/Unix system including MacOS, or interact with SGE/Slurm schedulers on high-performance computing (HPC) clusters.
Collapse
Affiliation(s)
- Kejie Li
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Yu H Sun
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | | | - Soumya Negi
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Zhen Gao
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Jing Zhu
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Wanli Wang
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Yirui Chen
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Sarbottam Piya
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Wenxing Hu
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Maria I Zavodszky
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Hima Yalamanchili
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Shaolong Cao
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Andrew Gehrke
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Mark Sheehan
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Dann Huh
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Fergal Casey
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA
| | - Xinmin Zhang
- Data Science, BioInfoRx Inc., Madison, WI, 53719, USA
| | - Baohong Zhang
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, 02142, USA.
| |
Collapse
|