1
|
Michaels L, Noor M, Aslam T. Clinical and imaging strategies for the assessment of the ocular side effects of systemic targeted anti-cancer therapies. Eur J Cancer 2025; 222:115452. [PMID: 40306116 DOI: 10.1016/j.ejca.2025.115452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Systemic targeted anti-cancer therapies selectively target cancerous cells whilst limiting systemic side effects. The eye however, is a particularly sensitive organ and the expanding use of the newer targeted chemotherapy agents has been associated with multiple ocular side effects. In this review we provide an update of the ocular side effects of the newer targeted chemotherapy agents along with suggested minimum, pragmatic, evidence-based strategies for effective screening or monitoring for potential ocular side effects. This framework is designed to guide oncologists, trial managers, protocol developers and regulatory authorities so that appropriate ophthalmic clinical examinations and non-invasive modern imaging can be requested and commissioned according to a patient's specific treatment.
Collapse
Affiliation(s)
- Luke Michaels
- St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - Maha Noor
- Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WL, United Kingdom
| | - Tariq Aslam
- Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WL, United Kingdom; School of Health Sciences, University of Manchester, Oxford Road, Manchester M139PL, United Kingdom.
| |
Collapse
|
2
|
Liu X, Li C, Meng Q, Chen C, Lai Y, Wang H, Yu Z, Li D, Chen Z, Hou T. Derazantinib Inhibits the Planktonic Growth and Biofilm Formation of Staphylococcus aureus by Binding Membrane Phospholipids and Disrupting the Cell Membrane. ACS Infect Dis 2025. [PMID: 40367508 DOI: 10.1021/acsinfecdis.4c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Derazantinib (DZB), a pan-fibroblast growth factor receptor (FGFR) inhibitor, exhibits potent activity against FGFR1-3 kinases and has been clinically approved for antitumor therapy. However, its antibacterial properties remain unknown. Here, we demonstrated that DZB displays broad-spectrum activity against Staphylococcus aureus (S. aureus), with minimum inhibitory concentrations (MICs) ranging from 6.25 to 25 μM. DZB exhibited more rapid and stronger bactericidal activity against planktonic cells of both MSSA and MRSA compared to vancomycin. DZB at 6.25 μM robustly inhibited biofilm formation and even eradicated mature biofilms. Global proteomic profiling revealed that DZB's antibacterial mechanism might involve disruption of microbial glycolysis/gluconeogenesis pathways. Furthermore, in vitro selection of DZB-induced resistant S. aureus resulted in a 2-fold increase in MIC, and whole-genome sequencing of this derivative isolate identified amino acid mutations in membrane-associated proteins. DZB was found to compromise bacterial membrane integrity, as evidenced by increased membrane permeability, and the membrane damage was also confirmed by scanning electron microscopy (SEM). The antibacterial activity of DZB was neutralized by the addition of exogenous phosphatidylglycerol and cardiolipin. Biolayer interferometry assays demonstrated a strong interaction between DZB and cardiolipin, suggesting membrane phospholipid targeting as a key mechanism. Lastly, DZB displayed a robust inhibitory effect against intracellular S. aureus SA113 and showed excellent in vivo anti-MRSA infection in both Galleria mellonella larvae and murine infection models. In summary, our findings established DZB as a promising anti-S. aureus agent with dual antibacterial and antibiofilm activities by disrupting the cell membrane through targeting membrane phospholipids.
Collapse
Affiliation(s)
- Xiaoju Liu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nation Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Congcong Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Qingyin Meng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Chengchun Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Yingying Lai
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Hongyan Wang
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Tieying Hou
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| |
Collapse
|
3
|
Yamada D, Kobayashi S, Doki Y, Eguchi H. Genomic landscape of biliary tract cancer and corresponding targeted treatment strategies. Int J Clin Oncol 2025:10.1007/s10147-025-02761-x. [PMID: 40281353 DOI: 10.1007/s10147-025-02761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Biliary tract cancers (BTCs) are classified on the basis of their anatomical origin, and the feasibility of surgical resection depends on the tumor location and extent of progression. However, for unresectable BTCs, systemic therapy has been uniformly applied. Gemcitabine and cisplatin (GC) therapy and GC-based therapies were established as the first-line standard BTC treatment. However, no highly effective second-line therapy has been established, and the prognosis remains poor, highlighting the need for further therapeutic advancements. Meanwhile, the era of precision medicine has expanded the use of genetic testing, leading to the identification of actionable molecular targets in BTC. Several targeted therapies, including FGFR inhibitors and IDH1 inhibitors, have been developed, offering new second-line treatment options and the potential for first-line use in appropriate cases. Notably, the frequency of these genetic alterations varies depending on the tumor location, demonstrating the molecular heterogeneity of BTC. Therefore, it has been recognized that a tailored treatment approach for each BTC patient may be more effective than uniform systemic therapy. Consequently, although routine genetic testing before initiating systemic treatment is currently limited by the medical environment (e.g., cost, accessibility, regional differences), it is recommended in ESMO guideline and might be increasingly advocated. However, BTC harbors a wide range of genetic alterations, and numerous targeted therapies are being developed accordingly. This review provides an overview of the reported genetic alterations in BTC, the frequencies of these alterations, and the corresponding targeted therapies, emphasizing the evolving role of precision medicine in BTC treatment.
Collapse
Affiliation(s)
- Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Nishida N. Biomarkers and Management of Cholangiocarcinoma: Unveiling New Horizons for Precision Therapy. Cancers (Basel) 2025; 17:1243. [PMID: 40227772 PMCID: PMC11987923 DOI: 10.3390/cancers17071243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy with limited methods for early detection, necessitating the development of reliable biomarkers for diagnosis and management. However, conventional tumor markers, such as CA19-9 and CEA, exhibit insufficient diagnostic accuracy. Recent advancements in molecular genetics have identified several actionable mutations in CCA, enabling molecularly targeted therapies that improve survival in patients harboring these genetic alterations. Cancer panels, which facilitate multiplex genetic profiling, are critical for identifying these mutations. Studies indicate that several actionable mutations are detected in CCA cases, with patients receiving mutation-guided therapies achieving markedly better outcomes. Liquid biopsies, including cell-free DNA and circulating tumor DNA, offer real-time, non-invasive approaches to monitoring tumor dynamics, heterogeneity, and treatment responses. Furthermore, numerous studies have identified non-coding RNAs in serum and bile as promising biomarkers for the diagnosis and management of CCA. On the other hand, immunotherapy, particularly immune checkpoint inhibitors, has shown efficacy in subsets of CCA patients. However, the success of these therapies is often affected by the status of the tumor immune microenvironment (TME), underscoring the need for comprehensive TME analysis to predict responses to immune checkpoint inhibitors. Despite these advances, no single biomarker currently demonstrates sufficient sensitivity or specificity for clinical application. The integration of multi-omics approaches with cutting-edge technologies holds promise for enhancing diagnostic accuracy, optimizing treatment stratification, and advancing precision medicine in CCA. These developments highlight the transformative potential of biomarkers to improve early detection, prognostic assessment, and personalized therapeutic interventions for CCA.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University Osaka 589-8511, Japan
| |
Collapse
|
5
|
Okano N, Pirozzi A, Abidoye O, Hoyek C, Eslinger C, Zheng-Lin B, Jamal F, Sahwan O, Sonbol MB, Uson Junior PLS, Hayashi M, Sato T, Nishioka M, Nagashima F, Bekaii-Saab T, Borad MJ, Hironaka S. Systemic therapy for pretreated advanced biliary tract cancer: past developments and recent advances. Jpn J Clin Oncol 2025:hyaf052. [PMID: 40173029 DOI: 10.1093/jjco/hyaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
Biliary tract cancer (BTC) remains among the most challenging malignancies with a poor prognosis and limited treatment options, particularly in pretreated patients. As most patients experience disease progression after first-line treatment, effective second-line and subsequent treatments are required. Although the addition of modified FOLFOX (fluorouracil, leucovorin, and oxaliplatin) to active symptom control improved the overall survival of patients with progressing advanced BTC despite gemcitabine plus cisplatin treatment, its efficacy was modest. Moreover, most clinical trials demonstrated modest efficacy of molecular-targeted agents for molecularly unselected pretreated advanced BTC. Patients with advanced BTC carry a relatively high druggable genetic alteration rate and have shown promising responses to molecular-matched therapies targeting gene alterations such as FGFR2 fusions/rearrangements, IDH1 mutation, and HER2 overexpression/amplification. Additionally, tumor-agnostic approaches, including BRAF V600E, NTRK fusion, and RET fusion, have expanded the treatment options for some patients. Immune checkpoint inhibitors have shown limited efficacy as mono- or combination therapy in patients with pretreated advanced BTC. Therefore, developmental efforts have shifted to immune checkpoint inhibitor and other combinations such as vascular endothelial growth factor receptor inhibitors or radiation. In addition to refining combination strategies to enhance the therapeutic potential of immune checkpoint inhibitor, future research should focus on elucidating the tumor microenvironment. This review delineates the evolution of systemic therapies in patients with pretreated advanced BTC. By examining past developments and recent advances through prospective trials, it highlights novel approaches that may improve outcomes in this challenging disease.
Collapse
Affiliation(s)
- Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Angelo Pirozzi
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan 20072, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Oluseyi Abidoye
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Celine Hoyek
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Cody Eslinger
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Binbin Zheng-Lin
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Fares Jamal
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Oudai Sahwan
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Mohamad Bassam Sonbol
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Pedro Luiz Serrano Uson Junior
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, Avenida Albert Einstein 627, São Paulo 05652900, Brazil
| | - Masato Hayashi
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Taro Sato
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
- Department of Gastroenterology and Hepatology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Mariko Nishioka
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Fumio Nagashima
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Tanios Bekaii-Saab
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Mitesh J Borad
- Division of Hematology and Oncology, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, United States
| | - Shuichi Hironaka
- Department of Medical Oncology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| |
Collapse
|
6
|
Cui X, Huang T, Jiang T, Wang H. Current status and prospects of targeted therapy for cholangiocarcinoma based on molecular characteristics. Cancer Lett 2025; 614:217540. [PMID: 39924074 DOI: 10.1016/j.canlet.2025.217540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Cholangiocarcinoma (CCA) is a serious public health issue due to its insidious onset and dismal prognosis. The past few years have witnessed and highlighted the development of understanding and management of CCA. The combination of gemcitabine and cisplatin (GP) chemotherapy regimen with immunotherapy using immune checkpoint inhibitors has been considered the new standard first-line treatment alternative for advanced CCA. Notably, the proportion of patients with advanced CCA with targetable genetic mutations is approximately 40 %, and these patients may be considered for molecularly targeted therapy in the second-line treatment. In this review, we highlight the advances and progress in targeted therapies for advanced CCA, with special attention to data from Asian populations, including Chinese. In addition, we present in detail the phosphatase tension homolog (PTEN), a novel biomarker for both of first-line chemotherapy and second-line targeted therapy in advanced CCA, and its ability to forecast prognosis in patients with CCA. The mechanisms of rapid resistance to targeted agents warrant further investigation and address in light of the development of new targeted therapies. Precision medicine is gradually playing an increasing role in achieving optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Xiaowen Cui
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| | - Teng Huang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, The Naval Medical University, Shanghai, China; Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Tianyi Jiang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, The Naval Medical University, Shanghai, China.
| | - Hongyang Wang
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China; International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, The Naval Medical University, Shanghai, China; Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Wang W, Zhong Q, Huang X. Antibacterial and anti-biofilm activities of Derazantinib (ARQ-087) against Staphylococcus aureus. Arch Microbiol 2025; 207:78. [PMID: 40047947 DOI: 10.1007/s00203-025-04288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
The global rise of multidrug-resistant pathogens, particularly methicillin-resistant Staphylococcus aureus (MRSA), represents a critical public health challenge. This study evaluates the antibacterial and anti-biofilm activities of Derazantinib (ARQ-087) against S. aureus. ARQ-087 exhibited minimum inhibitory concentration (MIC) values ranging from 4 to 16 µM against S. aureus reference laboratory strains and diverse clinical MRSA isolates, demonstrating strong antibacterial activity with minimal resistance development. Time-kill assays demonstrated a concentration- and time-dependent reduction in bacterial viability. Crystal violet staining assays revealed that ARQ-087 significantly inhibited MRSA biofilm formation in a dose-dependent manner. Additionally, ARQ-087 exhibited strong anti-biofilm activity against pre-formed biofilms, as shown by colony counts and confocal laser scanning microscopy, which indicated extensive biofilm disruption and bacterial cell death. Mechanistic studies revealed that ARQ-087 disrupts bacterial membrane integrity, as evidenced by SYTOX Green and DISC3(5) fluorescence assays, while inducing intracellular ATP depletion and reactive oxygen species generation, contributing to bacterial death. ARQ-087 also displayed negligible hemolytic activity and no acute toxicity observed in a Galleria mellonella infection model. In this model, ARQ-087 prolonged the survival of larvae infected with S. aureus. These findings highlight ARQ-087 as a promising therapeutic candidate for treating MRSA infections and biofilm-associated diseases. Further preclinical studies are needed to confirm its potential for clinical application.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People's Republic of China
| | - Qiuxiang Zhong
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People's Republic of China
| | - Xincheng Huang
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
8
|
Rimassa L, Lamarca A, O'Kane GM, Edeline J, McNamara MG, Vogel A, Fassan M, Forner A, Kendall T, Adeva J, Casadei-Gardini A, Fornaro L, Hollebecque A, Lowery MA, Macarulla T, Malka D, Mariamidze E, Niger M, Ustav A, Bridgewater J, Macias RI, Braconi C. New systemic treatment paradigms in advanced biliary tract cancer and variations in patient access across Europe. THE LANCET REGIONAL HEALTH. EUROPE 2025; 50:101170. [PMID: 40093395 PMCID: PMC11910789 DOI: 10.1016/j.lanepe.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 03/19/2025]
Abstract
In recent years, treatment options for patients with advanced biliary tract cancer (BTC) have increased significantly due to the positive results from phase 2/3 clinical trials of immune checkpoint inhibitors, combined with chemotherapy, and molecularly targeted agents. These advances have led to the need for molecular testing to identify actionable alterations and patients amenable to targeted therapies. However, these improvements have brought with them many questions and challenges, including the identification of resistance mechanisms and therapeutic sequences. In this Series paper we aim to provide an overview of the current systemic treatment options for patients with BTC, highlighting disparities in access to innovative treatments and molecular testing across European countries, which lead to inequalities in the possibilities of treating patients with advanced BTC. We also discuss how ongoing European collaborative projects, such as the COST Action Precision-BTC-Network CA22125, supported by COST (European Cooperation in Science and Technology), linked to the European Network for the Study of Cholangiocarcinoma (ENSCCA), can help overcome these disparities and improve the current scenario.
Collapse
Affiliation(s)
- Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, 20072, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via A. Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Angela Lamarca
- Department of Medical Oncology, Oncohealth Institute, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Fundación Jimenez Diaz University Hospital, Avda Reyes Católicos 2, Madrid, 28040, Spain
| | - Grainne M. O'Kane
- University College Dublin, Belfield, Dublin 4, Ireland
- Department of Medical Oncology, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Julien Edeline
- INSERM, Department of Medical Oncology, University Rennes, CLCC Eugène Marquis, COSS [(Chemistry Oncogenesis Stress Signaling)] – UMR_S 1242, Rennes, F-35000, France
| | - Mairéad G. McNamara
- Division of Cancer Sciences, University of Manchester & Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Arndt Vogel
- Toronto General Hospital, UHN, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
- Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON, M5G 2M9, Canada
- Hannover Medical School, Carl-Neuberg Str. 1, Hannover, 30659, Germany
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Via Gabelli 61, Padua, 35121, Italy
- Veneto Institute of Oncology (IOV-IRCCS), Via Gattamelata 64, Padua, 35128, Italy
| | - Alejandro Forner
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, ICMDM, Hospital Clinic IDIBAPS, University of Barcelona, Villarroel 170, Barcelona, 08036, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
| | - Timothy Kendall
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
- Edinburgh Pathology, University of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
- CRUK Scotland Cancer Centre, Switchback Rd, Glasgow, G61 1BD, UK
| | - Jorge Adeva
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Av. de Córdoba, s/n, Usera, Madrid, 28041, Spain
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Via Olgettina 60, Milan, 20132, Italy
| | - Lorenzo Fornaro
- Medical Oncology 2 Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, Pisa, 56126, Italy
| | - Antoine Hollebecque
- Département de Médecine Oncologique, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif, F-94805, France
| | - Maeve A. Lowery
- Trinity St James Cancer Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Teresa Macarulla
- Vall d'Hebrón Institute of Oncology (VHIO), Vall d'Hebrón University Hospital, Centre Cellex, Carrer de Natzaret, 115-117, Barcelona, 08035, Spain
| | - David Malka
- Department of Medical Oncology, Institut Mutualiste Montsouris, 42 Boulevard Jourdan, Paris, 75014, France
| | - Elene Mariamidze
- Department of Oncology and Hematology, Todua Clinic, Tevdore Mgvdeli #13, Tbilisi, 0112, Georgia
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, Milan, 20133, Italy
| | - Anu Ustav
- Clinic of Oncology, North-Estonian Medical Centre, Sytiste Rd 19, Tallinn, 13419, Estonia
| | | | - Rocio I.R. Macias
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, CIBERehd, Campus M. Unamuno s/n, Salamanca, 37007, Spain
| | - Chiara Braconi
- CRUK Scotland Cancer Centre, Switchback Rd, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Rd, Glasgow, G61 1QH, UK
- Beatson West of Scotland Cancer Centre, 1053 Great Western Rd, Glasgow, G12 0YN, UK
| |
Collapse
|
9
|
Kim Y, Song J, Kim N, Sim T. Recent progress in emerging molecular targeted therapies for intrahepatic cholangiocarcinoma. RSC Med Chem 2025:d4md00881b. [PMID: 39925737 PMCID: PMC11800140 DOI: 10.1039/d4md00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/11/2025] [Indexed: 02/11/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a diverse group of epithelial malignant tumors arising from the biliary tract, characterized by high molecular heterogeneity. It is classified into intrahepatic (iCCA) and extrahepatic CCA (eCCA) based on the location of the primary tumor. CCA accounts for approximately 15% of all primary liver cancers, with iCCA comprising 10-20% of all CCAs. iCCA is especially known for its characteristic aggressiveness and refractoriness, leading to poor prognosis. Despite the increasing global incidence and mortality rates, surgery remains the only available standard treatment approach for a subset (25%) of patients with early-stage, resectable iCCA. The paucity of effective systemic medical therapies restricts therapeutic options for patients with advanced or metastatic iCCA. In the past decade, advances in the understanding of the molecular complexity of these tumors have provided fruitful insights for the identification of promising new druggable targets and the development of feasible therapeutic strategies that may improve treatment outcomes for patients with iCCA. In this review, we aim to highlight critical up-to-date studies and medicinal chemistry aspects, focusing on novel targeted approaches utilizing promising candidates for molecular targeted therapy in iCCA. These candidates include aberrations in isocitrate dehydrogenase (IDH) 1/2, fibroblast growth factor receptor (FGFR), B-Raf proto-oncogene (BRAF), neurotrophic tyrosine receptor kinase (NTRK), human epidermal growth factor receptor 2 (HER2), and programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1). Furthermore, this review provides an overview of potential inhibitors aimed at overcoming acquired drug resistance in these actionable targets for iCCA.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
| | - Jaewon Song
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|
10
|
Groß S, Bitzer M, Albert J, Blödt S, Boda-Heggemann J, Borucki K, Brunner T, Caspari R, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Gebert J, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, Fougère CL, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Ott J, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ringe K, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schütte K, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Trojan J, van Thiel I, Utzig M, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wenzel G, Wildner D, Wörns MA, Galle P, Malek N. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025; 63:e82-e158. [PMID: 39919781 DOI: 10.1055/a-2460-6347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Affiliation(s)
- Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | | | - Katrin Borucki
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Klinische Chemie und Pathobiochemie
| | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Jamila Gebert
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Julia Ott
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Digestive Diseases and Nutrition, Gastroenterology, University of Kentucky
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | - Kristina Ringe
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Kerstin Schütte
- Klinik für Innere Medizin und Gastroenterologie, Niels-Stensen-Kliniken, Marienhospital Osnabrück
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Martin Utzig
- Abteilung Zertifizierung, Deutsche Krebsgesellschaft e.V., Berlin
| | - Arndt Vogel
- Institute of Medical Science, University of Toronto
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie, Infektiologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Gregor Wenzel
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
11
|
Das S, Berlin J. Systemic Therapy Improvements Will Render Locoregional Treatments Obsolete for Patients with Cancer with Liver Metastases. Hematol Oncol Clin North Am 2025; 39:191-206. [PMID: 39510673 DOI: 10.1016/j.hoc.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hepatic metastases are a major cause of morbidity and mortality for patients with cancer. Apart from curative resection, which offers patients the potential for long-term survival, an array of locoregional therapies, with limited evidence of improving survival, are used to treat them. The authors use examples from the realm of gastrointestinal cancer, largely focusing on the experience of patients with neuroendocrine cancer, hepatobiliary cancer, and colorectal cancer, to suggest that current systemic therapies offer, at minimum, similar survival outcomes for patients compared with these locoregional approaches.
Collapse
Affiliation(s)
- Satya Das
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA.
| | - Jordan Berlin
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA. https://twitter.com/jordanberlin5
| |
Collapse
|
12
|
Takagaki K, Okude R, Hirayama N, Sootome H, Hirai H. [Pharmacological characteristics and clinical effectiveness of Futibatinib (Lytgobi ® Tablets), a covalently-binding, irreversible FGFR1-4 inhibitor]. Nihon Yakurigaku Zasshi 2024; 159:423-432. [PMID: 39384389 DOI: 10.1254/fpj.24045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Futibatinib (Lytgobi® Tablets 4 mg), a novel fibroblast growth factor receptor (FGFR) inhibitor developed by Taiho Pharmaceutical using the Cysteinomix Drug Discovery Platform, was approved in Japan in June 2023 for the treatment of patients with unresectable biliary tract cancer with FGFR2 fusion or rearrangement that had progressed after at least one prior chemotherapy. Futibatinib covalently binds to the cysteine residue in the FGFR kinase domain P-loop structure and is believed to exert antitumor activity by selectively and irreversibly inhibiting FGFR1-4. Many FGFR inhibitors under development are ATP-competitive; however, futibatinib is the first approved covalently-binding irreversible FGFR inhibitor. It inhibits cell proliferation by inhibiting FGFR phosphorylation and its downstream signaling pathways in cancer cell lines. Futibatinib showed inhibitory activity against a wider range of FGFR mutants than ATP-competitive, reversible FGFR inhibitors and inhibited cell proliferation without significantly deviating from the inhibitory effect on wild-type FGFR. Futibatinib showed antitumor efficacy in mice subcutaneously transplanted with human tumor cell lines driven by FGFR. The international phase 2 study (TAS-120-101) was conducted in patients with refractory intrahepatic cholangiocarcinoma with FGFR2 fusion or rearrangement. The overall response rate was 41.7%, showing consistent efficacy regardless of co-occurring genomic alterations. Although some typical FGFR inhibitor-related side effects were observed, they were manageable and futibatinib had a good safety profile. Futibatinib is an important drug for biliary tract cancer, which has limited treatment options; its development is underway for other types of cancer, and it is expected to benefit more patients.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/chemistry
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Proliferation/drug effects
- Pyrazoles
- Pyrimidines
- Pyrroles
Collapse
Affiliation(s)
- Katsuya Takagaki
- Clinical Development, Medical Affairs Division, Taiho Pharmaceutical Co., Ltd
| | - Ryota Okude
- Clinical Development, Medical Affairs Division, Taiho Pharmaceutical Co., Ltd
| | - Naoki Hirayama
- Clinical Development, Medical Affairs Division, Taiho Pharmaceutical Co., Ltd
| | - Hiroshi Sootome
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd
| | - Hiroshi Hirai
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd
| |
Collapse
|
13
|
Neuzillet C, Decraecker M, Larrue H, Ntanda-Nwandji LC, Barbier L, Barge S, Belle A, Chagneau C, Edeline J, Guettier C, Huguet F, Jacques J, Le Bail B, Leblanc S, Lewin M, Malka D, Ronot M, Vendrely V, Vibert É, Bureau C, Bourliere M, Ganne-Carrie N, Blanc JF. Management of intrahepatic and perihilar cholangiocarcinomas: Guidelines of the French Association for the Study of the Liver (AFEF). Liver Int 2024; 44:2517-2537. [PMID: 38967424 DOI: 10.1111/liv.15948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 04/11/2024] [Indexed: 07/06/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common malignant primary liver cancer. iCCA may develop on an underlying chronic liver disease and its incidence is growing in relation with the epidemics of obesity and metabolic diseases. In contrast, perihilar cholangiocarcinoma (pCCA) may follow a history of chronic inflammatory diseases of the biliary tract. The initial management of CCAs is often complex and requires multidisciplinary expertise. The French Association for the Study of the Liver wished to organize guidelines in order to summarize the best evidence available about several key points in iCCA and pCCA. These guidelines have been elaborated based on the level of evidence available in the literature and each recommendation has been analysed, discussed and voted by the panel of experts. They describe the epidemiology of CCA as well as how patients with iCCA or pCCA should be managed from diagnosis to treatment. The most recent developments of personalized medicine and use of targeted therapies are also highlighted.
Collapse
Affiliation(s)
- Cindy Neuzillet
- GI Oncology, Medical Oncology Department, Institut Curie, Versailles Saint-Quentin University, Paris Saclay University, Saint-Cloud, France
| | - Marie Decraecker
- Oncology Digestive Unit, INSERM U1312, University Hospital of Bordeaux, Bordeaux, France
| | - Hélène Larrue
- Department of Hepatology, University Hospital, Toulouse III-Paul Sabatier University, Toulouse, France
| | | | - Louise Barbier
- New Zealand Liver Transplant Unit and HPB Surgery, Te Toka Tumai, University of Auckland, Auckland, New Zealand
| | - Sandrine Barge
- Centre Hospitalier Intercommunal Créteil-CHI Créteil, Créteil, France
| | - Arthur Belle
- Department of Gastroenterology and Digestive Oncology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Julien Edeline
- Department of Medical Oncology, CLCC Eugène Marquis, COSS-UMR S1242, INSERM, Univ Rennes, Rennes, France
| | - Catherine Guettier
- Department of Pathology, APHP University Paris Saclay, Hôpital Bicetre, Paris, France
| | - Florence Huguet
- Radiation Oncology Department, Tenon Hospital, APHP-Sorbonne University, Paris, France
| | | | - Brigitte Le Bail
- Pathology Department, University Hospital of Bordeaux, Bordeaux, France
| | - Sarah Leblanc
- Gastroenterology Department, Private Hospital Jean Mermoz, Ramsay Santé, Lyon, France
| | - Maïté Lewin
- Service de Radiologie, AP-HP-Université Paris Saclay Hôpital Paul Brousse, Villejuif, France
| | - David Malka
- Medical Oncology Department, Institut Mutualiste Monsouris, Paris, France
| | - Maxime Ronot
- Department of Radiology, Beaujon Hospital, APHP Nord Clichy, University Paris Cité, CRI UMR, Paris, France
| | | | - Éric Vibert
- Centre Hepato-Biliaire, AP-HP-Université Paris Saclay Hôpital Paul Brousse, Villejuif, France
| | - Christophe Bureau
- Department of Hepatology, University Hospital, Toulouse III-Paul Sabatier University, Toulouse, France
| | | | | | - Jean-Frédéric Blanc
- Oncology Digestive Unit, INSERM U1312, University Hospital of Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Hu Z, Zhang Q, Li Z, Yang H, Chen X, Zhang Q, Yang T, He X, Feng Q, He J, Yu L. Design, synthesis and antitumor activity of a novel FGFR2-selective degrader to overcome resistance of the FGFR2 V564F gatekeeper mutation based on a pan-FGFR inhibitor. Eur J Med Chem 2024; 275:116612. [PMID: 38908103 DOI: 10.1016/j.ejmech.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Aberrant activation of fibroblast growth factor receptors (FGFRs) contributes to the development and progression of multiple types of cancer. Although many FGFR inhibitors have been approved by the FDA, their long-term therapeutic efficacy is hampered by acquired resistance to gatekeeper mutations and low subtype selectivity. FGFR2 has been found to be frequently amplified or mutated in many tumors. In this study, we designed several PROTACs with different E3 ligands based on LY2874455. By screening the length of the linker and the binding site in various degraders, we obtained a novel and highly efficient FGFR2-selective degrader 28e (DC50 = 0.645 nM, DCmax = 86 %). Compound 28e selectively degraded FGFR2 and essentially avoided degradation of FGFR1,3,4 isoforms (DC50 > 300 nM). Compound 28e significantly inhibited the proliferation of FGFR2-overexpressing cell lines, including KATOIII, SNU16, and AN3CA (IC50 = 0.794 nM/0.207 nM/4.626 nM), comparable to parental inhibitors. At the same time, the preferred compound showed superiority over the parental inhibitor in kinase inhibitory activity against the gatekeeper mutant isoform FGFR2V564F (IC50 = 0.121 nM). In summary, we identified 28e as a novel selective degrader of FGFR2 with high potency and high potential to overcome resistance to gatekeeper mutation. The discovery of 28e provides new evidence for the strategy of pan-inhibitor-based development of selective degrading agents.
Collapse
Affiliation(s)
- Zuli Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Qiangsheng Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Zulong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Hongling Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Xin Chen
- School of Life Science and Engineering, Southwest JiaoTong University, Chengdu, Sichuan, 611756, China
| | - Qi Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Tianqiong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Xiaojie He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Qiang Feng
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, China
| | - Jun He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Luoting Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China.
| |
Collapse
|
15
|
Lamarca A, Macarulla T. Facts and Hopes in the Systemic Therapy of Biliary Tract Carcinomas. Clin Cancer Res 2024; 30:3688-3696. [PMID: 38934628 DOI: 10.1158/1078-0432.ccr-22-2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Biliary tract cancers (BTC) are a heterogeneous group of cancers that continue to present a particularly poor prognosis. BTC treatment is rapidly evolving yet facing many challenges to improve patient outcomes and maximize benefit from treatment. Only a minority of patients are diagnosed with early-stage disease and are suitable for curative resection. Current surgical strategies are limited by a high relapse rate, and despite extensive efforts focused on adjuvant strategies, the development of more effective adjuvant strategies remains a challenge. In addition, the role of locoregional strategies, liver transplant, and neoadjuvant treatment remains unclear. Systemic treatment in the advanced setting is based on three main pillars: first, cytotoxic chemotherapy options; second, the addition of immunotherapy to chemotherapy; and third, targeted therapies. The role of targeted therapies is oriented by many promising targets, including IDH1 mutations, FGFR2 fusions, BRAF-V600E mutations, and HER2 amplifications. The aim of this review is to provide an overview of current facts and future hopes in the management of BTC, including an overview of the unmet need, and particularly focus on systemic therapies.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, OncoHealth Institute, Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Teresa Macarulla
- Vall d'Hebrón University Hospital, Vall d'Hebrón Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
16
|
Zanuso V, Tesini G, Valenzi E, Rimassa L. New systemic treatment options for advanced cholangiocarcinoma. JOURNAL OF LIVER CANCER 2024; 24:155-170. [PMID: 39113642 PMCID: PMC11449581 DOI: 10.17998/jlc.2024.08.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare and aggressive cancer, mostly diagnosed at advanced or metastatic stage, at which point systemic treatment represents the only therapeutic option. Chemotherapy has been the backbone of advanced CCA treatment. More recently, immunotherapy has changed the therapeutic landscape, as immune checkpoint inhibitors have yielded the first improvement in survival and currently, the addition of either durvalumab or pembrolizumab to standard of care cisplatin plus gemcitabine represents the new first-line treatment option. However, the use of immunotherapy in subsequent lines has not demonstrated its efficacy and therefore, it is not approved, except for pembrolizumab in the selected microsatellite instability-high population. In addition, advances in comprehensive genomic profiling have led to the identification of targetable genetic alterations, such as isocitrate dehydrogenase 1 (IDH1), fibroblast growth factor receptor 2 (FGFR2), human epidermal growth factor receptor 2 (HER2), proto-oncogene B-Raf (BRAF), neurotrophic tropomyosin receptor kinase (NTRK), rearranged during transfection (RET), Kirsten rat sarcoma virus (KRAS), and mouse double minute 2 homolog (MDM2), thus favoring the development of a precision medicine approach in previously treated patients. Despite these advances, the use of molecularly driven agents is limited to a subgroup of patients. This review aims to provide an overview of the newly approved systemic therapies, the ongoing studies, and future research challenges in advanced CCA management.
Collapse
Affiliation(s)
- Valentina Zanuso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulia Tesini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Elena Valenzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
17
|
Oneda E, Astore S, Gandolfi L, Melocchi L, Zaniboni A. Which therapy in biliary tract cancer? Review of main concerns in diagnosis and choice of therapy in advanced setting, current standard, and new options. Expert Opin Pharmacother 2024; 25:1807-1823. [PMID: 39298328 DOI: 10.1080/14656566.2024.2406287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/21/2024]
Abstract
The incidence of biliary tract cancer is increasing in developed countries and is generating renewed interest in the scientific community due to the evidence of a high percentage (approximately 40%) of potentially targetable molecular alterations. However, to date, patient selection and the development of therapeutic approaches remain challenging due to the need for accurate diagnosis, adequate sampling, a specialized team for molecular analysis, centralization of patients in high-volume centers capable of supporting the high cost of these methods, and the feasibility of clinical studies on diseases with aggressive onset and poor prognosis. In this article, we would like to provide a detailed overview of the necessary tools for diagnostic framing and the various therapeutic scenarios being investigated concerning the most frequently detected molecular alterations.
Collapse
Affiliation(s)
- Ester Oneda
- Department of Clinical Oncology, Fondazione Poliambulanza, Brescia, Italy
| | - Serena Astore
- Department of Clinical Oncology, Fondazione Poliambulanza, Brescia, Italy
| | - Laura Gandolfi
- Department of Pathology, Fondazione Poliambulanza, Italy
| | - Laura Melocchi
- Department of Pathology, Fondazione Poliambulanza, Italy
| | - Alberto Zaniboni
- Department of Clinical Oncology, Fondazione Poliambulanza, Brescia, Italy
| |
Collapse
|
18
|
Mechahougui H, Gutmans J, Colarusso G, Gouasmi R, Friedlaender A. Advances in Personalized Oncology. Cancers (Basel) 2024; 16:2862. [PMID: 39199633 PMCID: PMC11352922 DOI: 10.3390/cancers16162862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Advances in next-generation sequencing (NGS) have catalyzed a paradigm shift in cancer treatment, steering the focus from conventional, organ-specific protocols to precision medicine. Emerging targeted therapies offer a cutting-edge approach to cancer treatment, while companion diagnostics play an essential role in aligning therapeutic choices with specific molecular changes identified through NGS. Despite these advances, interpreting the clinical implications of a rapidly expanding catalog of genetic mutations remains a challenge. The selection of therapies in the presence of multiple mutations requires careful clinical judgment, supported by quality-centric genomic testing that emphasizes actionable mutations. Molecular tumor boards can play an increasing role in assimilating genomic data into clinical trials, thereby refining personalized treatment approaches and improving patient outcomes.
Collapse
Affiliation(s)
- Hiba Mechahougui
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - James Gutmans
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - Gina Colarusso
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - Roumaïssa Gouasmi
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, 69100 Lyon, France
| | | |
Collapse
|
19
|
Esmail A, Badheeb M, Alnahar BW, Almiqlash B, Sakr Y, Al-Najjar E, Awas A, Alsayed M, Khasawneh B, Alkhulaifawi M, Alsaleh A, Abudayyeh A, Rayyan Y, Abdelrahim M. The Recent Trends of Systemic Treatments and Locoregional Therapies for Cholangiocarcinoma. Pharmaceuticals (Basel) 2024; 17:910. [PMID: 39065760 PMCID: PMC11279608 DOI: 10.3390/ph17070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a hepatic malignancy that has a rapidly increasing incidence. CCA is anatomically classified into intrahepatic (iCCA) and extrahepatic (eCCA), which is further divided into perihilar (pCCA) and distal (dCCA) subtypes, with higher incidence rates in Asia. Despite its rarity, CCA has a low 5-year survival rate and remains the leading cause of primary liver tumor-related death over the past 10-20 years. The systemic therapy section discusses gemcitabine-based regimens as primary treatments, along with oxaliplatin-based options. Second-line therapy is limited but may include short-term infusional fluorouracil (FU) plus leucovorin (LV) and oxaliplatin. The adjuvant therapy section discusses approaches to improve overall survival (OS) post-surgery. However, only a minority of CCA patients qualify for surgical resection. In comparison to adjuvant therapies, neoadjuvant therapy for unresectable cases shows promise. Gemcitabine and cisplatin indicate potential benefits for patients awaiting liver transplantation. The addition of immunotherapies to chemotherapy in combination is discussed. Nivolumab and innovative approaches like CAR-T cells, TRBAs, and oncolytic viruses are explored. We aim in this review to provide a comprehensive report on the systemic and locoregional therapies for CCA.
Collapse
Affiliation(s)
- Abdullah Esmail
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Mohamed Badheeb
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06610, USA
| | | | - Bushray Almiqlash
- Zuckerman College of Public Health, Arizona State University, Tempe, AZ 85287, USA;
| | - Yara Sakr
- Department of GI Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ebtesam Al-Najjar
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ali Awas
- Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa P.O. Box 15201-13064, Yemen
| | | | - Bayan Khasawneh
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | | | - Amneh Alsaleh
- Department of Medicine, Desert Regional Medical Center, Palm Springs, CA 92262, USA
| | - Ala Abudayyeh
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yaser Rayyan
- Department of Gastroenterology & Hepatology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Maen Abdelrahim
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
20
|
Hanssens C, Mouna O, Meyers M, Hendlisz A. State-of-the-art and trends in fibroblast growth factor receptor-directed therapies in gastro-intestinal malignancies. Curr Opin Oncol 2024; 36:320-325. [PMID: 38726837 DOI: 10.1097/cco.0000000000001047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This review is timely and relevant due to the increasing recognition of the significance of the fibroblast growth factor receptor (FGFR) family in cancer biology. Understanding the role of FGFRs and their dysregulation in various cancers is crucial for developing targeted therapies and improving patient outcomes. RECENT FINDINGS The review highlights the importance of the FGFR family in cellular processes such as growth, proliferation, and survival. It discusses how abnormalities in FGFR2, including overexpression, gene amplification, and other genetic alterations, contribute to cancer progression, particularly in gastro-intestinal cancers. The paper also emphasizes the promising results of FGFR-targeted therapies, especially tyrosine kinase inhibitors, in certain cancers such as cholangiocarcinoma and oesophagogastric cancers. SUMMARY The findings underscore the potential of FGFR-targeted therapies in treating cancers with FGFR dysregulation. However, the review also addresses the challenges associated with these therapies, including toxicities and mechanisms of resistance. Understanding these complexities is essential for optimizing the efficacy of FGFR-targeted treatments and improving patient outcomes in clinical practice and research efforts.
Collapse
Affiliation(s)
- Charlotte Hanssens
- Department of Medical Oncology, Institut Jules Bordet - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | |
Collapse
|
21
|
Ros-Buxó M, Mauro E, Sauri T, Iserte G, Fuster-Anglada C, Díaz A, Sererols-Viñas L, Affo S, Forner A. Integrating Molecular Insights into Biliary Tract Cancer Management: A Review of Personalized Therapeutic Strategies. Curr Oncol 2024; 31:3615-3629. [PMID: 39057138 PMCID: PMC11275621 DOI: 10.3390/curroncol31070266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Biliary tract cancers (BTCs) are rare and aggressive malignancies with an increasing incidence and poor prognosis. The standard systemic treatment for BTCs has evolved to include immune checkpoint inhibitors associated with gemcitabine-cisplatin as first-line therapies. However, survival rates remain low, highlighting the critical need for personalized treatment strategies based on molecular profiling. Currently, significant advancements have been made in the molecular characterization of BTCs, where genetic alterations, such as IDH1 mutations and FGFR2 fusions, provide targets for therapy. Molecular profiling is crucial early in the management process to identify potential candidates for clinical trials and guide treatment strategy. The integration of these molecular insights into clinical practice has allowed for the development of targeted therapies, although many of them are still in the phase 2 trial stage without definitive survival benefits demonstrated in phase 3 trials. This integration of comprehensive molecular profile insights with traditional treatment approaches offers a new horizon in the personalized medicine landscape for BTCs, with the aim of significantly improving patient outcomes through precision oncology.
Collapse
Affiliation(s)
- Mar Ros-Buxó
- School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain; (M.R.-B.); (T.S.); (A.D.)
| | - Ezequiel Mauro
- School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain; (M.R.-B.); (T.S.); (A.D.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.I.); (C.F.-A.); (L.S.-V.); (S.A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Tamara Sauri
- School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain; (M.R.-B.); (T.S.); (A.D.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.I.); (C.F.-A.); (L.S.-V.); (S.A.)
- Barcelona Clinic Liver Cancer (BCLC) Group, Medical Oncology Department, Institut del Càncer i Malalties de la Sang (ICAMS), Hospital Clinic Barcelona, Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, 08036 Barcelona, Spain
| | - Gemma Iserte
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.I.); (C.F.-A.); (L.S.-V.); (S.A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Carla Fuster-Anglada
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.I.); (C.F.-A.); (L.S.-V.); (S.A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Pathology Department, CDB, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Alba Díaz
- School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain; (M.R.-B.); (T.S.); (A.D.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.I.); (C.F.-A.); (L.S.-V.); (S.A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Pathology Department, CDB, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Laura Sererols-Viñas
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.I.); (C.F.-A.); (L.S.-V.); (S.A.)
| | - Silvia Affo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.I.); (C.F.-A.); (L.S.-V.); (S.A.)
| | - Alejandro Forner
- School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain; (M.R.-B.); (T.S.); (A.D.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.I.); (C.F.-A.); (L.S.-V.); (S.A.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
22
|
Zhang P, Yue L, Leng Q, Chang C, Gan C, Ye T, Cao D. Targeting FGFR for cancer therapy. J Hematol Oncol 2024; 17:39. [PMID: 38831455 PMCID: PMC11149307 DOI: 10.1186/s13045-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The FGFR signaling pathway is integral to cellular activities, including proliferation, differentiation, and survival. Dysregulation of this pathway is implicated in numerous human cancers, positioning FGFR as a prominent therapeutic target. Here, we conduct a comprehensive review of the function, signaling pathways and abnormal alterations of FGFR, as well as its role in tumorigenesis and development. Additionally, we provide an in-depth analysis of pivotal phase 2 and 3 clinical trials evaluating the performance and safety of FGFR inhibitors in oncology, thereby shedding light on the current state of clinical research in this field. Then, we highlight four drugs that have been approved for marketing by the FDA, offering insights into their molecular mechanisms and clinical achievements. Our discussion encompasses the intricate landscape of FGFR-driven tumorigenesis, current techniques for pinpointing FGFR anomalies, and clinical experiences with FGFR inhibitor regimens. Furthermore, we discuss the inherent challenges of targeting the FGFR pathway, encompassing resistance mechanisms such as activation by gatekeeper mutations, alternative pathways, and potential adverse reactions. By synthesizing the current evidence, we underscore the potential of FGFR-centric therapies to enhance patient prognosis, while emphasizing the imperative need for continued research to surmount resistance and optimize treatment modalities.
Collapse
Affiliation(s)
- Pei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QingQing Leng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chen Chang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dan Cao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
23
|
Li Y, Kang J, Zhang X. How to incorporate new agents into precise medicine for cholangiocarcinoma? Am J Cancer Res 2024; 14:2570-2583. [PMID: 38859865 PMCID: PMC11162663 DOI: 10.62347/nfdl2398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Cholangiocarcinoma, a rare and aggressive form of cancer originating from the bile ducts in the liver, poses a significant challenge for treatment. However, the emergence of precision medicine has brought newfound hope for more effective therapies. Several precision medicine approaches have demonstrated promise in the treatment of cholangiocarcinoma. One such approach is targeted therapy, which involves utilizing drugs that specifically target the genetic mutations or alterations present in the tumor cells. In the case of cholangiocarcinoma, mutations in the IDH1 and IDH2 genes are frequently observed. Immunotherapy is another precision medicine approach being explored for the treatment of cholangiocarcinoma. Immune checkpoint inhibitors like pembrolizumab and nivolumab can be used to bolster the body's immune response against cancer cells. While the response to immunotherapy can vary among individuals, studies have shown promising results, particularly in patients with high levels of tumor-infiltrating lymphocytes or microsatellite instability. Moreover, molecular profiling of cholangiocarcinoma tumors can play a crucial role in identifying potential targets for precision medicine. Through advanced next-generation sequencing techniques, specific gene alterations or dysregulations in pathways can be identified, potentially guiding treatment decisions. This personalized approach enables tailored treatment plans based on the unique genetic characteristics of each patient's tumor. In conclusion, the advent of precision medicine has opened up new avenues for the treatment of cholangiocarcinoma. Targeted therapy and immunotherapy have exhibited promising results, and further molecular profiling is expected to uncover additional therapeutic options. Such advancements represent a significant step forward in the quest to enhance outcomes for individuals affected by cholangiocarcinoma.
Collapse
Affiliation(s)
- Yifan Li
- Department of Hepatobiliary, Pancreatic and Gastrointestinal Surgery, Shanxi Province Carcinoma Hospital, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Carcinoma Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030013, Shanxi, PR China
| | - Juying Kang
- Department of Information, Shanxi Province Carcinoma Hospital, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Carcinoma Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030013, Shanxi, PR China
| | - Xiaojuan Zhang
- Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030013, Shanxi, PR China
| |
Collapse
|
24
|
Chen M, Ma J, Xie X, Su M, Zhao D. Serum ITIH5 as a novel diagnostic biomarker in cholangiocarcinoma. Cancer Sci 2024; 115:1665-1679. [PMID: 38475675 PMCID: PMC11093185 DOI: 10.1111/cas.16143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Cholangiocarcinoma often remains undetected until advanced stages due to the lack of reliable diagnostic markers. Our goal was to identify a unique secretory protein for cholangiocarcinoma diagnosis and differentiation from other malignancies, benign hepatobiliary diseases, and chronic liver conditions. We conducted bulk RNA-seq analysis to identify genes specifically upregulated in cholangiocarcinoma but not in most other cancers, benign hepatobiliary diseases, and chronic liver diseases focusing on exocrine protein-encoding genes. Single-cell RNA sequencing examined subcellular distribution. Immunohistochemistry and enzyme-linked immunosorbent assays assessed tissue and serum expression. Diagnostic performance was evaluated via receiver-operating characteristic (ROC) analysis. Inter-alpha-trypsin inhibitor heavy chain family member five (ITIH5), a gene encoding an extracellular protein, is notably upregulated in cholangiocarcinoma. This elevation is not observed in most other cancer types, benign hepatobiliary diseases, or chronic liver disorders. It is specifically expressed by malignant cholangiocytes. ITIH5 expression in cholangiocarcinoma tissues exceeded that in nontumorous bile duct, hepatocellular carcinoma, and nontumorous hepatic tissues. Serum ITIH5 levels were elevated in cholangiocarcinoma compared with controls (hepatocellular carcinoma, benign diseases, chronic hepatitis B, and healthy individuals). ITIH5 yielded areas under the ROC curve (AUCs) from 0.839 to 0.851 distinguishing cholangiocarcinoma from controls. Combining ITIH5 with carbohydrate antigen 19-9 (CA19-9) enhanced CA19-9's diagnostic effectiveness. In conclusion, serum ITIH5 may serve as a novel noninvasive cholangiocarcinoma diagnostic marker.
Collapse
Affiliation(s)
- Meiru Chen
- Department of GastroenterologyThe Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive DiseasesShijiazhuangHebei ProvinceChina
- Department of GastroenterologyHengshui People's HospitalHengshuiHebei ProvinceChina
| | - Jinghan Ma
- Department of Rheumatology and immunologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| | - Xiaoli Xie
- Department of GastroenterologyThe Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive DiseasesShijiazhuangHebei ProvinceChina
| | - Miao Su
- Department of GastroenterologyHengshui People's HospitalHengshuiHebei ProvinceChina
| | - Dongqiang Zhao
- Department of GastroenterologyThe Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive DiseasesShijiazhuangHebei ProvinceChina
| |
Collapse
|
25
|
Roth GS, Verlingue L, Sarabi M, Blanc JF, Boleslawski E, Boudjema K, Bretagne-Bignon AL, Camus-Duboc M, Coriat R, Créhange G, De Baere T, de la Fouchardière C, Dromain C, Edeline J, Gelli M, Guiu B, Horn S, Laurent-Croise V, Lepage C, Lièvre A, Lopez A, Manfredi S, Meilleroux J, Neuzillet C, Paradis V, Prat F, Ronot M, Rosmorduc O, Cunha AS, Soubrane O, Turpin A, Louvet C, Bouché O, Malka D. Biliary tract cancers: French national clinical practice guidelines for diagnosis, treatments and follow-up (TNCD, SNFGE, FFCD, UNICANCER, GERCOR, SFCD, SFED, AFEF, SFRO, SFP, SFR, ACABi, ACHBPT). Eur J Cancer 2024; 202:114000. [PMID: 38493667 DOI: 10.1016/j.ejca.2024.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION This document is a summary of the French intergroup guidelines of the management of biliary tract cancers (BTC) (intrahepatic, perihilar and distal cholangiocarcinomas, and gallbladder carcinomas) published in September 2023, available on the website of the French Society of Gastroenterology (SNFGE) (www.tncd.org). METHODS This collaborative work was conducted under the auspices of French medical and surgical societies involved in the management of BTC. Recommendations were graded in three categories (A, B and C) according to the level of scientific evidence until August 2023. RESULTS BTC diagnosis and staging is mainly based on enhanced computed tomography, magnetic resonance imaging and (endoscopic) ultrasound-guided biopsy. Treatment strategy depends on BTC subtype and disease stage. Surgery followed by adjuvant capecitabine is recommended for localised disease. No neoadjuvant treatment is validated to date. Cisplatin-gemcitabine chemotherapy combined to the anti-PD-L1 inhibitor durvalumab is the first-line standard of care for advanced disease. Early systematic tumour molecular profiling is recommended to screen for actionable alterations (IDH1 mutations, FGFR2 rearrangements, HER2 amplification, BRAFV600E mutation, MSI/dMMR status, etc.) and guide subsequent lines of treatment. In the absence of actionable alterations, FOLFOX chemotherapy is the only second-line standard-of-care. No third-line chemotherapy standard is validated to date. CONCLUSION These guidelines are intended to provide a personalised therapeutic strategy for daily clinical practice. Each individual BTC case should be discussed by a multidisciplinary team.
Collapse
Affiliation(s)
- Gael S Roth
- Univ. Grenoble Alpes / Hepato-Gastroenterology and Digestive Oncology department, CHU Grenoble Alpes / Institute for Advanced Biosciences, CNRS UMR 5309-INSERM U1209, Grenoble, France
| | - Loic Verlingue
- Medical Oncology Department, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| | - Matthieu Sarabi
- Gastroenterology Department, Hopital privé Jean Mermoz, 69008 Lyon, France
| | | | - Emmanuel Boleslawski
- Univ. Lille, INSERM U1189, CHU Lille, Service de Chirurgie Digestive et Transplantations, Lille, France
| | - Karim Boudjema
- Département de chirurgie viscérale hépatobiliaire, CHU de Rennes, Rennes, France
| | | | - Marine Camus-Duboc
- Endoscopie digestive, Hôpital Saint-Antoine, AP-HP/Sorbonne Université, Paris France
| | - Romain Coriat
- Service de gastroentérologie, d'endoscopie et d'oncologie digestive, Hôpital Cochin, APHP, Paris, France
| | - Gilles Créhange
- Radiation Oncology Department. Paris/Saint-Cloud/Orsay, Institut Curie. PSL Research University, Paris, France
| | - Thierry De Baere
- Département de Radiologie Interventionnelle, Gustave Roussy, 94805 Villejuif, France
| | | | - Clarisse Dromain
- Service de radiodiagnostic et radiologie interventionnelle, Centre Hospitalier Universitaire Vaudois, Switzerland
| | | | - Maximiliano Gelli
- Département de Chirurgie Viscérale, Gustave Roussy, 94805 Villejuif, France
| | - Boris Guiu
- Department of Radiology, St-Eloi University Hospital - Montpellier School of Medicine, Montpellier, France
| | - Samy Horn
- Department of Radiation Oncology, Centre Hospitalier Lyon Sud, Pierre Benite, France
| | - Valérie Laurent-Croise
- Department of Radiology, Centre Hospitalier Universitaire de Nancy, Hôpital de Brabois, 54500 Vandœuvre-lès-Nancy, France
| | - Côme Lepage
- Université de Bourgogne, CHU Dijon-Bourgogne, INSERM U1231. BP 87 900, 14 rue Paul Gaffarel, 21079 Dijon, France
| | - Astrid Lièvre
- Department of Gastroenterology, Rennes University Hospital, University of Rennes 1, INSERM Unité 1242, Rennes, France
| | - Anthony Lopez
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; Department of Hepatology and Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Sylvain Manfredi
- Université de Bourgogne, CHU Dijon-Bourgogne, INSERM U1231. BP 87 900, 14 rue Paul Gaffarel, 21079 Dijon, France
| | - Julie Meilleroux
- Pathology and Cytology Department, CHU Toulouse, IUCT Oncopole, Toulouse Cedex 9, France
| | - Cindy Neuzillet
- GI Oncology, Department of Medical Oncology, Institut Curie - Site Saint Cloud, Versailles Saint-Quentin University, Paris Saclay University, Saint-Cloud, France
| | - Valérie Paradis
- Université Paris Cité, APHP.Nord Sce d'Anatomie Pathologique Hôpital Beaujon, Clichy, INSERM UMR 1149, France
| | - Frédéric Prat
- Endoscopie digestive, Hôpital Beaujon, Clichy, France
| | - Maxime Ronot
- Department of Medical Imaging, Beaujon University Hospital, Clichy, France
| | - Olivier Rosmorduc
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, INSERM U1193, Université Paris-Saclay, FHU Hépatinov, France
| | - Antonio Sa Cunha
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, INSERM U1193, Université Paris-Saclay, FHU Hépatinov, France
| | - Olivier Soubrane
- Department of Digestive Surgery, Institut Mutualiste Montsouris, Paris, France
| | - Anthony Turpin
- Department of Medical Oncology, CNRS UMR9020, Inserm UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, CHU Lille, Lille; GERCOR, Paris, France
| | - Christophe Louvet
- Department of Medical Oncology, Institute Mutualiste Montsouris, Paris, France
| | - Olivier Bouché
- Gastroenterology and Digestive Oncology Department, Robert-Debré University Hospital, Reims, France
| | - David Malka
- Department of Medical Oncology, Institute Mutualiste Montsouris, Paris, France.
| |
Collapse
|
26
|
Zhang C, Qin C. Protein regulator of cytokinesis 1 accentuates cholangiocarcinoma progression via mTORC1-mediated glycolysis. Hum Cell 2024; 37:739-751. [PMID: 38416277 DOI: 10.1007/s13577-024-01032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
This study aimed to investigate the expression of protein regulator of cytokinesis 1 (PRC1) in cholangiocarcinoma (CHOL) and elucidate its potential impact as well as the underlying mechanisms governing the progression of CHOL. In this study, we used CHOL cells (HUCCT1, RBE, and CCLP1) and conducted a series of experiments, including qRT-PCR, cell counting kit-8 assays, EdU assays, flow cytometry, wound healing assays, Transwell assays, western blotting, double luciferase assays, and ELISA. Subsequently, a mouse model was established using cancer cell injections. Haematoxylin-eosin staining, along with Ki67 and TUNEL assays, were employed to assess tissue histopathology, cell proliferation, and apoptosis. Our findings revealed significantly elevated PRC1 expression in CHOL. According to bioinformatics analysis, it was found that the increased PRC1 level is correlated with the high tumour grades, metastases, and unfavourable prognoses. Notably, PRC1 knockdown inhibited cell viability, proliferation, migration, and invasion while promoting apoptosis in CHOL cells. Analysing TCGA-CHOL data and utilising transcription factor prediction tools (hTFtarget and HumanTFDB), we identified that genes positively correlated with PRC1 in TCGA-CHOL intersect with predicted transcription factors, revealing the activation of PRC1 by forkhead box protein M1 (FOXM1). Moreover, PRC1 was found to exert regulatory control over glycolysis and the mammalian target of rapamycin complex 1 (mTORC1) pathway in the context of CHOL based on KEGG and GSEA analysis. Collectively, these results underscore the pivotal role of PRC1 in CHOL progression, wherein it modulates glycolysis and the mTORC1 pathway under the regulatory influence of FOXM1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 324 Jingwuwei 7Th Road, Jinan, 250021, Shandong, People's Republic of China
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, 276034, Shandong, People's Republic of China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 324 Jingwuwei 7Th Road, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
27
|
Zhang D, Dorman K, Westphalen CB, Haas M, Ormanns S, Neumann J, Seidensticker M, Ricke J, De Toni EN, Klauschen F, Algül H, Reisländer T, Boeck S, Heinemann V. Unresectable biliary tract cancer: Current and future systemic therapy. Eur J Cancer 2024; 203:114046. [PMID: 38626513 DOI: 10.1016/j.ejca.2024.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
For decades, treatment of advanced biliary tract cancer (BTC) was confined to the use of chemotherapy. In recent years however, the number of therapeutic options available for patients with unresectable BTC have drastically increased, with immunotherapy and targeted treatment gradually joining the ranks of guideline-recommended treatment regimens. The aim of the present review is to summarise the current knowledge on unresectable BTC focusing on epidemiology, anatomical distribution and current strategies for systemic treatment. We further outline ongoing clinical trials and provide an outlook on future therapeutic interventions. In the realm of gastrointestinal malignancies, the increasing number of systemic treatment options for BTC is finally delivering on the longstanding commitment to personalised oncology. This emphasises the need for considering a comprehensive genomic-based pathology assessment right from the initial diagnosis to fully leverage the expanding array of therapeutic options that have recently become accessible.
Collapse
Affiliation(s)
- Danmei Zhang
- Department of Medicine III, LMU University Hospital, LMU Munich and Comprehensive Cancer Center Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Klara Dorman
- Department of Medicine III, LMU University Hospital, LMU Munich and Comprehensive Cancer Center Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - C Benedikt Westphalen
- Department of Medicine III, LMU University Hospital, LMU Munich and Comprehensive Cancer Center Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Michael Haas
- Department of Medicine III, LMU University Hospital, LMU Munich and Comprehensive Cancer Center Munich, Marchioninistr. 15, 81377 Munich, Germany; Department of Hematology and Oncology, München Klinik Neuperlach, Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany; Innpath GmbH, Tirolkliniken, Innsbruck, Austria
| | - Jens Neumann
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | - Max Seidensticker
- Department of Radiology, LMU University Hospital, LMU Munich, Germany
| | - Jens Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Germany
| | - Enrico N De Toni
- Department of Medicine II, LMU University Hospital, LMU Munich, Germany; Boehringer Ingelheim, Clinical Program Lead, Bingerstrasse 137, Ingelheim am Rhein 55218, Germany
| | | | - Hana Algül
- Comprehensive Cancer Center Munich TUM, Institute for Tumor Metabolism, Technical University of Munich, Munich, Germany
| | - Timo Reisländer
- SERVIER Deutschland GmbH, Medical Affairs, Elsenheimerstr. 53, 80687 Munich, Germany
| | - Stefan Boeck
- Department of Medicine III, LMU University Hospital, LMU Munich and Comprehensive Cancer Center Munich, Marchioninistr. 15, 81377 Munich, Germany; Department of Hematology and Oncology, München Klinik Neuperlach, Munich, Germany
| | - Volker Heinemann
- Department of Medicine III, LMU University Hospital, LMU Munich and Comprehensive Cancer Center Munich, Marchioninistr. 15, 81377 Munich, Germany.
| |
Collapse
|
28
|
Heumann P, Albert A, Gülow K, Tümen D, Müller M, Kandulski A. Current and Future Therapeutic Targets for Directed Molecular Therapies in Cholangiocarcinoma. Cancers (Basel) 2024; 16:1690. [PMID: 38730642 PMCID: PMC11083102 DOI: 10.3390/cancers16091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
We conducted a comprehensive review of the current literature of published data, clinical trials (MEDLINE; ncbi.pubmed.com), congress contributions (asco.org; esmo.org), and active recruiting clinical trains (clinicaltrial.gov) on targeted therapies in cholangiocarcinoma. Palliative treatment regimens were analyzed as well as preoperative and perioperative treatment options. We summarized the current knowledge for each mutation and molecular pathway that is or has been under clinical evaluation and discussed the results on the background of current treatment guidelines. We established and recommended targeted treatment options that already exist for second-line settings, including IDH-, BRAF-, and NTRK-mutated tumors, as well as for FGFR2 fusion, HER2/neu-overexpression, and microsatellite instable tumors. Other options for targeted treatment include EGFR- or VEGF-dependent pathways, which are known to be overexpressed or dysregulated in this cancer type and are currently under clinical investigation. Targeted therapy in CCA is a hallmark of individualized medicine as these therapies aim to specifically block pathways that promote cancer cell growth and survival, leading to tumor shrinkage and improved patient outcomes based on the molecular profile of the tumor.
Collapse
Affiliation(s)
- Philipp Heumann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
29
|
Meric-Bernstam F, Hollebecque A, Furuse J, Oh DY, Bridgewater JA, Shimura M, Anderson B, Hangai N, Wacheck V, Goyal L. Safety Profile and Adverse Event Management for Futibatinib, An Irreversible FGFR1-4 Inhibitor: Pooled Safety Analysis of 469 Patients. Clin Cancer Res 2024; 30:1466-1477. [PMID: 38329716 PMCID: PMC11016890 DOI: 10.1158/1078-0432.ccr-23-2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE Futibatinib, a covalently-binding inhibitor of fibroblast growth factor receptor (FGFR)1-4 gained approval for the treatment of refractory, advanced intrahepatic cholangiocarcinoma (iCCA) harboring an FGFR2 fusion/other rearrangement. An integrated analysis was performed to evaluate safety and provide guidance on the management of futibatinib-associated adverse events (AEs) in patients with unresectable/metastatic tumors, including iCCA. PATIENTS AND METHODS Data from three global phase I or II studies of futibatinib (NCT02052778; JapicCTI-142552) were pooled. AEs were graded per NCI CTCAE v4.03, where applicable. Safety was analyzed for patients receiving any futibatinib starting dose (overall population) and in those receiving the approved starting dose of 20 mg once every day. RESULTS In total, 469 patients with one of 33 known tumor types were analyzed, including 318 patients who received futibatinib 20 mg every day. AEs of clinical interest (AECI; any grade/grade ≥3) in the overall population included hyperphosphatemia (82%/19%), nail disorders (27%/1%), hepatic AEs (27%/11%), stomatitis (19%/3%), palmar-plantar erythrodysesthesia syndrome (PPES; 13%/3%), rash (9%/0%), retinal disorders (8%/0%), and cataract (4%/1%). Median time to onset of grade ≥3 AECIs ranged from 9 days (hyperphosphatemia) to 125 days (cataract). Grade ≥3 hyperphosphatemia, hepatic AEs, PPES, and nail disorders resolved to grade ≤2 within a median of 7, 7, 8, and 28 days, respectively. Discontinuations due to treatment-related AEs were rare (2%), and no treatment-related deaths occurred. AE management included phosphate-lowering medication and dose adjustments. CONCLUSIONS Futibatinib showed a consistent and manageable safety profile across patients with various tumor types. AECIs were mostly reversible with appropriate clinical management.
Collapse
Affiliation(s)
- Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Cancer Research Institute, Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| | - John A. Bridgewater
- Department of Medical Oncology, University College London Cancer Institute, London, United Kingdom
| | | | | | | | | | - Lipika Goyal
- Division of Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Division of Oncology, Department of Medicine, Stanford Cancer Center, Palo Alto, California
| |
Collapse
|
30
|
Pezzicoli G, Ciciriello F, Musci V, Minei S, Biasi A, Ragno A, Cafforio P, Rizzo M. Genomic Profiling and Molecular Characterisation of Metastatic Urothelial Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:585. [PMID: 38674231 PMCID: PMC11052409 DOI: 10.3390/medicina60040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The clinical management of metastatic urothelial carcinoma (mUC) is undergoing a major paradigm shift; the integration of immune checkpoint inhibitors (ICIs) and antibody-drug conjugates (ADCs) into the mUC therapeutic strategy has succeeded in improving platinum-based chemotherapy outcomes. Given the expanding therapeutic armamentarium, it is crucial to identify efficacy-predictive biomarkers that can guide an individual patient's therapeutic strategy. We reviewed the literature data on mUC genomic alterations of clinical interest, discussing their prognostic and predictive role. In particular, we explored the role of the fibroblast growth factor receptor (FGFR) family, epidermal growth factor receptor 2 (HER2), mechanistic target of rapamycin (mTOR) axis, DNA repair genes, and microsatellite instability. Currently, based on the available clinical data, FGFR inhibitors and HER2-directed ADCs are effective therapeutic options for later lines of biomarker-driven mUC. However, emerging genomic data highlight the opportunity for earlier use and/or combination with other drugs of both FGFR inhibitors and HER2-directed ADCs and also reveal additional potential drug targets that could change mUC management.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Federica Ciciriello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Vittoria Musci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Silvia Minei
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Antonello Biasi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Anna Ragno
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| | - Paola Cafforio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Mimma Rizzo
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| |
Collapse
|
31
|
Taghizadeh H, Dong Y, Gruenberger T, Prager GW. Perioperative and palliative systemic treatments for biliary tract cancer. Ther Adv Med Oncol 2024; 16:17588359241230756. [PMID: 38559612 PMCID: PMC10981863 DOI: 10.1177/17588359241230756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/18/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the fact biliary tract cancer (BTC) is often diagnosed at an advanced stage, thus, not eligible for resection, and due to the aggressive tumor biology, it is considered as one of the cancer types with the worst prognosis. Advances in diagnosis, surgical techniques, and molecular characterization have led to an improvement of the prognosis of BTC patients, recently. Although neoadjuvant therapy is expected to improve surgical outcomes by reducing tumor size, its routine is not well established. The application of neoadjuvant therapy in locally advanced disease may be indicated, the routine use of systemic therapy prior to surgery for cholangiocarcinoma patients with an upfront resectable disease is less well established, but discussed and performed in selected cases. In advanced disease, only combination chemotherapy regimens have been demonstrated to achieve disease control in untreated patients. Molecular profiling of the tumor has demonstrated that many BTC might bear actionable targets, which might be addressed by biological treatments, thus improving the prognosis of the patients. Furthermore, the addition of the immunotherapy to standard chemotherapy might improve the prognosis in a subset of patients. This review seeks to give a comprehensive overview about the role of neoadjuvant as well as palliative systemic treatment approaches and an outlook about novel systemic treatment concept in BTC.
Collapse
Affiliation(s)
- Hossein Taghizadeh
- Division of Oncology, Department of Internal Medicine I, University Hospital St. Pölten, St. Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Karl Landsteiner Institute for Oncology and Nephrology, St. Pölten, Austria
- Medical University of Vienna, Center for Cancer Research, Vienna, Austria
- Medical University of Vienna, Department of Medicine I, Vienna, Austria
| | - Yawen Dong
- Department of Surgery, HPB Center, Health Network Vienna, Clinic Favoriten, Vienna, Austria
| | - Thomas Gruenberger
- Department of Surgery, HPB Center, Health Network Vienna, Clinic Favoriten, Vienna, Austria
| | - Gerald W. Prager
- Department of Medicine I, Medical University of Vienna, Comprehensive Cancer Center Vienna, Spitalgasse 23, Vienna AT1090, Austria
| |
Collapse
|
32
|
Jain NK, Tailang M, Thangavel N, Makeen HA, Albratty M, Najmi A, Alhazmi HA, Zoghebi K, Alagusundaram M, Jain HK, Chandrasekaran B. A comprehensive overview of selective and novel fibroblast growth factor receptor inhibitors as a potential anticancer modality. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:1-36. [PMID: 38554385 DOI: 10.2478/acph-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 04/01/2024]
Abstract
The arrival of comprehensive genome sequencing has accelerated the understanding of genetically aberrant advanced cancers and target identification for possible cancer treatment. Fibroblast growth factor receptor (FGFR) gene alterations are frequent findings in various rare and advanced cancers refractive to mainstay chemo-therapy or surgical interventions. Several FGFR inhibitors have been developed for addressing these genetically altered FGFR-harboring malignancies, and some have performed well in clinical trials. In contrast, others are still being investigated in different phases of clinical trials. FDA has approved four anticancer agents such as erdafitinib, pemigatinib, infigratinib, and futibatinib, for clinical use in oncogenic FGFR-driven malignancies. These include cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid malignancies. Pemigatinib is the only FGFR inhibitor globally approved (USA, EU, and Japan) and available as a targeted therapy for two types of cancer, including FGFR2 fusion or other rearrangements harboring cholangiocarcinoma and relapsed/refractory myeloid/lymphoid neoplasms with FGFR1 rearrangements. Myeloid/lymphoid neoplasm is the latest area of application added to the therapeutic armamentarium of FGFR inhibitors. Furthermore, futibatinib is the first-in-class covalent or irreversible pan-FGFR inhibitor that has received FDA approval for locally advanced or metastatic intrahepatic cholangiocarcinoma harboring FGFR2 gene aberrations. This review highlights the current clinical progress concerning the safety and efficacy of all the approved FGFR-TKIs (tyrosine kinase inhibitors) and their ongoing investigations in clinical trials for other oncogenic FGFR-driven malignancies.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University Gwalior 474001, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University Gwalior 474001, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University Gwalior 474001, Madhya Pradesh, India
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Hassan Ahmad Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | | | - Hemant Kumar Jain
- Department of General Medicine Government Medical College Datia 475661, Madhya Pradesh, India
| | | |
Collapse
|
33
|
Bragazzi MC, Venere R, Ribichini E, Covotta F, Cardinale V, Alvaro D. Intrahepatic cholangiocarcinoma: Evolving strategies in management and treatment. Dig Liver Dis 2024; 56:383-393. [PMID: 37722960 DOI: 10.1016/j.dld.2023.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023]
Abstract
Intrahepatic cholangiocarcinoma is the second most frequent primary liver cancer after hepatocellular carcinoma. According to International Classification of Diseases-11 (ICD-11), intrahepatic cholangiocarcinoma is identified by a specific diagnostic code, different with respect to perihilar-CCA or distal-CCA. Intrahepatic cholangiocarcinoma originates from intrahepatic small or large bile ducts including the second-order bile ducts and has a silent presentation that combined with the highly aggressive nature and refractoriness to chemotherapy contributes to the alarming increasing incidence and mortality. Indeed, at the moment of the diagnosis, less than 40% of intrahepatic cholangiocarcinoma are suitable of curative surgical therapy, that is so far the only effective treatment. The main goals of clinicians and researchers are to make an early diagnosis, and to carry out molecular characterization to provide the patient with personalized treatment. Unfortunately, these goals are not easily achievable because of the heterogeneity of this tumor from anatomical, molecular, biological, and clinical perspectives. However, recent progress has been made in molecular characterization, surgical treatment, and management of intrahepatic cholangiocarcinoma and, this article deals with these advances.
Collapse
Affiliation(s)
- Maria Consiglia Bragazzi
- Department of Medical-Surgical Sciences and Biotechnology, Sapienza University of Rome Polo Pontino, Italy.
| | - Rosanna Venere
- Department of Medical-Surgical Sciences and Biotechnology, Sapienza University of Rome Polo Pontino, Italy
| | - Emanuela Ribichini
- Department Translational and Precision, Sapienza University of Rome, Italy
| | - Francesco Covotta
- Department Translational and Precision, Sapienza University of Rome, Italy
| | - Vincenzo Cardinale
- Department Translational and Precision, Sapienza University of Rome, Italy
| | - Domenico Alvaro
- Department Translational and Precision, Sapienza University of Rome, Italy
| |
Collapse
|
34
|
Mie T, Sasaki T, Okamoto T, Furukawa T, Takeda T, Kasuga A, Ozaka M, Sasahira N. Current Status of Targeted Therapy for Biliary Tract Cancer in the Era of Precision Medicine. Cancers (Basel) 2024; 16:879. [PMID: 38473240 PMCID: PMC10931393 DOI: 10.3390/cancers16050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
First-line chemotherapy has been established for advanced biliary tract cancer (BTC). However, few treatment options are available as second-line treatment. Advances in comprehensive genomic analysis revealed that nearly half of patients with BTC harbor targetable genetic alterations such as fibroblast growth factor receptor (FGFR), isocitrate dehydrogenase (IDH), BRAF, human epidermal growth factor receptor 2 (HER2), microsatellite instability (MSI)-high, neurotrophic tropomyosin receptor kinase (NTRK), rearranged during transfection (RET), and poly (adenosine diphosphate-ribose) polymerase (PARP). This review summarizes currently available options in precision medicine and clinical trials for patients with advanced BTC.
Collapse
Affiliation(s)
| | - Takashi Sasaki
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.M.); (T.O.)
| | | | | | | | | | | | | |
Collapse
|
35
|
Spahn S, Kleinhenz F, Shevchenko E, Stahl A, Rasen Y, Geisler C, Ruhm K, Klaumuenzer M, Kronenberger T, Laufer SA, Sundberg-Malek H, Bui KC, Horger M, Biskup S, Schulze-Osthoff K, Templin M, Malek NP, Poso A, Bitzer M. The molecular interaction pattern of lenvatinib enables inhibition of wild-type or kinase-mutated FGFR2-driven cholangiocarcinoma. Nat Commun 2024; 15:1287. [PMID: 38346946 PMCID: PMC10861557 DOI: 10.1038/s41467-024-45247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Fibroblast growth factor receptor (FGFR)-2 can be inhibited by FGFR-selective or non-selective tyrosine kinase inhibitors (TKIs). Selective TKIs are approved for cholangiocarcinoma (CCA) with FGFR2 fusions; however, their application is limited by a characteristic pattern of adverse events or evocation of kinase domain mutations. A comprehensive characterization of a patient cohort treated with the non-selective TKI lenvatinib reveals promising efficacy in FGFR2-driven CCA. In a bed-to-bench approach, we investigate FGFR2 fusion proteins bearing critical tumor-relevant point mutations. These mutations confer growth advantage of tumor cells and increased resistance to selective TKIs but remain intriguingly sensitive to lenvatinib. In line with clinical observations, in-silico analyses reveal a more favorable interaction pattern of lenvatinib with FGFR2, including an increased flexibility and ligand efficacy, compared to FGFR-selective TKIs. Finally, the treatment of a patient with progressive disease and a newly developed kinase mutation during therapy with a selective inhibitor results in a striking response to lenvatinib. Our in vitro, in silico, and clinical data suggest that lenvatinib is a promising treatment option for FGFR2-driven CCA, especially when insurmountable adverse reactions of selective TKIs or acquired kinase mutations occur.
Collapse
Affiliation(s)
- Stephan Spahn
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany.
| | - Fabian Kleinhenz
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Ekaterina Shevchenko
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
| | - Aaron Stahl
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Yvonne Rasen
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Christine Geisler
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Kristina Ruhm
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany
| | | | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Holly Sundberg-Malek
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Khac Cuong Bui
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik, 72076, Tuebingen, Germany
| | - Klaus Schulze-Osthoff
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard-Karls University, 72076, Tuebingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Antti Poso
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
- School of Pharmacy, University of Eastern Finland, 70210, Kuopio, Finland
| | - Michael Bitzer
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany.
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany.
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany.
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, 72076, Tuebingen, Germany.
| |
Collapse
|
36
|
Brandi G, Relli V, Deserti M, Palloni A, Indio V, Astolfi A, Serravalle S, Mattiaccio A, Vasuri F, Malvi D, Deiana C, Pantaleo MA, Cescon M, Rizzo A, Katoh M, Tavolari S. Activated FGFR2 signalling as a biomarker for selection of intrahepatic cholangiocarcinoma patients candidate to FGFR targeted therapies. Sci Rep 2024; 14:3136. [PMID: 38326380 PMCID: PMC10850506 DOI: 10.1038/s41598-024-52991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
FGFR inhibitors have been developed to inhibit FGFR activation and signal transduction; notwithstanding, currently the selection of intrahepatic cholangiocarcinoma (iCCA) patients for these drugs only relies on the detection of FGFR2 genetic alterations (GAs) in tumor tissues or circulating tumor DNAs, without concomitant assessment of FGFR2 signalling status. Accordingly, we performed multi-omic analyses of FGFR2 genes and FGFR2 signalling molecules in the tissue samples from 36 iCCA naïve patients. Gain-of-function FGFR2 GAs were detected in 7 patients, including missense mutations (n = 3; p.F276C, p.C382R and p.Y375C), translocations (n = 1) and copy number gain (n = 4; CNV ≥ 4). In contrast, among 29 patients with wild-type FGFR2, 4 cases showed activation of FGFR2 signalling, as they expressed the FGFR2 ligand FGF10 and phosphorylated FGFR2/FRS2α proteins; the remaining 25 cases resulted negative for activated FGFR2 signalling, as they lacked FGFR2 (n = 8) or phosphorylated FRS2α (n = 17) expression. Overall, we found that activation of FGFR2 signalling occurs not only in iCCA naïve patients with FGFR2 GAs, but also in a subgroup carrying wild-type FGFR2. This last finding entails that also this setting of patients could benefit from FGFR targeted therapies, widening indication of these drugs for iCCA patients beyond current approval. Future clinical studies are therefore encouraged to confirm this hypothesis.
Collapse
Affiliation(s)
- Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Valeria Relli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - Marzia Deserti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Palloni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Salvatore Serravalle
- Division of Pediatrics, IRCCS-Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | | | - Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Deborah Malvi
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cescon
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- General Surgery and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Masaru Katoh
- M & M Precision Medicine, Tokyo, Japan
- Department of Omics Network, National Cancer Center, Tokyo, Japan
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
37
|
Warren EAK, Maithel SK. Molecular pathology for cholangiocarcinoma: a review of actionable genetic targets and their relevance to adjuvant & neoadjuvant therapy, staging, follow-up, and determination of minimal residual disease. Hepatobiliary Surg Nutr 2024; 13:29-38. [PMID: 38322206 PMCID: PMC10839719 DOI: 10.21037/hbsn-22-563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 02/08/2024]
Abstract
Cholangiocarcinoma (CCA) represents a group of epithelial cell tumors classified based on their anatomic location along the biliary tree. This rare malignancy is often diagnosed at an advanced stage and deemed unresectable. Even for those patients who are surgical candidates, recurrence rates are high and survival rates low. The mainstay of therapy for advanced CCA remains cisplatin plus gemcitabine, with a median overall survival (mOS) under 12 months, although the TOPAZ-1 trial showed a survival benefit with the addition of programmed cell death ligand 1 (PD-L1) blockade. In recent years, molecular profiling has revealed a wealth of potentially targetable genetic alterations, including fibroblast growth factor receptor (FGFR) fusions, isocitrate dehydrogenase 1 (IDH1) mutations, human epidermal growth factor receptor 2 (HER2) amplification and overexpression, and microsatellite instability (MSI). These discoveries have prompted numerous clinical trials employing drugs against these specific genetic changes. The foundation laid by early clinical studies and the landscape of ongoing trials are both summarized here. While the role of adjuvant therapy has yet to be defined in this disease, we emphasize the importance of employing targeted therapies in trials in the adjuvant and neoadjuvant spaces and discuss ways to overcome challenges due to low incidence of targetable mutations. Personalized medicine for this disease promises significant clinical benefit to patients, but further investigation is needed.
Collapse
Affiliation(s)
- Emilie A K Warren
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Shishir K Maithel
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
38
|
Groß S, Bitzer M, Albert J, Blödt S, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, La Fougère C, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e213-e282. [PMID: 38364849 DOI: 10.1055/a-2189-8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
- Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein, Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | - Hans J Schlitt
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg
| | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
39
|
Calfa CJ, Rothe M, Mangat PK, Garrett-Mayer E, Ahn ER, Burness ML, Gogineni K, Rohatgi N, Al Baghdadi T, Conlin A, Gaba A, Hamid O, Krishnamurthy J, Gavini NJ, Gold PJ, Rodon J, Rueter J, Thota R, Grantham GN, Hinshaw DC, Gregory A, Halabi S, Schilsky RL. Sunitinib in Patients With Breast Cancer With FGFR1 or FGFR2 Amplifications or Mutations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis Oncol 2024; 8:e2300513. [PMID: 38354330 DOI: 10.1200/po.23.00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 02/16/2024] Open
Abstract
PURPOSE The Targeted Agent and Profiling Utilization Registry Study is a phase II basket trial evaluating the antitumor activity of commercially available targeted agents in patients with advanced cancer and genomic alterations known to be drug targets. Results from cohorts of patients with metastatic breast cancer (BC) with FGFR1 and FGFR2 alterations treated with sunitinib are reported. METHODS Eligible patients had measurable disease, Eastern Cooperative Oncology Group performance status 0-2, adequate organ function, and no standard treatment options. Simon's two-stage design was used with a primary end point of disease control (DC), defined as objective response (OR) or stable disease of at least 16 weeks duration (SD16+) according to RECIST v1.1. Secondary end points included OR, progression-free survival, overall survival, duration of response, duration of stable disease, and safety. RESULTS Forty patients with BC with FGFR1 (N = 30; amplification only n = 26, mutation only n = 1, both n = 3) or FGFR2 (N = 10; amplification only n = 2, mutation only n = 6, both n = 2) alterations were enrolled. Three patients in the FGFR1 cohort were not evaluable for efficacy; all patients in the FGFR2 cohort were evaluable. For the FGFR1 cohort, two patients with partial response and four with SD16+ were observed for DC and OR rates of 27% (90% CI, 13 to 100) and 7% (95% CI, 1 to 24), respectively. The null hypothesis of 15% DC rate was not rejected (P = .169). No patients achieved DC in the FGFR2 cohort (P = 1.00). Thirteen of the 40 total patients across both cohorts had at least one grade 3-4 adverse event or serious adverse event at least possibly related to sunitinib. CONCLUSION Sunitinib did not meet prespecified criteria to declare a signal of antitumor activity in patients with BC with either FGFR1 or FGFR2 alterations. Other treatments and clinical trials should be considered for these patient populations.
Collapse
Affiliation(s)
- Carmen J Calfa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Michael Rothe
- American Society of Clinical Oncology, Alexandria, VA
| | - Pam K Mangat
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | | | | | | | - Tareq Al Baghdadi
- Michigan Cancer Research Consortium, IHA Hematology Oncology, Ypsilanti, MI
| | | | | | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA
| | | | | | | | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Speckart J, Rasmusen V, Talib Z, GnanaDev DA, Rahnemai-Azar AA. Emerging Therapies in Management of Cholangiocarcinoma. Cancers (Basel) 2024; 16:613. [PMID: 38339363 PMCID: PMC10854763 DOI: 10.3390/cancers16030613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Cholangiocarcinoma is a heterogeneous group of biliary tract cancers that has a poor prognosis and globally increasing incidence and mortality. While surgical resection remains the only curative option for the treatment of cholangiocarcinoma, the majority of cancers are unresectable at the time of diagnosis. Additionally, the prognosis of cholangiocarcinoma remains poor even with the current first-line systemic therapy regimens, highlighting the difficulty of treating locally advanced, metastatic, or unresectable cholangiocarcinoma. Through recent developments, targetable oncogenic driver mutations have been identified in the pathogenesis of cholangiocarcinoma, leading to the utilization of molecular targeted therapeutics. In this review, we comprehensively discuss the latest molecular therapeutics for the treatment of cholangiocarcinoma, including emerging immunotherapies, highlighting promising developments and strategies.
Collapse
Affiliation(s)
- Jessica Speckart
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA; (J.S.); (V.R.)
| | - Veronica Rasmusen
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA; (J.S.); (V.R.)
| | - Zohray Talib
- Department of Medicine, Arrowhead Regional Medical Center, California University of Science and Medicine, Colton, CA 92324, USA;
| | - Dev A. GnanaDev
- Department of Surgery, Arrowhead Regional Medical Center, Colton, CA 92324, USA
| | - Amir A. Rahnemai-Azar
- Division of Surgical Oncology, Department of Surgery, Arrowhead Regional Cancer Center, California University of Science and Medicine, Colton, CA 92324, USA
| |
Collapse
|
41
|
Shan KS, Dalal S, Thaw Dar NN, McLish O, Salzberg M, Pico BA. Molecular Targeting of the Fibroblast Growth Factor Receptor Pathway across Various Cancers. Int J Mol Sci 2024; 25:849. [PMID: 38255923 PMCID: PMC10815772 DOI: 10.3390/ijms25020849] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that are involved in the regulation of cell proliferation, survival, and development. FGFR alterations including amplifications, fusions, rearrangements, and mutations can result in the downstream activation of tyrosine kinases, leading to tumor development. Targeting these FGFR alterations has shown to be effective in treating cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid neoplasms, and there are currently four FGFR inhibitors approved by the Food and Drug Administration (FDA). There have been developments in multiple agents targeting the FGFR pathway, including selective FGFR inhibitors, ligand traps, monoclonal antibodies, and antibody-drug conjugates. However, most of these agents have variable and low responses, with some intolerable toxicities and acquired resistances. This review will summarize previous clinical experiences and current developments in agents targeting the FGFR pathway, and will also discuss future directions for FGFR-targeting agents.
Collapse
Affiliation(s)
- Khine S. Shan
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (S.D.); (N.N.T.D.); (O.M.); (M.S.)
| | | | | | | | | | | |
Collapse
|
42
|
Bergonzini C, Gregori A, Hagens TMS, van der Noord VE, van de Water B, Zweemer AJM, Coban B, Capula M, Mantini G, Botto A, Finamore F, Garajova I, McDonnell LA, Schmidt T, Giovannetti E, Danen EHJ. ABCB1 overexpression through locus amplification represents an actionable target to combat paclitaxel resistance in pancreatic cancer cells. J Exp Clin Cancer Res 2024; 43:4. [PMID: 38163893 PMCID: PMC10759666 DOI: 10.1186/s13046-023-02879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer and the chemotherapies such as gemcitabine/nab-paclitaxel are confronted with intrinsic or acquired resistance. The aim of this study was to investigate mechanisms underlying paclitaxel resistance in PDAC and explore strategies to overcome it. METHODS Three paclitaxel (PR) and gemcitabine resistant (GR) PDAC models were established. Transcriptomics and proteomics were used to identify conserved mechanisms of drug resistance. Genetic and pharmacological approaches were used to overcome paclitaxel resistance. RESULTS Upregulation of ABCB1 through locus amplification was identified as a conserved feature unique to PR cells. ABCB1 was not affected in any of the GR models and no cross resistance was observed. The ABCB1 inhibitor verapamil or siRNA-mediated ABCB1 depletion sensitized PR cells to paclitaxel and prevented efflux of ABCB1 substrates in all models. ABCB1 expression was associated with a trend towards shorter survival in patients who had received gemcitabine/nab-paclitaxel treatment. A pharmacological screen identified known and novel kinase inhibitors that attenuate efflux of ABCB1 substrates and sensitize PR PDAC cells to paclitaxel. CONCLUSION Upregulation of ABCB1 through locus amplification represents a novel, conserved mechanism of PDAC paclitaxel resistance. Kinase inhibitors identified in this study can be further (pre) clinically explored as therapeutic strategies to overcome paclitaxel resistance in PDAC.
Collapse
Affiliation(s)
- Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alessandro Gregori
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Tessa M S Hagens
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Vera E van der Noord
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Annelien J M Zweemer
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mjriam Capula
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Asia Botto
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Francesco Finamore
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Ingrid Garajova
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Liam A McDonnell
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy.
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
43
|
Bitzer M, Groß S, Albert J, Blödt S, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, Fougère CL, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e67-e161. [PMID: 38195102 DOI: 10.1055/a-2189-6353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Affiliation(s)
- Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
44
|
Abd El-Karim SS, Syam YM, El Kerdawy AM, Abdel-Mohsen HT. Rational design and synthesis of novel quinazolinone N-acetohydrazides as type II multi-kinase inhibitors and potential anticancer agents. Bioorg Chem 2024; 142:106920. [PMID: 37898082 DOI: 10.1016/j.bioorg.2023.106920] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
In the current investigation, a new class of quinazolinone N-acetohydrazides 9a-v was designed as type II multi-kinase inhibitors. The target quinazolinones were tailored so that the quinazolinone moiety would occupy the front pocket of the binding sites of VEGFR-2, FGFR-1 and BRAF kinases, meanwhile, the phenyl group at position 2 would act as a spacer which was functionalized at position 4 with an N-acetohydrazide linker that could achieve the key interactions with the essential gate area amino acids. The hydrazide moiety was linked to diverse aryl derivatives to occupy the hydrophobic back pocket of the DFG-out conformation of target kinases. The synthesized quinazolinone derivatives 9a-v demonstrated moderate to potent VEGFR-2 inhibitory activity with IC50 spanning from 0.29 to 5.17 µM. Further evaluation of the most potent derivatives on FGFR-1, BRAFWT and BRAFV600E showed that the quinazolinone N-acetohydrazides 9d, 9e, 9f, 9l and 9m have a potent multi-kinase inhibitory activity. Concurrently, 9b, 9d, 9e, 9k, 9l, 9o, 9q demonstrated potent growth inhibitory activity on NCI cancer cell lines with GI50 reaching 0.72 µM. In addition, compound 9e arrested the cell cycle progression in MDA-MB-231 cell line at the G2/M phase and showed the ability to induce apoptosis.
Collapse
Affiliation(s)
- Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P. O. Box 12622 El-Bohouth Street, Dokki, Cairo, Egypt
| | - Yasmin M Syam
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P. O. Box 12622 El-Bohouth Street, Dokki, Cairo, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt
| | - Heba T Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P. O. Box 12622 El-Bohouth Street, Dokki, Cairo, Egypt.
| |
Collapse
|
45
|
Andraus W, Tustumi F, de Meira Junior JD, Pinheiro RSN, Waisberg DR, Lopes LD, Arantes RM, Rocha Santos V, de Martino RB, Carneiro D’Albuquerque LA. Molecular Profile of Intrahepatic Cholangiocarcinoma. Int J Mol Sci 2023; 25:461. [PMID: 38203635 PMCID: PMC10778975 DOI: 10.3390/ijms25010461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a relatively uncommon but highly aggressive primary liver cancer that originates within the liver. The aim of this study is to review the molecular profile of intrahepatic cholangiocarcinoma and its implications for prognostication and decision-making. This comprehensive characterization of ICC tumors sheds light on the disease's underlying biology and offers a foundation for more personalized treatment strategies. This is a narrative review of the prognostic and therapeutic role of the molecular profile of ICC. Knowing the molecular profile of tumors helps determine prognosis and support certain target therapies. The molecular panel in ICC helps to select patients for specific therapies, predict treatment responses, and monitor treatment responses. Precision medicine in ICC can promote improvement in prognosis and reduce unnecessary toxicity and might have a significant role in the management of ICC in the following years. The main mutations in ICC are in tumor protein p53 (TP53), Kirsten rat sarcoma virus (KRAS), isocitrate dehydrogenase 1 (IDH1), and AT-rich interactive domain-containing protein 1A (ARID1A). The rate of mutations varies significantly for each population. Targeting TP53 and KRAS is challenging due to the natural characteristics of these genes. Different stages of clinical studies have shown encouraging results with inhibitors of mutated IDH1 and target therapy for ARID1A downstream effectors. Fibroblast growth factor receptor 2 (FGFR2) fusions are an important target in patients with ICC. Immune checkpoint blockade can be applied to a small percentage of ICC patients. Molecular profiling in ICC represents a groundbreaking approach to understanding and managing this complex liver cancer. As our comprehension of ICC's molecular intricacies continues to expand, so does the potential for offering patients more precise and effective treatments. The integration of molecular profiling into clinical practice signifies the dawn of a new era in ICC care, emphasizing personalized medicine in the ongoing battle against this malignancy.
Collapse
Affiliation(s)
| | - Francisco Tustumi
- Department of Gastroenterology, Transplantation Unit, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Juarso AE, Entz S, Weissinger F. Durable response from fibroblast growth factor receptor inhibition in intrahepatic cholangiocarcinoma terminated by metachronous acute myeloid leukemia: a case report. J Med Case Rep 2023; 17:550. [PMID: 38098111 PMCID: PMC10722808 DOI: 10.1186/s13256-023-04231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/28/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Advances in the treatment of biliary tract cancer have been made possible through gains in genomic and epigenetic tumor understanding. The use of fibroblast growth factor receptor inhibitor has enabled significant clinical improvement in a specific group of patients with intrahepatic cholangiocarcinoma, some of whom with very durable responses. CASE PRESENTATION We present the case of a 69-year-old Caucasian patient with advanced intrahepatic cholangiocarcinoma who received the therapy with selective oral inhibitor of fibroblast growth factor receptor 1, 2, and 3 pemigatinib after multiple previous chemotherapies. This resulted in a durable stable disease condition for 15 months with good tolerability. The diagnosis of acute myeloid leukemia was an unanticipated serious adverse event, in which the impact of fibroblast growth factor receptor inhibition could not yet be determined due to inadequate data. CONCLUSIONS It is still possible to achieve durable tumor response in advanced previously treated intrahepatic cholangiocarcinoma through targeted therapies. The prolonged progression free survival means that there could be an increased risk of secondary malignancy in this patient group, which necessitates diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Andreas Edwin Juarso
- Department of Internal Medicine, Haematology/Oncology, Stem Cell Transplantation and Palliative Medicine, Evangelisches Klinikum Bethel, Schildescher Straße 99, 33611, Bielefeld, Germany
| | - Stefanie Entz
- Department of Internal Medicine and Gastroenterology, Evangelisches Klinikum Bethel, Schildescher Straße 99, 33611, Bielefeld, Germany
| | - Florian Weissinger
- Department of Internal Medicine, Haematology/Oncology, Stem Cell Transplantation and Palliative Medicine, Evangelisches Klinikum Bethel, Schildescher Straße 99, 33611, Bielefeld, Germany.
| |
Collapse
|
47
|
Rushbrook SM, Kendall TJ, Zen Y, Albazaz R, Manoharan P, Pereira SP, Sturgess R, Davidson BR, Malik HZ, Manas D, Heaton N, Prasad KR, Bridgewater J, Valle JW, Goody R, Hawkins M, Prentice W, Morement H, Walmsley M, Khan SA. British Society of Gastroenterology guidelines for the diagnosis and management of cholangiocarcinoma. Gut 2023; 73:16-46. [PMID: 37770126 PMCID: PMC10715509 DOI: 10.1136/gutjnl-2023-330029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
These guidelines for the diagnosis and management of cholangiocarcinoma (CCA) were commissioned by the British Society of Gastroenterology liver section. The guideline writing committee included a multidisciplinary team of experts from various specialties involved in the management of CCA, as well as patient/public representatives from AMMF (the Cholangiocarcinoma Charity) and PSC Support. Quality of evidence is presented using the Appraisal of Guidelines for Research and Evaluation (AGREE II) format. The recommendations arising are to be used as guidance rather than as a strict protocol-based reference, as the management of patients with CCA is often complex and always requires individual patient-centred considerations.
Collapse
Affiliation(s)
- Simon M Rushbrook
- Department of Hepatology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, UK
| | - Timothy James Kendall
- Division of Pathology, University of Edinburgh, Edinburgh, UK
- University of Edinburgh MRC Centre for Inflammation Research, Edinburgh, UK
| | - Yoh Zen
- Department of Pathology, King's College London, London, UK
| | - Raneem Albazaz
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | - Richard Sturgess
- Digestive Diseases Unit, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Brian R Davidson
- Department of Surgery, Royal Free Campus, UCL Medical School, London, UK
| | - Hassan Z Malik
- Department of Surgery, University Hospital Aintree, Liverpool, UK
| | - Derek Manas
- Department of Surgery, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Nigel Heaton
- Department of Hepatobiliary and Pancreatic Surgery, King's College London, London, UK
| | - K Raj Prasad
- John Goligher Colorectal Unit, St. James University Hospital, Leeds, UK
| | - John Bridgewater
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Rebecca Goody
- Department of Oncology, St James's University Hospital, Leeds, UK
| | - Maria Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Wendy Prentice
- King's College Hospital NHS Foundation Trust, London, UK
| | | | | | - Shahid A Khan
- Hepatology and Gastroenterology Section, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
48
|
Imaoka H, Ikeda M, Nomura S, Morizane C, Okusaka T, Ozaka M, Shimizu S, Yamazaki K, Okano N, Sugimori K, Shirakawa H, Mizuno N, Satoi S, Yamaguchi H, Sugimoto R, Gotoh K, Sano K, Asagi A, Nakamura K, Ueno M. Development of a nomogram to predict survival in advanced biliary tract cancer. Sci Rep 2023; 13:21548. [PMID: 38057434 PMCID: PMC10700490 DOI: 10.1038/s41598-023-48889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The prognosis of advanced biliary tract cancer (BTC) patients remains poor due to limited efficacy of chemotherapy and difficulties in management. Thus, prediction of survival is crucial for the clinical management of advanced BTC. The aim was to develop and validate a nomogram to predict 6-month and 12-month survival in advanced BTC patients treated with chemotherapy. A multivariable Cox regression model was used to construct a nomogram in a training set (JCOG1113, a phase III trial comparing gemcitabine plus S-1 [GS] and gemcitabine plus cisplatin, n = 351). External validity of the nomogram was assessed using a test set (JCOG0805, a randomized, phase II trial comparing GS and S-1 alone, n = 100). Predictive performance was assessed in terms of discrimination and calibration. The constructed nomogram included lymph node metastasis, liver metastasis, carbohydrate antigen 19-9, carcinoembryonic antigen, albumin, and C-reactive protein. Uno's concordance index was 0.661 (95% confidence interval [CI] 0.629-0.696) in the training set and 0.640 (95% CI 0.566-0.715) in the test set. The calibration plots for 6-month and 12-month survival showed good agreement in the two analysis sets. The present nomogram can facilitate prediction of the prognosis of advanced BTC patients treated with chemotherapy and help clinicians' prognosis-based decision-making.
Collapse
Affiliation(s)
- Hiroshi Imaoka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Shogo Nomura
- Japan Clinical Oncology Group Data Center, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Chigusa Morizane
- Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Okusaka
- Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masato Ozaka
- Hepato-Biliary-Pancreatic Medicine Department, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Shimizu
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Kazuya Sugimori
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Hirofumi Shirakawa
- Department of Medical Oncology, Tochigi Cancer Center, Utsunomiya, Japan
| | - Nobumasa Mizuno
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Sohei Satoi
- Division of Pancreatobiliary Surgery, Department of Surgery, Kansai Medical University, Hirakata, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Rie Sugimoto
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kunihito Gotoh
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Keji Sano
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Akinori Asagi
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | | | - Makoto Ueno
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
49
|
Xu S, Zhu Y, Wang P, Qi S, Shu B. Derazantinib Inhibits the Bioactivity of Keloid Fibroblasts via FGFR Signaling. Biomedicines 2023; 11:3220. [PMID: 38137441 PMCID: PMC10741236 DOI: 10.3390/biomedicines11123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Keloids are common benign cutaneous pathological fibrous proliferation diseases, which are difficult to cure and easily recur. Studies have shown that fibroblast growth factor receptor-1 (FGFR1) was enhanced in pathological fibrous proliferation diseases, such as cirrhosis and idiopathic pulmonary fibrosis (IPF), suggesting the FGFR1 pathway has potential for keloid treatment. Derazantinib is a selective FGFR inhibitor with antiproliferative activity in in vitro and in vivo models. The present study determined the effects of derazantinib on human keloid fibroblasts (KFs). Cell viability assay, migration assay, invasion assay, immunofluorescence staining, quantitative polymerase chain reaction, Western blot analysis, HE staining, Masson staining, and immunohistochemical analysis were used to analyze the KFs and keloid xenografts. In this study, we found that derazantinib inhibited the proliferation, migration, invasion, and collagen production of KFs in vitro. The transcription and expression of plasminogen activator inhibitor-1 (PAI-1), which is closely related to collagen deposition and tissue fibrosis, was significantly inhibited. Also, derazantinib inhibited the expression of FGFR1 and PAI-1 and reduced the weight of the implanted keloid from the xenograft mice model. These findings suggest that derazantinib may be a potent therapy for keloids via FGFR signaling.
Collapse
Affiliation(s)
- Shuqia Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Yongkang Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen 518025, China
| | - Peng Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| | - Shaohai Qi
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| | - Bin Shu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| |
Collapse
|
50
|
Liu YN, Chen J, Xu X, Hu Y, Hu JY, Xu RA, Lin G. Lack of pharmacokinetic interaction between derazantinib and naringin in rats. PHARMACEUTICAL BIOLOGY 2023; 61:514-519. [PMID: 36891628 PMCID: PMC10013357 DOI: 10.1080/13880209.2023.2185641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Derazantinib-an orally bioavailable, ATP competitive, multikinase inhibitor-has strong activity against fibroblast growth factor receptors (FGFR)2, FGFR1, and FGFR3 kinases. It has preliminary antitumor activity in patients with unresectable or metastatic FGFR2 fusion-positive intrahepatic cholangiocarcinoma (iCCA). OBJECTIVE This experiment validates a novel sensitive and rapid method for the determination of derazantinib concentration in rat plasma by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), and applies it to the study of drug-drug interaction between derazantinib and naringin in vivo. MATERIALS AND METHODS A Xevo TQ-S triple quadrupole tandem mass spectrometer was used for mass spectrometry monitoring in selective reaction monitoring (SRM) mode with transitions of m/z 468 96 → 382.00 for derazantinib and m/z 488.01 → 400.98 for pemigatinib, respectively. The pharmacokinetics of derazantinib (30 mg/kg) was investigated in Sprague-Dawley (SD) rats divided into two groups (with the oral pretreatment of 50 mg/kg naringin or not). RESULTS The newly optimized UPLC-MS/MS method was suitable for the determination of derazantinib in rat plasma. It was also successfully employed to evaluate the effect of naringin on derazantinib metabolism in rats. After pretreatment with naringin, there was no significant difference in the pharmacokinetic parameters (AUC0→t, AUC0→∞, t1/2, CLz/F, and Cmax) of derazantinib when compared with derazantinib alone. CONCLUSION Co-administration of naringin with derazantinib was not associated with significant changes in pharmacokinetic parameters. Thus, this study suggests that the combination of derazantinib with naringin can safely be administered concomitantly without dose adjustment.
Collapse
Affiliation(s)
- Ya-nan Liu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Xinhao Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jin-yu Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ren-ai Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Guanyang Lin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|