1
|
Leleu D, Pilot T, Mangin L, Van Dongen K, Proukhnitzky L, Denimal D, Samson M, Laubriet A, Steinmetz E, Rialland M, Pierre L, Groetz E, Pais de Barros JP, Gautier T, Thomas C, Masson D. Inhibition of LXR Signaling in Human Foam Cells Impairs Macrophage-to-Endothelial Cell Cross Talk and Promotes Endothelial Cell Inflammation. Arterioscler Thromb Vasc Biol 2025; 45:910-927. [PMID: 40207367 PMCID: PMC12094261 DOI: 10.1161/atvbaha.125.322448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND During atherogenesis, macrophages turn into foam cells by engulfing lipids present within the atheroma plaques. The shift of foam cells toward proinflammatory or anti-inflammatory phenotypes, a critical step in disease progression, is still poorly understood. LXRs (liver X receptors) play a pivotal role in the macrophage response to lipid, promoting the expression of key genes of cholesterol efflux, mitigating intracellular cholesterol accumulation. LXRs also exert balanced actions on inflammation in human macrophages, displaying both proinflammatory and anti-inflammatory effects. METHODS Our study explored the role of LXRs in the functional response of human macrophage to lipid-rich plaque environment. We used primary human macrophages treated with atheroma plaque extracts and assessed the impact of pharmacological LXR inhibition by GSK2033 on cholesterol homeostasis and inflammatory response. Ultimately, we evaluated macrophage and endothelial cell cross talk by assessing the impact of macrophage-conditioned supernatants on the human endothelial cell. RESULTS LXR inhibition by GSK2033 resulted in increased levels of cholesterol and oxysterols in human macrophages, alongside notable changes in the cholesterol ester profile. This was accompanied by heightened secretion of proinflammatory cytokines such as IL (interleukin)-6 and TNFα (tumor necrosis factor-α), despite a transcriptional repression of IL-1β. Conditioned media from GSK2033-treated macrophages more effectively activated ICAM-1 (intercellular adhesion molecule-1) and CCL2 (C-C motif ligand 2) expression in endothelial cells. CONCLUSIONS Our findings illustrate the intricate relationship between LXR function, cholesterol metabolism, and inflammation in human macrophages. While LXR is required for the proper handling of plaque lipids by macrophages, the differential regulation of IL-1β versus IL-6/TNFα secretion by LXRs could be challenging for potential pharmacological interventions.
Collapse
Affiliation(s)
- Damien Leleu
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- Department of Clinical Chemistry (D.L., D.D., D.M.), CHU Dijon Bourgogne, France
| | - Thomas Pilot
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
| | - Léa Mangin
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
| | - Kevin Van Dongen
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
| | - Lil Proukhnitzky
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- DiviOmics Platform, UMS58 BioSanD, INSERM, Université de Bourgogne Europe, Dijon, France (J.-P.P.B.)
- Department of Clinical Chemistry (D.L., D.D., D.M.), CHU Dijon Bourgogne, France
- Department of Internal Medicine (M.S.), CHU Dijon Bourgogne, France
- Department of Cardiovascular Surgery (A.L., E.S.), CHU Dijon Bourgogne, France
| | - Damien Denimal
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- Department of Clinical Chemistry (D.L., D.D., D.M.), CHU Dijon Bourgogne, France
| | - Maxime Samson
- Department of Internal Medicine (M.S.), CHU Dijon Bourgogne, France
| | - Aline Laubriet
- Department of Cardiovascular Surgery (A.L., E.S.), CHU Dijon Bourgogne, France
| | - Eric Steinmetz
- Department of Cardiovascular Surgery (A.L., E.S.), CHU Dijon Bourgogne, France
| | - Mickael Rialland
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- DiviOmics Platform, UMS58 BioSanD, INSERM, Université de Bourgogne Europe, Dijon, France (J.-P.P.B.)
- Department of Clinical Chemistry (D.L., D.D., D.M.), CHU Dijon Bourgogne, France
- Department of Internal Medicine (M.S.), CHU Dijon Bourgogne, France
- Department of Cardiovascular Surgery (A.L., E.S.), CHU Dijon Bourgogne, France
| | - Léa Pierre
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- DiviOmics Platform, UMS58 BioSanD, INSERM, Université de Bourgogne Europe, Dijon, France (J.-P.P.B.)
- Department of Clinical Chemistry (D.L., D.D., D.M.), CHU Dijon Bourgogne, France
- Department of Internal Medicine (M.S.), CHU Dijon Bourgogne, France
- Department of Cardiovascular Surgery (A.L., E.S.), CHU Dijon Bourgogne, France
| | - Emma Groetz
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- DiviOmics Platform, UMS58 BioSanD, INSERM, Université de Bourgogne Europe, Dijon, France (J.-P.P.B.)
- Department of Clinical Chemistry (D.L., D.D., D.M.), CHU Dijon Bourgogne, France
- Department of Internal Medicine (M.S.), CHU Dijon Bourgogne, France
- Department of Cardiovascular Surgery (A.L., E.S.), CHU Dijon Bourgogne, France
| | - Jean-Paul Pais de Barros
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- DiviOmics Platform, UMS58 BioSanD, INSERM, Université de Bourgogne Europe, Dijon, France (J.-P.P.B.)
| | - Thomas Gautier
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
| | - Charles Thomas
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- LipSTIC LabEx, Université Bourgogne-Franche compté, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
| | - David Masson
- Center for Translational and Molecular Medecine (CTM), INSERM, UMR1231, Université Bourgogne Europe, Dijon, France (D.L., T.P., L.M., K.V.D., J.-P.P.B., T.G., C.T., D.M.)
- Department of Clinical Chemistry (D.L., D.D., D.M.), CHU Dijon Bourgogne, France
| |
Collapse
|
2
|
Pei C, Dong Y, Song N. Association between advanced lung cancer inflammation index and mortality in critically ill septic patients: analysis of the MIMIC-IV database. BMC Infect Dis 2025; 25:747. [PMID: 40413403 DOI: 10.1186/s12879-025-11116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Septic patients often face high mortality rates, influenced by various factors, including inflammation and nutritional status. This study investigates the relationship between the Advanced Lung Cancer Inflammation Index (ALI), an indicator of inflammation and nutritional status, and mortality rates (28-day, in-hospital, and ICU) in septic patients. METHODS We conducted a retrospective analysis using data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database, focusing on septic patients. Our primary analysis tools were multivariate logistic regression and restricted cubic spline (RCS) to examine the association between ALI and mortality outcomes. Additionally, subgroup and sensitivity analyses were performed to validate the findings. RESULTS The study included 3,739 septic patients. Results showed that higher ALI levels were significantly associated with reduced 28-day and in-hospital mortality rates. Specifically, a one-unit increment in natural log-transformed ALI was linked to a 16% reduced risk of 28-day mortality (p < 0.001) and a 12% reduced risk of in-hospital mortality (p = 0.002). These findings were consistent across different subgroups, confirming the stability of the results. CONCLUSIONS Elevated ALI levels are associated with lower mortality rates in septic patients, suggesting ALI as a potential prognostic marker for this group. However, further large prospective studies are needed to corroborate these findings and explore the implications for clinical practice.
Collapse
Affiliation(s)
- ChongZhe Pei
- Department of Cardiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yuxin Dong
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Ningning Song
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, P.R. China.
| |
Collapse
|
3
|
Huang S, Zhou Y, Ji H, Zhang T, Liu S, Ma L, Deng D, Ding Y, Han L, Shu S, Wang Y, Chen X. Decoding mechanisms and protein markers in lung-brain axis. Respir Res 2025; 26:190. [PMID: 40390067 PMCID: PMC12090670 DOI: 10.1186/s12931-025-03272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/08/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND The lung-brain axis represents a complex bidirectional communication network that is pivotal in the crosstalk between respiratory and neurological functions. This review summarizes the current understanding of the mechanisms and protein markers that mediate the effects of lung diseases on brain health. MAIN FINDINGS In this review, we explore the mechanisms linking lung injury to neurocognitive impairments, focusing on neural pathways, immune regulation and inflammatory responses, microorganism pathways, and hypoxemia. Specifically, we highlight the role of the vagus nerve in modulating the central nervous system response to pulmonary stimuli; Additionally, the regulatory function of the immune system is underscored, with evidence suggesting that lung-derived immune mediators can traverse the blood-brain barrier, induce neuroinflammation and cognitive decline; Furthermore, we discuss the potential of lung microbiota to influence brain diseases through microbial translocation and immune activation; Finally, the impact of hypoxemia is examined, with findings indicating that it can exacerbate cerebral injury via oxidative stress and impaired perfusion. Moreover, we analyze how pulmonary conditions, such as pneumonia, ALI/ARDS, and asthma, contribute to neurological dysfunction. Prolonged mechanical ventilation can also contribute to cognitive impairment. Conversely, brain diseases (e.g., stroke, traumatic brain injury) can lead to acute respiratory complications. In addition, protein markers such as TLR4, ACE2, A-SAA, HMGB1, and TREM2 are crucial to the lung-brain axis and correlate with disease severity. We also discuss emerging therapeutic strategies targeting this axis, including immunomodulation and microbiome engineering. Overall, understanding the lung-brain interplay is crucial for developing integrated treatment strategies and improving patient outcomes. Further research is needed to elucidate the molecular mechanisms and foster interdisciplinary collaboration.
Collapse
Affiliation(s)
- Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Yuxi Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Haipeng Ji
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Shiya Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Shaofang Shu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China
| | - Yu Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Wuhan, 430022, China.
| |
Collapse
|
4
|
Liu Y, Sun S, Yu B, Wang Q, Liu H, Shao X, Zhao H. Changes in serum levels of Chitinase protein-40 in children with Kawasaki disease and its clinical significance. BMC Pediatr 2025; 25:392. [PMID: 40380159 PMCID: PMC12085031 DOI: 10.1186/s12887-025-05721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/29/2025] [Indexed: 05/19/2025] Open
Abstract
OBJECTIVES Kawasaki disease (KD) is an acute immune-mediated vasculitis primarily affecting coronary arteries, with limited specific diagnostic biomarkers available. Chitinase protein-40 (YKL-40), a glycoprotein secreted by neutrophils and macrophages, has been associated with vascular inflammation in cardiovascular diseases. This study aimed to investigate the role of YKL-40 in KD by analyzing its serum levels, correlations with inflammatory markers, and potential as a diagnostic and prognostic biomarker. METHODS Serum YKL-40 and interleukin-6 (IL-6) levels were measured using enzyme-linked immunosorbent assay (ELISA) in 46 children with KD (16 with coronary artery lesions [CAL], 30 without CAL) and 30 healthy controls. Correlations between YKL-40, IL-6, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), white blood cell (WBC) count, and platelet (PLT) levels were analyzed. RESULTS YKL-40, IL-6, CRP, ESR, WBC, and PLT levels were significantly elevated in KD patients compared to controls. YKL-40 levels correlated positively with IL-6, CRP, and ESR. A serum YKL-40 threshold of ≥ 71.930 ng/mL predicted CAL with sensitivity and specificity of 0.875 and 0.800, respectively. Combining YKL-40 with IL-6 improved sensitivity and specificity to 0.938 and 0.833. CONCLUSIONS YKL-40 is significantly elevated in KD and correlates with inflammatory markers, suggesting its involvement in disease pathogenesis. It is a promising inflammatory biomarker and independent risk factor for predicting CAL in KD, offering potential for improved diagnosis and prognosis. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yalin Liu
- Pediatric Internal Medicine Department, WeiFang People's Hospital, Shandong Second Medical University, Weifang, 261000, China
- Emergency Department, WeiFang People's Hospital, Shandong Second Medical University, Weifang, 261000, China
| | - Shan Sun
- Emergency Department, WeiFang People's Hospital, Shandong Second Medical University, Weifang, 261000, China
| | - Baolong Yu
- Pediatric Internal Medicine Department, WeiFang People's Hospital, Shandong Second Medical University, Weifang, 261000, China
| | - Qianyun Wang
- Pediatric Internal Medicine Department, WeiFang People's Hospital, Shandong Second Medical University, Weifang, 261000, China
| | - Hui Liu
- Pediatric Internal Medicine Department, WeiFang People's Hospital, Shandong Second Medical University, Weifang, 261000, China
| | - Xianli Shao
- Pediatric Internal Medicine Department, WeiFang People's Hospital, Shandong Second Medical University, Weifang, 261000, China
| | - Huafeng Zhao
- Pediatric Internal Medicine Department, WeiFang People's Hospital, Shandong Second Medical University, Weifang, 261000, China.
| |
Collapse
|
5
|
Hu Y, Xu Y, Gao J, Ling B, Pan S, Liu S, Hua T, Yang M. Integrated metabolomics and network pharmacology reveal the mechanisms of Xuebijing in counteracting sepsis-induced myocardial dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119729. [PMID: 40210177 DOI: 10.1016/j.jep.2025.119729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/11/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuebijing (XBJ) injection is a Traditional Chinese medicine (TCM) injection extracted and prepared using modern TCM formulation techniques. As a widely used treatment for critically ill patients, XBJ injection has shown significant therapeutic effects in clinical applications in China. It plays an indispensable role in sepsis-induced myocardial dysfunction (SIMD). However, its underlying mechanisms require further investigation. OBJECTIVE This study aims to investigate the cardioprotective effects of XBJ in sepsis and to elucidate its underlying mechanisms. METHODS Network pharmacology was used to predict the potential active components and core targets of XBJ against SIMD. Furthermore, animal models were used to verify its pharmacodynamics. Metabolomics was integrated to track the myocardial tissue metabolites from septic rats. Molecular docking, qRT-PCR, Western blot, and immunofluorescence were performed to investigate the mechanisms of action. RESULTS Network pharmacology predicted that the efficacy of XBJ is attributed to 104 active components and 178 targets. Metabolomics of myocardial tissue from CLP rats revealed that the key metabolic pathways included the tricarboxylic acid (TCA) cycle, pyrimidine metabolism, and purine metabolism. Five core active components of XBJ (quercetin, luteolin, rutin, β-sitosterol, and cryptotanshinone) can modulate interleukin-6 (IL-6), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (BCL2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and hypoxia-inducible factor 1-alpha (HIF-1α). Molecular docking analysis confirmed that the core components of XBJ have a strong affinity for these key targets. Additionally, qRT-PCR, Western blotting, and immunofluorescence results indicated that XBJ can reverse the expression of these targets, ameliorated energy metabolism dysregulation, and alleviated SIMD. CONCLUSION XBJ exerts protective effects in a rat model of sepsis-induced myocardial injury, by modulating energy metabolism pathways that regulate key SIMD-related targets (IL-6, EGFR, BCL2, PGC-1α, and HIF-1α), thereby improving myocardial energy metabolism and alleviating inflammatory responses.
Collapse
Affiliation(s)
- Yan Hu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Yang Xu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Jian Gao
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Bingrui Ling
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Sinong Pan
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Siying Liu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Tianfeng Hua
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China.
| | - Min Yang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
6
|
Zhang H, Zhang X, Chai Y, Wang Y, Zhang J, Chen X. Astrocyte-mediated inflammatory responses in traumatic brain injury: mechanisms and potential interventions. Front Immunol 2025; 16:1584577. [PMID: 40406119 PMCID: PMC12094960 DOI: 10.3389/fimmu.2025.1584577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Astrocytes play a pivotal role in the inflammatory response triggered by traumatic brain injury (TBI). They are not only involved in the initial inflammatory response following injury but also significantly contribute to Astrocyte activation and inflammasome release are key processes in the pathophysiology of TBI, significantly affecting the progression of secondary injury and long-term outcomes. This comprehensive review explores the complex triggering mechanisms of astrocyte activation following TBI, the intricate pathways controlling the release of inflammasomes from activated astrocytes, and the subsequent neuroinflammatory cascade and its multifaceted roles after injury. The exploration of these processes not only deepens our understanding of the neuroinflammatory cascade but also highlights the potential of astrocytes as critical therapeutic targets for TBI interventions. We then evaluate cutting-edge research aimed at targeted therapeutic approaches to modulate pro-inflammatory astrocytes and discuss emerging pharmacological interventions and their efficacy in preclinical models. Given that there has yet to be a relevant review elucidating the specific intracellular mechanisms targeting astrocyte release of inflammatory substances, this review aims to provide a nuanced understanding of astrocyte-mediated neuroinflammation in TBI and elucidate promising avenues for therapeutic interventions that could fundamentally change TBI management and improve patient outcomes. The development of secondary brain injury and long-term neurological sequelae. By releasing a variety of cytokines and chemokines, astrocytes regulate neuroinflammation, thereby influencing the survival and function of surrounding cells. In recent years, researchers have concentrated their efforts on elucidating the signaling crosstalk between astrocytes and other cells under various conditions, while exploring potential therapeutic interventions targeting these cells. This paper highlights the specific mechanisms by which astrocytes produce inflammatory mediators during the acute phase post-TBI, including their roles in inflammatory signaling, blood-brain barrier integrity, and neuronal protection. Additionally, we discuss current preclinical and clinical intervention strategies targeting astrocytes and their potential to mitigate neurological damage and enhance recovery following TBI. Finally, we explore the feasibility of pharmacologically assessing astrocyte activity post-TBI as a biomarker for predicting acute-phase neuroinflammatory changes.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yuhua Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
7
|
Zhang Y, Li Y, Xu Z, Xu L, Wang Y, Li N, Solek NC, Wang Y, Li B, Liu H. PPS-TLR7/8 agonist nanoparticles equip robust anticancer immunity by selectively prolonged activation of dendritic cells. Biomaterials 2025; 316:123032. [PMID: 39705927 DOI: 10.1016/j.biomaterials.2024.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Checkpoint inhibitor therapies do not benefit all patients, and adjuvants play a critical role in boosting immune responses for effective cancer immunotherapy. However, their systemic toxicity and suboptimal activation kinetics pose significant challenges. Here, this study presented a linker-based strategy to modulate the activation kinetics of Toll-like receptor 7/8 (TLR7/8) agonists delivered via poly (propylene sulfide) nanoparticles (PPS NPs). By covalently binding small molecule TLR7/8 agonists to PPS NPs with different linkers, enhanced therapeutic efficacy is achieved while abrogating systemic toxicity. These results showed that an alkyl linker selectively prolong the activation of DCs. It avoided the extensive activation of other APCs, favoring the limitation of immune-related toxicities. This strategy exhibited significant anti-tumor activity in alkyl linked nano-TLR7/8 agonists treatment alone, and cytokine and immune cell profiling provided evidence of prolonged immune cell activation in the tumor microenvironment, with evidence of an increase in the frequency of tumor antigen-specific CD8+ T cells. This linker-based approach offers a promising strategy to optimize the delivery of nano-TLR7/8 agonists for cancer immunotherapy, potentially advancing the field toward improved clinical outcomes.
Collapse
Affiliation(s)
- Yingxi Zhang
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Yicheng Li
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Zhaochu Xu
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Linyi Xu
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Yue Wang
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Ning Li
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China
| | - Nicholas C Solek
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Yongjun Wang
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada.
| | - Hongzhuo Liu
- Wuya college of innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
8
|
Zhang T, Li L, Huang S, Starodubtseva MN, Liu J. Anti-endothelial cell antibodies in pathogenesis of vasculitis. Front Immunol 2025; 16:1567293. [PMID: 40370444 PMCID: PMC12075250 DOI: 10.3389/fimmu.2025.1567293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Vasculitis is a group of syndromes characterized by inflammation, presence of autoantibodies and endothelial cells (ECs) damage, which lead to stenosis or occlusion of the vascular lumen. Anti-endothelial cell antibodies (AECAs) are a heterogeneous group of autoantibodies in vasculitis. AECAs bind to antigens and membrane-bound proteins of ECs, inducing inflammation, coagulation, and apoptosis. In this review, we discuss the pathological role of AECAs in different types of vasculitis. In addition, AECAs potentially induce alterations of ECs mechanical properties, and subsequently promotes angiogenic phenotypes in the occurrence of vasculitis.
Collapse
Affiliation(s)
- Tian Zhang
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Laboraotry for Future Industry in Gene Editing in Vascular Endothelial Cells of Universities of Shandong Province, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Liqun Li
- Department of Clinical Laboratory, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Shengshi Huang
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Laboraotry for Future Industry in Gene Editing in Vascular Endothelial Cells of Universities of Shandong Province, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Maria N. Starodubtseva
- Gomel State Medical University, Gomel, Belarus
- Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | - Ju Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Laboraotry for Future Industry in Gene Editing in Vascular Endothelial Cells of Universities of Shandong Province, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
9
|
Long Q, Song S, Xue J, Yu W, Zheng Y, Li J, Wu J, Hu X, Jiang M, Ye H, Zheng B, Wang M, Wu F, Li K, Gao Z, Zheng Y. The CD38 +HLA-DR + T cells with activation and exhaustion characteristics as predictors of severity and mortality in COVID-19 patients. Front Immunol 2025; 16:1577803. [PMID: 40370439 PMCID: PMC12074963 DOI: 10.3389/fimmu.2025.1577803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/02/2025] [Indexed: 05/16/2025] Open
Abstract
Background The COVID-19 pandemic remains a global health challenge. Severe cases often respond poorly to standard treatments, highlighting the necessity for novel therapeutic targets and early predictive biomarkers. Methods We utilized flow cytometry to analyze peripheral immune cells from healthy, bacterial pneumonia patients, and COVID-19 patients. The expansion of activated T cells (CD38+HLA-DR+), monocytes, and myeloid-derived suppressor cells (MDSCs) were detected and correlated with clinical outcomes to evaluate prognostic potential. The single-cell RNA sequencing (scRNA-seq) was applied to characterize the critical cell subset associated with prognosis and elucidate its phenotype in COVID-19. Results We revealed a significant increase in CD38+HLA-DR+ T cells in non-survivor COVID-19 patients, establishing them as an independent risk factor for 28-day mortality. The scRNA-seq analysis identified the CD38+HLA-DR+ T cell as a terminally differentiated, Treg-like subset exhibiting both activation and exhaustion characteristics. This subset presented the highest IL-6 and IL-10 mRNA levels among all T-cell subsets. Further functional analysis demonstrated its enhanced major histocompatibility complex class II (MHC-II) cross-signaling and correspondingly enriched cytoskeletal rearrangement processes. In addition, there was dysregulated NAD+ metabolism in CD38+HLA-DR+ T cells via scRNA-seq, accompanied by elevated adenosine and decreased NAD+ levels in serums from COVID-19 patients. Conclusions We identified the selective expansion of CD38+HLA-DR+ T cells as a novel prognostic indicator for COVID-19 outcomes. These cells' unique activated-exhausted phenotype, along with their impact on NAD+ metabolism, provides new insights into COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Jianbo Xue
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Yaolin Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Jiwei Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jing Wu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Xiaoyi Hu
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Mingzheng Jiang
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Hongli Ye
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Binghan Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Minghui Wang
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Fangfang Wu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Ke Li
- Department of Critical Care Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, China
| |
Collapse
|
10
|
Kamimura N, Ueda N, Kimura K, Nishikori A, Sato Y, Kishida H, Tanaka F. Reversible cerebral vasoconstriction syndrome in idiopathic multicentric Castleman disease under treatment with tocilizumab. BMJ Neurol Open 2025; 7:e000923. [PMID: 40297744 PMCID: PMC12035478 DOI: 10.1136/bmjno-2024-000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background Idiopathic multicentric Castleman disease (iMCD) is a rare polyclonal lymphoproliferative disorder characterised by systemic inflammation resulting from overproduction of interleukin 6 (IL-6). While iMCD primarily affects the lymph nodes and related tissues, it can also rarely involve the central nervous system. Case presentation We report the case of a 58-year-old female patient with at least a 3-year history of iMCD, who experienced acute thunderclap headaches due to reversible cerebral vasoconstriction syndrome (RCVS). RCVS occurred 3 months after initiating treatment with tocilizumab, a humanised anti-IL-6 receptor monoclonal antibody, and was accompanied by focal cortical subarachnoid haemorrhage (SAH). Elevated IL-6 levels were found in both serum and cerebrospinal fluid. MR angiography revealed multiple diffuse stenotic lesions in the bilateral middle and posterior cerebral arteries, which, along with bilateral cerebral oedema, resolved within 3 months. The diffuse nature of the cerebral vasospasm and the presence of bilateral brain oedema suggested that cerebral vasospasm was due to RCVS rather than SAH. Conclusions In patients with Castleman disease, RCVS may occur due to IL-6-dependent chronic cerebral vascular inflammation, either as a primary condition or as a complication of tocilizumab treatment.
Collapse
Affiliation(s)
- Naoya Kamimura
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Naohisa Ueda
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Katsuo Kimura
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Asami Nishikori
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Okayama, Japan
| | - Yasuharu Sato
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Okayama, Japan
| | - Hitaru Kishida
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
11
|
Xi Y, Zhou Z, Chang T, Dou G, Chu Z. Acute Macular Neuroretinopathy Mediated by COVID-19 Infection: Insights into its Clinical Features and Pathogenesis. FRONT BIOSCI-LANDMRK 2025; 30:26412. [PMID: 40302322 DOI: 10.31083/fbl26412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 05/02/2025]
Abstract
Acute macular neuroretinopathy (AMN) is a rare retinal condition that predominantly affects young females. The incidence of AMN increased significantly during the COVID-19 pandemic, thereby providing a unique opportunity to elucidate the etiology of this disease. In the present study, 24 articles reporting 59 patients were reviewed. The average age of the patients was 33.51 ± 14.02 years, ranging from 16 to 75 years, with females comprising 71.19% of the cases. The average duration of ocular symptoms post-infection was 8.22 ± 10.69 days, ranging from 4 to 150 days. This study investigated the potential pathogenesis of AMN, including the impact of COVID-19 on retinal neurovascular structure and function, immune-mediated inflammatory factor production, blood-retinal barrier disruption, and retinal microvascular damage, as well as potential clinical therapeutic interventions. This research provides a theoretical framework that can inform further investigations of AMN.
Collapse
Affiliation(s)
- Yixuan Xi
- College of Life Sciences, Northwestern University, 710069 Xi'an, Shaanxi, China
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi'an First Hospital, 710002 Xi'an, Shaanxi, China
| | - Ziyi Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
| | - Tianfang Chang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, China
| | - Zhaojie Chu
- Department of Ophthalmology, First Affiliated Hospital of Northwest University, Xi'an First Hospital, 710002 Xi'an, Shaanxi, China
- Shaanxi Institute of Ophthalmology, 710021 Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW, Wei J. Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduct Target Ther 2025; 10:112. [PMID: 40234407 PMCID: PMC12000524 DOI: 10.1038/s41392-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Cytokine storm (CS) is a severe systemic inflammatory syndrome characterized by the excessive activation of immune cells and a significant increase in circulating levels of cytokines. This pathological process is implicated in the development of life-threatening conditions such as fulminant myocarditis (FM), acute respiratory distress syndrome (ARDS), primary or secondary hemophagocytic lymphohistiocytosis (HLH), cytokine release syndrome (CRS) associated with chimeric antigen receptor-modified T (CAR-T) therapy, and grade III to IV acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. The significant involvement of the JAK-STAT pathway, Toll-like receptors, neutrophil extracellular traps, NLRP3 inflammasome, and other signaling pathways has been recognized in the pathogenesis of CS. Therapies targeting these pathways have been developed or are currently being investigated. While novel drugs have demonstrated promising therapeutic efficacy in mitigating CS, the overall mortality rate of CS resulting from underlying diseases remains high. In the clinical setting, the management of CS typically necessitates a multidisciplinary team strategy encompassing the removal of abnormal inflammatory or immune system activation, the preservation of vital organ function, the treatment of the underlying disease, and the provision of life supportive therapy. This review provides a comprehensive overview of the key signaling pathways and associated cytokines implicated in CS, elucidates the impact of dysregulated immune cell activation, and delineates the resultant organ injury associated with CS. In addition, we offer insights and current literature on the management of CS in cases of FM, ARDS, systemic inflammatory response syndrome, treatment-induced CRS, HLH, and other related conditions.
Collapse
Grants
- 82070217, 81873427 National Natural Science Foundation of China (National Science Foundation of China)
- 82100401 National Natural Science Foundation of China (National Science Foundation of China)
- 81772477, 81201848, 82473220 National Natural Science Foundation of China (National Science Foundation of China)
- 82330010,81630010,81790624 National Natural Science Foundation of China (National Science Foundation of China)
- National High Technology Research and Development Program of China, Grant number: 2021YFA1101500.
- The Hubei Provincial Natural Science Foundation (No.2024AFB050)
- Project of Shanxi Bethune Hospital, Grant Numbber: 2023xg02); Fundamental Research Program of Shanxi Province, Grant Numbber: 202303021211224
- The Key Scientific Research Project of COVID-19 Infection Emergency Treatment of Shanxi Bethune Hospital (2023xg01), 2023 COVID-19 Research Project of Shanxi Provincial Health Commission (No.2023XG001, No. 2023XG005), Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2023XM003), Cancer special Fund research project of Shanxi Bethune Hospital (No. 2020-ZL04), and External Expert Workshop Fund Program of Shanxi Provincial Health Commission(Proteomics Shanxi studio for Huanghe professor)
- Fundamental Research Program of Shanxi Province(No.202303021221192); 2023 COVID-19 Emergency Project of Shanxi Health Commission (Nos.2023XG001,2023XG005)
Collapse
Affiliation(s)
- Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liping Yang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Janevska M, Naessens E, Verhasselt B. Impact of SARS-CoV-2 Wuhan and Omicron Variant Proteins on Type I Interferon Response. Viruses 2025; 17:569. [PMID: 40285011 PMCID: PMC12031613 DOI: 10.3390/v17040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
SARS-CoV-2 has demonstrated a remarkable capacity for immune evasion. While initial studies focused on the Wuhan variant and adaptive immunity, later emerging strains such as Omicron exhibit mutations that may alter their immune-modulatory properties. We performed a comprehensive review of immune evasion mechanisms associated with SARS-CoV-2 viral proteins to focus on the evolutionary dynamics of immune modulation. We systematically analyzed and compared the impact of all currently known Wuhan and Omicron SARS-CoV-2 proteins on type I interferon (IFN) responses using a dual-luciferase reporter assay carrying an interferon-inducible promoter. Results revealed that Nsp1, Nsp5, Nsp14, and ORF6 are potent type I IFN inhibitors conserved across Wuhan and Omicron strains. Notably, we identified strain-specific differences, with Nsp6 and Spike proteins exhibiting enhanced IFN suppression in Omicron, whereas the Envelope protein largely retained this function. To extend these findings, we investigated selected proteins in primary human endothelial cells and also observed strain-specific differences in immune response with higher type I IFN response in cells expressing the Wuhan strain variant, suggesting that Omicron's adaptational mutations may contribute to a damped type I IFN response in the course of the pandemic's trajectory.
Collapse
Affiliation(s)
- Marija Janevska
- Department of Diagnostic Sciences, Ghent University, B9000 Ghent, Belgium;
| | - Evelien Naessens
- Department of Laboratory Medicine, Ghent University Hospital, B9000 Ghent, Belgium;
| | - Bruno Verhasselt
- Department of Diagnostic Sciences, Ghent University, B9000 Ghent, Belgium;
- Department of Laboratory Medicine, Ghent University Hospital, B9000 Ghent, Belgium;
| |
Collapse
|
14
|
Hosseini F, Azadmehr A, Saleki K, Ahmadifard M, Oladnabi M, Shirzad M, Javanian M. Neuropilin-1 as a Neuroinflammatory Entry Factor for SARS-CoV-2 Is Attenuated in Vaccinated COVID-19 Patients: A Case-Control Study. Health Sci Rep 2025; 8:e70630. [PMID: 40196385 PMCID: PMC11973440 DOI: 10.1002/hsr2.70630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Background and Aim COVID-19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as a pandemic infectious disease. So far, it has been known that this virus uses several receptors to enter the host cell, one of which is neuropilin-1 (NRP1). Also, one of the main causes of clinical manifestations, severity of disease, and mortality of patients is cytokine storm syndrome, one of these cytokines being interleukin (IL)-6. Our aim was to study the level of expression of NRP1 and IL-6 genes in COVID-19 patients by using peripheral blood mononuclear cells (PBMCs). Materials and Methods Our study population included the test group (80 patients with COVID-19) and the control group (30 healthy individuals). Venous blood was taken from all subjects. After isolating PBMCs from blood using Ficoll, RNA was extracted. Then, cDNA synthesis, the expression level of NRP1 and IL-6 compared to GAPDH housekeeping gene was measured by real-time PCR. Results The level of NRP1 gene expression was increased significantly in COVID-19 different groups compared to the control group. Surprisingly, it was observed that the amount of NRP1 gene decreased in the vaccinated group compared to nonvaccinated groups. IL-6 gene expression was also significantly increased in all groups except vaccinated patients compared to the control group. Also, the results indicated that there was a positive and statistically considerable relationship between IL-6 expression level and NRP1 expression level (p = 0.03). Conclusion The significant increase in the expression of NRP1 and IL-6 genes in COVID-19 patients, especially in moderate and severe cases, indicates their potential involvement in the progression of the disease, which may serve as biomarkers of disease severity. Also, since these genes play an important role in causing severe inflammation, cytokine storm, and immunopathological complications of COVID-19, further investigations maybe needed to achieve therapeutic goals to control COVID-19 and similar diseases.
Collapse
Affiliation(s)
- Faezeh Hosseini
- Student Research Committee, Babol University of Medical SciencesBabolIran
- Cellular and Molecular Biology Research CenterHealth Research Institute, Babol University of Medical SciencesBabolIran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research CenterHealth Research Institute, Babol University of Medical SciencesBabolIran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical SciencesBabolIran
- USERN OfficeBabol University of Medical SciencesBabolIran
- Department of E‐Learning in Medical SciencesFaculty of Medical Education and Learning Technologies, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mohamadreza Ahmadifard
- Cellular and Molecular Biology Research CenterHealth Research Institute, Babol University of Medical SciencesBabolIran
| | - Morteza Oladnabi
- Ischemic Disorders Research Center, Golestan University of Medical SciencesGorganIran
| | - Moein Shirzad
- Cellular and Molecular Biology Research CenterHealth Research Institute, Babol University of Medical SciencesBabolIran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical SciencesBabolIran
| |
Collapse
|
15
|
Kellum CE, Kelly GC, Pollock JS. Ripple Effects of Early Life Stress on Vascular Health. Hypertension 2025; 82:549-560. [PMID: 39882616 DOI: 10.1161/hypertensionaha.124.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The term early life stress encompasses traumatic events occurring before the age of 18 years, such as physical abuse, verbal abuse, household dysfunctions, sexual abuse, childhood neglect, child maltreatment, and adverse childhood experiences. Adverse psychological experiences in early life are linked to enduring effects on mental and physical health in adulthood. In this review, we first describe the effects and potential mechanisms of early life stress on the components of the vasculature. Next, we dive into the impact of early life stress on the vasculature across the lifespan through alterations of the epigenetic landscape. Finally, we consolidate the critical gaps in knowledge for focusing future research including the potential for resilience in combatting the impact of early life stress on vascular health.
Collapse
Affiliation(s)
- Cailin E Kellum
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| | - Gillian C Kelly
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| |
Collapse
|
16
|
Pawluk H, Woźniak A, Tafelska-Kaczmarek A, Kosinska A, Pawluk M, Sergot K, Grochowalska R, Kołodziejska R. The Role of IL-6 in Ischemic Stroke. Biomolecules 2025; 15:470. [PMID: 40305179 PMCID: PMC12024898 DOI: 10.3390/biom15040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
The pathophysiology of a stroke is a complex process involving oxidative stress and inflammation. As a result of the actions of reactive oxygen species (ROS), not only does vascular damage occur, but the brain tissue is also damaged. It is a dynamic process, induced by a cellular-molecular immune response, focused on the development of an immediate reaction. During ischemia, inflammatory mediators are released, among which IL-6 plays a particularly important role in the acute phase of a stroke. Recently, a lot of attention has been devoted to this pleiotropic pro-inflammatory cytokine, which enhances the migration of leukocytes and is controlled by chemokines and the expression of adhesion handlers. The impact of IL-6 on the severity of neurological treatment and on patient prognosis in AIS is of interest to many researchers. More and more data indicate that it may be a reliable prognostic factor in strokes.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (R.K.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (R.K.)
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
| | - Agnieszka Kosinska
- Centre for Languages & International Education, University College London, 26 Bedford Way, London WC1H 0AP, UK;
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (R.K.)
| | - Krzysztof Sergot
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland;
| | - Renata Grochowalska
- Laboratory of Cell Biochemistry and Biology, Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Szafran 1, 65-516 Zielona Góra, Poland;
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (R.K.)
| |
Collapse
|
17
|
Fu Y, Gong T, Loughran PA, Li Y, Billiar TR, Liu Y, Wen Z, Fan J. Roles of TLR4 in macrophage immunity and macrophage-pulmonary vascular/lymphatic endothelial cell interactions in sepsis. Commun Biol 2025; 8:469. [PMID: 40119011 PMCID: PMC11928643 DOI: 10.1038/s42003-025-07921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
In sepsis, acute lung injury (ALI) is a severe complication and a leading cause of death, involving complex mechanisms that include cellular and molecular interactions between immune and lung parenchymal cells. In recent decades, the role of Toll-like receptor 4 (TLR4) in mediating infection-induced inflammation has been extensively studied. However, how TLR4 facilitates interactions between innate immune cells and lung parenchymal cells in sepsis remains to be fully understood. This study aims to explore the role of TLR4 in regulating macrophage immunity and metabolism in greater depth. It also seeks to reveal how changes in these processes affect the interaction between macrophages and both pulmonary endothelial cells (ECs) and lymphatic endothelial cells (LECs). Using TLR4 knockout mice and the combined approaches of single-cell RNA sequencing and experimental validation, we demonstrate that in sepsis, TLR4-deficient macrophages upregulate Abca1, enhance cholesterol efflux, and reduce glycolysis, promoting M2 polarization and attenuating inflammation. These metabolic and phenotypic shifts significantly affect their interactions with pulmonary ECs and LECs. Mechanistically, we uncovered that TLR4 operates through multiple pathways in endothelial dysfunction: macrophage TLR4 mediates inflammatory damage to ECs/LECs, while endothelial TLR4 both directly sensitizes cells to lipopolysaccharide-induced injury and determines their susceptibility to macrophage-derived inflammatory signals. These findings reveal the complex role of TLR4 in orchestrating both immune-mediated and direct endothelial responses during sepsis-induced ALI, supporting that targeting TLR4 on multiple cell populations may present an effective therapeutic strategy.
Collapse
Affiliation(s)
- Yu Fu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, China
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, China
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
18
|
Sun YQ, Huang XX, Guo W, Hong C, Ji J, Zhang XY, Yang J, Hu G, Sun XL. IFN-γ signaling links ventriculomegaly to choroid plexus and ependyma dysfunction following maternal immune activation. J Neuroinflammation 2025; 22:83. [PMID: 40089736 PMCID: PMC11909946 DOI: 10.1186/s12974-025-03409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Maternal immune activation (MIA) is a principal environmental risk factor contributing to autism spectrum disorder (ASD) and can be causally linked to ASD symptoms. In our study, we found that MIA triggered by poly (I: C) injection caused ventriculomegaly in offspring due to the dysfunction of the choroid plexus (Chp) and ependyma. We subsequently identified a sustained enhancement of interferon-γ (IFN-γ) signaling in the brain and serum of MIA offspring. Further study revealed that increased IFN-γ signaling could disrupt the barrier function of Chp epithelial cells by activating macrophages, and suppress the differentiation of primary ependymal cells via the signal transducer and activator of transcription 1/3 signaling. The effects of MIA on the offspring were mitigated by administration of IFNGR-blocking antibody in pregnant dams, while systemic maternal administration of IFN-γ was sufficient to mimic the effect of MIA. Overall, our findings revealed that ventriculomegaly caused by IFN-γ signaling could be a critical factor in compromising fetal brain development in MIA-induced ASD and provide a mechanistic framework for the association between maternal inflammation and abnormal development of ventricles in the offspring.
Collapse
Affiliation(s)
- Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Guo
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Chen Hong
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Gang Hu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
19
|
Chuang CC, Liu YC, Jhang WE, Wei SS, Ou YY. RAG_MCNNIL6: A Retrieval-Augmented Multi-Window Convolutional Network for Accurate Prediction of IL-6 Inducing Epitopes. J Chem Inf Model 2025; 65:2685-2694. [PMID: 39967508 PMCID: PMC11898070 DOI: 10.1021/acs.jcim.4c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Interleukin-6 (IL-6) is a critical cytokine involved in immune regulation, inflammation, and the pathogenesis of various diseases, including autoimmune disorders, cancer, and the cytokine storm associated with severe COVID-19. Identifying IL-6 inducing epitopes, the short peptide fragments that trigger IL-6 production, is crucial for developing epitope-based vaccines and immunotherapies. However, traditional methods for epitope prediction often lack accuracy and efficiency. This study presents RAG_MCNNIL6, a novel deep learning framework that integrates Retrieval-augmented generation (RAG) with multiwindow convolutional neural networks (MCNNs) for accurate and rapid prediction of IL-6 inducing epitopes. RAG_MCNNIL6 leverages ProtTrans, a state-of-the-art pretrained protein language model, to generate rich embedding representations of peptide sequences. By incorporating a RAG-based similarity retrieval and embedding augmentation strategy, RAG_MCNNIL6 effectively captures both local and global sequence patterns relevant for IL-6 induction, significantly improving prediction performance compared to existing methods. We demonstrate the superior performance of RAG_MCNNIL6 on benchmark data sets, highlighting its potential for advancing research and therapeutic development for IL-6-mediated diseases.
Collapse
Affiliation(s)
- Cheng-Che Chuang
- Department
of Computer Science and Engineering, Yuan
Ze University, Chung-Li 32003, Taiwan
| | - Yu-Chen Liu
- Department
of Computer Science and Engineering, Yuan
Ze University, Chung-Li 32003, Taiwan
| | - Wei-En Jhang
- Department
of Computer Science and Engineering, Yuan
Ze University, Chung-Li 32003, Taiwan
| | - Sin-Siang Wei
- Department
of Computer Science and Engineering, Yuan
Ze University, Chung-Li 32003, Taiwan
| | - Yu-Yen Ou
- Department
of Computer Science and Engineering, Yuan
Ze University, Chung-Li 32003, Taiwan
- Graduate
Program in Biomedical Informatics, Yuan
Ze University, Chung-Li 32003, Taiwan
| |
Collapse
|
20
|
Barker K, Marco T, Husnain M, Katsanis E. Addition of Phosphorous and IL6 to m-EASIX Score Improves Detection of ICANS and CRS, as Well as CRS Progression. Cancers (Basel) 2025; 17:918. [PMID: 40149255 PMCID: PMC11940476 DOI: 10.3390/cancers17060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Introduction: Cytokine release syndrome (CRS) and immune cell-associated neurotoxicity syndrome (ICANS) are both serious complications of CAR-T therapy associated with endothelial dysfunction, prompting prior use of a modified version of the endothelial activation and stress index (m-EASIX) to predict the occurrence of severe ICANS and CRS. Previous studies have linked both hypophosphatemia and elevated IL6 levels to CRS and ICANS. Our study aimed to enhance the early prediction of both syndromes by integrating phosphorous and IL-6 both together and separately into the m-EASIX score. Methods: Forty-two patients with non-Hodgkin's lymphoma presenting for CAR-T treatment were used to generate three variations in the m-EASIX score, assessing performance for the clinically actionable time points of day +0 through day +3. Results: The addition of phosphorous through the P-m-EASIX improved the predictive capabilities for the occurrence of ICANS, most notably on day +1 (AUC 89.6%; p = 0.0090, OR of 2.23; p = 0.0096) compared to the m-EASIX (AUC 80.8%; p = 0.0047, OR 1.72; p = 0.0046). The P-m-EASIX also showed enhanced predictive capabilities for the occurrence of CRS, with peak discriminatory function on day +3 (AUC 92.0%; p = <0.0001, OR 2.21; p = 0.0014). The addition of IL6 in the IL6-m-EASIX showed the highest discriminatory capacity for the prediction of CRS progression to grade ≥ 2 with peak function on day +3 (AUC 89.7%; p = 0.0040, OR 1.57; p = 0.031). Conclusions: Incorporating phosphorus levels into the m-EASIX score offered a cost-effective and straightforward method to improve the prediction of CAR-T toxicities. Larger-scale studies assessing the effectiveness of including phosphorus and IL-6 in the m-EASIX score to mitigate complications associated with CAR-T therapy are warranted.
Collapse
Affiliation(s)
- Kenneth Barker
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Tom Marco
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Muhammad Husnain
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Department of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ 85719, USA
| | - Emmanuel Katsanis
- Department of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ 85719, USA
- Departments of Immunobiology, Medicine, and Pathology, University of Arizona, Tucson, AZ 85724, USA
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
21
|
Chen X, Wang Y, Xu T, Liu H, Ye X, Wang P, Qin X, Yang S, Ning W, Zeng H, Xu L, Fang M, Tang J, Ren Y, Chen Y, Xia N, Liu C, Liu X, Luo W. A bioengineered antibody conjugate reshape dendritic cell viability for immune-tolerance modulation. CHEMICAL ENGINEERING JOURNAL 2025; 507:160431. [DOI: 10.1016/j.cej.2025.160431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
22
|
Yao C, Dong Y, Zhou H, Zou X, Alhaskawi A, Ezzi SHA, Wang Z, Lai J, Kota VG, Abdulla MHAH, Liu Z, Abdalbary SA, Alenikova O, Lu H. COVID-19 and acute limb ischemia: latest hypotheses of pathophysiology and molecular mechanisms. J Zhejiang Univ Sci B 2025; 26:333-352. [PMID: 40274383 PMCID: PMC12021539 DOI: 10.1631/jzus.b2300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/01/2024] [Indexed: 04/26/2025]
Abstract
Coronavirus disease 2019 (COVID-19) is a multi-system disease that can lead to various severe complications. Acute limb ischemia (ALI) has been increasingly recognized as a COVID-19-associated complication that often predicts a poor prognosis. However, the pathophysiology and molecular mechanisms underlying COVID-19-associated ALI remain poorly understood. Hypercoagulability and thrombosis are considered important mechanisms, but we also emphasize the roles of vasospasm, hypoxia, and acidosis in the pathogenesis of the disease. The angiotensin-converting enzyme 2 (ACE2) pathway, inflammation, and platelet activation may be important molecular mechanisms underlying these pathological changes induced by COVID-19. Furthermore, we discuss the hypotheses of risk factors for COVID-19-associated ALI from genetic, age, and gender perspectives based on our analysis of molecular mechanisms. Additionally, we summarize therapeutic approaches such as use of the interleukin-6 (IL-6) blocker tocilizumab, calcium channel blockers, and angiotensin-converting enzyme inhibitors, providing insights for the future treatment of coronavirus-associated limb ischemic diseases.
Collapse
Affiliation(s)
- Chengjun Yao
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanzhao Dong
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haiying Zhou
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaodi Zou
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Ahmad Alhaskawi
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zewei Wang
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingtian Lai
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Vishnu Goutham Kota
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | - Zhenfeng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Sahar Ahmed Abdalbary
- Department of Orthopaedic Physical Therapy, Faculty of Physical Therapy, Nahda University, Beni Suef 2711860, Egypt
| | - Olga Alenikova
- Republic Scientific Practical Center of Neurology and Neurosurgery, Ministry of Health of the Republic of Belarus, Minsk 220004, Belarus
| | - Hui Lu
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
23
|
Yu D, Liu J, Song X, Ao Y, Li X, Han Y. Analysis of the inflammatory storm response and heparin binding protein levels for the diagnosis and prognosis of sepsis-associated encephalopathy. Eur J Med Res 2025; 30:116. [PMID: 39966958 PMCID: PMC11834667 DOI: 10.1186/s40001-025-02369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a complication of impaired neurologic function during the development of sepsis. Its occurrence is closely related to severe systemic infection. The increase of serum Interleukin 6 kit and other inflammatory cytokines has certain clinical significance in the diagnosis of sepsis, However, there is no research at home or abroad indicating whether the high expression of related inflammatory cytokines (inflammatory cytokine storm, ICS) is valuable for the diagnosis and prognosis of SAE patients. OBJECTIVES The aim of this study was to analyze serum inflammatory cytokines 6 kit [IL-2/4/6/10, TNF-α, and gamma interferon (IFN-γ)], heparin-binding protein (HBP), and serum cholinesterase levels and their clinical significance in septic patients. In this study, we defined the values of inflammatory storm (IL-6 > 5000 pg/ml, IL-10 > 1000 pg/ml, and HBP > 300 ng/ml) to analyze the diagnostic value and 28-day prognostic predictive ability of inflammatory cytokine storm and the severity score in SAE patients. METHODS A total of 140 patients with sepsis in the ICU and EICU of the Lianyungang First People's Hospital were included in the present study from October 2021 to March 2023. Based on the Diagnostic criteria for SAE, the 140 cases were divided into 62 cases in the SAE group and 78 cases in the non-SAE group. On admission to the ICU/EICU, the patients gender, age, vital signs, and serum levels of various cytokines were recorded. The Glasgow Coma Scale (GCS), Sequential Organ Failure Scale (SOFA), and Acute Physiological and Chronic Health Score II (APACHE-II) scores were also assessed to analyze the risk cytokines for the occurrence of SAE. RESULTS The age, Sofa score, APACHE-II score, 28-day mortality rate, serological cellular inflammatory cytokines (IL-2/6/10, INF-α, and interferon-gamma), HBP were significantly higher in the SAE group than in the non-SAE group (P < 0.05). In addition, the GCS score and serum cholinesterase levels in the SAE group were lower than in the non-SAE group (P < 0.05). Subsequently, Multi-factor logistic regression analysis revealed that ultra-high IL-6 (> 5000 pg/ml), IL-10 (> 1000 pg/ml), and HBP (> 300 ng/ml) levels and elevated SOFA and APACHE-II scores were risk cytokines for the development of SAE (P < 0.05). 28-day mortality was significantly higher in patients in the SAE group and in the IL-6 > 5000 pg/ml group compared to patients in the USAE and IL-6 < 5000 pg/ml groups(P < 0.001).The four screened predictors of HBP > 300 ng/ml, IL-6 > 5000 pg/ml, decreased GCS score, and decreased APACHEII score were combined into a new predictive data model (risk score).In the SAE group, patients with high risk scores had a higher 28-day mortality rate compared with the low risk score group (P < 0.001). CONCLUSIONS The occurrence of SAE is closely correlated with age, concomitant diabetes, SOFA score, APACHE II score, serum cytosolic inflammatory cytokine levels (IL-2/6/10, TNF-α, and IFN-γ), HBP, and serum cholinesterase levels. In addition, inflammatory storms are associated with the mechanism of SAE, and high expression levels of the inflammatory cytokines IL-6 > 5000 pg/ml, IL-10 > 1000 pg/ml, and HBP > 300 ng/ml in patients with sepsis contribute to the early diagnosis of SAE. In addition, IL-6 > 5000 pg/ml was also associated with an increase in 28-day mortality (P < 0.05), suggesting that the level of inflammatory storms may be related to the mechanism of sepsis-related SAE and 28-day mortality. According to the LASSO results, when SAE patients admitted to the intensive care unit satisfy HBP > 300 ng/ml, IL6 > 5000 pg/ml, decreased GCS score, and increased APACHEII score, it suggests that the patient's 28-day mortality rate is higher, and it also validates that inflammatory storm can be used as a predictor of prognosis for SAE patients.
Collapse
Affiliation(s)
- Dian Yu
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
- Department of Critical Care Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Emergency and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Jun Liu
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xiaoyun Song
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yongfeng Ao
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xiaomin Li
- Department of Emergency and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yi Han
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China.
- Department of Critical Care Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
24
|
Dong H, He Z, Cai S, Ma H, Su L, Li J, Yang H, Xie R. Methylprednisolone substituted lipid nanoparticles deliver C3 transferase mRNA for combined treatment of spinal cord injury. J Nanobiotechnology 2025; 23:98. [PMID: 39923070 PMCID: PMC11807324 DOI: 10.1186/s12951-025-03153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025] Open
Abstract
Spinal cord injury (SCI), characterized by the disruption of neural pathways and an increase in inflammatory cell infiltration, leads to profound and lasting neurological deficits, with a high risk of resulting in permanent disability. Currently, the therapeutic landscape for SCI is notably sparse, with limited effective treatment options available. Methylprednisolone (MP), a widely used clinical anti-inflammatory agent for SCI, requires administration in high doses that are associated with significant adverse effects. In this study, we introduce an innovative approach by substituting cholesterol with MP to engineer a novel Lipid Nanoparticle (MP-LNP). This strategy aims to enhance the localization and concentration of MP at the injury site, thereby amplifying its therapeutic efficacy while mitigating systemic side effects. Furthermore, we explore the integration of C3 transferase mRNA into MP-LNPs. C3 transferase, a potent inhibitor of the RhoA pathway, has shown promise in facilitating neurological recovery in animal models of SCI and is currently being evaluated in clinical trials. The novel formulation, MP-LNP-C3, is designed for direct administration to the injury site during decompression surgery, offering a targeted therapeutic modality for SCI. Our findings reveal several significant advantages of this approach: Firstly, the incorporation of C3 transferase mRNA into MP-LNPs does not compromise the structural integrity of the nanoparticles, ensuring efficient mRNA expression within the spinal cord. Secondly, the MP-LNP formulation effectively attenuates inflammation and reduces the adverse effects associated with high-dose MP treatment in the acute phase of SCI. Lastly, MP-LNP-C3 demonstrates notable neuroprotective properties and promotes enhanced recovery of motor function in SCI mouse models. Together, these results underscore the potential of this innovative LNP-based therapy as a promising avenue for advancing the treatment of clinical SCI.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Neurosurgery, National Center for Neurological Disorders, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zongxing He
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shiyi Cai
- Department of Neurosurgery, National Center for Neurological Disorders, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haiqiang Ma
- Department of Neurosurgery, National Center for Neurological Disorders, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lili Su
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Jianfeng Li
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China.
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Huiying Yang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Rong Xie
- Department of Neurosurgery, National Center for Neurological Disorders, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
25
|
Khaing W, Lau SH, Thein TL, Tan NS, Alonso S, Vasoo S, Chia PY, Lye DCB, Leo YS, Chow VTK. Elevated Plasma Angiopoietin-like 4 Protein Levels in Adult Patients with Dengue. Viruses 2025; 17:226. [PMID: 40006981 PMCID: PMC11861331 DOI: 10.3390/v17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Dengue virus infection can cause severe complications due to vascular leakage. Angiopoietin-like protein 4 (ANGPTL4) regulates vascular permeability, but its role in dengue pathogenesis is unclear. This study investigated the association between plasma ANGPTL4 levels and dengue severity in Singapore adults. Plasma samples from 48 dengue patients (24 severe and 24 non-severe) during acute and convalescent phases were selected from the prospective COhort study on progression of DENgue severity in Singapore adults (CODEN) cohort. The CODEN was conducted at the National Centre for Infectious Diseases, Tan Tock Seng Hospital, from June 2016 to January 2020. ANGPTL4 levels were measured and compared to 152 healthy controls. Logistic regression assessed the relationship between plasma ANGPTL4 concentrations and disease severity. There were no statistically significant differences in ANGPTL4 levels between severe and non-severe dengue patients during acute (677.4 vs. 909.1 pg/mL, p = 0.4) or convalescent phases (793.7 vs. 565.6 pg/mL, p = 0.96). Plasma ANGPTL4 levels were significantly elevated during acute dengue (4634.3 pg/mL) versus healthy controls (907.4 pg/mL), declining during convalescence. Compared to the lowest tertile, the adjusted odds ratios for severe dengue were 0.36 (95%CI: 0.08-1.65, p = 0.190) for medium tertile and 0.57 (95%CI: 0.13-2.49, p = 0.456) for high tertile. Among patients with high ANGPTL4 levels (>5000 pg/mL), 36.4% developed severe complications, including significant plasma leakage. Plasma ANGPTL4 levels were significantly higher in dengue patients than controls, suggesting its potential as a biomarker, which warrants future detailed investigations. Larger prospective studies with serial sampling, including pediatric populations, may clarify the role of ANGPTL4 in severe dengue.
Collapse
Affiliation(s)
- Win Khaing
- National Centre for Infectious Diseases, Singapore 308442, Singapore; (W.K.); (T.-L.T.); (S.V.); (P.Y.C.); (D.C.B.L.)
| | - Suk Hiang Lau
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (S.H.L.); (S.A.)
| | - Tun-Linn Thein
- National Centre for Infectious Diseases, Singapore 308442, Singapore; (W.K.); (T.-L.T.); (S.V.); (P.Y.C.); (D.C.B.L.)
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Sylvie Alonso
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (S.H.L.); (S.A.)
| | - Shawn Vasoo
- National Centre for Infectious Diseases, Singapore 308442, Singapore; (W.K.); (T.-L.T.); (S.V.); (P.Y.C.); (D.C.B.L.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Po Ying Chia
- National Centre for Infectious Diseases, Singapore 308442, Singapore; (W.K.); (T.-L.T.); (S.V.); (P.Y.C.); (D.C.B.L.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - David Chien Boon Lye
- National Centre for Infectious Diseases, Singapore 308442, Singapore; (W.K.); (T.-L.T.); (S.V.); (P.Y.C.); (D.C.B.L.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, Singapore 308442, Singapore; (W.K.); (T.-L.T.); (S.V.); (P.Y.C.); (D.C.B.L.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (S.H.L.); (S.A.)
| |
Collapse
|
26
|
Qin Y, Liao S, Sun J, Ye H, Li J, Pan J, He J, Xia Z, Shao Y. RECK as a Potential Crucial Molecule for the Targeted Treatment of Sepsis. J Inflamm Res 2025; 18:1787-1813. [PMID: 39931174 PMCID: PMC11809362 DOI: 10.2147/jir.s501856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Reversion inducing cysteine rich protein with kazal motifs (RECK), a Kazal motif-containing protein, regulates pro-inflammatory cytokines production, migration of inflammatory cells, vascular endothelial growth factor (VEGF) and Wnt pathways and plays critical roles in septic inflammatory storms and vascular endothelial dysfunction. Recently, RECK has been defined as the negative regulator of adisintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs), which are both membrane "molecular scissors" and aggravate the poor prognosis of sepsis. To better understand the roles of RECK and the related mechanisms, we make here a systematic and in-depth review of RECK. We first summarize the findings on structural characteristics of RECK protein and the regulation at the transcription, post-transcription, or protein level of RECK. Then, we discuss the roles of RECK in inflammation, infection, and vascular injury by focusing on the RECK function on ADAMs and MMPs, as well as the pathways of VEGF, WNT, angiopoietin, and notch signaling. In conclusion, RECK participation as a guardian in the development of sepsis provides insight into the strategies of precisely intervening in RECK dysregulationfor the treatment of sepsis.
Collapse
Affiliation(s)
- Yuting Qin
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Shuanglin Liao
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Jianbo Sun
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Huiyun Ye
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Jiafu Li
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Jiahui Pan
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Junbing He
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Jieyang, Guangdong, People’s Republic of China
| | - Zhengyuan Xia
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, People’s Republic of China
| | - Yiming Shao
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
- The Key Laboratory of Sepsis Translational Medicine, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| |
Collapse
|
27
|
Yang C, Lei C, Jing G, Xia Y, Zhou H, Wu D, Zuo J, Gong H, Wang X, Dong Y, Aidebaike D, Wu X, Song X. Erbin Regulates Tissue Factors Through Ras/Raf Pathway in Coagulation Disorders in Sepsis. J Inflamm Res 2025; 18:1739-1754. [PMID: 39931168 PMCID: PMC11808216 DOI: 10.2147/jir.s493093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Background Sepsis, as a clinically critical disease, usually induces coagulation disorders. It has been reported that ERBB2 Interacting Protein (Erbin) is involved in the development of various inflammatory diseases, and macrophages are involved in the regulation of coagulation disorders in sepsis. However, the role of Erbin in coagulation disorders in sepsis and the relationship between Erbin and macrophage regulation of coagulation function are still unclear. Methods At the cellular level, macrophages were treated with lipopolysaccharide (LPS) or MEK inhibitor (PD98059), protein expression levels were detected by Western blot, co-immunoprecipitation (Co-IP), and immunofluorescence, mRNA expression levels were detected by quantitative real-time polymerase chain reaction (qPCR), and the concentration of tissue factor (TF) in cell supernatant was detected by enzyme linked immunosorbent assay (ELISA). At the animal level, the cecal ligation and perforation (CLP) model was constructed in mice, and the inflammatory response and coagulation disorder of mice were observed by hematoxylin-eosin (HE) staining, immunohistochemistry, ELISA, and automatic hemagglutination analyzer. The protein and mRNA expression level were detected by Western blot and qPCR. Pearson linear correlation analysis was used to analyze the correlation between the inflammation index and the coagulation function index. Results We confirmed that the Erbin is involved in the regulation of coagulation function by macrophages and plays a role in the coagulation disorder of sepsis. In vivo studies have shown that mice with Erbin deletion have more obvious enhanced coagulation function, and in vitro studies have shown that Erbin knockout mediated macrophage secretion of TF by activating the Ras/Raf pathway. Conclusion Erbin reduces the coagulation activation by inhibiting TF release from macrophages.
Collapse
Affiliation(s)
- Cheng Yang
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| | - Chuntian Lei
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| | - Guoqing Jing
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| | - Yun Xia
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| | - Huimin Zhou
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| | - Die Wu
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| | - Jing Zuo
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| | - Hailong Gong
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| | - Xing Wang
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| | - Yingyue Dong
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| | - Delida Aidebaike
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People’s Republic of China
| | - Xuemin Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430062, People’s Republic of China
| |
Collapse
|
28
|
Yang J, Yang L, Wang Y, Huai L, Shi B, Zhang D, Xu W, Cui D. Interleukin-6 related signaling pathways as the intersection between chronic diseases and sepsis. Mol Med 2025; 31:34. [PMID: 39891057 PMCID: PMC11783753 DOI: 10.1186/s10020-025-01089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Sepsis is associated with immune dysregulated and organ dysfunction due to severe infection. Clinicians aim to restore organ function, rather than prevent diseases that are prone to sepsis, resulting in high mortality and a heavy public health burden. Some chronic diseases can induce sepsis through inflammation cascade reaction and Cytokine Storm (CS). Interleukin (IL)-6, the core of CS, and its related signaling pathways have been considered as contributors to sepsis. Therefore, it is important to study the relationship between IL-6 and its related pathways in sepsis-related chronic diseases. This review generalized the mechanism of sepsis-related chronic diseases via IL-6 related pathways with the purpose to take rational management for these diseases. IL-6 related signaling pathways were sought in Kyoto Encyclopedia of Genes and Genomes (KEGG), and retrieved protein-protein interaction in the Search for Interaction Genes tool (STRING). In PubMed and Google Scholar, the studies were searched out, which correlating to IL-6 related pathways and associating with the pathological process of sepsis. Focused on the interactions of sepsis and IL-6 related pathways, some chronic diseases have been studied for association with sepsis, containing insulin resistance, Alcoholic liver disease (ALD), Alzheimer disease (AD), and atherosclerosis. This article summarized the inflammatory mechanisms of IL-6 cross-talked with other mediators of some chronic diseases in vitro, animal models, and human experiments, leading to the activation of pathways and accelerating the progression of sepsis. The clinicians should be highlight to this kind of diseases and more clinical trials are needed to provide more reliable theoretical basis for health policy formulation.
Collapse
Affiliation(s)
- Jie Yang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China.
| | - Lin Yang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Yanjiao Wang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Lu Huai
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Bohan Shi
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Di Zhang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Wei Xu
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Di Cui
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
29
|
Wang H, Zeng L, Cheng X, Li H, Zhang H, Shi Y, Zhang Y, Li C. Elevated D-dimer on admission may predict poor prognosis in childhood influenza associated encephalopathy. Sci Rep 2025; 15:3122. [PMID: 39856217 PMCID: PMC11761501 DOI: 10.1038/s41598-025-87690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
To determine the risk factors for poor prognosis of influenza-associated encephalopathy (IAE), 56 eligible children with IAE who were treated in the pediatric intensive care unit of Wuhan Children's Hospital from January 2022 to December 2023 were selected for retrospective analysis and grouped according to poor prognosis or not, and independent risk factors for poor prognosis were found by regression analysis. Results showed 26 children (26/30, 46.4%) had a poor prognosis. In the univariate analysis, the poor prognosis group compared with the clinically cured group showed a significant increase in the number of days of hospitalization (3.0 vs. 9.5 days, P < 0.001), high-sensitivity C-reactive protein (6.80 vs. 1.88 mg/L, P = 0.003), interleukin-6 (20.26 vs. 8.24 pg/mL, P = 0.001), interleukin-10 (11.75 vs. 4.72 pg/mL, P = 0.003), alanine aminotransferase (104.0 vs. 20.0 U/L, P = 0.011), aspartate azelotransferase (186.5 vs. 37.0 U/L, P = 0.003), serum albumin (37.99 vs. 40.76 g/L, P = 0.042), prothrombin time (13.2 vs. 11.4 s, P = 0.017), D-dimer (4.34 vs. 0.44 mg/L FEU, P < 0.001), peripheral blood CD19 B-cell count (35.11 vs. 32.75 cells/µL, P = 0.018), and cerebrospinal fluid chloride (126.82 vs. 125.50 mmol/L, P = 0.027) were statistically different in the above 11 indicators. After binary logistic regression analysis, it was concluded that D-dimer was an independent risk factor for poor prognosis (odds ratio = 1.440, 95% confidence interval 1.052-1.972, P = 0.023), and the area under the curve (95% confidence interval) was 0.802 (0.680-0.924), P < 0.001. When D-dimer was ≥ 1.18 mg/L FEU, the occurrence of poor prognosis was predicted with sensitivity and specificity of 65.4% and 96.7%, respectively. In conclusion, IAE has a high incidence of poor prognosis, in which D-dimer is a possible risk factor with discriminatory value in assessing the occurrence of poor prognosis. However, due to the limitations of retrospective single-center small sample size data, more confirmation from multicenter large sample size studies is needed in the future.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Neonatal Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, , Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Lingkong Zeng
- Department of Neonatal Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, , Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xingfeng Cheng
- Department of Pediatric Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Hui Li
- Department of Epidemiology and Statistics, Taixing People's Hospital, Jiangsu, 225400, China
| | - Hong Zhang
- Department of Neonatal Intensive Care Unit, Taixing People's Hospital, Jiangsu, 225400, China
| | - Yuanmei Shi
- Department of Neonatal Intensive Care Unit, Taixing People's Hospital, Jiangsu, 225400, China
| | - Yong Zhang
- Department of Cardiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| | - Changjian Li
- Department of Cardiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| |
Collapse
|
30
|
Yamaguchi Y, Sawaya R, Shichinohe N, Tanei ZI, Yamasaki M, Tomeoka F, Ajiki M, Takada T, Shinohara T, Asaoka K. Acute Hemorrhagic Leukoencephalitis with Concurrent Retinal Vasculitis in an Elderly Japanese Patient. Intern Med 2025; 64:301-306. [PMID: 38897959 PMCID: PMC11802224 DOI: 10.2169/internalmedicine.3518-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
A 68-year-old Japanese man developed a fever, headache, hiccups, and altered consciousness. Brain magnetic resonance imaging revealed a hemorrhagic lesion in the right temporal lobe and multiple high-intensity white matter lesions. A brain biopsy showed pathological findings consistent with acute disseminated encephalomyelitis (ADEM), suggesting a diagnosis of acute hemorrhagic leukoencephalitis (AHLE), an aggressive ADEM variant. The patient also developed myodesopsia and was diagnosed with retinal vasculitis, likely due to a hyperimmune state caused by AHLE. Corticosteroids enabled full recovery. Although AHLE is uncommon in elderly individuals, clinicians should be aware of its occurrence in this patient subgroup and recognize potential retinal manifestations associated with AHLE.
Collapse
Affiliation(s)
| | - Ryosuke Sawaya
- Department of Neurosurgery, Teine Keijinkai Hospital, Japan
| | | | - Zen-Ichi Tanei
- Department of Pathology, Teine Keijinkai Hospital, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Japan
| | - Maeho Yamasaki
- Department of Neurosurgery, Teine Keijinkai Hospital, Japan
| | - Fumiki Tomeoka
- Department of Cerebrovascular Medicine, Teine Keijinkai Hospital, Japan
| | - Minoru Ajiki
- Department of Cerebrovascular Medicine, Teine Keijinkai Hospital, Japan
| | - Tatsuro Takada
- Department of Cerebrovascular Medicine, Teine Keijinkai Hospital, Japan
| | | | | |
Collapse
|
31
|
Balkhi S, Bilato G, De Lerma Barbaro A, Orecchia P, Poggi A, Mortara L. Efficacy of Anti-Cancer Immune Responses Elicited Using Tumor-Targeted IL-2 Cytokine and Its Derivatives in Combined Preclinical Therapies. Vaccines (Basel) 2025; 13:69. [PMID: 39852848 PMCID: PMC11768832 DOI: 10.3390/vaccines13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Effective cancer therapies must address the tumor microenvironment (TME), a complex network of tumor cells and stromal components, including endothelial, immune, and mesenchymal cells. Durable outcomes require targeting both tumor cells and the TME while minimizing systemic toxicity. Interleukin-2 (IL-2)-based therapies have shown efficacy in cancers such as metastatic melanoma and renal cell carcinoma but are limited by severe side effects. Innovative IL-2-based immunotherapeutic approaches include immunotoxins, such as antibody-drug conjugates, immunocytokines, and antibody-cytokine fusion proteins that enhance tumor-specific delivery. These strategies activate cytotoxic CD8+ T lymphocytes and natural killer (NK) cells, eliciting a potent Th1-mediated anti-tumor response. Modified IL-2 variants with reduced Treg cell activity further improve specificity and reduce immunosuppression. Additionally, IL-2 conjugates with peptides or anti-angiogenic agents offer improved therapeutic profiles. Combining IL-2-based therapies with immune checkpoint inhibitors (ICIs), anti-angiogenic agents, or radiotherapy has demonstrated synergistic potential. Preclinical and clinical studies highlight reduced toxicity and enhanced anti-tumor efficacy, overcoming TME-driven immune suppression. These approaches mitigate the limitations of high-dose soluble IL-2 therapy, promoting immune activation and minimizing adverse effects. This review critically explores advances in IL-2-based therapies, focusing on immunotoxins, immunocytokines, and IL-2 derivatives. Emphasis is placed on their role in combination strategies, showcasing their potential to target the TME and improve clinical outcomes effectively. Also, the use of IL-2 immunocytokines in "in situ" vaccination to relieve the immunosuppression of the TME is discussed.
Collapse
Affiliation(s)
- Sahar Balkhi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
| | - Giorgia Bilato
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| | - Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, 20145 Varese, Italy;
| | - Paola Orecchia
- Pathology and Experimental Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Alessandro Poggi
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| |
Collapse
|
32
|
Schippers JR, Atmowihardjo LN, Duijvelaar E, Knaap LG, Netea MG, Meijboom LJ, Bos LDJ, Bogaard HJ, Aman J. Deep phenotyping of pulmonary edema and pulmonary vascular permeability in COVID-19 ARDS. Am J Physiol Lung Cell Mol Physiol 2025; 328:L30-L40. [PMID: 39437755 DOI: 10.1152/ajplung.00196.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024] Open
Abstract
Clinical monitoring of pulmonary edema due to vascular hyperpermeability in acute respiratory distress syndrome (ARDS) poses significant clinical challenges. Presently, no biological or radiological markers are available for quantifying pulmonary edema. Our aim was to phenotype pulmonary edema and pulmonary vascular permeability in patients with coronavirus disease 2019 (COVID-19) ARDS. Transpulmonary thermodilution measurements were conducted in 65 patients with COVID-19 ARDS on the day of intubation to determine the extravascular lung water index (EVLWi) and pulmonary vascular permeability index (PVPi). In parallel, ventilatory parameters, clinical outcomes, the volume of lung opacity measured by chest computed tomography (CT), radiographic assessment of lung edema (RALE) score by chest radiography, and plasma proteomics (358 unique proteins) were compared between tertiles based on the EVLWi and PVPi. Regression models were used to associate EVLWi and PVPi with plasma, radiological, and clinical parameters. Computational pathway analysis was performed on significant plasma proteins in the regression models. Patients with the highest EVLWi values at intubation exhibited poorer oxygenation parameters and more days on the ventilator. Extravascular lung water strongly correlated with the total volume of opacity observed on CT (r = 0.72, P < 0.001), whereas the PVPi had weaker associations with clinical and radiological parameters. Extravascular lung water did not correlate with the RALE score (r = 0.15, P = 0.33). Plasma protein concentrations demonstrated a stronger correlation with PVPi than with EVLWi. The highest tertile of PVPi was associated with proteins linked to the acute phase response (cytokine and chemokine signaling) and extracellular matrix turnover. In the clinical setting of COVID-19 ARDS, pulmonary edema (EVLWi) can be accurately quantified through chest CT and parallels deterioration in ventilatory parameters and clinical outcomes. Vascular permeability (PVPi) is strongly reflected by inflammatory plasma proteins.NEW & NOTEWORTHY This study is unique in that it phenotypes pulmonary edema in COVID-19 ARDS using various clinical parameters and biomarkers. First, there is a noteworthy tipping point in the amount of pulmonary edema at which ventilatory and clinical parameters deteriorate. Second, chest CT gives a good approximation of the amount of pulmonary edema. Finally, pulmonary vascular permeability is strongly reflected by inflammatory plasma proteins.
Collapse
Affiliation(s)
- Job R Schippers
- Department of Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Leila N Atmowihardjo
- Intensive Care, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Duijvelaar
- Department of Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lars G Knaap
- Department of Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Lilian J Meijboom
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Department of Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Intensive Care, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Kula R, Osuchowski M, Kula R. UNDERSTANDING THE ROLE OF NT-proBNP IN SEPTIC SHOCK: BEYOND CARDIAC DYSFUNCTION. Shock 2025; 63:30-32. [PMID: 39450868 DOI: 10.1097/shk.0000000000002495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Affiliation(s)
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | | |
Collapse
|
34
|
Cau R, Saba L. Interlinking pathways: a narrative review on the role of IL-6 in cancer and atherosclerosis. Cardiovasc Diagn Ther 2024; 14:1186-1201. [PMID: 39790197 PMCID: PMC11707487 DOI: 10.21037/cdt-24-344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/18/2024] [Indexed: 01/12/2025]
Abstract
Background and Objective Interleukin-6 (IL-6) plays multifaceted roles in cancer and atherosclerosis. Initially recognized for its role in immune response and inflammation, IL-6 promotes tumor progression via the JAK-STAT and MAP kinase pathways and is associated with poor cancer prognoses. In atherosclerosis, IL-6 contributes to endothelial dysfunction and plaque formation. This review highlights the shared inflammatory mechanisms of IL-6 in both diseases and explores the regulatory dynamics of IL-6 signaling, including gene polymorphisms and epigenetic modifications. Methods Google Scholar, Scopus, and PubMed were searched for English-language articles on IL-6 and those reporting shared pathogenic mechanisms of IL-6 in cancer and atherosclerosis from their inception through June 2024. Key Content and Findings The investigation into IL-6's mechanisms in cancer and atherosclerosis reveals the intricate and interconnected nature of inflammatory processes in chronic diseases. The role of IL-6 in both conditions underscores its centrality in disease pathology, particularly through its involvement in inflammation, immune modulation, and cellular proliferation. This commonality highlights IL-6 as a key player linking these seemingly distinct diseases. Conclusions Given the shared pathogenic mechanism of IL-6 in cancer and atherosclerosis, this narrative review concludes by emphasizing the therapeutic potential of modulating IL-6 in treating both cancer and atherosclerosis. It advocates for personalized treatment strategies that combine targeted therapies with lifestyle modifications. This holistic approach is considered crucial for effective disease management, given the diverse and complex roles IL-6 plays in these widespread conditions.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
35
|
Zhao C, Xue R, Zhao K, Lei R, Zhao M, Liu L. The systemic capillary leak syndrome following COVID-19 vaccine. Hum Vaccin Immunother 2024; 20:2372149. [PMID: 39171563 PMCID: PMC11346542 DOI: 10.1080/21645515.2024.2372149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 08/23/2024] Open
Abstract
The COVID-19 outbreak has been declared the sixth Public Health Emergency of International Concern certified by the World Health Organization. With the extensive application of COVID-19 vaccines, rare but serious adverse reactions have gradually emerged, among which systemic capillary leak syndrome (SCLS) deserves our attention. SCLS is difficult to diagnose. Not only can it exacerbate various diseases, but also can lead to pulmonary edema, kidney failure, and even death. We summarized and discussed case reports of SCLS induced by COVID-19 vaccines to raise awareness of COVID-19 vaccine-associated rare diseases. We conducted a comprehensive search in Web of Science, PubMed and Embase and collected case reports of SCLS induced by COVID-19 vaccine before February 19, 2024. We identified and analyzed 12 articles, encompassing 15 cases. We synthesized the data to summerize possible mechanisms of SCLS, clinical manifestations, differential diagnoses, and therapeutic approaches. Most SCLS occurred after vaccination with the Pfe-Biontech mRNA vaccine (9/15) and following the second vaccination (10/15). Almost all patients experienced hypotension (13/15) and tachycardia (11/15). Most patients received intravenous fluids (9/15) and corticosteroids (9/15). 11 patients were recovered and were discharged, while 4 patients died. Inflammation and endothelial cell damage may be linked to SCLS and COVID-19 vaccines. These findings highlight the necessity of focusing on serious adverse reactions of COVID-19 vaccines and the urgency to reconsider the safety of COVID-19 vaccines.
Collapse
Affiliation(s)
- Chengjie Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruirui Xue
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kaile Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruoyan Lei
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lin Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Kiatsoonthon K, Phimthong N, Potikanond S, Wikan N, Nimlamool W. Panduratin A Inhibits TNF Alpha-Stimulated Endothelial Cell Activation Through Suppressing the NF-κB Pathway. Biomolecules 2024; 15:34. [PMID: 39858429 PMCID: PMC11762725 DOI: 10.3390/biom15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Upon exposure to inflammatory stimuli including TNF-α, endothelial cells are activated leading to the adhesion of monocytes to their surface. These events are involved in the pathophysiology of atherosclerosis. Since TNF-α activates the NF-κB pathway, which contributes to atherosclerosis, targeting this signaling pathway may help prevent the risk of developing the disease. The current study elucidated the inhibitory effect of panduratin A (PA) on TNF-α-induced endothelial activation and monocyte adhesion. We discovered that PA reduced the level of pro-inflammatory cytokine IL-6 and chemokine MCP-1 in the media collected from endothelial cells stimulated with TNF-α. In addition, PA inhibited the expression of ICAM-1 and VCAM-1 on the surface of TNF-α-induced endothelial cells resulting in a decrease in the number of monocytes attached to endothelial cell surface. Mechanistically, PA prevented IκB degradation and specifically suppressed NF-κB phosphorylation and nuclear translocation in endothelial cells. However, PA had no inhibitory effect on the phosphorylation of AKT, ERK1/2, p38, and JNK. Taken together, PA blocked the production of cytokine and chemokine, adhesion molecules, and monocyte adhesion in response to TNF-α stimulation, in part, through NF-κB inhibition. Our study suggests that PA may possibly be effective in blocking the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Kriangkrai Kiatsoonthon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (N.P.); (S.P.)
| | - Nitchakarn Phimthong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (N.P.); (S.P.)
- PhD’s Degree Program in Pharmacology, Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (N.P.); (S.P.)
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (N.P.); (S.P.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (N.P.); (S.P.)
| |
Collapse
|
37
|
Yu Z, Li Y, Bai L, Zheng Y, Liu X, Zhen Y. The triple combination DBDx alleviates cytokine storm and related lung injury. Int Immunopharmacol 2024; 143:113431. [PMID: 39454409 DOI: 10.1016/j.intimp.2024.113431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Cytokine storm is a life-threatening disorder, and therapeutic treatments are urgently needed. Here, we investigated the anti-cytokine storm efficacy of DBDx, a triple drug combination composed of dipyridamole, ubenimex and dexamethasone. Evaluated by lipopolysaccharide (LPS)-induced cytokine storm murine model, DBDx significantly improved survival rate and prolonged survival time of the model mice. Notably, the efficacy of DBDx was higher than that of dipyridamole, ubenimex and dexamethasone. Determined by ELISA, DBDx significantly reduced the LPS-stimulated serum levels of TNF-α, IL-6 and IL-1β in mice. Luminex assay showed that DBDx suppressed the serum levels of a wide variety of inflammatory cytokines and chemokines, which was more potent than dexamethasone alone. Otherwise, DBDx exerted similar inhibitory effects on cytokine profiles in bronchoalveolar lavage fluid. Histopathological observation showed that DBDx significantly reduced the LPS-induced thickening of alveolar septum, indicating its suppression of capillary congestion, edema and neutrophil infiltration in the lung. Ultra-structure analysis showed that DBDx suppressed the LPS-induced morphological changes of microvilli in type II pneumocytes. In vitro experiment showed that DBDx inhibited IL-6 and TNF-α secretion in THP-1 cells, and downregulated TLR4/NF-κB/HIF-1α signaling pathway. All of these results demonstrate that DBDx, a triple combination of clinical orally-administered drugs, can alleviate cytokine storm and related lung injury. DBDx is beneficial for treating cytokine storm disorders.
Collapse
Affiliation(s)
- Zhuojun Yu
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Li
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanbo Zheng
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiujun Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yongsu Zhen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Penninger P, Brezovec H, Tsymala I, Teufl M, Phan-Canh T, Bitencourt T, Brinkmann M, Glaser W, Ellmeier W, Bonelli M, Kuchler K. HDAC1 fine-tunes Th17 polarization in vivo to restrain tissue damage in fungal infections. Cell Rep 2024; 43:114993. [PMID: 39580799 DOI: 10.1016/j.celrep.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Histone deacetylases (HDACs) contribute to shaping many aspects of T cell lineage functions in anti-infective surveillance; however, their role in fungus-specific immune responses remains poorly understood. Using a T cell-specific deletion of HDAC1, we uncover its critical role in limiting polarization toward Th17 by restricting expression of the cytokine receptors gp130 and transforming growth factor β receptor 2 (TGF-βRII) in a fungus-specific manner, thus limiting Stat3 and Smad2/3 signaling. Controlled release of interleukin-17A (IL-17A) and granulocyte-macrophage colony-stimulating factor (GM-CSF) is vital to minimize apoptotic processes in renal tubular epithelial cells in vitro and in vivo. Consequently, animals harboring excess Th17-polarized HDCA1-deficient CD4+ T cells develop increased kidney pathology upon invasive Candida albicans infection. Importantly, pharmacological inhibition of class I HDACs similarly increased IL-17A release by both mouse and human CD4+ T cells. Collectively, this work shows that HDAC1 controls T cell polarization, thus playing a critical role in the antifungal immune defense and infection outcomes.
Collapse
Affiliation(s)
- Philipp Penninger
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Helena Brezovec
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Magdalena Teufl
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Trinh Phan-Canh
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Tamires Bitencourt
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Marie Brinkmann
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Walter Glaser
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, 1090 Vienna, Austria
| | - Michael Bonelli
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
39
|
Zaroon, Aslam S, Hafsa, Mustafa U, Fatima S, Bashir H. Interleukin in Immune-Mediated Diseases: An Updated Review. Mol Biotechnol 2024:10.1007/s12033-024-01347-8. [PMID: 39715931 DOI: 10.1007/s12033-024-01347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024]
Abstract
The immune system comprises various regulators and effectors that elicit immune responses against various attacks on the body. The pathogenesis of autoimmune diseases is derived from the deregulated expression of cytokines, the major regulators of the immune system. Among cytokines, interleukins have a major influence on immune-mediated diseases. These interleukins initiate the immune response against healthy and normal cells of the body, resulting in immune-mediated disease. The major interleukins in this respect are IL-1, IL-3, IL-4, IL-6, IL-10 and IL-12 which cause immune responses such as excessive inflammation, loss of immune tolerance, altered T-cell differentiation, immune suppression dysfunction, and inflammatory cell recruitment. Systemic Lupus Erythematosus (SLE) is an autoimmune illness characterized by dysregulation of interleukins. These immune responses are the signs of diseases such as rheumatoid arthritis, inflammatory bowel disease, psoriasis, type I diabetes, and multiple sclerosis.
Collapse
Affiliation(s)
- Zaroon
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shakira Aslam
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hafsa
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Usama Mustafa
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sana Fatima
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hamid Bashir
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
40
|
Wang Q, Yuan S, Wang C, Huang D, Zhang M, Zhan Y, Gao F, Shi J, Levey AI, Shen Y. Brain derived β-interferon is a potential player in Alzheimer's disease pathogenesis and cognitive impairment. Alzheimers Res Ther 2024; 16:271. [PMID: 39709485 DOI: 10.1186/s13195-024-01644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Recent research has postulated that the activation of cGAS-STING-interferon signalling pathways could be implicated in the pathogenesis of Alzheimer's disease (AD). However, the precise types of interferons and related cytokines, both from the brain and periphery, responsible for cognitive impairment in patients with AD remain unclear. METHODS A total of 131 participants (78 [59.5%] female and 53 [40.5%] male; mean [SD] age, 61.5 [7.6] years) with normal cognition and cognitive impairment from the China Aging and Neurodegenerative Initiative cohort were included. CSF and serum IFNα-2a, IFN-β, IFN-γ, TNF-α, IL-6, IL-10, MCP-1and CXCL-10 were tested. The correlation between these interferons and related cytokines with AD core biomarkers in the CSF and plasma, cognition performance, and brain MRI measures were analysed. RESULTS We found that only CSF IFN-β levels were significantly elevated in Alzheimer's disease compared to normal cognition. Furthermore, CSF IFN-β levels were significantly associated with AD core biomarkers (CSF P-tau and Aβ42/Aβ40 ratio) and cognitive performance (MMSE and CDR score). Additionally, the CSF IFN-β levels were significantly correlated with the typical pattern of brain atrophy in AD (such as hippocampus, amygdala, and precuneus). In contrast, CSF IL-6 levels were significantly elevated in non-AD cognitively impaired patients compared to other groups. Moreover, CSF IL-6 levels were significantly associated with cognitive performance in non-AD individuals and correlated with the vascular cognitive impairment-related MRI markers (such as white matter hyperintensity). CONCLUSION Our findings demonstrate that distinct inflammatory molecules are associated with different cognitive disorders. Notably, CSF IFN-β levels are significantly linked to the pathology and cognitive performance of AD, identifying this interferon as a potential target for AD therapy.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Neurology and Institute on Aging and Brain Disorders, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, China.
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230027, China.
| | - Shufen Yuan
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230027, China
| | - Chenxi Wang
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230027, China
| | - Duntao Huang
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230027, China
| | - Mengguo Zhang
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230027, China
| | - Yaxi Zhan
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230027, China
| | - Feng Gao
- Department of Neurology and Institute on Aging and Brain Disorders, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, China
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230027, China
| | - Jiong Shi
- Department of Neurology and Institute on Aging and Brain Disorders, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, China
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Lujiang Road 17, Hefei, 230001, China.
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230027, China.
| |
Collapse
|
41
|
Berto-Pereira L, Nakama RP, Dos Santos LF, Malvezi AD, Thihara IRT, de Rossi LS, Inoue FSR, Pavanelli WR, Cassolla P, Pinge-Filho P, Martins-Pinge MC. Impact of metabolic syndrome on cardiovascular, inflammatory and hematological parameters in female mice subjected to severe sepsis. Biochem Biophys Res Commun 2024; 739:150966. [PMID: 39547122 DOI: 10.1016/j.bbrc.2024.150966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The aim of the study was to evaluate the effect of metabolic syndrome (MetS) on female Swiss mice subjected to severe polymicrobial sepsis induced by cecal ligation and puncture (CLP). MetS was induced in neonatal Swiss mice by subcutaneous injection of monosodium glutamate (MSG) at 4 mg/g body weight from day 1 to day 5 after birth, while animals in the control group (CTL) were treated with equimolar saline solution at the same volume and period. On the 75th day of life, the CLP model was used to induce severe polymicrobial sepsis. For inflammatory parameters, we assessed nitric oxide (NO), determined by the cadmium/Griess technique, and quantified IL-6 and IL1β using the ELISA technique. Glucose levels were measured 24 h before and after CLP using a glucose monitor, and the lipid profile was assessed using commercial kits. Cardiovascular parameters were measured using the CODA platform, and hematological evaluation was determined by standard counting. Unlike male mice, MetS did not alter the survival of females subjected to severe sepsis. Both CTL and MetS CLP groups exhibited hypotension and hypoglycemia, accompanied by leukopenia and increased inflammatory cytokine IL-6. The cytokine IL1β Only increased in MetS CLP group compared to CTL CLP and MetS Sham. It was also observed that MetS attenuated some parameters during sepsis, such as hematological parameters and resistance to NO increase. We can conclude that the obesity paradox theory is not observed in females. Thus, our findings provide new insights for the literature linking MetS and sepsis.
Collapse
Affiliation(s)
- Leonardo Berto-Pereira
- Post-Graduate Program in Experimental Pathology, Department of Immunology, Parasitology and General Pathology. State University of Londrina, Paraná, Brazil
| | - Raquel Pires Nakama
- Post-Graduate Program in Experimental Pathology, Department of Immunology, Parasitology and General Pathology. State University of Londrina, Paraná, Brazil
| | - Lucas Felipe Dos Santos
- Post-Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Paraná, Brazil
| | - Aparecida Donizette Malvezi
- Post-Graduate Program in Experimental Pathology, Department of Immunology, Parasitology and General Pathology. State University of Londrina, Paraná, Brazil
| | | | - Lucas Sobral de Rossi
- Post-Graduate Program in Health Sciences, Department of Health Sciences, State University of Londrina, Paraná, Brazil
| | - Fabricio Seidy Ribeiro Inoue
- Post-Graduate Program in Experimental Pathology, Department of Immunology, Parasitology and General Pathology. State University of Londrina, Paraná, Brazil
| | - Wander Rogério Pavanelli
- Post-Graduate Program in Experimental Pathology, Department of Immunology, Parasitology and General Pathology. State University of Londrina, Paraná, Brazil
| | - Priscila Cassolla
- Post-Graduate Program in Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Phileno Pinge-Filho
- Post-Graduate Program in Experimental Pathology, Department of Immunology, Parasitology and General Pathology. State University of Londrina, Paraná, Brazil; Post-Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Paraná, Brazil
| | - Marli Cardoso Martins-Pinge
- Post-Graduate Program in Experimental Pathology, Department of Immunology, Parasitology and General Pathology. State University of Londrina, Paraná, Brazil; Post-Graduate Program in Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
42
|
Wu Z, Yuan C, Peng X. Association between arthropathies and postpartum hemorrhage: a bidirectional Mendelian randomization study. Front Genet 2024; 15:1448754. [PMID: 39722795 PMCID: PMC11668810 DOI: 10.3389/fgene.2024.1448754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Background Research links arthropathies with adverse pregnancy outcomes. This study aims to explore its connection to postpartum hemorrhage (PPH) through Mendelian randomization (MR) analysis. Methods The study used GWAS data from the IEU OpenGWAS database for PPH and arthropathies. After selecting instrumental variables, bidirectional MR analysis was conducted using MR-Egger, Weighted median, Simple mode, Weighted mode, and IVW methods. Sensitivity analysis was then performed to assess MR results reliability. Finally, enrichment analysis of genes corresponding to arthropathies SNPs in forward MR was conducted to explore their biological function and signaling pathways. Results The forward MR results revealed that arthropathies was causally related to PPH, and arthropathies was a risk factor for PPH. Whereas, there was not a causal relationship between PPH and arthropathies by reverse MR analysis. It illustrated the reliability of the MR analysis results by the sensitivity analysis without heterogeneity, horizontal pleiotropy, and SNPs of severe bias by LOO analysis. Furthermore, a total of 33 genes corresponding to SNPs of arthropathies were obtained, which were mainly enriched in regulation of response to biotic stimulus, spliceosomal snRNP complex and ligase activity in GO terms, and natural killer cell-mediated cytotoxicity in KEGG pathways. Conclusion This study supported that arthropathies was a risk factor for PPH, and the pathways involved the genes corresponding to SNPs were analyzed, which could provide important reference and evidence for further exploring the molecular mechanism between arthropathies and PPH.
Collapse
Affiliation(s)
- Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengyu Yuan
- Department of Obstetrics and Gynecology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Peng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
43
|
Gubernatorova EO, Samsonov MY, Drutskaya MS, Lebedeva S, Bukhanova D, Materenchuk M, Mutig K. Targeting inerleukin-6 for renoprotection. Front Immunol 2024; 15:1502299. [PMID: 39723211 PMCID: PMC11668664 DOI: 10.3389/fimmu.2024.1502299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Sterile inflammation has been increasingly recognized as a hallmark of non-infectious kidney diseases. Induction of pro-inflammatory cytokines in injured kidney tissue promotes infiltration of immune cells serving to clear cell debris and facilitate tissue repair. However, excessive or prolonged inflammatory response has been associated with immune-mediated tissue damage, nephron loss, and development of renal fibrosis. Interleukin 6 (IL-6) is a cytokine with pleiotropic effects including a major role in inflammation. IL-6 signals either via membrane-bound (classic signaling) or soluble receptor forms (trans-signaling) thus affecting distinct cell types and eliciting various metabolic, cytoprotective, or pro-inflammatory reactions. Antibodies neutralizing IL-6 or its receptor have been developed for therapy of autoimmune and chronic non-renal inflammatory diseases. Small molecule inhibitors of Janus kinases acting downstream of the IL-6 receptor, as well as recombinant soluble glycoprotein 130 variants suppressing the IL-6 trans-signaling add to the available therapeutic options. Animal data and accumulating clinical experience strongly suggest that suppression of IL-6 signaling pathways bears therapeutic potential in acute and chronic kidney diseases. The present work analyses the renoprotective potential of clinically relevant IL-6 signaling inhibitors in acute kidney injury, chronic kidney disease, and kidney transplantation with focus on current achievements and future prospects.
Collapse
Affiliation(s)
- Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| | - Svetlana Lebedeva
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Maria Materenchuk
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kerim Mutig
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
44
|
Liu YY, Li N, Chen XY, Wang H, Zhu SW, Yang L, Quan FY, Ma JC, Dai JW, Jiang YL, Xiang ZF, Cheng Q, Zhang WH, Chen KH, Hou W, Xiong HR. MicroRNA let-7a regulation of Hantaan virus replication by Targeting FAS Signaling Pathways. Virology 2024; 600:110254. [PMID: 39383773 DOI: 10.1016/j.virol.2024.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Hantaan virus (HTNV) infection in humans can cause hemorrhagic fever and renal syndrome (HFRS). Understanding host responses to HTNV infection is crucial for developing effective disease intervention strategies. Previous RNA-sequencing studies have investigated the role of microRNAs (miRNAs) in the post-transcriptional regulation of host genes in response to HTNV infection. In this study, we demonstrated that HTNV infection induces let-7a expression in human umbilical vein endothelial cells (HUVEC) and that HTNV G protein upregulates the expression of let-7a. miRNA let-7a mimics and inhibitors validated the predicted targets, including cell apoptosis genes (FAS, caspase-8, and caspase-3) and inflammatory factors (IL-6 and its related factors). Modulation of miRNA let-7a levels by miRNA mimics and inhibitors affected HTNV replication, indicating that HTNV modulates host miRNA expression to affect the outcome of the antiviral host response.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Ning Li
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Xing-Yuan Chen
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Hui Wang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet Autonomous Region, China
| | - Shao-Wei Zhu
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Lan Yang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Fang-Yi Quan
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Jian-Chun Ma
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Jian-Wei Dai
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Ya-le Jiang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China
| | - Zhou-Fu Xiang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China
| | - Qi Cheng
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Wei-Hao Zhang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Ke-Han Chen
- School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Wei Hou
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet Autonomous Region, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China; School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, China.
| | - Hai-Rong Xiong
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
45
|
Zhang Q, Yu S, Yang Z, Wang X, Li J, Su L, Zhang H, Lou X, Mao H, Sun Y, Fang L, Yan H, Zhang Y. DENV-1 Infection of Macrophages Induces Pyroptosis and Causes Changes in MicroRNA Expression Profiles. Biomedicines 2024; 12:2752. [PMID: 39767659 PMCID: PMC11673035 DOI: 10.3390/biomedicines12122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Dengue virus (DENV) is the most widespread mosquito-borne virus, which can cause dengue fever with mild symptoms, or progress to fatal dengue hemorrhagic fever and dengue shock syndrome. As the main target cells of DENV, macrophages are responsible for the innate immune response against the virus. METHODS In this study, we investigated the role of pyroptosis in the pathogenic mechanism of dengue fever by examining the level of pyroptosis in DENV-1-infected macrophages and further screened differentially expressed microRNAs by high-throughput sequencing to predict microRNAs that could affect the pyroptosis of the macrophage. RESULTS Macrophages infected with DENV-1 were induced with decreased cell viability, decreased release of lactate dehydrogenase and IL-1β, activation of NLRP3 inflammasome and caspase-1, cleavage of GSDMD to produce an N-terminal fragment bound to cell membrane, and finally induced macrophage pyroptosis. MicroRNA expression profiles were obtained by sequencing macrophages from all periods of DENV-1 infection and comparing with the negative control. Sixty-three microRNAs differentially expressed in both the early and later stages of infection were also identified. In particular, miR-223-3p, miR-148a-3p, miR-125a-5p, miR-146a-5p and miR-34a-5p were recognized as small molecules that may be involved in the regulation of inflammation. CONCLUSIONS In summary, this study aimed to understand the pathogenic mechanism of DENV through relevant molecular mechanisms and provide new targets for dengue-specific therapy.
Collapse
Affiliation(s)
- Qinyi Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sicong Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
- The First People’s Hospital of Xiaoshan District, Hangzhou 311201, China
| | - Zhangnv Yang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xingxing Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Jianhua Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Lingxuan Su
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Huijun Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing 100021, China
| | - Xiuyu Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Yi Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310016, China
| | - Hao Yan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou 310051, China
| |
Collapse
|
46
|
Tanaka M, Szabó Á, Vécsei L. Redefining Roles: A Paradigm Shift in Tryptophan-Kynurenine Metabolism for Innovative Clinical Applications. Int J Mol Sci 2024; 25:12767. [PMID: 39684480 DOI: 10.3390/ijms252312767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The tryptophan-kynurenine (KYN) pathway has long been recognized for its essential role in generating metabolites that influence various physiological processes. Traditionally, these metabolites have been categorized into distinct, often opposing groups, such as pro-oxidant versus antioxidant, excitotoxic/neurotoxic versus neuroprotective. This dichotomous framework has shaped much of the research on conditions like neurodegenerative and neuropsychiatric disorders, as well as cancer, where metabolic imbalances are a key feature. The effects are significantly influenced by various factors, including the concentration of metabolites and the particular cellular milieu in which they are generated. A molecule that acts as neuroprotective at low concentrations may exhibit neurotoxic effects at elevated levels. The oxidative equilibrium of the surrounding environment can alter the function of KYN from an antioxidant to a pro-oxidant. This narrative review offers a comprehensive examination and analysis of the contemporary understanding of KYN metabolites, emphasizing their multifaceted biological functions and their relevance in numerous physiological and pathological processes. This underscores the pressing necessity for a paradigm shift in the comprehension of KYN metabolism. Understanding the context-dependent roles of KYN metabolites is vital for novel therapies in conditions like Alzheimer's disease, multiple sclerosis, and cancer. Comprehensive pathway modulation, including balancing inflammatory signals and enzyme regulation, offers promising avenues for targeted, effective treatments.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
47
|
Zhang L, Lin Y, Zhang Z, Chen Y, Zhong J. Immune regulation and organ damage link adiponectin to sepsis. Front Immunol 2024; 15:1444884. [PMID: 39664383 PMCID: PMC11632310 DOI: 10.3389/fimmu.2024.1444884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Sepsis is a life-threatening syndrome characterized by organ dysfunction, resulting from an uncontrolled or abnormal immune response to infection, which leads to septicemia. It involves a disruption of immune homeostasis, marked by the release of Inflammatory factors and dysfunction of immune cells. Adiponectin is widely recognized as an anti-inflammatory mediator, playing a crucial role in regulating immune cell function and exerting protective effects on tissues and organs. However, the physiological role of adiponectin in septicemia remains unclear due to the condition's association with immune response dysregulation and organ damage. This study focuses on the potential relationship between adiponectin and excessive immune responses, along with organ injury in septicemia. Additionally, we investigate possible explanations for the observed discrepancies in adiponectin levels among critically ill or deceased patients compared to theoretical expectations, aiming to provide valuable insights for clinical diagnostics and therapeutic interventions in sepsis.
Collapse
Affiliation(s)
| | | | - Zhongying Zhang
- Medical Laboratory Center, Xiamen Humanity Hospital, Xiamen, Fujian, China
| | | | | |
Collapse
|
48
|
Johnson CF, Schafer CM, Burge KY, Coon BG, Chaaban H, Griffin CT. Endothelial RIPK3 minimizes organotypic inflammation and vascular permeability in ischemia-reperfusion injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625188. [PMID: 39651150 PMCID: PMC11623548 DOI: 10.1101/2024.11.25.625188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Recent studies have revealed a link between endothelial receptor-interacting protein kinase 3 (RIPK3) and vascular integrity. During mouse embryonic development, hypoxia can trigger elevated endothelial RIPK3 that contributes to lethal vascular rupture. However, it is unknown whether RIPK3 regulate endothelial barrier function in adult vasculature under hypoxic injury conditions such as ischemia-reperfusion (I/R) injury. Here we performed inducible genetic deletion of endothelial Ripk3 ( Ripk iECKO ) in mice, which led to elevated vascular permeability in the small intestine and multiple distal organs after intestinal I/R injury. Mechanistically, this vascular permeability correlated with increased endothelial secretion of IL-6 and organ-specific expression of VCAM-1 and ICAM-1 adhesion molecules. Circulating monocyte depletion with clodronate liposomes reduced permeability in organs with elevated adhesion molecules, highlighting the contribution of monocyte adhesion and extravasation to Ripk iECKO barrier dysfunction. These results elucidate mechanisms by which RIPK3 regulates endothelial inflammation to minimize vascular permeability in I/R injury. GRAPHICAL ABSTRACT
Collapse
|
49
|
Macom RV, Lewellyn KZ, Strutz AG, Brown CM. recAP administration ameliorates sepsis outcomes through modulation of gut and liver inflammation. Biochem Biophys Res Commun 2024; 735:150445. [PMID: 39094234 PMCID: PMC11532009 DOI: 10.1016/j.bbrc.2024.150445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Sepsis, broadly described as a systemic infection, is one of the leading causes of death and long-term disability worldwide. There are limited therapeutic options available that either improve survival and/or improve the quality of life in survivors. Ilofotase alfa, also known as recombinant alkaline phosphatase (recAP), has been associated with reduced mortality in a subset of patients with sepsis-associated acute kidney injury. However, whether recAP exhibits any therapeutic benefits in other organ systems beyond the kidney is less clear. The objective of this study was to evaluate the effects of recAP on survival, behavior, and intestinal inflammation in a mouse model of sepsis, cecal ligation and puncture (CLP). Following CLP, either recAP or saline vehicle was administered via daily intraperitoneal injections to determine its treatment efficacy from early through late sepsis. We found that administration of recAP suppressed indices of inflammation in the gut and liver but did not improve survival or behavioral outcomes. These results demonstrate that recAP's therapeutic efficacy in the gut and liver may provide a valuable treatment to improve long-term outcomes in sepsis survivors.
Collapse
Affiliation(s)
- Rhiannon V Macom
- Department of Neuroscience, Box 9303, West Virginia University, School of Medicine, Morgantown, WV, 26506-9303, USA; Department of Microbiology, Immunology, and Cell Biology, Box 9177, West Virginia University, School of Medicine, Morgantown, WV, 26506-9177, USA
| | - Kennedi Z Lewellyn
- Department of Neuroscience, Box 9303, West Virginia University, School of Medicine, Morgantown, WV, 26506-9303, USA; Department of Microbiology, Immunology, and Cell Biology, Box 9177, West Virginia University, School of Medicine, Morgantown, WV, 26506-9177, USA
| | - Andrew G Strutz
- Department of Neuroscience, Box 9303, West Virginia University, School of Medicine, Morgantown, WV, 26506-9303, USA; Department of Microbiology, Immunology, and Cell Biology, Box 9177, West Virginia University, School of Medicine, Morgantown, WV, 26506-9177, USA
| | - Candice M Brown
- Department of Neuroscience, Box 9303, West Virginia University, School of Medicine, Morgantown, WV, 26506-9303, USA; Department of Microbiology, Immunology, and Cell Biology, Box 9177, West Virginia University, School of Medicine, Morgantown, WV, 26506-9177, USA.
| |
Collapse
|
50
|
Bi J, Wang Y, Wang K, Sun Y, Ye F, Wang X, Pan J. FGF1 attenuates sepsis-induced coagulation dysfunction and hepatic injury via IL6/STAT3 pathway inhibition. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167281. [PMID: 38870868 DOI: 10.1016/j.bbadis.2024.167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND & AIMS Sepsis, a globally prevalent and highly lethal condition, remains a critical medical challenge. This investigation aims to assess the relevance of FGF1 as a potential therapeutic target for sepsis. METHODS Sepsis was induced in C57BL/6 mice through LPS administration to establish an in vivo animal model. Various in vitro assays were conducted using human umbilical vein endothelial cells to elucidate the role of FGF1 in the disruption of the coagulation system and liver injury associated with sepsis, as well as to explore its underlying molecular mechanisms. RESULTS In in vivo experiments, FGF1 ameliorated coagulation system disruption in septic mice by reducing the levels of pro-inflammatory and coagulation-related factors in the bloodstream. FGF1 also enhanced liver function in septic mice, mitigating liver inflammation and cell apoptosis, fostering liver vascular regeneration, increasing liver blood perfusion, and improving mouse survival. In vitro experiments demonstrated that FGF1 could inhibit LPS-induced inflammatory responses and apoptosis in endothelial cells, fortify endothelial cell barrier function, decrease endothelial cell permeability, promote endothelial cell proliferation, and restore endothelial cell tube-forming ability. Both in vivo and in vitro experiments substantiated that FGF1 improved sepsis by inhibiting the IL-6/STAT3 signaling pathway. CONCLUSION In summary, our study indicates that FGF1 mitigates excessive inflammatory responses in sepsis by suppressing the IL-6/STAT3 signaling pathway, thereby improving systemic blood circulation and ameliorating liver damage in septic organisms. Consequently, this research identifies FGF1 as a potential clinical target for the treatment of human sepsis.
Collapse
Affiliation(s)
- Jianing Bi
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| | - Yanjing Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Kaicheng Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Yuanyuan Sun
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Fanrong Ye
- Departments of Nuclear Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Critical Care Medicine, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China.
| |
Collapse
|