1
|
Yan J, Zhang Y, Zheng X, Tang Z, Guo W, Li S, Li J, Xu H, Li Q, Zhang Q. A novel in-depth "static- dynamic" lipidomics workflow to reveal lipids reprogramming in hepatocellular carcinoma. J Pharm Biomed Anal 2025; 262:116880. [PMID: 40239563 DOI: 10.1016/j.jpba.2025.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, and with current treatments proving less effective, there is an urgent need for specific biomarkers and therapeutic targets. Lipid metabolism reprogramming is a crucial cancer hallmark, yet comprehensive studies on lipid metabolic fluxes remain limited. In this study, combined with non-targeted lipidomics, a comprehensive workflow for stable isotope tracing lipidomics was established to analyze changes in lipid levels of HepG2 cells and LO2 cells from both static and dynamic perspectives. Through the screening of differential metabolites and the enrichment analysis of lipid metabolic pathways, the most significant differential metabolic pathways were found. Finally, the TCGA and CPTAC databases were utilized to analyze the gene expression levels and protein expression levels of pivotal enzymes in the differential metabolic pathways, and these findings were verified by Western Blotting experiments. The results demonstrated that the lipid metabolism of HCC was disordered, and the metabolic pathways that caused lipid changes in HCC were mainly glycerophospholipid metabolism and sphingolipid signaling pathway. LPCAT1 and SMPD1 played a crucial role in the reprogramming of lipid metabolism in HCC. The established "static-dynamic" lipidomics workflow improves the coverage and accuracy of dynamic lipid monitoring, elucidating the roles of lipids in physiological and pathological processes, providing tools for studying lipid function, and offering new perspectives on the pathogenesis of HCC as well as the identification of drug targets.
Collapse
Affiliation(s)
- Jianlei Yan
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yiwen Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxue Zheng
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhengkun Tang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Guo
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Saiyu Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingjing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huarong Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Huang X, Fang R, Pang Y, Zhang Z, Huang J, Li Y, Yuan T, Zeng Y, Yao Z, Vega-Rubín-de-Celis S, Thinwa J, Zhang Q, Shen H, Wang J, Shen F, Wei Y. HHLA2 activates c-Met and identifies patients for targeted therapy in hepatocellular carcinoma. J Exp Clin Cancer Res 2025; 44:153. [PMID: 40394703 DOI: 10.1186/s13046-025-03407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with limited treatment options in advanced stages. While c-Met is a promising therapeutic target in HCC, identifying patients who will benefit from c-Met inhibitors remains a significant challenge. This study aimed to investigate the role of HHLA2, a B7 family member, in HCC and its potential as a liquid biopsy marker for c-Met inhibitor therapy. METHODS HHLA2 expression was analyzed in clinical HCC samples and public databases. In vitro studies using HCC cell lines assessed HHLA2's impact on proliferation, migration, invasion, and angiogenesis. In vivo studies using mouse models (orthotopic xenografts and hydrodynamic tail vein injection) evaluated HHLA2's role in tumor growth and metastasis. Mass spectrometry, co-immunoprecipitation, split-luciferase, and ELISA assays were used to investigate HHLA2-c-Met interactions. Patient-derived organoids (PDOs) were used to assess drug response. Statistical analyses included Student's t-tests, ANOVA, and Cox regression. RESULTS HHLA2 was found to be upregulated in HCC and associated with advanced disease, aggressive clinicopathological features, and poor prognosis. HHLA2 interacted with and constitutively activated c-Met, leading to increased expression of MMP9 and VEGFA, enhancing HCC cell proliferation, invasion, and angiogenesis. HHLA2 also suppressed hepatic natural killer cell infiltration in vivo. Inhibition of c-Met with PHA665752 effectively reversed HHLA2-mediated tumor-promoting effects in vitro and in vivo. HHLA2 expression in HCC tissues correlated with c-Met phosphorylation, and HHLA2 could be detected in the serum of patients with high tumor HHLA2 levels. PDOs with high HHLA2 expression exhibited increased sensitivity to c-Met inhibition. CONCLUSIONS HHLA2 acts as an oncogene in HCC by activating c-Met, promoting tumor progression and metastasis. HHLA2 expression correlates with c-Met activation and predicts poor prognosis in HCC patients. Importantly, HHLA2 can serve as a stratification marker for c-Met inhibitor therapy, potentially enabling a personalized approach to improve therapeutic outcomes in this challenging disease.
Collapse
Affiliation(s)
- Xubo Huang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
- Shenzhen Bay Laboratory & National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Runya Fang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuqian Pang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhe Zhang
- School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Jieru Huang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingchang Li
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yuyi Zeng
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ziying Yao
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Josephine Thinwa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qisheng Zhang
- Shanghai Sino Organoid Lifesciences Co, Ltd, Shanghai, China
| | - Hao Shen
- Clinical Research Institute, Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital & National Center for Liver Cancer, Shanghai, China.
- Department of Hepatobiliary and Pancreatic Surgery, Tenth People's Hospital of Tongji University, Shanghai, China.
| | - Jiahong Wang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Feng Shen
- Clinical Research Institute, Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital & National Center for Liver Cancer, Shanghai, China.
| | - Yongjie Wei
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
- School of Life Science, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Li R, Zhang G, Tao Q, Wu Z, Liu X, Wang R, Liu L, Niu Y, Du K, Wu R, Du F, Zheng X, Li Y, Shi X. Revealing the prognostic potential of natural killer cell-related genes in hepatocellular carcinoma: the key role of NRAS. Discov Oncol 2025; 16:807. [PMID: 40383831 PMCID: PMC12086133 DOI: 10.1007/s12672-025-02200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/21/2025] [Indexed: 05/20/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy associated with high morbidity and mortality rates worldwide. To improve the prognosis of HCC, early diagnosis is crucial. However, to date, little is known about the role of natural killer cell-related genes (NKCRGs) in predicting the prognosis of hepatocellular carcinoma patients. In this study, we identified 24 differentially expressed NKCRGs in HCC specimens from the TCGA dataset, including 22 upregulated genes and 2 downregulated genes. Functional enrichment analysis revealed that these genes were mainly involved in immune response pathways and various cancer-related pathways. Univariate analysis identified 21 prognostic NKCRGs, with eight genes (PAK1, MAP2K2, MAPK3, PLCG1, SHC1, HRAS, NRAS, and MICB) confirmed to be involved in HCC prognosis through Venn diagram analysis. A prognostic model was developed using LASSO-Cox regression, incorporating four genes (MAP2K2, SHC1, HRAS, and NRAS). The model's risk score was significantly associated with overall survival (OS) in both the TCGA and ICGC cohorts. Patients with high-risk scores had poorer OS, as demonstrated by Kaplan-Meier curves and ROC analyses. The risk score was not significantly correlated with gender or age but was higher in patients with advanced tumor grades and stages. Immune status analysis using ssGSEA showed higher enrichment scores for various immune cells and pathways in the high-risk group. Additionally, the risk score was positively correlated with the immune score, indicating its potential role in tumor microenvironment modulation. Expression analysis revealed that HRAS, SHC1, MAP2K2, and NRAS were upregulated in HCC tissues, with higher expressions of HRAS, MAP2K2, and NRAS associated with shorter OS. Knockdown experiments confirmed that silencing NRAS suppressed the proliferation of HCC cells, highlighting its potential as a therapeutic target. Overall, our findings suggest that the identified NKCRGs, particularly NRAS, play crucial roles in HCC progression and could serve as valuable prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Ruixi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Guangquan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Qiang Tao
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Ziyun Wu
- The First Clinical Medical College of Nanchang University, Nanchang, 330031, China
| | - Xiaoping Liu
- The First Clinical Medical College of Nanchang University, Nanchang, 330031, China
| | - Rongrong Wang
- The First Clinical Medical College of Nanchang University, Nanchang, 330031, China
| | - Lei Liu
- Department of Clinical Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yiran Niu
- The First Clinical Medical College of Nanchang University, Nanchang, 330031, China
| | - Kaile Du
- The First Clinical Medical College of Nanchang University, Nanchang, 330031, China
| | - Runpeng Wu
- The First Clinical Medical College of Nanchang University, Nanchang, 330031, China
| | - Fei Du
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Xiyan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yingliang Li
- Department of Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Xianjie Shi
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
4
|
Wang Z, Guo Y, Hu K, He T, Qin T, Zhang L, Xu F, Xu Y, Cheng M, Zhang J, Zhao Q. Hepatocellular carcinoma cells downregulate PGAM2 via SIRT2-mediated deacetylation modification to enhance aerobic glycolysis. NPJ Precis Oncol 2025; 9:143. [PMID: 40379975 PMCID: PMC12084564 DOI: 10.1038/s41698-025-00930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/30/2025] [Indexed: 05/19/2025] Open
Abstract
Phosphoglycerate mutase 2 (PGAM2) is a crucial glycolytic enzyme. Recently, we have found that both the protein and acetylation levels of PGAM2 are down-regulated in hepatocellular carcinoma (HCC) tissues. However, the functional significance of PGAM2 in HCC progression remains poorly characterized. In this study, we demonstrated that PGAM2 functioned as a tumor suppressor in HCC progression, and knockdown of PGAM2 promoted proliferation of HCC cells and tumor growth both in vitro and in vivo. Moreover, we identified lysine 100 (K100) in PGAM2 as the predominant deacetylation site of sirtuin-2 (SIRT2), and that deacetylation of K100 destabilized PGAM2 by promoting its ubiquitination and degradation. Importantly, we discovered that PGAM2 suppressed aerobic glycolysis through an enzymatic activity-independent mechanism in HCC cells. Mechanistic investigations revealed that PGAM2 knockdown upregulated lactate dehydrogenase A (LDHA) expression via activation of the signal transducer and activator of transcription 3 (STAT3). Furthermore, we found that knockdown of PGAM2 sensitized HCC cells to sorafenib treatment. In conclusion, these findings elucidate the tumor-suppressive role of PGAM2 in HCC progression and its post-translational regulation through SIRT2-mediated deacetylation, which provide novel biomarkers and therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Zexuan Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Yaoyu Guo
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Kefei Hu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Tingjiang He
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Qin
- School of Bioengineering, Sichuan University of Science & Engineering, Yibin, China
| | - Ludan Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanzhi Xu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingjiao Cheng
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Tumor Epidemiology and National Key Laboratory of Metabolism Disorder and Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Guan S, Lin Q, Huang P, Lin K, Duan S. Identification of a novel FOXO3‑associated prognostic model in hepatocellular carcinoma. Oncol Lett 2025; 29:230. [PMID: 40114746 PMCID: PMC11925000 DOI: 10.3892/ol.2025.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Although numerous molecular classifications are available to predict the prognosis of patients with hepatocellular carcinoma (HCC), they are still unsatisfactory. Forkhead box O3 (FOXO3) has been widely reported as a transcription factor involved in human cancers, but its role in HCC remains controversial. The present study aimed to explore the role of FOXO3 in HCC, as well as to identify biomarkers and construct prognostic models based on FOXO3. FOXO3 was highly expressed in HCC and was closely associated with poor prognosis in The Cancer Genome Atlas (the training set) and International Cancer Genome Consortium (the validation set). Subsequently, a co-expression network indicated that the red modules were closely related to FOXO3. Five key FOXO3-related genes [DEAD-box helicase 55 (DDX55), RAB10, member RAS oncogene family (RAB10), RAB7A, TATA-box binding protein associated factor, RNA polymerase I subunit B (TAF1B) and TAF3] were obtained using Cox-least absolute shrinkage and selection operator analyses. The 5-gene signature successfully predicted the prognosis of patients with HCC in both the training and validation sets. Enrichment analysis suggested marked differences in AKT and cell cycle-related (E2F targets and G2/M checkpoints) pathways between HCC subgroups. Furthermore, the tumor microenvironment analysis suggested that the difference in the distribution of M2 macrophages among various subgroups may contribute to the poor prognosis using the CIBERSORTx framework. Furthermore, the mRNA and protein expressions of DDX55, RAB10, RAB7A, TAF1B and TAF3 were found to be higher in HCC tissues compared with paracancerous tissues using RT-qPCR and western blotting. Additionally, knockdown of RAB10, RAB7A and TAF3 inhibited proliferation of Huh7 cells, assessed by a Cell Counting Kit-8 assay. In conclusion, a novel FOXO3-related model was constructed and revealed that RAB10, RAB7A and TAF3 may be potential molecular targets or biomarkers for HCC.
Collapse
Affiliation(s)
- Songmei Guan
- Department of Clinical Pharmacy, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangzhou 524003, P.R. China
| | - Qiang Lin
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangzhou 524003, P.R. China
| | - Peiwu Huang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangzhou 524003, P.R. China
| | - Kangqiang Lin
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangzhou 524003, P.R. China
| | - Shigang Duan
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangzhou 524003, P.R. China
| |
Collapse
|
6
|
Świderska-Kołacz G, Madej M, Zmorzynski S, Styk W, Surowiec I, Witek B, Wojciechowska A, Czerwik-Marcinkowska J, Nowakowska A. Effects of bortezomib on intracellular antioxidant and apoptosis in HepG2cells. PeerJ 2025; 13:e19235. [PMID: 40313384 PMCID: PMC12045286 DOI: 10.7717/peerj.19235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/10/2025] [Indexed: 05/03/2025] Open
Abstract
Bortezomib, as a proteasome inhibitor, is used in clinical trials related to solid cancers. However, its use is not always associated with a good response to treatment. Taking into account the above, we decided to analyze the effect of the time-dependency (24 vs. 48 h) and the dose-dependency of bortezomib (2, 4, 8 and 16 nM) on apoptosis and activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione transferase (GST), as well as concentrations of reduced glutathione (GSH) and malondialdehyde (MDA) in hepatoblastoma cell line (HepG2) cells. We have shown that increasing concentrations of bortezomib caused (I) a gradual decrease in the levels of GSH; (II) changes in MDA concentrations and antioxidant enzymes activities; (III) increase in apoptosis levels in HepG2 cells. We did not find significant association between antioxidant parameters and number of apoptotic cells. Our study showed that the analyzed parameters (such as: CAT, SOD, GR, GPx, GST, GSH, MDA) changed after bortezomib treatment. It is important to search for new anti-cancer therapies based on next-generation proteasome inhibitors. It is possible that the use of proteins associated with oxidative stress will help enhance the action of these inhibitors and will provide a better treatment effect.
Collapse
Affiliation(s)
| | - Magdalena Madej
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | | | - Wojciech Styk
- Academic Laboratory of Psychological Tests, Medical University of Lublin, Lublin, Poland
| | - Iwona Surowiec
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Bożena Witek
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Anna Wojciechowska
- Department of Geobotany and Landscape Planning, Nicolaus Copernicus University of Torun, Toruń, Poland
| | | | - Anna Nowakowska
- Department of Animal Physiology and Neurobiology, Nicolaus Copernicus University of Torun, Toruń, Poland
| |
Collapse
|
7
|
Ngo M, Dao T, Hoang T, Nguyen U, Stenman J, Duong H, Ho T. Accurate quantification of cell-free Ceruloplasmin mRNA as a biomarker for early detection of hepatocellular carcinoma. Sci Rep 2025; 15:14660. [PMID: 40287496 PMCID: PMC12033234 DOI: 10.1038/s41598-025-99302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Accurate and early detection of hepatocellular carcinoma (HCC) is critical for improving patient outcomes. Current biomarkers like AFP have limited sensitivity, necessitating novel diagnostic markers. A novel semi-nested RT-PCR assay was developed to quantify circulating Ceruloplasmin (CP) mRNA in peripheral blood. This method co-amplifies CP mRNA and an internal control (IC) gene, followed by DNA melting analysis to distinguish and quantify CP mRNA. CP mRNA levels were significantly higher in the HCC group (median: 3.37) compared to both the CLD group (0.24, p = 0.0066) and the HD group (0.17, p < 0.0001). Further analysis using ROC curves highlighted the diagnostic performance of the assay. For differentiating HCC from CLD, the area under the ROC curve (AUC) was 0.704, with 50.98% sensitivity and 95.24% specificity. In comparison to HD, the AUC was 0.812, with 74.51% sensitivity and 80.65% specificity. Against the combined control group (CLD and HD), the AUC was 0.768, with 50.98% sensitivity and 96.15% specificity. Additionally, in 59.1% of HCC cases with AFP levels below 20 ng/mL, CP mRNA levels were elevated, indicating that CP mRNA could help detect a substantial proportion of AFP-negative HCC cases. This study, the first comprehensive clinical investigation of cell-free CP mRNA for HCC diagnosis, demonstrates its potential as a sensitive and specific non-invasive biomarker. Further validation in larger cohorts is needed to confirm its clinical utility.
Collapse
Affiliation(s)
- Minh Ngo
- Department of Gastroenterology and Hepatology, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Radiology Center, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Trang Dao
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi, Vietnam
| | - Trang Hoang
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi, Vietnam
| | - Ung Nguyen
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi, Vietnam
| | - Jakob Stenman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Huy Duong
- Department of Gastroenterology and Hepatology, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Tho Ho
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi, Vietnam.
- Department of Microbiology, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam.
| |
Collapse
|
8
|
Kim MY, Hwangbo H, Ji SY, Kim DH, Park SH, Hong SH, Kim GY, Bang E, Choi YH. Cynaropicrin Suppresses Cell Proliferation by Inducing Mitophagy through p38 MAPK-Mediated Mitochondrial ROS Generation in Human Hepatocellular Carcinoma Cells. J Microbiol Biotechnol 2025; 35:e2501025. [PMID: 40295200 PMCID: PMC12089954 DOI: 10.4014/jmb.2501.01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
Cynaropicrin, a sesquiterpene lactone, has diverse pharmacological activities. However, its anticancer activity against hepatocellular carcinoma (HCC) has not been fully elucidated. Here, we investigated the cytotoxic effects of cynaropicrin and examined its mechanism of action in human HCC cells. The results demonstrated that cynaropicrin significantly induced cytotoxicity and autophagy in HCC cells, but not in immortalized non-cancerous hepatocytes, which was related to the generation of mitochondrial reactive oxygen species (mtROS) and induction of mitochondrial membrane potential loss. Under cynaropicrin treatment, the expression of microtubule-associated protein light chain 3, which is involved in the elongation of the phagophore membrane, was upregulated, whereas the expression of Beclin-1 and p62, which are essential for the formation of autophagosomes, was downregulated. In addition, the expression of mitophagy regulators PTEN-induced kinase 1 (PINK1) and Parkin in the mitochondria increased, suggesting the induction of autophagic flux in the mitochondria. However, N-acetyl-l-cysteine, a ROS scavenger, counteracted cynaropicrin-induced effects. Moreover, cynaropicrin increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK), and the p38 MAPK inhibitor, SB203580, specifically attenuated cynaropicrin-induced cytotoxicity and mtROS production. Importantly, SB203580 reversed cynaropicrin-induced expression of PINK1 and Parkin in the mitochondria. Collectively, our findings demonstrate that cynaropicrin exerts cytotoxic effects against HCC cells by inducing mitochondrial autophagy through the activation of the p38 MAPK-ROS pathway, indicating that cynaropicrin could be a potential therapeutic agent for liver cancer treatment.
Collapse
Affiliation(s)
- Min Yeong Kim
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Da Hye Kim
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Gi Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
9
|
Yu Y, Liu H, Liu K, Zhao M, Zhang Y, Jiang R, Wang F. Multi-omics identification of a polyamine metabolism related signature for hepatocellular carcinoma and revealing tumor microenvironment characteristics. Front Immunol 2025; 16:1570378. [PMID: 40330470 PMCID: PMC12052762 DOI: 10.3389/fimmu.2025.1570378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Background Accumulating evidence indicates that elevated polyamine levels are closely linked to tumor initiation and progression. However, the precise role of polyamine metabolism in hepatocellular carcinoma (HCC) remains poorly understood. Methods We conducted differential expression analysis on bulk RNA sequencing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) to identify 65 polyamine metabolism-related genes. By employing unsupervised consensus clustering, AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network analysis (WGCNA), we identified polyamine metabolism-related genes at both the bulk RNA-seq and single-cell RNA-seq (scRNA-seq) levels. Utilizing 101 machine learning algorithms, we constructed a polyamine metabolism-related signature (PMRS) and validated its predictive power across training, testing, and external validation cohorts. Additionally, we developed a prognostic nomogram model by integrating PMRS with clinical variables. To explore immune treatment sensitivity, we assessed tumor mutation burden (TMB), tumor immune dysfunction and exclusion (TIDE) score, mutation frequency, and immune checkpoint genes expression. Immune cell infiltration was analyzed using the CIBERSORT algorithm. Finally, RT-qPCR experiments were conducted to validate the expression of key genes. Results Using 101 machine learning algorithms, we established a polyamine metabolism-related signature comprising 9 genes, which exhibited strong prognostic value for HCC patients. Further analysis revealed significant differences in clinical features, biological functions, mutation profiles, and immune cell infiltration between high-risk and low-risk groups. Notably, TIDE analysis and immune phenotype scoring (IPS) demonstrated distinct immune treatment sensitivities between the two risk groups. RT-qPCR validation confirmed that these 9 genes were highly expressed in normal cells but significantly downregulated in tumor cells. Conclusions Our study developed a polyamine metabolism-based prognostic risk signature for HCC, which may provide valuable insights for personalized treatment strategies in HCC patients.
Collapse
Affiliation(s)
- Yuexi Yu
- Department of gastroenterology &hepatology, Tianjin First Center Hospital, Tianjin Key Laboratory for Organ Transplantation, Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin Medical University, Tianjin, China
| | - Huiru Liu
- Department of gastroenterology &hepatology, Tianjin First Center Hospital, Tianjin Key Laboratory for Organ Transplantation, Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin Medical University, Tianjin, China
| | - Kaipeng Liu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Meiqi Zhao
- Department of gastroenterology &hepatology, Tianjin First Center Hospital, Tianjin Key Laboratory for Organ Transplantation, Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Nankai University, Tianjin, China
| | - Yiyan Zhang
- Department of gastroenterology &hepatology, Tianjin First Center Hospital, Tianjin Key Laboratory for Organ Transplantation, Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin Medical University, Tianjin, China
| | - Runci Jiang
- Department of gastroenterology &hepatology, Tianjin First Center Hospital, Tianjin Key Laboratory for Organ Transplantation, Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin Medical University, Tianjin, China
| | - Fengmei Wang
- Department of gastroenterology &hepatology, Tianjin First Center Hospital, Tianjin Key Laboratory for Organ Transplantation, Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Qin J, Li Z. Identification of CDK1 as a Biomarker for the Treatment of Liver Fibrosis and Hepatocellular Carcinoma Through Bioinformatics Analysis. Int J Mol Sci 2025; 26:3816. [PMID: 40332418 PMCID: PMC12028024 DOI: 10.3390/ijms26083816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Cyclin-dependent kinase 1 (CDK1) has emerged as a critical regulator of cell cycle progression, yet its role in liver fibrosis-associated hepatocellular carcinoma (LF-HCC) remains underexplored. This study aimed to systematically evaluate CDK1's prognostic significance, immune regulatory functions, and therapeutic potential in LF-HCC pathogenesis. Integrated bioinformatics approaches were applied to multi-omics datasets from GEO, TCGA, and TIMER databases. Differentially expressed genes were identified through enrichment analysis and protein-protein interaction networks. Survival outcomes were assessed via Kaplan-Meier analysis, while immune cell infiltration patterns were quantified using CIBERSORT. Molecular docking simulations evaluated CDK1's binding affinity with pharmacologically active compounds (alvocidib, seliciclib, alsterpaullone) using AutoDock Vina. CDK1 demonstrated significant overexpression in LF-HCC tissues compared to normal controls (p < 0.001). Elevated CDK1 expression correlated with reduced overall survival (HR = 2.41, 95% CI:1.78-3.26, p = 0.003) and advanced tumor staging (p = 0.007). Immune profiling revealed strong associations between CDK1 levels and immunosuppressive cell infiltration, particularly regulatory T cells (r = 0.63, p = 0.001) and myeloid-derived suppressor cells (r = 0.58, p = 0.004). Molecular docking confirmed high-affinity binding of CDK1 to kinase inhibitors through conserved hydrogen-bond interactions (binding energy ≤ -8.5 kcal/mol), with alvocidib showing optimal binding stability. This multimodal analysis establishes CDK1 as both a prognostic biomarker and immunomodulatory regulator in LF-HCC pathogenesis. The enzyme's dual role in driving tumor progression and reshaping the immune microenvironment positions it as a promising therapeutic target. Computational validation of CDK1 inhibitors provides a rational basis for developing precision therapies against LF-HCC, bridging translational gaps between biomarker discovery and clinical application.
Collapse
Affiliation(s)
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutic Science, Health Science Center, Hunan Normal University, Changsha 410013, China;
| |
Collapse
|
11
|
Fu MX, Lambert G, Cook A, Ndow G, Haddadin Y, Shimakawa Y, Hallett TB, Harvala H, Sicuri E, Lemoine M, Nayagam S. Quality of life in patients with HBV infection: A systematic review and meta-analysis. JHEP Rep 2025; 7:101312. [PMID: 40115166 PMCID: PMC11919624 DOI: 10.1016/j.jhepr.2024.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 03/23/2025] Open
Abstract
Background & Aims Despite nearly 250 million people worldwide estimated to have chronic HBV infection, health-related quality of life (HRQOL) in HBV-related disease has not been well characterised. Here, we summarise existing data on HBV-related HRQOL and quantify summary utility values by stage of disease. Methods Embase, Global Health, PubMed, and Web of Science were searched for articles investigating HBV HRQOL. Meta-analyses for utility scores were pooled by stage of disease and utility instrument; meta-regression was further adjusted for the effect of current health expenditure as a percentage of gross domestic product (CHE/GDP), as a proxy of the importance of healthcare perceived by different countries. Results Twenty-two articles from 19 studies, comprising 10,311 patients, were included. Of these studies, 74% were performed in the Western Pacific Region, and 47% used the EuroQoL-5D-3L instrument. HRQOL was found to decrease with advancing stages of HBV-related disease. Meta-regression showed the following predicted mean utility scores for the different stages of chronic HBV infection: non-cirrhotic, 0.842; compensated cirrhosis, 0.820 (p = 0.474 compared with non-cirrhotic); decompensated cirrhosis, 0.722 (p = 0.001); and hepatocellular carcinoma, 0.749 (p = 0.008). The type of tool affected HRQOL and populations with a higher CHE/GDP were associated with higher predicted utility values. Conclusions Chronic HBV infection impairs the HRQOL of patients, even when there is no evidence of cirrhosis. HRQOL is particularly impaired in the advanced stages of decompensated cirrhosis and hepatocellular carcinoma. These results have important implications for global hepatitis elimination efforts and are useful for economic analyses. However, further research is needed, particularly in high-burden, low-income settings where data are lacking. Impact and implications This study, based on 22 articles and 10,311 patients, provides a comprehensive synthesis of data on the impact of chronic hepatitis B virus (HBV) infection on patients' health-related quality of life (HRQOL) worldwide. These findings, of how HRQOL is affected in people living with HBV, highlight the importance of patient-centred care and holistic approaches to management, even at the early stages of disease. These results are useful for cost-effectiveness analyses and may help inform decision-making in improving public health policy towards the elimination of viral hepatitis. The study also underscores the need for further data from low-to middle-income settings, and on the effects of treatment on HRQOL.
Collapse
Affiliation(s)
- Michael X Fu
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, London, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gabriel Lambert
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, London, UK
| | - Amelia Cook
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, London, UK
- Cicely Saunders Institute for Palliative Care, Policy and Rehabilitation, King's College London, London, UK
| | - Gibril Ndow
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, London, UK
- Medical Research Council Unit, The Gambia, London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Yazan Haddadin
- Department of Clinical and Experimental Medicine, University of Sussex, Brighton, UK
| | - Yusuke Shimakawa
- Unité d'Épidémiologie des Maladies Émergentes, Institut Pasteur, Paris, France
| | - Timothy B Hallett
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK
| | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, London, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Elisa Sicuri
- LSE Health, London School of Economics and Political Science, London, UK
- ISGlobal, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Maud Lemoine
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, London, UK
| | - Shevanthi Nayagam
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, London, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
12
|
Zeng L, Zhu L, Fu S, Li Y, Hu K. Mitochondrial Dysfunction-Molecular Mechanisms and Potential Treatment approaches of Hepatocellular Carcinoma. Mol Cell Biochem 2025; 480:2131-2142. [PMID: 39463200 DOI: 10.1007/s11010-024-05144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Primary liver cancer (PLC), also known as hepatocellular carcinoma (HCC), is a common type of malignant tumor of the digestive system. Its pathological form has a significant negative impact on the patients' quality of life and ability to work, as well as a significant financial burden on society. Current researches had identified chronic hepatitis B virus infection, aflatoxin B1 exposure, and metabolic dysfunction-associated steatotic liver disease (MASLD) as the main causative factors of HCC. Numerous variables, including inflammatory ones, oxidative stress, apoptosis, autophagy, and others, have been linked to the pathophysiology of HCC. On the other hand, autoimmune regulation, inflammatory response, senescence of the hepatocytes, and mitochondrial dysfunction are all closely related to the pathogenesis of HCC. In fact, a growing number of studies have suggested that mitochondrial dysfunction in hepatocytes may be a key factor in the pathogenesis of HCC. In disorders linked to cancer, mitochondrial dysfunction has gained attention in recent 10 years. As the primary producer of adenosine triphosphate (ATP) in liver cells, mitochondria are essential for preserving cell viability and physiological processes. By influencing multiple pathological processes, including mitochondrial fission/fusion, mitophagy, cellular senescence, and cell death, mitochondrial dysfunction contributes to the development of HCC. We review the molecular mechanisms of HCC-associated mitochondrial dysfunction and discuss new directions for quality control of mitochondrial disorders as a treatment for HCC.
Collapse
Affiliation(s)
- Lianlin Zeng
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Lutao Zhu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Shasha Fu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Yangan Li
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Kehui Hu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China.
| |
Collapse
|
13
|
Yang H, Kong P, Hou S, Dong X, Abula I, Yan D. Potential prognostic biomarker SERPINA12: implications for hepatocellular carcinoma. Clin Transl Oncol 2025; 27:1597-1611. [PMID: 39235554 PMCID: PMC12000224 DOI: 10.1007/s12094-024-03689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains one of the most prevalent malignant tumors, exhibiting a high morbidity and mortality rate. The mechanism of its occurrence and development requires further study. The objective of this study was to investigate the role of SERPINA12 in the diagnosis, prognosis prediction and biological function within HCC. METHODS The Cancer Genome Atlas (TCGA) data were employed to analyze the relationship between clinical features and SERPINA12 expression in HCC. Kaplan-Meier curves were utilized to analyze the correlation between SERPINA12 expression and prognosis in HCC. The function of SERPINA12 was determined by enrichment analysis, and the relationship between SERPINA12 expression and immune cell infiltration was investigated. The expression of SERPINA12 was examined in 75 patients with HCC using RT-qPCR and immunohistochemistry, and survival analysis was performed. RESULTS The expression of SERPINA12 from TCGA database was found to be significantly higher in HCC tissues than in normal tissues and carried a poor prognosis. ROC curve demonstrated the diagnostic potential of SERPINA12 for HCC. The multivariate Cox regression analysis showed that pathologic T stage, tumor status, and SERPINA12 expression were independently associated with patient survival. The SERPINA12 expression was found to correlate with immune cell infiltration. Our RT-qPCR and immunohistochemical analysis revealed high expression of SERPINA12 in tumor tissues. Survival analysis indicated its association with poor prognosis. CONCLUSION SERPINA12 is a promising biomarker for diagnosis and prognosis, and it is associated with immune cell infiltration.
Collapse
Affiliation(s)
- Huan Yang
- The Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Panpan Kong
- The Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Songyu Hou
- The Department of Daily Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, UrumqiXinjiang, 830011, China
| | - Xiaogang Dong
- The Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Imamumaimaitijiang Abula
- The Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Dong Yan
- The Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
14
|
Yan Y, Chen K, Sun Q. A gene signature associated with cellular senescence serves as an important prognostic indicator in hepatocellular carcinoma. Transl Cancer Res 2025; 14:2054-2065. [PMID: 40224975 PMCID: PMC11985214 DOI: 10.21037/tcr-2025-335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025]
Abstract
Background Hepatocellular carcinoma (HCC) is a lethal tumor. Predicting the prognosis of HCC remains challenging. Cellular senescence, which is one of the hallmarks of cancer, and its related prognostic-gene signature can provide critical information for clinical decision making. Our objective was to investigate the role of cellular senescence in HCC. Methods The RNA sequencing data and clinical information of HCC patients from The Cancer Genome Atlas (TCGA) database were obtained. The HCC subtypes and a senescence score model were established to predict the prognosis of HCC. Results In this study, patients from TCGA-HCC dataset were stratified into low- and high-risk groups based on cellular senescence-related genes. The analysis of the various subtypes revealed that the distribution of Cluster 1 (C1) was significantly correlated with numerous factors, including age, sex, pathological T stage, tumor node metastasis (TNM) classification, and grade staging. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the upregulated genes in the high-risk C1 group were primarily engaged in pathways related to the cell cycle, DNA replication, cellular senescence, extracellular matrix (ECM)-receptor interactions, and the mechanisms of mismatch repair. Conversely, the 90 downregulated genes were mainly associated with metabolic pathways, chemical carcinogenesis involving DNA adducts, complement and coagulation cascades, and the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The resultant boxplots revealed significant differences in the populations of immune cells, such as B cells, endothelial cells, natural killer (NK) cells, macrophages, cluster of differentiation (CD)4+ T cells, and CD8+ T cells, in the C1 HCC samples compared to the C2 HCC samples. Additionally, the prognostic outcomes of the HCC patients were predicted using a cellular senescence-related gene model that included VDAC2, CXCL8, MYBL2, RAD9A, LIN52, RHEB, GADD45G, E2F5, MAP2K2, CDC25A, PPP1CB, and HRAS. Conclusions This study established a prognostic model of HCC based on cellular senescence-related gene expression. Our findings may provide insights that can be used to develop novel potential targeted therapies.
Collapse
Affiliation(s)
- Yongfeng Yan
- Department of Laboratory, Tianjin Beichen Hospital, Tianjin, China
| | - Kai Chen
- Department of Laboratory, Tianjin Beichen Hospital, Tianjin, China
| | - Qian Sun
- Department of Laboratory, Tianjin Beichen Hospital, Tianjin, China
| |
Collapse
|
15
|
Zhou B, Li J, Wu S, Zhang H, Luo Y, Chen J, Chen G. USP39/SMC4 promotes hepatoma cell proliferation and 5-FU resistance. Sci Rep 2025; 15:8869. [PMID: 40087331 PMCID: PMC11909175 DOI: 10.1038/s41598-025-93029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, characterized by a high rate of postoperative recurrence and poor long-term survival outcomes. Structural maintenance of chromosome 4 (SMC4) is frequently overexpressed in various types of cancer and plays a pivotal role in tumor cell growth, migration, and invasion. Bioinformatics analysis has revealed a significant correlation between the tumor-node metastasis (TNM) stage (P < 0.01) and SMC4 expression (P < 0.05), and SMC4 was associated with poor prognosis in HCC. Furthermore, SMC4 was identified as an independent prognostic factor for HCC. Ubiquitin-specific peptidase 39 (USP39) was found whether the regulation was observed to affect protein synthesis or stability through bioinformatics analysis and immunoprecipitation. The expression levels and cellular localization of SMC4 and USP39 in hepatoma cells were evaluated using quantitative real-time PCR (qPCR), western blotting, and immunohistochemistry (IHC), all of which indicated significantly elevated expression of USP39 and SMC4 in HCC. The roles of the SMC4/USP39 were further investigated through several assays, including the 3-(4,5-Dimethylthiazol-2-yl) -2,5- diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, and wound healing assay. The results demonstrated that USP39/SMC4 plays a crucial role in enhancing the viability and proliferation of HepG2 cells. Additionally, bioinformatics analysis identified ZNF207 and TIAL1 as potential target proteins of SMC4. Drug-resistant hepatoma cell lines were established, and both MTT and EdU assays were performed to assess cell viability and proliferation. The results demonstrated that HepG2/5-FU cells regained their sensitivity to 5-FU following the knockdown of SMC4. Additionally, the knockdown of either TIAL1 or ZNF207 also restored 5-FU sensitivity in HepG2/5-FU cells, effectively inhibiting cell viability and proliferation. Our study underscores the significant role of the USP39/SMC4 in HCC development and suggests that SMC4 may contribute to the regulation of drug resistance in hepatoma cell lines, potentially through interactions with TIAL1 and ZNF207.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Shuai Wu
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Haomiao Zhang
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Yuanbo Luo
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Jingxiang Chen
- Department of Hepatobiliary Surgery, The Ninth People's Hospital of Chongqing, No. 1 Yueya Village, Beibei District, Chongqing, 400700, China.
| | - Geng Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, No. 10, Changjiang Road, Daping, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
16
|
Liu F, Xiao L, Zhao L, Tao Y, Huang D, Chen Z, He C, Wu C. Prostate-specific membrane antigen-targeting radiopharmaceuticals: a new frontier in hepatic malignancies. Front Oncol 2025; 15:1547459. [PMID: 40123907 PMCID: PMC11926431 DOI: 10.3389/fonc.2025.1547459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Background/Objectives Prostate-specific membrane antigen (PSMA) is overexpressed in prostate hypercellularity, making it an effective target for molecular imaging and therapy of prostate cancer. PSMA is expressed in the neovasculature of hepatic malignancies and regulates tumor cell invasion and angiogenesis. The diagnosis and treatment of hepatic malignancies remain challenging. Thus, radiopharmaceuticals targeting PSMA are gaining prominence in the treatment of hepatic malignancies. Therefore, this review aims to discuss the applications of PSMA-targeting radiopharmaceuticals in hepatic malignant tumors, focusing on hepatocellular carcinoma (HCC), to assess their value as a diagnostic and therapeutic agent for hepatic malignancies. Methods The potentials of PSMA-targeting radiopharmaceuticals for diagnostic and therapeutic use in hepatic malignancies were investigated. Moreover, their characteristics, diagnostic and therapeutic efficacies, and potential synergies when used in conjunction with other therapeutic modalities were elucidated. Results Computed tomography (CT) and magnetic resonance imaging (MRI) are the most common imaging modalities in clinical practice; however, their sensitivity is not optimal. PSMA positron emission tomography/CT can be used as a complementary modality to conventional imaging for characterizing lesions, staging and/or re-staging HCC, and assessing treatment response when conventional imaging results are unclear. Moreover, most patients with HCC are diagnosed at an advanced stage in which treatment options are limited. Hence, PSMA-based radioligand therapy serves as a promising alternative treatment when multiple treatments fail. Conclusions Further research and clinical transformation are required to effectively diagnose and treat HCC via PSMA targeting. This will have significant clinical application prospects in primary and secondary hepatic malignancies.
Collapse
Affiliation(s)
- Fucen Liu
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Liming Xiao
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Ling Zhao
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Institute of Basic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yi Tao
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Dan Huang
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zhengguo Chen
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Chuandong He
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Chunyan Wu
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
17
|
Galicia-Moreno M, Monroy-Ramirez HC, Caloca-Camarena F, Arceo-Orozco S, Muriel P, Sandoval-Rodriguez A, García-Bañuelos J, García-González A, Navarro-Partida J, Armendariz-Borunda J. A new opportunity for N-acetylcysteine. An outline of its classic antioxidant effects and its pharmacological potential as an epigenetic modulator in liver diseases treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2365-2386. [PMID: 39436429 DOI: 10.1007/s00210-024-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Liver diseases represent a worldwide health problem accountable for two million deaths per year. Oxidative stress is critical for the development of these diseases. N-acetyl cysteine (NAC) is effective in preventing liver damage, both in experimental and clinical studies, and evidence has shown that the pharmacodynamic mechanisms of NAC are related to its antioxidant nature and ability to modulate key signaling pathways. Here, we provide a comprehensive description of the beneficial effects of NAC in the treatment of liver diseases, addressing the first evidence of its role as a scavenger and precursor of reduced glutathione, along with studies showing its immunomodulatory action, as well as the ability of NAC to modulate epigenetic hallmarks. We searched the PubMed database using the following keywords: oxidative stress, liver disease, epigenetics, antioxidants, NAC, and antioxidant therapies. There was no time limit to gather all available information on the subject. NAC has shown efficacy in treating liver damage, exerting mechanisms of action different from those of free radical scavengers. Like different antioxidant therapies, its effectiveness and safety are related to the administered dose; therefore, designing new pharmacological formulations for this drug is imperative to achieve an adequate response. Finally, there is still much to explore regarding its effect on epigenetic marker characteristics of liver damage, turning it into a drug with broad therapeutic potential. According to the literature reviewed, NAC could be an appropriate option in clinical studies related to hepatic injury and, in the future, a repurposing alternative for treating liver diseases.
Collapse
Affiliation(s)
- Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Fernando Caloca-Camarena
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
- Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Scarlet Arceo-Orozco
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Pablo Muriel
- Laboratorio de Hepatologia Experimental, Departamento de Farmacologia, Cinvestav-IPN, 07000, Mexico City, Mexico
| | - Ana Sandoval-Rodriguez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Jesús García-Bañuelos
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | | | | | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
- Tecnológico de Monterrey, EMCS, 45201, Zapopan, Jalisco, Mexico.
| |
Collapse
|
18
|
Xiong X, Guo JJ. Cost Effectiveness of Tremelimumab Plus Durvalumab for Unresectable Hepatocellular Carcinoma in the USA. PHARMACOECONOMICS 2025; 43:271-282. [PMID: 39546248 DOI: 10.1007/s40273-024-01453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Treating unresectable hepatocellular carcinoma (uHCC) is challenging. Clinical trials have shown that Single Tremelimumab Regular Interval Durvalumab (STRIDE) offers clinical benefits as a first-line treatment for uHCC, but its cost effectiveness remains unknown in the USA. OBJECTIVE We aimed to assess the cost effectiveness of STRIDE (tremelimumab plus durvalumab) versus sorafenib and durvalumab monotherapy as the first-line treatment for uHCC in the USA. METHODS A partitioned survival model was constructed to assess the cost effectiveness of STRIDE compared to sorafenib and durvalumab monotherapy as the first-line treatment for uHCC from the US societal perspective. The time horizon was 48 months with 1-month cycles. Seven parametric survival functions replicated survival curves from clinical trials, with the best-fitting model used to calculate survival probabilities. Costs, health utilities, and adverse events were included, with quality-adjusted life-years (QALYs) as the primary effectiveness measure. Both costs and effectiveness were discounted at 3%. In the base-case analysis, the incremental cost-effectiveness ratio was compared to a willingness-to-pay threshold of $150,000 per QALY gained. Deterministic and probabilistic sensitivity analyses were conducted to examine the uncertainty of the model. RESULTS In the base-case analysis, STRIDE was cost effective compared to sorafenib, with an incremental cost-effectiveness ratio of $97,995.51 per QALY gained, based on a willingness-to-pay threshold of $150,000 per QALY gained. However, STRIDE was not cost effective compared to durvalumab monotherapy at the same threshold, with an incremental cost-effectiveness ratio of $754,408.92 per QALY gained. Deterministic sensitivity analyses were consistent with the base-case analysis. A probabilistic sensitivity analysis indicated that STRIDE was more likely to be cost effective than sorafenib and durvalumab monotherapy when the willingness-to-pay exceeded $101,000 and $713,000, respectively. CONCLUSIONS The STRIDE regimen appears to be cost effective compared to sorafenib but not compared to durvalumab for first-line uHCC treatment in the USA. However, durvalumab has not yet been approved for uHCC in the USA. Future research should focus on long-term data and economic evaluations of other recommended biologics.
Collapse
MESH Headings
- Humans
- Cost-Benefit Analysis
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/economics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/mortality
- Liver Neoplasms/drug therapy
- Liver Neoplasms/economics
- Liver Neoplasms/pathology
- Liver Neoplasms/mortality
- United States
- Quality-Adjusted Life Years
- Antibodies, Monoclonal, Humanized/economics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Sorafenib/economics
- Sorafenib/administration & dosage
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/economics
- Antineoplastic Combined Chemotherapy Protocols/economics
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Models, Economic
- Cost-Effectiveness Analysis
Collapse
Affiliation(s)
- Xiaomo Xiong
- Division of Pharmacy Practice and Administrative Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, 3255 Eden Ave, Cincinnati, OH, 45267, USA.
| | - Jeff Jianfei Guo
- Division of Pharmacy Practice and Administrative Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, 3255 Eden Ave, Cincinnati, OH, 45267, USA
| |
Collapse
|
19
|
Sun Z, Li X. A promising mesoporous silica carrier material for the diagnosis and treatment of liver diseases: recent research advances. J Mater Chem B 2025; 13:1935-1960. [PMID: 39801308 DOI: 10.1039/d4tb01822b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The therapeutic diagnosis of liver diseases has garnered significant interest within the medical community. In recent years, mesoporous silica nanoparticles (MSNs) have emerged as crucial nanocarriers for the treatment of liver ailments. Their remarkable diagnostic capabilities enable them to be used in techniques such as high-throughput mass spectrometry (MS), magnetic resonance imaging (MRI), near-infrared (NIR) fluorescence imaging, photoacoustic imaging (PAI), and ultrasonography (US), attracting considerable attention. Furthermore, the introduction of amino and carboxyl group modifications in MSNs has facilitated their use as drug delivery carriers for treating liver diseases, including hepatocellular carcinoma. This paper reviews the preparation methods, in vitro diagnostic capabilities, and in vivo therapeutic delivery systems of MSNs for liver disease treatment. It also summarizes relevant toxicity studies, aiming to provide a comprehensive overview of the diagnostic and therapeutic applications of MSNs in the treatment of liver diseases, particularly hepatocellular carcinoma. Through this review, we seek to offer theoretical insights into the potential of MSNs for diagnostic and therapeutic applications in liver disease treatment.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
20
|
Fu CL, Zhao ZW, Zhang QN. The crosstalk between cellular survival pressures and N6-methyladenosine modification in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2025; 24:67-75. [PMID: 39155161 DOI: 10.1016/j.hbpd.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Within the tumor microenvironment, survival pressures are prevalent with potent drivers of tumor progression, angiogenesis, and therapeutic resistance. N6-methyladenosine (m6A) methylation has been recognized as a critical post-transcriptional mechanism regulating various aspects of mRNA metabolism. Understanding the intricate interplay between survival pressures and m6A modification provides new insights into the molecular mechanisms underlying hepatocellular carcinoma (HCC) progression and highlights the potential for targeting the survival pressures-m6A axis in HCC diagnosis and treatment. DATA SOURCES A literature search was conducted in PubMed, MEDLINE, and Web of Science for relevant articles published up to April 2024. The keywords used for the search included hepatocellular carcinoma, cellular survival, survival pressure, N6-methyladenosine, tumor microenvironment, stress response, and hypoxia. RESULTS This review delves into the multifaceted roles of survival pressures and m6A RNA methylation in HCC, highlighting how survival pressures modulate the m6A landscape, the impact of m6A modification on survival pressure-responsive gene expression, and the consequent effects on HCC cell survival, proliferation, metastasis, and resistance to treatment. Furthermore, we explored the therapeutic potential of targeting this crosstalk, proposing strategies that leverage the understanding of survival pressures and m6A RNA methylation mechanisms to develop novel, and more effective treatments for HCC. CONCLUSIONS The interplay between survival pressures and m6A RNA methylation emerges as a complex regulatory network that influences HCC pathogenesis and progression.
Collapse
Affiliation(s)
- Chu-Li Fu
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zheng-Wei Zhao
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Qiang-Nu Zhang
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
21
|
Karin M, Kim JY. MASH as an emerging cause of hepatocellular carcinoma: current knowledge and future perspectives. Mol Oncol 2025; 19:275-294. [PMID: 38874196 PMCID: PMC11793012 DOI: 10.1002/1878-0261.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatocellular carcinoma is one of the deadliest and fastest-growing cancers. Among HCC etiologies, metabolic dysfunction-associated fatty liver disease (MAFLD) has served as a major HCC driver due to its great potential for increasing cirrhosis. The obesogenic environment fosters a positive energy balance and results in a continuous rise of obesity and metabolic syndrome. However, it is difficult to understand how metabolic complications lead to the poor prognosis of liver diseases and which molecular mechanisms are underpinning MAFLD-driven HCC development. Thus, suitable preclinical models that recapitulate human etiologies are essentially required. Numerous preclinical models have been created but not many mimicked anthropometric measures and the course of disease progression shown in the patients. Here we review the literature on adipose tissues, liver-related HCC etiologies and recently discovered genetic mutation signatures found in MAFLD-driven HCC patients. We also critically review current rodent models suggested for MAFLD-driven HCC study.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Ju Youn Kim
- Department of Molecular and Life ScienceHanyang University ERICAAnsanKorea
| |
Collapse
|
22
|
Yang LX, Qi C, Lu S, Ye XS, Merikhian P, Zhang DY, Yao T, Zhao JS, Wu Y, Jia Y, Shan B, Chen J, Mou X, You J, Li W, Feng YX. Alleviation of liver fibrosis by inhibiting a non-canonical ATF4-regulated enhancer program in hepatic stellate cells. Nat Commun 2025; 16:524. [PMID: 39789010 PMCID: PMC11718104 DOI: 10.1038/s41467-024-55738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Liver fibrosis is a critical liver disease that can progress to more severe manifestations, such as cirrhosis, yet no effective targeted therapies are available. Here, we identify that ATF4, a master transcription factor in ER stress response, promotes liver fibrosis by facilitating a stress response-independent epigenetic program in hepatic stellate cells (HSCs). Unlike its canonical role in regulating UPR genes during ER stress, ATF4 activates epithelial-mesenchymal transition (EMT) gene transcription under fibrogenic conditions. HSC-specific depletion of ATF4 suppresses liver fibrosis in vivo. Mechanistically, TGFβ resets ATF4 to orchestrate a unique enhancer program for the transcriptional activation of pro-fibrotic EMT genes. Analysis of human data confirms a strong correlation between HSC ATF4 expression and liver fibrosis progression. Importantly, a small molecule inhibitor targeting ATF4 translation effectively mitigates liver fibrosis. Together, our findings identify a mechanism promoting liver fibrosis and reveal new opportunities for treating this otherwise non-targetable disease.
Collapse
Affiliation(s)
- Li-Xian Yang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chuangye Qi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Si Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Head and Neck Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Shi Ye
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Parnaz Merikhian
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Du-Yu Zhang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Tao Yao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang-Sha Zhao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Wu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bo Shan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China.
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA.
| | - Yu-Xiong Feng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Zhai P, Li M, Cheng Y. Exploring the utility of zinc finger protein-related genes in predicting hepatocellular carcinoma prognosis, immune responses, and drug efficacy. Hum Exp Toxicol 2025; 44:9603271251340277. [PMID: 40340393 DOI: 10.1177/09603271251340277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
BackgroundHepatocellular carcinoma (LIHC), a prevalent liver cancer with a grim prognosis due to high recurrence rates, is under scrutiny for its association with zinc finger proteins (ZNFs) in tumorigenesis. This study aims to create a prognostic model for LIHC incorporating ZNF-related genes.MethodsBy analyzing TCGA data, we identified differentially expressed genes (DEGs) between normal and LIHC samples, focusing on ZNF-related genes through univariate Cox and LASSO Cox regression. A multivariate Cox regression model was built, categorizing LIHC patients into high- and low-ZNFRS groups based on ZNF-related risk scores. Model performance was evaluated using ROC curves, with a nomogram integrating clinical data and ZNFRS. Immune microenvironment, enrichment analysis, mutations, and drug responses in LIHC were also explored.ResultsA prognostic model utilizing 10 ZNF-related genes accurately predicted LIHC survival. The low-risk group exhibited enhanced immune cell infiltration, contrasting with cell cycle and DNA replication enrichment in the high-risk group, which also displayed increased mutation rates. Promising drug candidates like SNS-314 and Decitabine warrant further investigation in LIHC treatment.ConclusionThis study introduces impactful prognostic markers for LIHC management, emphasizing the significance of ZNFs in predicting patient outcomes and guiding treatment strategies.
Collapse
Affiliation(s)
- Pengtao Zhai
- Minimally Invasive Intervention Department, Shaanxi Provincial Cancer Hospital, Xi'an City, China
| | - Mei Li
- Minimally Invasive Intervention Department, Shaanxi Provincial Cancer Hospital, Xi'an City, China
| | - Yuan Cheng
- Minimally Invasive Intervention Department, Shaanxi Provincial Cancer Hospital, Xi'an City, China
| |
Collapse
|
24
|
Li X, Qin Z, Chen H, Chen D, Alimu N, Li D, Cheng X, Yan Q, Zhang L, Liu X, Zhou Z, Zhu J, Ma H, Pei X, Xu H, Huang J. Construction of a tumor immune microenvironment-related risk scoring model for prognosis of hepatocellular carcinoma. Int J Immunopathol Pharmacol 2025; 39:3946320251333975. [PMID: 40265593 PMCID: PMC12035210 DOI: 10.1177/03946320251333975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
OBJECTIVE This study aims to develop a prognostic model for HCC based on TME-related factors. INTRODUCTION Hepatocellular carcinoma (HCC) is characterized by a poor prognosis, largely due to the complex and heterogeneous interactions between stromal and immune cells within the tumor microenvironment (TME). METHODS Genome and transcriptome data, as well as clinical information of HCC patients, were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). The TME score was evaluated using the "ESTIMATE" R package. Differentially expressed genes (DEGs) associated with TME phenotype were analyzed using the LIMMA R-package. Survival outcomes were compared using Kaplan-Meier curves with log-rank test and Cox proportional hazards model. Protein-Protein Interaction (PPI) networks integrated with multivariate survival and LASSO analyses were utilized to identify TME-related hub genes for a risk score model. A nomogram predicting prognosis of HCC patients was developed through four independent cohorts. RESULTS The TME scores showed a negative correlation with tumor progression and survival in HCC patients. We identified 50 core genes with high connectivity in the PPI network, as along with 33 key DEGs associated with survival in HCC. Intersection analysis revealed six hub genes -CXCL8, CXCL1, CCR7, IL7R, MMP9, and CD69. The risk score based on these six TME-related hub genes was significantly associated with overall survival and clinicopathological characteristics of HCC patients. Furthermore, the nomogram demonstrated its ability to discriminate HCC patients from healthy individuals using peripheral blood mononuclear cells. CONCLUSION We have developed a TME-related risk scoring model for HCC patients and identified six hub gene panel that serve as a potential biomarker for personalized prognosis of immunotherapy and non-invasive diagnostics of HCC.
Collapse
Affiliation(s)
- Xinyi Li
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Zifan Qin
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Haozhi Chen
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Daichuan Chen
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Nafisa Alimu
- School of Stomatology, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Duoduo Li
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Qiong Yan
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lishu Zhang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xingwei Liu
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Zitong Zhou
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jiayi Zhu
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hangqi Ma
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xinyue Pei
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hanli Xu
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jiaqiang Huang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
25
|
Fan Q, Wei P, Ma D, Cheng Q, Gao J, Zhu J, Li Z. Therapeutic efficacy and prognostic indicators in re-resection for recurrent hepatocellular carcinoma: Insights from a retrospective study. Surg Open Sci 2025; 23:16-23. [PMID: 39816698 PMCID: PMC11733202 DOI: 10.1016/j.sopen.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Aims To evaluate the efficacy of re-resection in recurrent hepatocellular carcinoma (rHCC), identify prognostic factors, and provide clinical guidance. Methods A retrospective analysis was conducted on 130 rHCC patients undergoing re-resection and 60 primary HCC patients undergoing initial hepatectomy at Peking University People's Hospital (2014-2022). Disease-free survival (DFS) and overall survival (OS) were compared. Prognostic factors were identified using univariate and multivariate COX regression analyses. Results Baseline characteristics were comparable between groups (P > 0.05). DFS was similar between groups (30.8 vs. 32.2 months, P = 0.612). The 1-year, 2-year, and 3-year DFS rates for the re-resection group were 88.5 %, 64.9 %, and 56.7 %, respectively, versus 88.3 %, 65.0 %, and 53.3 % for the primary resection group. OS was lower in the re-resection group (36.1 vs. 47.2 months, P = 0.041) with 1-year, 2-year, and 3-year OS rates of 90.8 %, 73.1 %, and 60.0 %, compared to 95.0 %, 80.0 %, and 68.3 % for the primary resection group. Significant factors affecting DFS were Child-Pugh classification (P = 0.044), time to recurrence (P = 0.002), tumor differentiation (P = 0.044), and satellite nodules (P = 0.019). Factors influencing OS included Child-Pugh classification (P = 0.040), time to recurrence (P = 0.002), and tumor differentiation (P = 0.032). Conclusions Re-resection is an effective treatment option for rHCC, with favorable outcomes as measured by DFS and OS, though OS is lower compared to initial hepatectomy. Key prognostic factors include Child-Pugh classification, time to recurrence, tumor differentiation, and satellite nodules.
Collapse
Affiliation(s)
- Qi Fan
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Pengcheng Wei
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Delin Ma
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| |
Collapse
|
26
|
Benderski K, Schneider P, Kordeves P, Fichter M, Schunke J, De Lorenzi F, Durak F, Schrörs B, Akilli Ö, Kiessling F, Bros M, Diken M, Grabbe S, Schattenberg JM, Lammers T, Sofias AM, Kaps L. A hepatocellular carcinoma model with and without parenchymal liver damage that integrates technical and pathophysiological advantages for therapy testing. Pharmacol Res 2025; 211:107560. [PMID: 39730106 DOI: 10.1016/j.phrs.2024.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Hepatocellular Carcinoma (HCC) is the most common form of primary liver cancer, with cirrhosis being its strongest risk factor. Interestingly, an increasing number of HCC cases is also observed without cirrhosis. We developed an HCC model via intrasplenic injection of highly tumorigenic HCC cells, which, due to cellular tropism, invade the liver and allow for a controllable disease progression. Specifically, C57BL/6JRj mice were intrasplenically inoculated with Dt81Hepa1-6 HCC cells, with a subgroup pre-treated with CCl4 to induce cirrhosis (C-HCC). At four weeks post-inoculation, mice were sacrificed, and diseased livers were analyzed via histology, flow cytometry, and RT-qPCR to profile the extracellular matrix (ECM), angiogenesis, and immune cells. In addition, tumor-bearing mice were treated with the first-line therapy, AtezoBev, to assess therapeutic responsiveness of the model. Dt81Hepa1-6 cells displayed similar gene expression as human HCC. After intrasplenic injection, all mice developed multifocal disease. C-HCC mice had a significantly higher tumor load than non-cirrhotic HCC mice. Both HCC and C-HCC models displayed extensive ECM formation, increased levels of vascularization, and immune cell infiltration compared to healthy and non-cancerous cirrhotic livers. AtezoBev treatment produced robust antitumor efficacy, validating the model's suitability for therapy testing. In conclusion, we established a rapidly developing and high-yield HCC model through a simple intrasplenic injection, with or without cirrhotic damage. The model overexpressed key human HCC genes and showed high responsiveness to first-line treatment. Our model uniquely combines all the above-mentioned features, promoting its use towards HCC therapy testing.
Collapse
Affiliation(s)
- Karina Benderski
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Panayiotis Kordeves
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Feyza Durak
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Barbara Schrörs
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Özlem Akilli
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Jörn M Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, Saarbrücken 66123, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, Saarbrücken 66123, Germany.
| |
Collapse
|
27
|
Ramakrishnan K, Sanjeev D, Rehman N, Raju R. A Network Map of Intracellular Alpha-Fetoprotein Signalling in Hepatocellular Carcinoma. J Viral Hepat 2025; 32:e14035. [PMID: 39668590 DOI: 10.1111/jvh.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 12/14/2024]
Abstract
Alpha fetoprotein (AFP) is a glycoprotein of foetal origin belonging to the albumin protein family. Serum AFP is a long-conceived early-diagnostic biomarker for HCC with its elevated expression in different liver pathologies ranging from hepatitis viral infections to fibrosis, cirrhosis, and HCC. Beyond their utility as biomarkers, in support of its contribution to these clinical outcomes, the function of AFP as an immune suppressor and inducer of malignant transformation in HCC patients is well reported. Multiple reports show that AFP is secreted by hepatocytes, binds to its cognate receptor, AFP-receptor (AFPR), and exerts its actions. However, there is only limited information available in this context. There is an urgent need to gather more insight into the AFP signalling pathway and consider it a classical intracellular signalling pathway, among others. AFP is a highly potent intracellular molecule that has the potential to bind to many interactors like PTEN, Caspase, RAR, and so on. It has been shown that cellular AFP and secreted AFP have different roles in HCC pathophysiology, and a comprehensive map of the AFP signalling pathway is warranted for further theranostic applications.
Collapse
Affiliation(s)
| | - Diya Sanjeev
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
28
|
Solhi R, Pourhamzeh M, Zarrabi A, Hassan M, Mirzaei H, Vosough M. Novel biomarkers for monitoring and management of hepatocellular carcinoma. Cancer Cell Int 2024; 24:428. [PMID: 39719624 DOI: 10.1186/s12935-024-03600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
Due to current challenges in the early detection, less than 40% of individuals diagnosed with hepatocellular carcinoma (HCC) are viable candidates for surgical intervention. Therefore, validating and launching of a novel precise diagnostic approach is essential for early diagnosis. Based on developing evidence using circulating tumor cells and their derivatives, circulating miRNAs, and extracellular vesicles (EVs), liquid biopsy may offer a reliable platform for the HCC's early diagnosis. Each liquid biopsy analyte may provide significant areas for diagnosis, prognostic assessment, and treatment monitoring of HCC patients depending on its kind, sensitivity, and specificity. The current review addresses potential clinical applications, current research, and future developments for liquid biopsy in HCC management.
Collapse
Affiliation(s)
- Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
29
|
Yu X, Cui R, Jiang Y, Guo P. Efficacy and safety of atezolizumab combined with bevacizumab, arterial chemoembolization, and hepatic artery infusion chemotherapy for advanced hepatocellular carcinoma: a meta-analysis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:444-457. [PMID: 39802875 PMCID: PMC11711480 DOI: 10.62347/mbqj8679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE Although the combination of atezolizumab and bevacizumab (A+B) shows promise for advanced hepatocellular carcinoma (HCC), its response rate is still inadequate. Previous studies indicate that the integration of FOLFOX-based hepatic arterial infusion chemotherapy (HAIC) with transarterial chemoembolization (TACE) is advantageous for the management of HCC. This meta-analysis aims to assess the safety and efficacy of the A+B+TACE or HAIC therapy protocol in patients with advanced HCC. METHOD We collected pertinent studies from databases such as PubMed, Cochrane Library, Web of Science, and Embase, all published prior to August 1, 2024. We used Stata MP 14.0 software for data analysis, incorporating data extraction and quality assessment procedures. RESULTS Data synthesis employed a fixed-effects model in certain contexts and a random-effects model where significant variability was present. A total of 405 patients were involved over ten trials. The overall objective response rate (ORR) was 57.2% (95% CI, 46.9-67.6%), and the disease control rate (DCR) was 85.9% (95% CI, 82.0-89.7%), as determined by the modified response assessment criteria in solid tumors (mRECIST). The rates for complete response (CR) and partial response (PR) were 10.8% (95% CI, 5.0-16.6%) and 45.5% (95% CI, 38.0-53.0%), respectively. The median progression-free survival (mPFS) was 10.9 months, with a 95% confidence interval (CI) of 8.0 to 13.8. 91.0% (95% CI: 84.9-97.1%) of patients experienced adverse events (AEs) of any severity during therapy, with 24.8% (95% CI: 8.8-40.9%) reporting AEs of grade 3 or higher. CONCLUSION The A+B+TACE-HAIC therapy demonstrates promising efficacy and tolerance for the management of advanced HCC.
Collapse
Affiliation(s)
- Xinlin Yu
- Department of Oncology, Affiliated Hospital Chengdu UniversityChengdu 610000, Sichuan, China
| | - Ran Cui
- Department of Emergency Medicine, The First People’s Hospital of NeijiangNeijiang 641000, Sichuan, China
| | - Yan Jiang
- Department of Gastroenterology, The People’s Hospital of LongchangNeijiang 641000, Sichuan, China
| | - Ping Guo
- Department of Cardiology, Affiliated Hospital Chengdu UniversityChengdu 610000, Sichuan, China
| |
Collapse
|
30
|
Anwar J, Arslan HM, Sarfraz Z, Shuroog J, Abdelhakeem A, Saeed A, Saeed A. Immunotherapy Responses in Viral Hepatitis-Induced HCC: A Systematic Review and Meta-Analysis. Curr Oncol 2024; 31:7204-7225. [PMID: 39590162 PMCID: PMC11592516 DOI: 10.3390/curroncol31110532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a prevalent liver cancer with poor prognosis, often linked to hepatitis B (HBV) and C (HCV) infections. This meta-analysis evaluates the efficacy of immunotherapy in HCC, particularly in cases arising from viral hepatitis. Methods: In adherence to PRISMA Statement 2020 guidelines, the immunotherapeutic outcomes comprised objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). Data were analyzed from randomized controlled trials up to April 2024 using the fixed-effects models in R (V.4.3.3.) and RevMan (Cochrane). Results: This study included 9 trials with 5316 patients. The ORR was slightly higher in the viral group at 27.93% compared to 24.07% in the non-viral group, though this difference was not significant (p = 0.15). Viral HCC patients exhibited a median PFS of 7.3 months (IQR: 6.2-8.4) compared to 5.8 months (IQR: 5.48-6.13) in non-viral patients, a significant improvement (p = 0.005). Similarly, median OS was longer in the viral group at 16.8 months (IQR: 12.99-20.61) versus 15.2 months (IQR: 13.25-17.15) for non-viral HCC, which was also significant (p < 0.0001). The median OS for viral HCC was 16.8 months (IQR: 14.11-19.49 months), with HBV patients experiencing slightly higher survival at 17.15 months (IQR: 14.3-20 months) compared to 16.8 months (IQR: 12.99-20.61 months) for HCV patients; this difference was not statistically significant (p = 0.89). Conclusions: Immunotherapy shows potential in treating HCC, with significantly better outcomes in viral HCC, particularly HBV-associated cases. The heterogeneity highlights the need for personalized treatment approaches based on the viral background of HCC patients. Further research should aim to optimize these therapies to improve survival rates.
Collapse
Affiliation(s)
- Junaid Anwar
- Department of Medicine, Baptist Hospitals of Southeast Texas, Beaumont, TX 77701, USA;
| | - Hafiz Muhammad Arslan
- Department of Medicine, Lincoln Medical and Mental Health Center, Bronx, NY 10451, USA;
| | - Zouina Sarfraz
- Department of Medicine, Fatima Jinnah Medical University, Lahore 54000, Pakistan;
| | - Juwairiya Shuroog
- Department of Medicine, TidalHealth Peninsula Regional, Salisbury, MD 21801, USA;
| | - Ahmed Abdelhakeem
- Department of Medicine, Division of Hematology & Oncology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA;
| | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA 70503, USA;
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
31
|
Feng W, Liang J, Xu B, Huang L, Xu Q, Chen D, Lai J, Chen J. Fatty acid metabolism affects hepatocellular carcinoma progression via the PPAR-γ signaling pathway and fatty acid β-oxidation. Int Immunopharmacol 2024; 141:112917. [PMID: 39137630 DOI: 10.1016/j.intimp.2024.112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE This study aimed to explore novel targets for hepatocellular carcinoma (HCC) treatment by investigating the role of fatty acid metabolism. METHODS RNA-seq and clinical data of HCC were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatic analyses were employed to identify differentially expressed genes (DEGs) related to prognosis. A signature was then constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression to classify HCC patients from the TCGA database into low-risk and high-risk groups. The predictive performance of the signature was evaluated through principal components analysis (PCA), Kaplan Meier (KM) survival analysis, receiver operating characteristics (ROC) curves, nomogram, genetic mutations, drug sensitivity analysis, immunological correlation analysis, and enrichment analysis. Single-cell maps were constructed to illustrate the distribution of core genes. Immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and western blot were employed to verify the expression of core genes. The function of one core gene was validated through a series of in vitro assays, including cell viability, colony formation, wound healing, trans-well migration, and invasion assays. The results were analyzed in the context of relevant signaling pathways. RESULTS Bioinformatic analyses identified 15 FAMGs that were related to prognosis. A 4-gene signature was constructed, and patients were divided into high- and low-risk groups according to the signature. The high-risk group exhibited a poorer prognosis compared to the low-risk group in both the training (P < 0.001) and validation (P = 0.020) sets. Furthermore, the risk score was identified as an independent predictor of OS (P < 0.001, HR = 8.005). The incorporation of the risk score and clinicopathologic features into a nomogram enabled the effective prediction of patient prognosis. The model was able to effectively predict the immune microenvironment, drug sensitivity to chemotherapy, and gene mutation for each group. Single-cell maps demonstrated that FAMGs in the model were distributed in tumor cells. Enrichment analyses revealed that the cell cycle, fatty acid β oxidation and PPAR signaling pathways were the most significant pathways. Among the four key prognostically related FAMGs, Spermine Synthase (SMS) was selected and validated as a potential oncogene affecting cell cycle, PPAR-γ signaling pathway and fatty acid β oxidation in HCC. CONCLUSIONS The risk characteristics based on FAMGs could serve as independent prognostic indicators for predicting HCC prognosis and could also serve as evaluation criteria for gene mutations, immunity, and chemotherapy drug therapy in HCC patients. Meanwhile, targeted fatty acid metabolism could be used to treat HCC through related signaling pathways.
Collapse
Affiliation(s)
- Wei Feng
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jiahua Liang
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Borui Xu
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li Huang
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qiongcong Xu
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Dong Chen
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jiaming Lai
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Jiancong Chen
- Department of Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
32
|
Yang JR, Tian YX, Li JE, Zhang Y, Fan YC, Wang K. Mex3a promoter hypomethylation can be utilized to diagnose HBV-associated hepatocellular carcinoma: a randomized controlled trial. Front Pharmacol 2024; 15:1325869. [PMID: 39564121 PMCID: PMC11574524 DOI: 10.3389/fphar.2024.1325869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma remains a health challenge for humanity. Therefore, there is an urgent need to develop novel biomarkers with high efficiency yet fast ability to meet the requirements of hepatocellular carcinoma treatment. METHODS A total of 229 patients with HBV-associated hepatocellular carcinoma (HCC), 298 patients with chronic hepatitis B (CHB), and 96 healthy controls were retrospectively analyzed. Methylation levels of the Mex3a promoter in peripheral blood mononuclear cells (PBMCs) were measured using MethyLight to obtain clinical and laboratory parameters. RESULTS The Mex3a promoter methylation level in HCC patients (median: 0.289% and interquartile range: 0.126%-0.590%) was significantly lower than that in CHB patients (median: 0.999%, interquartile range: 0.417%-1.268%, and p < 0.001) and healthy people (median: 2.172%, interquartile range: 1.225%-3.098%, and p < 0.001). The Mex3a mRNA levels in HCC patients (median: 12.198 and interquartile range: 3.112-18.996) were significantly higher than those in CHB patients (median: 1.623 and interquartile range: 0.066-6.000, and p < 0.001) and healthy controls (median: 0.329, interquartile range: 0.031-1.547, and p < 0.001). MethyLight data were expressed as a percentage of the methylated reference (PMR) value. The Mex3a PMR value was negatively correlated with the mRNA expression level (Spearman's R = -0.829 and p < 0.001). The Mex3a PMR value of HCC patients was significantly correlated with age (Spearman's R = 0.113 and p = 0.044), and the mRNA level was significantly correlated with ALT (Spearman's R = 0.132 and p = 0.046). The Mex3a promoter methylation levels and mRNA levels were also independent factors in the development of liver cancer. The Mex3a promoter methylation and mRNA levels were better at distinguishing HCC from CHB than AFP [area under the receiver operating characteristic curve (AUC) for predicting HCC vs. CHB: 0.915 vs. 0.715: p < 0.001]. The combined use of AFP and Mex3a methylation levels and mRNA levels further improved the area under the receiver operating characteristic curve. CONCLUSION The presence of Mex3a promoter hypomethylation in hepatocellular carcinoma can be used as a non-invasive biomarker for the early detection of liver cancer.
Collapse
Affiliation(s)
- Jie-Ru Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Xin Tian
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jin-E. Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Zhang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| |
Collapse
|
33
|
Chen JG, Zhang YH, Lu JH, Kensler TW. Liver Cancer Etiology: Old Issues and New Perspectives. Curr Oncol Rep 2024; 26:1452-1468. [PMID: 39388026 DOI: 10.1007/s11912-024-01605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE OF REVIEW This review aims to synthesize the old issues and current understandings of the etiology of liver cancer, focusing on the diverse causative factors influenced by geographical, socioeconomic, and lifestyle variations across different regions. RECENT FINDINGS We highlight significant geographic disparities in liver cancer risk factors. While hepatitis B and C viruses, aflatoxin exposure, and alcohol consumption remain globally established contributors; metabolic dysfunction-associated steatotic liver disease and metabolic syndromes are increasingly prominent in the West. Chronic HBV and aflatoxin continue to dominate as risk factors in Asia and Africa. Dietary factors, metabolic diseases like diabetes and obesity, genetic predispositions, environmental risk factors and lifestyle choices such as smoking and alcohol use play substantial roles in specific populations. Protective factors like coffee and tea consumption, along with aspirin use, vegetables and fruits have shown potential in reducing HCC risk, although findings vary by population and dietary habits. Liver cancer etiology is influenced by various factors that differ by region. Established risk factors include hepatitis B and C, aflatoxin, and alcohol. Emerging risks, such as metabolic dysfunction-associated steatotic liver disease, are more prevalent in Western countries, while aflatoxin and HBV remains significant in Asia and Africa. Diet, metabolic conditions like diabetes and obesity, genetic predispositions, and lifestyle choices also play crucial roles. Coffee, tea, aspirin, vegetables, and fruits may reduce HCC risk, but effectiveness varies. Future research should integrate epidemiology, genetics, and nutrition, with global cooperation and data sharing essential for effective cancer control strategies.
Collapse
Affiliation(s)
- Jian-Guo Chen
- Qidong Liver Cancer Insititute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, 226200, People's Republic of China.
| | - Yong-Hui Zhang
- Qidong Liver Cancer Insititute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, 226200, People's Republic of China
| | - Jian-Hua Lu
- Qidong Liver Cancer Insititute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, 226200, People's Republic of China
| | - Thomas W Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| |
Collapse
|
34
|
Han D, Ma Q, Ballar P, Zhang C, Dai M, Luo X, Gu J, Wei C, Guo P, Zeng L, Hu M, Jiang C, Liang Y, Wang Y, Hou C, Wang X, Feng L, Shen Y, Shen Y, Hu X, Liu J. Reprogramming tumor-associated macrophages and inhibiting tumor neovascularization by targeting MANF-HSF1-HSP70-1 pathway: An effective treatment for hepatocellular carcinoma. Acta Pharm Sin B 2024; 14:4396-4412. [PMID: 39525584 PMCID: PMC11544390 DOI: 10.1016/j.apsb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 11/16/2024] Open
Abstract
In advanced hepatocellular carcinoma (HCC) tissues, M2-like tumor-associated macrophages (TAMs) are in the majority and promotes HCC progression. Contrary to the pro-tumor effect of M2-like TAMs, M1-like TAMs account for a small proportion and have anti-tumor effects. Since TAMs can switch from one type to another, reprogramming TAMs may be an important treatment for HCC therapy. However, the mechanisms of phenotypic switch and reprogramming TAMs are still obscure. In this study, we analyzed differential genes in normal macrophages and TAMs, and found that loss of MANF in TAMs accompanied by high levels of downstream genes negatively regulated by MANF. MANF reprogrammed TAMs into M1 phenotype. Meanwhile, loss of MANF promoted HCC progression in HCC patients and mice HCC model, especially tumor neovascularization. Additionally, macrophages with MANF supplement suppressed HCC progression in mice, suggesting MANF supplement in macrophage was an effective treatment for HCC. Mechanistically, MANF enhanced the HSF1-HSP70-1 interaction, restricted HSF1 in the cytoplasm of macrophages, and decreased both mRNA and protein levels of HSP70-1, which in turn led to reprogramming TAMs, and suppressing neovascularization of HCC. Our study contributes to the exploration the mechanism of TAMs reprogramming, which may provide insights for future therapeutic exploitation of HCC neovascularization.
Collapse
Affiliation(s)
- Dan Han
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Qiannan Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Petek Ballar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir 35130, Turkey
| | - Chunyang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Min Dai
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Xiaoyuan Luo
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Jiong Gu
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Panhui Guo
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Lulu Zeng
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Min Hu
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Can Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yanyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xian Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Xiangpeng Hu
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
35
|
Qu X, Zhang Y, Li H, Tan Y. The m 5C/m 6A/m 7G-related non-apoptotic regulatory cell death genes for the prediction of the prognosis and immune infiltration status in hepatocellular carcinoma. Transl Cancer Res 2024; 13:4714-4735. [PMID: 39430855 PMCID: PMC11483456 DOI: 10.21037/tcr-24-499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background 5-methylcytosine/N6-methyladenosine/N7-methylguanosine (m5C/m6A/m7G)-related genes play a critical role in tumor occurrence and progression, and non-apoptotic regulatory cell death (NARCD) is closely linked to tumor development and immunity. However, the role of m5C/m6A/m7G-related NARCD genes in hepatocellular carcinoma (HCC) remains unclear. We used m5C/m6A/m7G-related NARCD genes to construct a prognostic model of HCC for prognostic prediction and clinical treatment of patients. Methods We obtained transcriptome data for HCC from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Using the least absolute shrinkage and selection operator (LASSO) regression, we identified m5C/m6A/m7G-related NARCD genes and constructed a prognostic model through multivariate Cox regression. Model performance was assessed using Kaplan-Meier and receiver operating characteristic (ROC) curves, with external validation using the ICGC. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were used to study differentially expressed genes between high- and low-risk groups. We also examined immune cell infiltration, drug response, and cell communication between tumor cells and immune cells in high-risk groups. Results We identified 140 m5C/m6A/m7G-related NARCD genes, using five of them to build the prognostic model. Functional enrichment analysis revealed enrichment in tumor and immune-related pathways for risk genes. The high-risk group displayed increased immune cell infiltration and better responses to immune checkpoint inhibitors (ICIs). High-risk patients were more responsive to cisplatin, doxorubicin, and mitomycin C, while low-risk patients were more sensitive to erlotinib. Cell communication analysis indicated that high-risk tumor cells used insulin-like growth factor (IGF) and macrophage migration inhibitory factor (MIF) signaling pathways to send signals to immune cells and received signals through the bone morphogenetic protein (BMP) and lymphotoxin-related inducible ligand (LIGHT) pathways. Conclusions We have developed a prognostic model with m5C/m6A/m7G-related NARCD genes to predict the prognosis of HCC patients. This model can offer insights into the effectiveness of immunotherapy and chemotherapy for HCC patients.
Collapse
Affiliation(s)
- Xiangyu Qu
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Yigang Zhang
- Department of Plastic Surgery, Bengbu Third People’s Hospital, Bengbu, China
| | - Haoling Li
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Yi Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
36
|
Jiang M, Li W, Liang J, Pang M, Li S, Xu G, Zhu M, Liang H, Zhang Z, Yang F. Developing a Palladium(II) Agent to Overcome Multidrug Resistance and Metastasis of Liver Tumor by Targeted Multiacting on Tumor Cell, Inactivating Cancer-Associated Fibroblast and Activating Immune Response. J Med Chem 2024; 67:16296-16310. [PMID: 39238096 DOI: 10.1021/acs.jmedchem.4c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
To targeted overcome the multidrug resistance (MDR) and metastasis of liver tumors, we proposed to develop a palladium (Pd) agent based on a specific residue of human serum albumin (HSA) for multiacting on tumor cell and other components in the tumor microenvironment. To this end, a series of Pd(II) 2-acetylpyridine thiosemicarbazone compounds were optimized to obtain a Pd(II) compound (5b) with significant cytotoxicity against HepG2/ADM cells. Subsequently, we constructed a HSA-5b complex delivery system and revealed the structural mechanism of HSA delivering 5b. Importantly, 5b/HSA-5b effectively inhibited the growth and metastasis of multidrug resistant liver tumors, and HSA enhanced the targeting ability of 5b and reduced its side effects in vivo. Furthermore, we confirmed the mechanisms of 5b/HSA-5b integrating to overcome MDR and metastasis of liver tumors: multiacting on cancer cell, activating immune response, and inactivating cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Jinzhe Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Min Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| |
Collapse
|
37
|
Helal IM, Kamal MA, Abd El-Aziz MK, El Tayebi HM. Epigenetic tuning of tumour-associated macrophages (TAMs): a potential approach in hepatocellular carcinoma (HCC) immunotherapy. Expert Rev Mol Med 2024; 26:e18. [PMID: 39320855 PMCID: PMC11440614 DOI: 10.1017/erm.2024.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 09/26/2024]
Abstract
Recent development in immunotherapy for cancer treatment has substantiated to be more effective than most of the other treatments. Immunity is the first line of defence of the body; nevertheless, cancerous cells can manipulate immunity compartments to play several roles in tumour progression. Tumour-associated macrophages (TAMs), one of the most dominant components in the tumour microenvironment, are recognized as anti-tumour suppressors. Unfortunately, the complete behaviour of TAMs is still unclear and understudied. TAM density is directly correlated with the progression and poor prognosis of hepatocellular carcinoma (HCC), therefore studying TAMs from different points of view passing by all the factors that may affect its existence, polarization, functions and repolarization are of great importance. Different epigenetic regulations were reported to have a direct relation with both HCC and TAMs. Here, this review discusses different epigenetic regulations that can affect TAMs in HCC whether positively or negatively.
Collapse
Affiliation(s)
- Israa M. Helal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Monica A. Kamal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Mostafa K. Abd El-Aziz
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| |
Collapse
|
38
|
Zheng S, Su Z, He Y, You L, Zhang G, Chen J, Lu L, Liu Z. Novel prognostic signature for hepatocellular carcinoma using a comprehensive machine learning framework to predict prognosis and guide treatment. Front Immunol 2024; 15:1454977. [PMID: 39380994 PMCID: PMC11458406 DOI: 10.3389/fimmu.2024.1454977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is highly aggressive, with delayed diagnosis, poor prognosis, and a lack of comprehensive and accurate prognostic models to assist clinicians. This study aimed to construct an HCC prognosis-related gene signature (HPRGS) and explore its clinical application value. Methods TCGA-LIHC cohort was used for training, and the LIRI-JP cohort and HCC cDNA microarray were used for validation. Machine learning algorithms constructed a prognostic gene label for HCC. Kaplan-Meier (K-M), ROC curve, multiple analyses, algorithms, and online databases were used to analyze differences between high- and low-risk populations. A nomogram was constructed to facilitate clinical application. Results We identified 119 differential genes based on transcriptome sequencing data from five independent HCC cohorts, and 53 of these genes were associated with overall survival (OS). Using 101 machine learning algorithms, the 10 most prognostic genes were selected. We constructed an HCC HPRGS with four genes (SOCS2, LCAT, ECT2, and TMEM106C). Good predictive performance of the HPRGS was confirmed by ROC, C-index, and K-M curves. Mutation analysis showed significant differences between the low- and high-risk patients. The low-risk group had a higher response to transcatheter arterial chemoembolization (TACE) and immunotherapy. Treatment response of high- and low-risk groups to small-molecule drugs was predicted. Linifanib was a potential drug for high-risk populations. Multivariate analysis confirmed that HPRGS were independent prognostic factors in TCGA-LIHC. A nomogram provided a clinical practice reference. Conclusion We constructed an HPRGS for HCC, which can accurately predict OS and guide the treatment decisions for patients with HCC.
Collapse
Affiliation(s)
- Shengzhou Zheng
- Department of Emergency, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Zhixiong Su
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Yufang He
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Lijie You
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Guifeng Zhang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Jingbo Chen
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Lihu Lu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenhua Liu
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
39
|
Baj J, Kołodziej M, Kobak J, Januszewski J, Syty K, Portincasa P, Forma A. Significance of Immune and Non-Immune Cell Stroma as a Microenvironment of Hepatocellular Carcinoma-From Inflammation to Hepatocellular Carcinoma Progression. Int J Mol Sci 2024; 25:10233. [PMID: 39408564 PMCID: PMC11475949 DOI: 10.3390/ijms251910233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer as well as the most prevalent cause of death in the adult patient population with cirrhosis. The occurrence of HCC is primarily caused by chronic liver inflammation that might occur because of a viral infection, non-alcoholic fatty liver disease (NAFLD), or various lifestyle-associated factors. The objective of this review was to summarize the current knowledge regarding the microenvironment of HCC, indicating how immune- and non-immune-cell stroma might affect the onset and progression of HCC. Therefore, in the following narrative review, we described the role of tumor-infiltrating neutrophils, bone-marrow-derived cells, tumor-associated mast cells, cancer-associated fibroblasts, tumor-associated macrophages, liver-sinusoidal endothelial cells, lymphocytes, and certain cytokines in liver inflammation and the further progression to HCC. A better understanding of the HCC microenvironment might be crucial to introducing novel treatment strategies or combined therapies that could lead to more effective clinical outcomes.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Magdalena Kołodziej
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Joanna Kobak
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Kinga Syty
- Institute of Health Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1G, 20-708 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| |
Collapse
|
40
|
Huang X, Wang M, Zhang D, Meng J, Liu P. ZDHHC20 Activates AKT Signaling Pathway to Promote Cell Proliferation in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1763-1775. [PMID: 39309302 PMCID: PMC11416782 DOI: 10.2147/jhc.s457682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024] Open
Abstract
Background Liver cancer is the sixth most common cancer worldwide, and hepatocellular carcinoma (HCC) presents one of the most challenging global health issues. ZDHHC20, a member of the ZDHHC palmitoyltransferase (ZDHHC-PAT) family, is involved in a reversible lipid modification known as palmitoylation, which contributes to the occurrence and progression of various tumors. However, the specific mechanisms underlying the involvement of ZDHHC20 in this process are unclear. Methods The effects of both ZDHHC20 knockdown and overexpression on hepatocellular carcinoma cell proliferation were evaluated using PCR, Western blotting, CCK-8 assay, colony formation assay, cell cycle analysis, apoptosis analysis, and EDU assay. The TCGA-LIHC dataset was analyzed bioinformatically, and the phosphorylation level of PI3K and AKT in SK-Hep1 and Huh7 cells was assessed using Western blotting. Nude mouse subcutaneous xenograft experiments were conducted to evaluate the effects of different treatment conditions on mouse tumor growth. Results ZDHHC20 knockdown inhibited cell proliferation and promoted apoptosis, while overexpression of ZDHHC20 promoted cell proliferation and inhibited apoptosis. Knockdown of ZDHHC20 also decreased phosphorylation of PI3K and AKT in HCC, whereas overexpression of ZDHHC20 increased phosphorylation of PI3K and AKT. The PI3K-AKT pathway inhibitors, LY294002 and MK2206, effectively inhibited the promotional effects of ZDHHC20 on the proliferation and growth of HCC. Conclusion High expression of ZDHHC20 promotes the proliferation and tumor growth of HCC by activating the PI3K-AKT signaling pathway. The PI3K inhibitor LY294002 and the AKT inhibitor MK2206 inhibit the promotional effects of ZDHHC20 on the proliferation of HCC and the growth of tumors.
Collapse
Affiliation(s)
- Xiaoju Huang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Mengmeng Wang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Dan Zhang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Junpeng Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of General Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Pian Liu
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
41
|
Liu Y, Yang H, Li T, Zhang N. Immunotherapy in liver cancer: overcoming the tolerogenic liver microenvironment. Front Immunol 2024; 15:1460282. [PMID: 39295859 PMCID: PMC11409253 DOI: 10.3389/fimmu.2024.1460282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Hongyuan Yang
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Na Zhang
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
42
|
Lamb C, Tham J, Goh TL, Barclay S, Priest M, Forrest EH, Fraser A, Kay D, Kasthuri R, Evans J, Stanley AJ. Comparison between patient characteristics, aetiology and outcomes in patients with and without cirrhosis with hepatocellular carcinoma diagnosed in a regional centre. Frontline Gastroenterol 2024; 15:380-386. [DOI: 10.1136/flgastro-2024-102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
IntroductionHepatocellular carcinoma (HCC) is increasing in incidence across the UK. Most patients have underlying cirrhosis, but a significant minority do not. Progression and outcomes of HCC in patients without cirrhosis remains unclear.This study aimed to establish the proportion and characteristics of patients with HCC occurring in those with and without cirrhosis in the West of Scotland.MethodsData were collected from our prospectively collected database on patient demographics, liver disease aetiology, stage at presentation and outcomes for patients with a diagnosis of HCC confirmed at the Regional West of Scotland multidisciplinary team from 2009 to 2015.Results638 patients were included. 138 (21.6%) did not have cirrhosis and were older at diagnosis than those with cirrhosis (72 years vs 68 years, p=0.001). A higher proportion of those without cirrhosis presented with more advanced HCC (Barcelona clinic liver cancer (BCLC) score B or above; p=0.003).Patients with cirrhosis had median survival of 8 months, compared with those without cirrhosis (11.5 months) but survival was similar in both groups on Kaplan-Meier analysis (p=0.119). There was no difference in survival between these groups when adjusted for cancer stage.Survival was influenced by BCLC score in both cirrhotic and non-cirrhotic groups, as was survival by Child-Pugh score in patients with cirrhosis. Among the patients who underwent transarterial chemoembolisation (TACE), those with cirrhosis had worse survival (p=0.044).Conclusion21.6% of patients with a new diagnosis of HCC in our region did not have underlying cirrhosis. Patients with non-cirrhotic HCC were diagnosed at an older age, with more advanced stage of HCC. There was no difference in overall survival between patients with HCC with and without cirrhosis, however, survival after TACE was higher in those without cirrhosis.
Collapse
|
43
|
Huang M, Chen H, Wang H, Wang X, Wang D, Li Y, Zhou Q, Zhang D, Li M, Ma L. Worldwide burden of liver cancer due to metabolic dysfunction-associated steatohepatitis from 1990 to 2019: insights from the Global Burden of Disease study. Front Oncol 2024; 14:1424155. [PMID: 39267839 PMCID: PMC11390418 DOI: 10.3389/fonc.2024.1424155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatohepatitis (MASH) is increasingly becoming a prevalent cause of hepatocellular carcinoma (HCC). Our study examines the burden of MASH-related HCC globally, regionally, and nationally, along with associated risk factors from 1990 to 2019, considering variables such as age, sex, and socioeconomic status. Objective We aimed to report the global, regional, and national burden of liver cancer due to MASH and its attributable risk factors between 1990 and 2019, by age, sex, and sociodemographic index (SDI). Methods Utilizing the Global Burden of Disease 2019 project, we analyzed data on prevalence, mortality, and disability-adjusted life years (DALYs) for liver cancer attributable to MASH across 204 countries. We provided counts and rates per 100,000 population, including 95% uncertainty intervals. Results In 2019, there were 46.8 thousand cases of MASH-related HCC, leading to 34.7 thousand deaths, and 795.8 thousand DALYs globally. While the prevalence increased by 19.8% since 1990, the death and DALY rates decreased by 5.3% and 15.1%, respectively. The highest prevalence was in High-income Asia Pacific, with the greatest increases observed in Australasia, Central Asia, and High-income North America. Southern Sub-Saharan Africa reported the highest death rate, while the lowest rates were in parts of Latin America, Central Sub-Saharan Africa, and Eastern Europe. DALY rates were the highest in Southern Sub-Saharan Africa and the lowest in Tropical Latin America. Discussion The burden of MASH-related HCC is expected to rise slightly over the next decade. This disease, which is not associated with the SDI, remains a major public health problem. In addition, the escalating rates of obesity, demographic shifts, and an aging population could position MASH as a leading factor in liver cancer cases, surpassing viral hepatitis. It is imperative, therefore, that the forthcoming years see the implementation of strategic interventions aimed at the early detection and prevention of liver cancer associated with MASH.
Collapse
Affiliation(s)
- Minshan Huang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Hang Chen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Hui Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Xianmei Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Da Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Yu Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Qingqing Zhou
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Dan Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Mengwei Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| |
Collapse
|
44
|
Wang S, Ye W, Yang K, Lv X, Luan J. Prognostic Hypoxia-Angiogenesis-Related Gene Signature in Hepatocellular Carcinoma, in Which HILPDA Contributes to Tumor Progression. J Inflamm Res 2024; 17:5663-5683. [PMID: 39219818 PMCID: PMC11365521 DOI: 10.2147/jir.s476388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is the predominant form of liver cancer. Hypoxia can be involved in HCC tumor growth, invasion and metastasis through inducing angiogenesis. Nevertheless, the assessment of the impact of hypoxia and angiogenesis on the prognosis of HCC remains inadequate. Methods According to hypoxia-angiogenesis-related genes (HARGs) expression information and clinical data from patients within the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort, we constructed a prognostic model (HARG-score) using bioinformatic tools. In addition to assessing the predictive ability of this prognostic model in both Liver Cancer-Riken-Japan (LIRI-JP) and GSE14520 cohorts, we analyzed the correlation between HARG-score and clinical characteristics, immune infiltration and immunotherapy efficacy. Moreover, we investigated the exact role and underlying mechanism of key HARGs through molecular experiments. Results We constructed a 5-gene prognostic model HARG-score consisting of hypoxia-inducible lipid droplet-associated (HILPDA), erythropoietin (EPO), solute carrier family 2 member 1 (SLC2A1), proteasome subunit alpha type 7 (PSMA7) and cAMP responsive element-binding protein 1 (CREB1) through differentially expressed HARGs. The findings demonstrated that HARG-score was a good predictor of the prognosis of HCC patients from distinct cohorts and was correlated with clinical characteristics and immune infiltration. Furthermore, the HARG-score was identified as an independent prognostic factor. Lower HARG-score implied greater immunotherapy efficacy and better response. The expression and prognostic significance of these 5 genes were additionally validated in clinical data. In addition, experimental data revealed that the key gene HILPDA contributes to the progression of HCC through facilitating angiogenesis and affecting the expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA4). Conclusion HARG-score has promising applications in prognosis prediction of HCC patients, in which HILPDA may be a latent prognostic biomarker and therapeutic target, providing a foundation for further research and treatment of HCC.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| | - Xiongwen Lv
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| |
Collapse
|
45
|
Ferreira-Silva GÁ, Rodrigues DA, Pressete CG, Caixeta ES, Gamero AMC, Miyazawa M, Hanemann JAC, Fraga CAM, Aissa AF, Ionta M. Selective inhibition of HDAC6 by N-acylhydrazone derivative reduces the proliferation and induces senescence in carcinoma hepatocellular cells. Toxicol In Vitro 2024; 99:105884. [PMID: 38945376 DOI: 10.1016/j.tiv.2024.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths globally. Systemic therapy is the only treatment option for HCC at an advanced stage, with limited therapeutic response. In this study, we evaluated the antitumor potential of four N-acylhydrazone (NAH) derivatives, namely LASSBio-1909, 1911, 1935, and 1936, on HCC cell lines. We have previously demonstrated that the aforementioned NAH derivatives selectively inhibit histone deacetylase 6 (HDAC6) in lung cancer cells, but their effects on HCC cells have not been explored. Thus, the present study aimed to evaluate the effects of NAH derivatives on the proliferative behavior of HCC cells. LASSBio-1911 was the most cytotoxic compound against HCC cells, however its effects were minimal on normal cells. Our results showed that LASSBio-1911 inhibited HDAC6 in HCC cells leading to cell cycle arrest and decreased cell proliferation. There was also an increase in the frequency of cells in mitosis onset, which was associated with disturbing mitotic spindle formation. These events were accompanied by elevated levels of CDKN1A mRNA, accumulation of CCNB1 protein, and sustained ERK1 phosphorylation. Furthermore, LASSBio-1911 induced DNA damage, resulting in senescence and/or apoptosis. Our findings indicate that selective inhibition of HDAC6 may provide an effective therapeutic strategy for the treatment of advanced HCC, including tumor subtypes with integrated viral genome. Further, in vivo studies are required to validate the antitumor effect of LASSBio-1911 on liver cancer.
Collapse
Affiliation(s)
| | - Daniel Alencar Rodrigues
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, RJ, Brazil
| | | | | | - Angel Mauricio Castro Gamero
- Human Genetics Laboratory, Institute of Natural Science, Federal University of Alfenas, zip-code 37130-001, Alfenas, MG, Brazil
| | - Marta Miyazawa
- School of Dentistry, Federal University of Alfenas, 37130-001 MG, Brazil
| | | | - Carlos Alberto Manssour Fraga
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, RJ, Brazil
| | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil.
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-001, Brazil.
| |
Collapse
|
46
|
Rao C, Chen J, Xu K, Xue C, Wu L, Huang X, Chen S, Rao S, Li F. Association of magnetic resonance imaging-derived sarcopenia with outcomes of patients with hepatocellular carcinoma after hepatectomy. Abdom Radiol (NY) 2024; 49:2272-2284. [PMID: 38900325 DOI: 10.1007/s00261-024-04439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE To evaluate whether sarcopenia, diagnosed by magnetic resonance imaging (MRI) protocol, constitutes a prognosis-associated risk factor in patients with hepatocellular carcinoma (HCC) after hepatectomy. METHODS One hundred and ninety-three patients who underwent hepatectomy for HCC were retrospectively enrolled. The areas of the total skeletal muscle (SM) and psoas muscle (PM) were evaluated at the third lumbar vertebra in the preoperative MR images, and divided by the square of height in order to obtain the skeletal muscle index (SMI) and psoas muscle mass index (PMI). Sarcopenia was diagnosed respectively on the definitions based on the SMI or PMI. The potential of muscle-defined sarcopenia as a prognostic factor for overall survival (OS) and recurrence-free survival (RFS) was investigated in these patients. RESULTS The areas of SM and PM, and SMI and PMI were significantly higher in the men than in the women (all p < 0.05). Notably, SMI-defined sarcopenia displayed a significant sex difference (p = 0.003), while PMI-defined sarcopenia did not (p = 0.370). Through univariate and multivariate analyses, PMI-defined sarcopenia remained an independent predictor for OS and RFS (HR = 3.486, 95% CI: 1.700-7.145, p = 0.001 and HR = 1.993, 95% CI: 1.246-3.186, p = 0.004), even after adjusting for other clinical variables. Moreover, Kaplan-Meier analysis demonstrated significantly poorer OS and RFS for patients with sarcopenia defined by using PMI, but not SMI, compared to those without sarcopenia (p < 0.001 and p = 0.006, respectively). CONCLUSION MRI-derived, sarcopenia defined by using PMI, not SMI, may serve as a significant risk factor for RFS and OS in patients with HCC after hepatectomy.
Collapse
Affiliation(s)
- Chenyi Rao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jiejun Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Kan Xu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Chunyan Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ling Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiaoquan Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Shengxiang Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.
| | - Feng Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
47
|
Li J, Feng J, Li Z, Ni Y, Liu L, Lei X, Chai Z, Zhuang N, Xu J, He Y, Shan J, Qian C. B cell lymphoma 6 promotes hepatocellular carcinoma progression by inhibiting tumor infiltrating CD4 +T cell cytotoxicity through ESM1. NPJ Precis Oncol 2024; 8:139. [PMID: 38956432 PMCID: PMC11220024 DOI: 10.1038/s41698-024-00625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/02/2024] [Indexed: 07/04/2024] Open
Abstract
Immunotherapy exhibited potential effects for advanced hepatocellular carcinoma, unfortunately, the clinical benefits are often countered by cancer adaptive immune suppressive response. Uncovering the mechanism how cancer cells evade immune surveillance would help to develop new immunotherapy approaches and combination therapy. In this article, by analyzing the transcriptional factors which modulate the differentially expressed genes between T cell infiltration high group and low group, we identified oncoprotein B cell lymphoma 6 (BCL6) suppresses the infiltration and activation of tumor infiltrating T lymphocytes, thus correlated with poorer clinical outcome. By using antibody deletion experiment, we further demonstrated that CD4+T cells but not CD8+T cells are the main lymphocyte population suppressed by Bcl6 to promote HCC development. Mechanistically, BCL6 decreases cancer cell expression of pro-inflammatory cytokines and T lymphocyte chemokines such as IL6, IL1F6, and CCL5. Moreover, BCL6 upregulates Endothelial cell-specific molecule 1 (ESM1) to inhibit T lymphocyte recruitment and activation possibly through ICAM-1/LFA-1 signaling pathway. Our findings uncovered an unappreciated paracrine mechanism how cancer cell-derived BCL6 assists cancer cell immune evasion, and highlighted the role of CD4+T cells in HCC immune surveillance.
Collapse
Affiliation(s)
- Jiatao Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Feng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ziyong Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine Chongqing University, Chongqing, 400030, China
| | - Yuanli Ni
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Limei Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xia Lei
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine Chongqing University, Chongqing, 400030, China
| | - Zixuan Chai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Na Zhuang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jiake Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juanjuan Shan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine Chongqing University, Chongqing, 400030, China.
| | - Cheng Qian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
48
|
Guo J, Zhang J, Xiang Y, Zhou S, Yang Y, Zheng J. Long noncoding RNA SNHG3 interacts with microRNA-502-3p to mediate ITGA6 expression in liver hepatocellular carcinoma. Cancer Sci 2024; 115:2286-2300. [PMID: 38680094 PMCID: PMC11247603 DOI: 10.1111/cas.16190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
SNHG3, a long noncoding RNA (lncRNA), has been linked to poor outcomes in patients with liver hepatocellular carcinoma (LIHC). In this study, we found that SNHG3 was overexpressed in LIHC and associated with poor outcomes in patients with LIHC. Functional assays, including colony formation, spheroid formation, and in vivo assays showed that SNHG3 promoted stemness of cancer stem cells (CSC) and tumor growth in vivo by interacting with microRNA-502-3p (miR-502-3p). miR-502-3p inhibitor repressed the tumor-suppressing effects of SNHG3 depletion. Finally, by RNA pull-down, dual-luciferase reporter assay, m6A methylation level detection, and m6A-IP-qPCR assays, we found that miR-502-3p targeted YTHDF3 to regulate the translation of integrin alpha-6 (ITGA6) and targeted HBXIP to inhibit the m6A modification of ITGA6 through methyltransferase-like 3 (METTL3). Our study revealed that SNHG3 controls the YTHDF3/ITGA6 and HBXIP/METTL3/ITGA6 pathways by repressing miR-502-3p expression to sustain the self-renewal properties of CSC in LIHC.
Collapse
Affiliation(s)
- Juncheng Guo
- Postdoctoral Workstation, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Jianquan Zhang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Yang Xiang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Shuai Zhou
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Yijun Yang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Haikou, Hainan, China
| |
Collapse
|
49
|
Nam DE, Park SJ, Omole S, Um E, Hakami RM, Hahn YS. Activated Gab1 drives hepatocyte proliferation and anti-apoptosis in liver fibrosis via potential involvement of the HGF/c-Met signaling axis. PLoS One 2024; 19:e0306345. [PMID: 38935609 PMCID: PMC11210754 DOI: 10.1371/journal.pone.0306345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Chronic liver diseases are caused by hepatic viral infection, chemicals, and metabolic stress. The protein Grb2-associated binder 1 (Gab1) binds to various growth factor receptors, and triggers cell differentiation/survival signaling pathways. To identify signaling molecules involved in the progression of liver diseases, we performed reverse-phase protein microarray (RPMA)-based screening of hepatocytes isolated from humanized mice after acute HCV infection. Acute viral infection in humanized liver mice significantly decreased the level of hepatocyte p-Gab1. Moreover, hepatoma cells upon HCV infection decreased Gab1 mRNA at later times of infection (D3 to D5) and p-Gab1 level was inversely related to the production of TGF-β. In contrast, the level of p-Gab1 was increased in CCL4-induced fibrotic liver. Hepatoma cells showed elevation of p-Gab1, along with an increase in STAT3 and ERK activation, upon treatment with HGF (ligand of HGF receptor/c-Met) and CCL4. In Gab1 knockdown hepatoma cells, cell proliferative signaling activity was reduced but the level of activated caspase-3 was increased. These findings suggest that hepatocyte Gab1 expression may play a role in promoting liver fibrosis progression by triggering ERK activation and inhibiting apoptosis. It implies that the Gab1-mediated signaling pathway would be a promising therapeutic target to treat chronic liver diseases.
Collapse
Affiliation(s)
- Da-eun Nam
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Soo-Jeung Park
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Samson Omole
- School of Systems Biology, and Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Eugene Um
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ramin M. Hakami
- School of Systems Biology, and Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
50
|
Gedekar P, Chavhan A, Hiwale KM, Sagar S. A Case Presentation of Well-Differentiated Hepatocellular Carcinoma With No Sign of Liver Disease. Cureus 2024; 16:e61635. [PMID: 38966460 PMCID: PMC11223716 DOI: 10.7759/cureus.61635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
The type of liver cancer that occurs most frequently is hepatocellular carcinoma (HCC). The majority of cases of HCC are secondary to alcoholic cirrhosis or viral hepatitis. The presence of malignant cells with modest nuclear atypia that resemble normal hepatocytes and the lack of bare nuclei in the smears, which shows the neoplastic hepatocytes' capacity, are characteristics of a well-differentiated HCC plasma membrane to tolerate smearing. We present the case of an 83-year-old male patient with a well-differentiated HCC, who had no etiological factors and no signs of alcohol cirrhotic liver, or any symptoms of liver disease which are the main causes of the HCC.
Collapse
Affiliation(s)
- Prachi Gedekar
- Medicine, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Atul Chavhan
- Pathology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - K M Hiwale
- Pathology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shakti Sagar
- Pathology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|