1
|
Qian J, Zhang B, Liu C, Xue Y, Zhou H, Huang L, Zheng S, Chen M, Fu YQ. Reconfigurable acoustic tweezer for precise tracking and in-situ sensing of trace miRNAs in tumor cells. Biosens Bioelectron 2025; 282:117505. [PMID: 40288310 DOI: 10.1016/j.bios.2025.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
MicroRNAs (miRNAs) have emerged as critical biomarkers for early cancer diagnosis and monitoring. However, their isolation from clinical samples typically yields only trace amounts, significantly limiting the sensitivity and efficiency of cancer detection. To address this challenge, we present a octangular reconfigurable acoustic tweezer (ORAT) as an integrated platform for precise tumor cell tracking and in-situ detection of trace miRNAs. By simultaneously modulating multidirectional acoustic signals and parameters, the ORAT dynamically reshapes the acoustic field, enabling precise control over manipulation areas, particle spacing, array angles, distribution patterns, and node rotation. This device allows selective particle manipulation across entire regions or specific areas through adaptive adjustments of the microchamber boundary. Notably, the ORAT achieves rapid and accurate localization and labeling of rare tumor cells within a large population of normal cells. Furthermore, it enhances the sensitivity of CRISPR/Cas-based miRNA detection in digital microdroplets by three orders of magnitude, if compared to that of the conventional tube-based method. With its versatile capabilities, the ORAT holds remarkable promise for advancing nucleic acid analysis in a wide range of cancers and related diseases.
Collapse
Affiliation(s)
- Jingui Qian
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Bowei Zhang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chuanmin Liu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuhang Xue
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hong Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
2
|
Senapati D, Sahoo SK, Nayak BS, Senapati S, Kundu GC, Bhattamisra SK. Targeting and engineering biomarkers for prostate cancer therapy. Mol Aspects Med 2025; 103:101359. [PMID: 40043463 DOI: 10.1016/j.mam.2025.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 06/01/2025]
Abstract
Prostate cancer (PCa) is the second most commonly occurring cancer among men worldwide. Although the clinical management of PCa has significantly improved, a number of limitations have been identified in both early diagnosis and therapeutic treatment. Because multiple studies show that prostate-specific antigen (PSA) screening frequently results in overdiagnosis and overtreatment, the use of PSA alone as a diagnostic marker for PCa screening has been controversial. For individuals with locally advanced or metastatic PCa, androgen deprivation therapy (ADT) is the standard initially successful treatment; nonetheless, the majority of patients will eventually develop lethal metastatic castration-resistant prostate cancer (CRPC). Alternative treatment options, including chemo-, immuno-,or radio-therapy, can only prolong the survival of CRPC patients for several months with the most developing resistance. Considering this background, there is an urgent need to discuss about selective prostate-specific biomarkers that can predict clinically relevant PCa diagnosis and to develop biomarker-driven treatments to counteract CRPC. This review addresses several PCa-specific biomarkers that will assist physicians in determining which patients are at risk of having high-grade PCa, focusing on the clinical relevance of these biomarker-based tests among PCa patients. Secondly, this review highlights the effective use of these markers as drug targets to develop precision medicine or targeted therapies to counteract CRPC. Altogether, translating this biomarker-based research into the clinic will pave the way for the effective execution of personalized therapies for the benefit of healthcare providers, the biopharmaceutical industry, and patients.
Collapse
Affiliation(s)
- Dhirodatta Senapati
- KIIT School of Pharmacy, KIIT (Deemed to be University), Bhubaneswar, Odisha, India.
| | - Santosh Kumar Sahoo
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | | | - Satyanarayan Senapati
- KIMS Super Specialty & Cancer Centre, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Gopal C Kundu
- Kalinga Institute of Medical Sciences (KIMS), KIIT (Deemed to be University), Bhubaneswar, 751024, India; School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, 751024, India
| | - Subrat Kumar Bhattamisra
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, India
| |
Collapse
|
3
|
Ke S, Cao X, Lu X, Xu J, Zhang CY, Xu L, Jiang X. Atheroprotective roles of exercise-regulated microRNAs. Atherosclerosis 2025; 405:119229. [PMID: 40367725 DOI: 10.1016/j.atherosclerosis.2025.119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 05/16/2025]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, with atherosclerosis (AS) serving as a critical underlying pathological process and major risk factor. Regular physical exercise is widely recognized as an effective strategy to reduce the risks and severity of AS, yet the precise molecular mechanisms through which exercise exerts its protective effects are still not fully understood. MicroRNAs (miRNAs), key regulators of gene expression, play integral roles in the progression of AS by influencing vascular function, lipid metabolism, and inflammation. The exercise-induced improvement of AS is a complex process, with miRNAs playing essential roles not only within cells and tissues but also circulating stably in the bloodstream as novel signaling molecules. These circulating miRNAs mediate communication between organs and tissues, acting as potential biomarkers that could provide deeper, systemic insights into the metabolic benefits of exercise. In this review, we explore recent advancements in our understanding of how exercise affects both intracellular and circulating miRNAs. We emphasize how exercise-regulated miRNAs contribute to endothelial function, promote lipid metabolism across various metabolic organs, and reduce monocyte-mediated systemic inflammation, while also addressing their role in alleviating frailty. Circulating miRNAs, which dynamically reflect tissue-specific responses to exercise, hold great promise as diagnostic and prognostic biomarkers for AS. Moreover, we discuss the challenges and future directions in this field, aiming to uncover how exercise-induced miRNA modulation could offer innovative therapeutic strategies for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Shuo Ke
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaoqin Cao
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaohui Lu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jinhong Xu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China; Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, 210023, China
| | - Li Xu
- Clinical Trial Institution, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Number 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.
| | - Xiaohong Jiang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China; Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
4
|
Lu J, Chen Y, Liu X, Wang J, He Y, Shi T, Chen W, Yan W. Artificial intelligence-driven microRNA signature for early detection of gastric cancer: discovery and clinical functional exploration. Br J Cancer 2025; 132:957-972. [PMID: 40234666 DOI: 10.1038/s41416-025-02984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide, with late-stage diagnoses frequently leading to poor outcomes. This underscores the need for effective early-stage gastric cancer (ESGC) diagnostics. METHODS We introduce ESGCmiRD, an innovative artificial intelligence-driven strategy that identifies a miRNA signature for ESGC detection by integrating robust expression patterns, ESGC relevance, and regulatory capabilities of microRNA (miRNA) based on multiple networks. Expression and biological roles of miRNAs in GC were validated and explored via bioinformatics analysis and in vitro studies. miRNA-target interaction was confirmed by dual-luciferase reporter assay. Molecular docking predicted miRNA-drug binding affinities, assessing the miRNA signature's therapeutic potential. RESULTS ESGCmiRD identified a blood miRNA signature (miR-320b, miR-222-3p, miR-181a-5p, miR-103a-3p, miR-107) for ESGC detection, demonstrated high diagnostic accuracy with AUC values of 0.986, 0.977, 0.815, and 0.811 in the test and three validation sets (GSE211692, TCGA-STAD, and our cohort), respectively. The five miRNAs were overexpressed in ESGC plasma and directly target PTEN, promoting GC cell proliferation, migration, and invasion. Molecular docking suggested Paclitaxel had the strongest potential interaction with these miRNAs. CONCLUSION This method identifies a robust miRNA signature for ESGC detection and sheds light on gastric carcinogenesis mechanisms, opening doors for potential therapeutic strategies.
Collapse
Affiliation(s)
- Jiachun Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Wenying Yan
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
- Suzhou Key Lab of Multi-modal Data Fusion and Intelligent Healthcare, Suzhou, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou, China.
| |
Collapse
|
5
|
Li JH, Liu C, Qiu SY, Zheng SM, He YZ. Epigenetic Modifications in Sensorineural Hearing Loss: Protective Mechanisms and Therapeutic Potential. Curr Med Sci 2025:10.1007/s11596-025-00049-9. [PMID: 40397300 DOI: 10.1007/s11596-025-00049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/22/2025]
Abstract
Hearing loss, which currently affects more than 430 million individuals globally and is projected to exceed 700 million by 2050, predominantly manifests as sensorineural hearing loss (SNHL), for which existing technologies such as hearing aids and cochlear implants fail to restore natural auditory function. Research focusing on protecting inner ear hair cells (HCs) from harmful factors through the regulation of epigenetic modifications has gained significant attention in otology for its role in regulating gene expression without altering the DNA sequence, suggesting potential strategies for preventing and treating SNHL. By synthesizing relevant studies on the inner ear, this review summarizes the emerging roles of histone modifications, DNA methylation, and noncoding RNAs in HC damage, with a focus on their therapeutic potential through epigenetic modulation. Moreover, this review examines the therapeutic potential of epigenetic regulation for the prevention and treatment of SNHL, emphasizing the application of small-molecule epigenetic compounds and their efficacy in modulating gene expression to preserve and restore auditory function.
Collapse
Affiliation(s)
- Jia-Huan Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Si-Yu Qiu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Shi-Mei Zheng
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Ying-Zi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
6
|
Das B, Kuwahara S, Ishimaru R, Murakami E, Harada Y, Nakatani K. Structure-Binding Relationship of 2-Amino-1,8-Naphthyridine Dimers: Role of Linkage Positions on DNA and RNA Recognition. Chemistry 2025; 31:e202500425. [PMID: 40207738 PMCID: PMC12089907 DOI: 10.1002/chem.202500425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Indexed: 04/11/2025]
Abstract
The study explores the synthesis, structural analysis, and binding properties of eight analogs of 2-amino-1,8-naphthyridine dimers (ANPxys) targeting DNA and RNA. These dimers, derived from ANP77, are connected at varying positions to investigate how positional alterations influence molecular conformations and their interactions with nucleic acids. The primary focus lies on evaluating the effects of these structural variations on DNA and RNA binding through fluorescence quenching and thermal denaturation assays. Absorption and fluorescence measurements revealed distinct electronic states for ANPxys, with emission maxima between 389.5 and 398.5 nm. Conformational analysis indicated that most ANPxys adopt unstacked conformations in aqueous solutions, though some, like ANP47 and ANP67, showed higher probabilities of stacked conformations. Thermal denaturation studies demonstrated ANPxys bind and stabilize cytosine-rich DNA motifs with varying affinities, with ANP77 showing the strongest effects. RNA binding studies targeting U/CC motifs across 256 sequences revealed unique fluorescence quenching patterns for each ANPxy, reflecting sequence specificity. Hierarchical clustering grouped ANPxys into parallel-stacked and twisted-stacked clusters, correlating their conformations with binding preferences. This work highlights the critical role of connection positions in determining ANPxy binding specificity and conformational behavior. The findings provide a basis for designing small molecules with tunable structures and enhanced RNA-binding capabilities, paving the way for the development of RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Bimolendu Das
- SankenThe University of Osaka8–1 MihogaokaIbaraki567-0047Japan
| | - Satoki Kuwahara
- SankenThe University of Osaka8–1 MihogaokaIbaraki567-0047Japan
| | | | - Eitaro Murakami
- SankenThe University of Osaka8–1 MihogaokaIbaraki567-0047Japan
| | - Yasue Harada
- SankenThe University of Osaka8–1 MihogaokaIbaraki567-0047Japan
| | | |
Collapse
|
7
|
Pernak M, Fleurisson C, Delorme C, Moumné R, Benedetti E, Micouin L, Azoulay S, Foricher Y, Duca M. Development of Comprehensive Screening and Assessment Assays for Small-Molecule Ligands of MALAT1 lncRNA. ACS Chem Biol 2025; 20:1068-1076. [PMID: 40261936 DOI: 10.1021/acschembio.5c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
RNA targeting represents an original and promising approach to the discovery of new therapeutic tools against numerous diseases. The majority of intracellular RNAs are noncoding RNAs that play key regulatory functions in many physiological processes. Among these RNAs, long noncoding RNAs (lncRNAs) constitute the largest class of noncoding transcripts and have been shown to play important functional roles in development and disease processes. In this work, we developed a set of biochemical assays for the discovery of efficient small-molecule lncRNA ligands selective for their target, focusing on MALAT1 lncRNA. The latter bears a particular structure including a triple helical region important for its function, and it has been linked to cancer cells' proliferation. However, its role in cancer still needs to be completely elucidated. The application of these assays to an original library of RNA binders allowed for the discovery of unprecedented ligands of the MALAT1 triple helix able to inhibit and destabilize the triple helical MALAT1 structure. The set of screening and validation assays developed could find application in the discovery of new MALAT1 binders, and the new chemical scaffolds discovered in this study represent promising chemical probes for the study of the biological role of MALAT1 in disease.
Collapse
Affiliation(s)
- Mélanie Pernak
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 Avenue Valrose, 06100 Nice, France
- Integrated Drug Discovery, Sanofi R&D, F-94400 Vitry-sur-Seine, France
| | - Claire Fleurisson
- CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, F-75006 Paris, France
| | - Cécile Delorme
- Integrated Drug Discovery, Sanofi R&D, F-94400 Vitry-sur-Seine, France
| | - Roba Moumné
- CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, F-75006 Paris, France
| | - Erica Benedetti
- CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, F-75006 Paris, France
| | - Laurent Micouin
- CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, F-75006 Paris, France
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 Avenue Valrose, 06100 Nice, France
| | - Yann Foricher
- Integrated Drug Discovery, Sanofi R&D, F-94400 Vitry-sur-Seine, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), 28 Avenue Valrose, 06100 Nice, France
| |
Collapse
|
8
|
Banerjee S, Bose D, Johnson S, Liu J, Virgin H, Robertson ES. Novel small non-coding RNAs of Epstein-Barr virus upregulated upon lytic reactivation aid in viral genomic replication and virion production. mBio 2025; 16:e0406024. [PMID: 40197026 PMCID: PMC12077129 DOI: 10.1128/mbio.04060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Epstein-Barr virus (EBV) employs various strategies for long-term survival, including the expression of non-coding RNAs (ncRNAs). This study uncovers and characterizes two novel EBV-encoded ncRNAs, p7 and p8, which are upregulated during lytic reactivation and interact with both viral and host genomes. These ncRNAs bind to cellular RNA transcripts, significantly reducing ARMCX3 mRNA levels, while p8 also influences PTPN6 and RPL24 expressions. Although p7 does not directly bind to LMP1 RNA but both ncRNAs found to downregulate LMP1 expression. Furthermore, these ncRNAs interact with the OriLyt region of EBV genome, promoting viral DNA replication. Functional assays indicate that p7 and p8 enhance cell proliferation and inhibit apoptosis by modulating the p53 pathway and suppressing pro-apoptotic proteins. These findings highlight the role of p7 and p8 in supporting EBV persistence by regulating viral replication, cell survival, and immune evasion, making them promising targets for therapeutic strategies in EBV-related diseases.IMPORTANCEEpstein-Barr virus (EBV) employs diverse strategies for long-term persistence in the host, including the expression of viral non-coding RNAs (ncRNAs) that manipulate key cellular pathways to promote viral replication and immune evasion. This study identifies two novel EBV-encoded ncRNAs, p7 and p8, which are upregulated during lytic reactivation and interact with both viral and host genes to regulate viral DNA replication and promote host cellular survival. By modulating apoptotic and proliferative pathways, p7 and p8 facilitate viral reactivation while promoting host cell survival, highlighting their potential as critical regulators in EBV-driven oncogenesis. This discovery expands our understanding of EBV-host interactions, suggesting p7 and p8 as targets for novel therapeutic strategies in EBV-associated malignancies.
Collapse
Affiliation(s)
- Sagarika Banerjee
- Departments of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dipayan Bose
- Departments of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steve Johnson
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jie Liu
- Departments of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Herbert Virgin
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Majeed NS, Mohammed MH, Hatem ZA, El-Sehrawy AAMA, Ganesan S, Singh A, Akoul MA, Sudan P, Singh R, Hamad HA. Interplay between NETosis and the lncRNA-microRNA regulatory axis in the immunopathogenesis of cancer. J Physiol Biochem 2025:10.1007/s13105-025-01082-x. [PMID: 40358898 DOI: 10.1007/s13105-025-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
Neutrophil extracellular traps (NETs), web-like complex structures secreted by neutrophils, have emerged as key players in the modulation of immune responses and the immunopathogenesis of immune disorders. Initially described for their antimicrobial function, NETs now play a part in the fundamental processes of cancer biology, including cancer initiation, metastatic dissemination, and immune evasion strategies. NETs hijack anti-tumor immunity by entrapping circulating cancer cells, fostering the growth of tumors, and reorganizing the tumor microenvironment such that it is pro-malignancy. Emerging evidence emphasizes the role of NETosis coupled with non-coding RNAs-long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)-as key regulators of gene expression and controllers of processes vital for cancer growth, such as immune response and programmed cell death processes like apoptosis, necroptosis, pyroptosis, and ferroptosis. Aberrantly expressed non-coding RNAs have been attributed to immune dysregulation and excessive NET production, promoting tumor growth. NETs are also associated with a myriad of pathological conditions, such as autoimmune disorders, cystic fibrosis, sepsis, and thrombotic disorders. New therapeutic approaches-such as DNase therapy and PAD4 inhibitors-target NET production and their degradation to modify immune function and the efficiency of immunotherapies. Further clarification of the intricate interactions of NETosis, lncRNAs, and miRNAs has the potential to establish new strategies for the suppression of the growth of tumors and preventing immune evasion. This review seeks to elucidate the interactions between NETosis and the regulatory networks involving non-coding RNAs that significantly contribute to the immunopathogenesis of cancer.
Collapse
Affiliation(s)
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques department, College of Health and medical technology, Al-Maarif University, Anbar, Iraq.
| | - Zainab Amer Hatem
- College of Science, Biotechnology Department, Diyala University, Diyala, Iraq
| | | | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Marwa Azeez Akoul
- Biotechnology Department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Puneet Sudan
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Roshni Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Hamad Ali Hamad
- Department of Pathological Analysis, Collage of Applied Sciences, University of Fallujah, Fallujah, Iraq
| |
Collapse
|
10
|
Liu X, Zhang X, Cen M. Dysregulation of miR-106a-5p/PTEN axis associated with progression and diagnostic of postmenopausal osteoporosis. J Orthop Surg Res 2025; 20:456. [PMID: 40355896 PMCID: PMC12070524 DOI: 10.1186/s13018-025-05872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
OBJECTIVE Postmenopausal osteoporosis (PMOP) is a bone disorder in postmenopausal women and a significant risk factor for fragility fractures. This study aims to explore the role of miR-106a-5p in the pathogenesis of PMOP and its potential as a diagnostic biomarker. METHODS 220 postmenopausal women were recruited. The levels of miR-106a-5p, PTEN, and osteogenic-related genes were quantified using qRT-PCR. The relative protein of PTEN was detected using Western blotting. ROC curve and Pearson correlation were employed to evaluate the diagnostic value and relationships between variables. To model iron accumulation, hFOB1.19 osteoblasts were treated with ferric ammonium citrate (FAC). Cell proliferation and apoptosis were assessed using the CCK-8 and flow cytometry. The target relationship was verified using dual-luciferase assays. RESULTS miR-106a-5p levels were reduced, while PTEN levels were increased in PMOP. miR-106a-5p was positively correlated with bone mineral density and negatively correlated with ferritin. In the FAC-treated cells, miR-106a-5p decreased, and PTEN increased. Dual-luciferase assays confirmed that miR-106a-5p targets PTEN. Successful transfection was confirmed by observing the corresponding changes in miR-106a-5p and PTEN expression. Up-regulated miR-106a-5p increased the PTEN protein level, mRNA expression of RUNX2, OPN, and OCN, promoted cell proliferation, and decreased cell apoptosis under iron accumulation conditions. These effects were reversed by the upregulation of PTEN. CONCLUSION miR-106a-5p has the potential to diagnose osteoporosis in postmenopausal women and is linked to ferritin levels. miR-106a-5p plays a protective role in PMOP by regulating PTEN under conditions of iron accumulation, suggesting its potential as a promising biomarker for PMOP.
Collapse
Affiliation(s)
- Xiangjie Liu
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xiaogang Zhang
- Department of Orthopedics, Hebei Yanda Hospital, Sanhe, 065201, China
| | - Meini Cen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, No.18, Zhongshan 2nd Road, Youjiang District, Baise, 533000, China.
| |
Collapse
|
11
|
Chen J, Chen Y, Huang R, Zhang P, Huo Z, Li Y, Xiao H, Guan H, Li H. Long noncoding RNA FAM111A-DT promotes aggressiveness of papillary thyroid cancer via activating NF-κB signaling. J Endocrinol Invest 2025; 48:1121-1136. [PMID: 39786708 DOI: 10.1007/s40618-025-02531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) play crucial regulatory roles in the tumorigenesis and progression of various cancers. However, the functional roles of lncRNAs in papillary thyroid cancer (PTC) remain unclear. In this study, we investigated the functional role of the lncRNA FAM111A-DT in PTC progression and the underlying mechanisms. METHODS Different expression levels of lncRNAs in PTC were compared via analysis of the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatics analyses and qRT‒PCR were used to investigate the expression of FAM111A-DT in PTC. Cell proliferation was measured via CCK8, EdU, colony formation, and flow cytometry assays. Cell migration and invasion were examined by wound healing and Transwell assays. Apoptosis was detected via flow cytometry. RNA sequencing, qRT‒PCR, Western blot, immunofluorescence and dual-luciferase reporter assays were performed to assess the underlying mechanisms involved. RESULTS FAM111A-DT was highly expressed in PTC and associated with poor prognosis, thyroid dedifferentiation, various clinical features and the BRAFV600E mutation in PTC patients. Overexpression of FAM111A-DT enhanced the proliferation, migration and invasion of PTC cells while reducing their degree of apoptosis. The NF-κB signaling pathway was activated in FAM111A-DT-overexpressing PTC cells. The NF-κB inhibitor PDTC attenuated the promotive effects of FAM111A-DT on aggressive phenotypes and NF-κB pathway activity in PTC cells. CONCLUSION FAM111A-DT is upregulated in PTC, and its expression is associated with poor clinical outcomes. FAM111A-DT plays an oncogenic role by, at least partially, activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rong Huang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pengyuan Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zijun Huo
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Department of Endocrinology, Guizhou Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guizhou, China.
| |
Collapse
|
12
|
Wang M, Liu K, Guo D, Lv Y, Wang X. Arbovirus Infections and Epigenetic Mechanisms; a Potential Therapeutic Target. Rev Med Virol 2025; 35:e70033. [PMID: 40155348 DOI: 10.1002/rmv.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025]
Abstract
Arboviruses are a group of arthropod-borne viral pathogens that pose a significant threat to the public health system. The clinical manifestations associated with these viruses range from self-limiting infections to life-threatening disorders. As a group of systemic viral infections, arboviruses can affect various parts of human organ systems, such as the nervous system. In the nervous system, epigenetic mechanisms are involved in various mechanisms including adult neurogenesis, neuronal-glial differentiation, the regulation of neural behaviour and neural plasticity, as well as other brain functions such as memory, and cognition. Hence, epigenetic deregulation is a key factor in the aetiology of different neurological disorders that highlights the importance of studying the underlying mechanisms and risk factors to introduce effective therapeutic approaches. There is mounting evidence that arboviruses that affect the nervous system take advantage of various mechanisms to modulate epigenetic processes to regulate their life cycles. This phenomenon may affect the nervous system leading to neurotropic arboviral infection-associated neurological disorders. Hence, it is important to understand reciprocal interplays between neurotropic arboviral pathogens and epigenetic processes to better control these disorders. The present review provides an overview of different interactions of arboviruses with epigenetic mechanisms during neurotropic arboviral infections. It uniquely focuses on the interplay between epigenetic modifications and arboviral neurotropism, shedding light on potential therapeutic strategies that have not been comprehensively addressed before. Targeting virus-induced epigenetic alterations, such as miRNA regulation, could lead to novel antiviral therapies aimed at mitigating neuroinflammation and disease severity.
Collapse
Affiliation(s)
- Manhong Wang
- University Hospital, Jilin Normal University, Siping, China
| | - Kexin Liu
- Department of Pathology, Siping City Centeral People's Hospital, Siping, China
| | - Dan Guo
- University Hospital, Jilin Normal University, Siping, China
| | - Youjia Lv
- Department of Hepatology, Siping City Infectious Disease Hospital, Siping, China
| | - Xin Wang
- Student Affairs Office, Jilin Normal University, Siping, China
| |
Collapse
|
13
|
Nathani A, Sun L, Li Y, Lazarte J, Aare M, Singh M. Targeting EGFR-TKI resistance in lung cancer: Role of miR-5193/miR-149-5p loaded NK-EVs and Carboplatin combination. Int J Pharm 2025; 675:125573. [PMID: 40204039 DOI: 10.1016/j.ijpharm.2025.125573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Lung cancer remains the leading cause of cancer-related deaths, and there is an urgent need for innovative therapies. MicroRNA (miRNA)-based gene therapy has shown promise, but efficient delivery systems are required for its success. This study investigates the use of extracellular vehicles (EVs) secreted by natural killer (NK) cells as delivery systems for miRNAs targeting PD-L1/PD-1 immune checkpoint and FOXM1, in combination with Carboplatin, to enhance anticancer efficacy in lung cancer models. NK-EVs were isolated from NK92-MI cells and characterized using nanoparticle tracking analysis (NTA), proteomics and Western blotting, confirming their exosomal characteristics. Gene ontology profiling and RNA-seq identified highly expressed miRNAs such as miR-5193 and miR-149-5p, which were loaded into NK-EVs via electroporation. Agarose gel electrophoresis confirmed their entrapment and Quickdrop spectrophotometer was used to estimate the quantity. In vitro, miRNA-loaded NK-EVs demonstrated significant cytotoxicity against Osimertinib-resistant PDX (TM0019, Jackson Labs) and H1975R (with L858R mutations) lung cancer cells, with approximately 1.2 to 1.6-fold (p < 0.01) decrease in cell viability compared to NK-EVs alone. In vivo, the combination of miRNA-loaded NK-EVs and Carboplatin significantly reduced tumor volumes (3.5 to 4-fold, p < 0.001) in PDX and H1975R xenograft models, with the most pronounced effect observed in combination therapies. Western blot analysis showed downregulation of tumor-associated markers: PD-1/PD-L1, FOXM1, Survivin, NF-κB and others vs untreated group, p < 0.001) suggesting immune checkpoint inhibition, apoptosis and anti-inflammatory activity. These findings highlight the potential of NK-EVs as effective carriers for miRNAs in combination with chemotherapy, offering a promising therapeutic strategy for NSCLC with EGFR mutations.
Collapse
Affiliation(s)
- Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA; Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Jassy Lazarte
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Mounika Aare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|
14
|
Karki U, Chapagain P. Tables Turned─Structural Mechanisms of Target-Induced miRNA Destabilization. J Phys Chem B 2025. [PMID: 40300196 DOI: 10.1021/acs.jpcb.5c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Argonaute 2 (Ago2) loaded with a microRNA (miRNA) forms an RNA-induced silencing complex (RISC), which targets mRNA through miRNA-mRNA base pairing, leading to translation inhibition or degradation of the target mRNA. However, certain target mRNAs can turn the table by binding to the miRNA-Ago complex with high complementarity, resulting in the destruction of the miRNA itself, and the process is commonly known as target-directed miRNA degradation (TDMD). Highly complementary targets can also promote miRNA destabilization and release from Ago2. However, the dynamic nature of the target-induced effects of miRNA-Ago2 interactions and miRNA dissociation from Ago2 is not well understood. The lack of a complete crystal structure of the complex involved in TDMD has limited computational study of the dynamics of target or miRNA destabilization. In this work, we utilized AlphaFold 3 (AF3) to model the full structures of Ago2-miR-27a-mRNA-target complexes and investigated the dynamics of miRNA-mRNA and miRNA-Ago2 interactions using molecular dynamics simulations. We chose miR-27a because it has not only been extensively investigated for its involvement in cancer biology but it is also a known target for its degradation via TDMD by viral mRNAs such as HVS HSUR1 from Herpesvirus saimiri. We systematically changed the targets from seed-only base pairing (target ATF3) to seed and extensive supplementary base pairing (target HVS HSUR1) to compare the stability of the miRNA-Ago2 complexes. We find that the sequence complementarity in seed, central, and supplementary pairings as well as the structural agility of Ago2 allow for differential stability of miRNA binding, potentially facilitating dissociation under different conditions.
Collapse
Affiliation(s)
- Ukesh Karki
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
15
|
Wang S, Chen X, Wang K, Yang S. The Regulatory Role of NcRNAs in Pyroptosis and Disease Pathogenesis. Cell Biochem Biophys 2025:10.1007/s12013-025-01720-7. [PMID: 40249522 DOI: 10.1007/s12013-025-01720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
Non-coding RNAs (ncRNAs), as critical regulators of gene expression, play a pivotal role in the modulation of pyroptosis and exhibit a close association with a wide range of diseases. Pyroptosis is a form of programmed cell death mediated by inflammasomes, characterized by cell membrane perforation, release of inflammatory cytokines, and a robust immune response. Recent studies have revealed that ncRNAs influence the initiation and execution of pyroptosis by regulating the expression of pyroptosis-related genes or modulating associated signaling pathways. This review systematically summarizes the molecular mechanisms and applications of ncRNAs in diseases such as cancer, infectious diseases, neurological disorders, cardiovascular diseases, and metabolic disorders. It further explores the potential of ncRNAs as diagnostic biomarkers and therapeutic targets, elucidates the intricate interactions among ncRNAs, pyroptosis, and diseases, and provides novel strategies and directions for the precision treatment of related diseases.
Collapse
Affiliation(s)
- Shaocong Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Sumin Yang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Yang Y, Wang TY, Li Q, Lu J, Ren Y, Weiner AB, Fry J, Liu Q, Yum C, Wang R, Guo Q, Wan Y, Ji Z, Dong X, Lotan TL, Schaeffer EM, Yang R, Cao Q. Androgen receptor-regulated lncRNA PRCAT71 promotes AR signaling through the interaction with KHSRP in prostate cancer. SCIENCE ADVANCES 2025; 11:eadk6989. [PMID: 40203114 PMCID: PMC11980854 DOI: 10.1126/sciadv.adk6989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Mounting evidence indicates that long noncoding RNAs (lncRNAs) play vital roles in tumorigenesis and progression of cancers. However, the functions and regulatory mechanisms of lncRNAs in prostate cancer (PCa) are still largely unknown. In this study, we found an lncRNA, PCa-associated transcript 71 (PRCAT71), highly expressed in metastatic and primary PCa compared to benign prostate tissues. Silencing PRCAT71 inhibited cancerous properties of PCa cells and androgen receptor (AR) signaling. Mechanistically, PRCAT71 acts as a scaffold to recruit K homology (KH)-type splicing regulatory protein (KHSRP) to AR messenger RNA (mRNA) and stabilize AR mRNA, leading to activated AR signaling. KHSRP plays a critical role in PCa progression. PRCAT71 is transcriptionally regulated by AR-driven enhancers, forming a positive regulatory loop between AR and PRCAT71 in PCa. Our study demonstrates a coordinated regulation of AR mRNA by lncRNA PRCAT71 and RNA binding protein KHSRP and provides insight that the PRCAT71-KHSRP-AR axis is a promising therapeutic target for treating PCa.
Collapse
Affiliation(s)
- Yongyong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ting-You Wang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qianru Li
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jiawen Lu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yanan Ren
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Adam B. Weiner
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua Fry
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qi Liu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chaehyun Yum
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rui Wang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qingxiang Guo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yu Wan
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL 60628, USA
| | - Zhe Ji
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL 60628, USA
| | - Xuesen Dong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Edward M. Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rendong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qi Cao
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Guo B, Gu J, Zhuang T, Zhang J, Fan C, Li Y, Zhao M, Chen R, Wang R, Kong Y, Xu S, Gao W, Liang L, Yu H, Han T. MicroRNA-126: From biology to therapeutics. Biomed Pharmacother 2025; 185:117953. [PMID: 40036996 DOI: 10.1016/j.biopha.2025.117953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
MicroRNA-126 (miR-126) has emerged as one of the most extensively studied microRNAs in the context of human diseases, particularly in vascular disorders and cancer. Its high degree of conservation across vertebrates underscores its evolutionary significance and essential functional roles. Extensive research has been devoted to elucidating the molecular mechanisms through which miR-126 modulates key physiological and pathological processes, including angiogenesis, immune response, inflammation, tumor growth, and metastasis. Furthermore, miR-126 plays a causal role in the pathogenesis of various diseases, serving as potential biomarkers for disease prediction, diagnosis, prognosis and drug response, as well as a promising therapeutic target. In this review, we synthesize findings from 283 articles, focusing on the roles of miR-126 in critical biological processes such as cell development, survival, cycle regulation, proliferation, migration, invasion, communication, and metabolism. Additionally, miR-126 represents a promising candidate for miRNA-based therapeutic strategies. A comprehensive understanding and evaluation of miR-126 are crucial for advancing its clinical applications and therapeutic potential.
Collapse
Affiliation(s)
- Bei Guo
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tongtian Zhuang
- Department of Dermatology, Air Force Hospital of Northern Theater Command, Shenyang, China
| | - Jingbin Zhang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chunyang Fan
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yiyao Li
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Mengdi Zhao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Ruoran Chen
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Rui Wang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuan Kong
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuang Xu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei Gao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Linlang Liang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hao Yu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
19
|
Yang LX, Li H, Cheng ZH, Sun HY, Huang JP, Li ZP, Li XX, Hu ZG, Wang J. The Application of Non-Coding RNAs as Biomarkers, Therapies, and Novel Vaccines in Diseases. Int J Mol Sci 2025; 26:3055. [PMID: 40243658 PMCID: PMC11988403 DOI: 10.3390/ijms26073055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of RNAs that largely lack the capacity to encode proteins. They have garnered significant attention due to their central regulatory functions across numerous cellular and physiological processes at transcriptional, post-transcriptional, and translational levels. Over the past decade, ncRNA-based therapies have gained considerable attention in the diagnosis, treatment, and prevention of diseases, and many studies have revealed a significant relationship between ncRNAs and diseases. At the same time, due to their tissue specificity, an increasing number of projects have focused on the application of ncRNAs as biomarkers in diseases, as well as the design and development of novel ncRNA-based vaccines and therapies for clinical use. These ncRNAs may also drive research into the potential molecular mechanisms and complex pathogenesis of related diseases. However, new biomarkers need to be validated for their clinical effectiveness. Additionally, to produce safe and stable RNA products, factors such as purity, precise dosage, and effective delivery methods must be ensured to achieve optimal bioactivity. These challenges remain key issues in the clinical application of ncRNAs. This review summarizes the prospects of ncRNAs as potential biomarkers, as well as the current research status and clinical applications of ncRNAs in therapies and vaccines, and discusses the challenges and expectations of ncRNAs in disease diagnosis and drug therapy.
Collapse
Affiliation(s)
- Lu-Xuan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Hui Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Zhi-Hui Cheng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - He-Yue Sun
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Jie-Ping Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Zhi-Peng Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Xin-Xin Li
- Institute of Scientific Research, Guangxi University, Nanning 530004, China;
| | - Zhi-Gang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jian Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| |
Collapse
|
20
|
Arab S, Ghasemi S, Bahraminasab M, Ghanbari A, Heidari M, Kokhaei P, Bahrami A, Asgharzade S. CD73 Molecule Inhibitor Upregulates miR16 Expression in Experimental Glioblastoma and Inhibits Angiogenesis by Targeting VEGF. J Mol Neurosci 2025; 75:41. [PMID: 40140182 DOI: 10.1007/s12031-025-02307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/01/2025] [Indexed: 03/28/2025]
Abstract
The function of CD73 (Cluster of Differentiation 73), an enzyme involved in the formation of adenosine (ADO), in the development of glioblastomas has been demonstrated. Indeed, ADO helps tumor angiogenesis by stimulating endothelial cell migration, proliferation, and tube formation. However, the details of the molecular mechanisms are not yet fully understood. Given the importance of angiogenesis in cancer progression, invasion, and metastasis, this study aimed to investigate how the inhibition of CD73 by adenosine-5'-(α, β-methylene) diphosphate (APCP) affects the angiogenesis process of experimental orthotopic glioblastoma at mRNAs, microRNAs, and protein levels. According to the real-time-polymerase chain reaction (RT-PCR) results, inhibition of CD73 decreased the angiogenesis of glioblastoma by reducing the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1α) by ****P < 0.0001 and **P < 0.01, respectively. Furthermore, immunohistochemical staining showed that this treatment protocol attenuated the expression of VEGF and CD31. Moreover, APCP treatment significantly increased miR-16 expression in glioblastoma model rats by P < 0.001, but no significant change in miR-29A expression was observed. The results showed that the treatment did not lead to systemic damage or significant weight loss. Our results suggest that inhibition of CD73 may reduce the formation of new tumor vessels by inhibiting the VEGF, HIF-1α, and CD31 in this process. Therefore, CD73 may be a practical target and provide new opportunities to improve the treatment of malignant brain tumors.
Collapse
Affiliation(s)
- Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sahar Ghasemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Marjan Bahraminasab
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Heidari
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Parviz Kokhaei
- Department of Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
- Department of Oncology-Pathology, Karolinska University Hospital Solna and Karolinska Institute, BioClinicumStockholm, Sweden
| | - Abozar Bahrami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran.
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
21
|
Attia YM, Tadros SA, Fahim SA, Badr DM. Role of noncoding RNA as a pacemaker in cancer stem cell regulation: a review article. J Egypt Natl Canc Inst 2025; 37:9. [PMID: 40122959 DOI: 10.1186/s43046-025-00266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Accumulated evidence supported the crucial role of a tiny population of cells within the tumor called cancer stem cells (CSCs) in cancer origination, and proliferation. Additionally, these cells are distinguished by their self-renewal, differentiation, and therapeutic resistance capabilities. Interestingly, many studies recorded dysregulation of different types of noncoding RNAs, such as microRNA (miRNA) and long non-coding RNA (LncRNA), in cancer cells as well as CSCs. Moreover, several studies also supported the regulation of the transcription factors and signaling pathways required for CSC progression by these noncoding RNAs. However, the exact biological functions of all these noncoding RNAs are not well understood yet. These findings are of great interest, implying usage of noncoding RNA as therapeutic tool to target these cells. In this review, we provide an insight into how noncoding RNAs regulate CSCs and how this correlation is manipulated to develop new therapies to eradicate cancer cells successfully.
Collapse
Affiliation(s)
- Yasmin M Attia
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| | - Samer A Tadros
- Department of Biochemistry, Faculty of Pharmacy, 110123october University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Sally A Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Giza, 12577, Egypt.
| | - Doaa M Badr
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| |
Collapse
|
22
|
Ma S, Wang Z, Xiong Z, Ge Y, Xu MY, Zhang J, Peng Y, Zhang Q, Sun J, Xi Z, Peng H, Xu W, Wang Y, Li L, Zhang C, Chao Z, Wang B, Gao X, Zhang X, Wei GH, Wang Z. Enhancer transcription profiling reveals an enhancer RNA-driven ferroptosis and new therapeutic opportunities in prostate cancer. Signal Transduct Target Ther 2025; 10:87. [PMID: 40082405 PMCID: PMC11906896 DOI: 10.1038/s41392-025-02170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Enhancer RNAs (eRNAs), a subclass of non-coding RNAs transcribed from enhancer regions, have emerged as critical regulators of gene expression; however, their functional roles in prostate cancer remain largely unexplored. In this study, we performed integrated chromatin accessibility and transcriptomic analyses using ATAC-seq and RNA-seq on twenty pairs of prostate cancer and matched benign tissues. By incorporating chromatin immunoprecipitation sequencing data, we identified a subset of differentially expressed eRNAs significantly associated with genes involved in prostate development and oncogenic signaling pathways. Among these, lactotransferrin-eRNA (LTFe) was markedly downregulated in prostate cancer tissues, with functional analyses revealing its tumor-suppressive role. Mechanistically, LTFe promotes the transcription of its target gene, lactotransferrin (LTF), by interacting with heterogeneous nuclear ribonucleoprotein F (HNRNPF) and facilitating enhancer-promoter chromatin interactions. Furthermore, we demonstrate that the LTFe-LTF axis facilitates ferroptosis by modulating iron transport. Notably, androgen receptor (AR) signaling disrupts LTFe-associated chromatin looping, leading to ferroptosis resistance. Therapeutically, co- administration of the AR inhibitor enzalutamide and the ferroptosis inducer RSL3 significantly suppressed tumor growth, offering a promising strategy for castration-resistant prostate cancer. Collectively, this study provides novel insights into the mechanistic role of eRNAs in prostate cancer, highlighting the LTFe-LTF axis as a critical epigenetic regulator and potential therapeutic target for improved treatment outcomes.
Collapse
Affiliation(s)
- Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zezhong Xiong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Meng-Yao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yuzheng Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jiaxue Sun
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zirui Xi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Hao Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Wenjie Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yanan Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Chunyu Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Baojun Wang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Shanghai, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China.
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 215123, Suzhou, Jiangsu, China.
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
- Taikang Tongji (Wuhan) Hospital, 420060, Wuhan, China.
| |
Collapse
|
23
|
Zhang L, Wang R, Nan Y, Kong L. Molecular regulators of alcoholic liver disease: a comprehensive analysis of microRNAs and long non-coding RNAs. Front Med (Lausanne) 2025; 12:1482089. [PMID: 40130250 PMCID: PMC11931045 DOI: 10.3389/fmed.2025.1482089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Many biomolecules and signaling pathways are involved in the development of alcoholic liver disease (ALD). The molecular mechanisms of ALD are not fully understood and there is no effective treatment. Numerous studies have demonstrated the critical role of non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), in ALD. miRNAs play an important regulatory role in the pathogenesis of ALD by controlling critical biological processes such as inflammation, oxidative stress, lipid metabolism, apoptosis and fibrosis. Among them, miR-155, miR-223 and miR-34a play a central role in these processes and influence the pathological process of ALD. In addition, lncRNAs are involved in regulating liver injury and repair by interacting with miRNAs to form a complex regulatory network. These findings help to elucidate the molecular mechanisms of ALD and provide a scientific basis for the development of new diagnostic markers and therapeutic targets. In this article, we review the roles and mechanisms of LncRNAs and miRNAs in ALD and their potential use as diagnostic markers and therapeutic targets.
Collapse
|
24
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Ko MY, Min E, Kim M, Park H, Jang S, Kim Y, Lee BS, Hyun SA, Ka M. Non-genotoxic carcinogens (TPA and mezerein) activate tumourous transformation through miR let-7-mediated Hmga2 expression in Bhas42 cells. ENVIRONMENTAL EPIGENETICS 2025; 11:dvaf005. [PMID: 40182023 PMCID: PMC11967402 DOI: 10.1093/eep/dvaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
A Bhas42 cell transformation assay is a method used to detect the tumour-promoting activities of chemicals. However, the mechanisms underlying tumour transformations mediated by non-genotoxic carcinogens (NGCs) are poorly understood. This study aimed to examine the correlation between 12-O-tetradecanoylphorbol 13-acetate (TPA) or mezerein and the initiation of tumourous transformations by epigenetic regulation in Bhas42 cells. We found that TPA and mezerein prompted tumourous transformations by stimulating cell proliferation and migration in Bhas42 cells. Furthermore, we observed alterations in the expression levels of 134 genes, with 87 genes being upregulated and 47 genes being downregulated, following exposure to either TPA or mezerein. Among the differentially regulated genes, we identified 17 upregulated genes and 8 downregulated genes corresponding to differentially expressed genes in TNM [primary tumour (T), regional nodes (N), and metastasis (M)]. Importantly, we found that TPA and mezerein triggered the expression of Hmga2 and Ezh2 by loss of miRNA let-7 (miR let-7) in Bhas42 cells. Finally, the microRNA (miRNA) mimic of let-7 prevented the TPA- and mezerein-induced activation of Hmga2 and Ezh2 in Bhas42 cells. Our findings reveal a connection between tumourous transformations and the epigenetic regulator miR let-7 in NGCs, such as TPA and mezerein in Bhas42 cells. This highlights miR let-7 as a promising therapeutic target for mitigating tumourous transformations induced by NGCs.
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Euijun Min
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minjeong Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sumi Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
26
|
Lundquist KP, Romeo I, Puglielli RB, Pestalozzi M, Gram ML, Hudson ES, Levi O, Arava YS, Gotfredsen CH, Clausen MH. Design, synthesis, and screening of an RNA optimized fluorinated fragment library. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100215. [PMID: 39828142 DOI: 10.1016/j.slasd.2025.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Fragment-based screening is an efficient method for early-stage drug discovery. In this study, we aimed to create a fragment library optimized for producing high hit rates against RNA targets. RNA has historically been an underexplored target, but recent research suggests potential for optimizing small molecule libraries for RNA binding. We extended this concept to fragment libraries to produce an RNA optimized fluorinated fragment library. We then screened this library, alongside two non-RNA optimized fragment libraries, against three RNA targets: the human cytoplasmic A-site and the S. cerevisiae tRNAAsp anticodon stem loop with and without nucleobase modifications. The screens yielded 24, 31, and 20 hits against the respective targets. Importantly, statistical analysis confirmed a significant overrepresentation of hits in our RNA optimized library. Based on these findings, we propose guidelines for developing RNA optimized fragment libraries. We hope the guidelines will help expediting fragment-based ligand discovery for RNA targets and contribute to presenting RNA as a promising target in drug discovery.
Collapse
Affiliation(s)
- Kasper P Lundquist
- DTU Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Isabella Romeo
- DTU Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | | | - Maëlle Pestalozzi
- DTU Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Marie L Gram
- DTU Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Emily S Hudson
- DTU Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Ofri Levi
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200001, Israel
| | - Yoav S Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200001, Israel
| | - Charlotte H Gotfredsen
- NMR Center • DTU, DTU Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| | - Mads H Clausen
- DTU Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
27
|
Khalid AQ, Zaidan TN, Bhuvanendran S, Magalingam KB, Mohamedahmed SM, Ramdas P, Radhakrishnan AK. Insights into the Anticancer Mechanisms Modulated by Gamma and Delta Tocotrienols in Colorectal Cancers. Nutr Rev 2025; 83:e1295-e1310. [PMID: 39181121 PMCID: PMC11819494 DOI: 10.1093/nutrit/nuae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) is a growing concern all over the world. There has been a concerted effort to identify natural bioactive compounds that can be used to prevent or overcome this condition. Tocotrienols (T3s) are a naturally occurring form of vitamin E known for various therapeutic effects, such as anticancer, antioxidant, neuroprotective, and anti-inflammatory activities. The literature evidence suggests that two T3 analogues, ie, gamma (γ)- and delta (δ)-T3, can modulate cancers via several cancer-related signaling pathways. The aim of this review was to compile and analyze the existing literature on the diverse anticancer mechanisms of γT3 and δT3 exhibited in CRC cells, to showcase the anticancer potential of T3s. Medline was searched for research articles on anticancer effects of γT3 and δT3 in CRC published in the past 2 decades. A total of 38 articles (26 cell-based, 9 animal studies, 2 randomized clinical trials, and 1 scoping review) that report anticancer effects of γT3 and δT3 in CRC were identified. The findings reported in those articles indicate that γT3 and δT3 inhibit the proliferation of CRC cells, induce cell cycle arrest and apoptosis, suppress metastasis, and produce synergistic anticancer effects when combined with well-established anticancer agents. There is preliminary evidence that shows that T3s affect telomerase functions and support anticancer immune responses. γT3 and δT3 have the potential for development as anticancer agents.
Collapse
Affiliation(s)
- Ali Qusay Khalid
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Tabarek Najeeb Zaidan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Kasthuri B Magalingam
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Shaza M Mohamedahmed
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Premdass Ramdas
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Ammu K Radhakrishnan
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
28
|
An X, Sun L, Zheng H, Xiao Y, Sun W, Yu D. Mitochondria-associated non-coding RNAs and their impact on drug resistance. Front Pharmacol 2025; 16:1472804. [PMID: 40078288 PMCID: PMC11897306 DOI: 10.3389/fphar.2025.1472804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Drug resistance is a prevalent challenge in clinical disease treatment, often leading to disease relapse and poor prognosis. Therefore, it is crucial to gain a deeper understanding of the molecular mechanisms underlying drug resistance and to develop targeted strategies for its effective prevention and management. Mitochondria, as vital energy-producing organelles within cells, have been recognized as key regulators of drug sensitivity. Processes such as mitochondrial fission, fusion, mitophagy, changes in membrane potential, reactive oxygen species (ROS) accumulation, and oxidative phosphorylation (OXPHOS) are all linked to drug sensitivity. Non-coding RNAs (ncRNAs) enriched in mitochondria (mtncRNA), whether transcribed from mitochondrial DNA (mtDNA) or from the nucleus and transported to mitochondria, can regulate the transcription and translation of mtDNA, thus influencing mitochondrial function, including mitochondrial substance exchange and energy metabolism. This, in turn, directly or indirectly affects cellular sensitivity to drugs. This review summarizes the types of mtncRNAs associated with drug resistance and the molecular mechanisms regulating drug resistance. Our aim is to provide insights and strategies for overcoming drug resistance by modulating mtncRNAs.
Collapse
Affiliation(s)
- Xingna An
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lina Sun
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Huan Zheng
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yinghui Xiao
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
29
|
Yang HB, Lu DC, Shu M, Li J, Ma Z. The roles and therapeutic potential of exosomal non-coding RNAs in microglia-mediated intercellular communication. Int Immunopharmacol 2025; 148:114049. [PMID: 39823800 DOI: 10.1016/j.intimp.2025.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Exosomes, which are small extracellular vesicles (sEVs), serve as versatile regulators of intercellular communication in the progression of various diseases, including neurological disorders. Among the diverse array of cargo they carry, non-coding RNAs (ncRNAs) play key regulatory roles in various pathophysiological processes. Exosomal ncRNAs derived from distinct cells modulate their reciprocal crosstalk locally or remotely, thereby mediating neurological diseases. Nevertheless, the emerging role of exosomal ncRNAsin microglia-mediated phenotypes remains largely unexplored. This review aims to summarise the biological functions of exosomal ncRNAs and the molecular mechanisms that underlie their impact on microglia-mediated intercellular communication, modulating neuroinflammation and synaptic functions within the landscape of neurological disorders. Furthermore, this review comprehensively described the potential applications of exosomal ncRNAs as diagnostic and prognostic biomarkers, as well as innovative therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Hu-Bo Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Min Shu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
30
|
He Y, Li H, Shi Q, Liu Y, Pan Q, He X. The liver-specific long noncoding RNA FAM99B inhibits ribosome biogenesis and cancer progression through cleavage of dead-box Helicase 21. Cell Death Dis 2025; 16:97. [PMID: 39952918 PMCID: PMC11829061 DOI: 10.1038/s41419-025-07401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Emerging evidence has demonstrated that long noncoding RNAs (lncRNAs) are promising targets or agents for the treatment of human cancers. Most liver-specific lncRNAs exhibit loss of expression and act as tumor suppressors in liver cancer. Modulating the expression of these liver-specific lncRNAs is a potential approach for lncRNA-based gene therapy for hepatocellular carcinoma (HCC). Here, we report that the expression of the liver-specific lncRNA FAM99B is significantly decreased in HCC tissues and that FAM99B suppresses HCC cell proliferation and metastasis both in vitro and in vivo. FAM99B promotes the nuclear export of DDX21 through XPO1, leading to further cleavage of DDX21 by caspase3/6 in the cytoplasm. FAM99B inhibits ribosome biogenesis by inhibiting ribosomal RNA (rRNA) processing and RPS29/RPL38 transcription, thereby reducing global protein synthesis through downregulation of DDX21 in HCC cells. Interestingly, the FAM99B65-146 truncation exhibits tumor-suppressive effects in vivo and in vitro. Moreover, GalNAc-conjugated FAM99B65-146 inhibits the growth and metastasis of orthotopic HCC xenografts, providing a new strategy for the treatment of HCC. This is the first report of the use of a lncRNA as an agent rather than a target in tumor treatment. Graphical illustration of the mechanism of FAM99B in HCC.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- DEAD-box RNA Helicases/metabolism
- DEAD-box RNA Helicases/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Animals
- Ribosomes/metabolism
- Ribosomes/genetics
- Cell Proliferation/genetics
- Cell Line, Tumor
- Mice
- Karyopherins/metabolism
- Karyopherins/genetics
- Disease Progression
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Exportin 1 Protein
- Mice, Inbred BALB C
- Liver/metabolism
- Liver/pathology
- Male
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
Collapse
Affiliation(s)
- Yifei He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hongquan Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanfang Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiaochu Pan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Pu W, Shen X, Fan X, Zheng Y, Liu X, Li J, Zhou JK, He J, Wei R, Gong Y, Zheng Q, Luo Y, Guo Y, Ai M, Ming Y, Ye Z, Zhao Y, Wang C, Peng Y. Structure-Guided Optimization and Preclinical Evaluation of 6- O-Benzylguanine-Based Pin1 Inhibitor for Hepatocellular Carcinoma Treatment. J Med Chem 2025; 68:2869-2889. [PMID: 39868498 DOI: 10.1021/acs.jmedchem.4c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths globally, and the need for effective systemic therapies for HCC is urgent. Our previous work reveals that Pin1 is a potential anti-HCC target, which regulates miRNA biogenesis and identifies API-1 as a novel Pin1 inhibitor to suppresses HCC. However, a great demand in HCC therapy as well as the limited chemical stability and pharmacokinetic feature of API-1 motivated us to find improved Pin1 inhibitors. Herein, we designed and synthesized diverse 6-O-benzylguanine derivatives and discovered API-32 as a novel Pin1 inhibitor with better stability and pharmacokinetic property over API-1. API-32 directly interacted with the Pin1 PPIase domain to inhibit Pin1 activity. API-32 significantly suppressed the cell proliferation and migration of HCC cells by blocking Pin1's downstream signal. Moreover, API-32 exhibited an enhanced inhibitory function against the HCC tumor in mice models without obvious toxicity, making it a promising drug candidate for HCC treatment.
Collapse
Affiliation(s)
- Wenchen Pu
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xianyan Shen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Fan
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Zheng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xuesha Liu
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jiao Li
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jian-Kang Zhou
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
| | - Juan He
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Rong Wei
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Qingquan Zheng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yao Luo
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yingli Guo
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Min Ai
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yue Ming
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zixia Ye
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Chun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong Peng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
32
|
Teo LTK, Juantuah-Kusi N, Subramanian G, Sampath P. Psoriasis Treatments: Emerging Roles and Future Prospects of MicroRNAs. Noncoding RNA 2025; 11:16. [PMID: 39997616 PMCID: PMC11858470 DOI: 10.3390/ncrna11010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Psoriasis, a widespread and chronic inflammatory skin disorder, is marked by its persistence and the lack of a definitive cure. The pathogenesis of psoriasis is increasingly understood, with ongoing research highlighting the intricate interplay of genetic, immunological, and environmental factors. Recent advancements have illuminated the pivotal role of microRNAs in orchestrating complex processes in psoriasis and other hyperproliferative skin diseases. This narrative review highlights the emerging significance of miRNAs as key regulators in psoriasis pathogenesis and examines their potential as therapeutic targets. We discuss current treatment approaches and the promising future of miRNAs as next-generation therapeutic agents for this condition.
Collapse
Affiliation(s)
- Li Tian Keane Teo
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington, London SW7 2AZ, UK
| | - Nerissa Juantuah-Kusi
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Gowtham Subramanian
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
- Skin Research Institute of Singapore (SRIS), 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore
| | - Prabha Sampath
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
- Skin Research Institute of Singapore (SRIS), 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
33
|
Alalhareth IS, Alyami SM, Alshareef AH, Ajeibi AO, Al Munjem MF, Elfifi AA, Alsharif MM, Alzahrani SA, Alqaad MA, Bakir MB, Abdel-Wahab BA. Cellular Epigenetic Targets and Epidrugs in Breast Cancer Therapy: Mechanisms, Challenges, and Future Perspectives. Pharmaceuticals (Basel) 2025; 18:207. [PMID: 40006021 PMCID: PMC11858621 DOI: 10.3390/ph18020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer is the most common malignancy affecting women, manifesting as a heterogeneous disease with diverse molecular characteristics and clinical presentations. Recent studies have elucidated the role of epigenetic modifications in the pathogenesis of breast cancer, including drug resistance and efflux characteristics, offering potential new diagnostic and prognostic markers, treatment efficacy predictors, and therapeutic agents. Key modifications include DNA cytosine methylation and the covalent modification of histone proteins. Unlike genetic mutations, reprogramming the epigenetic landscape of the cancer epigenome is a promising targeted therapy for the treatment and reversal of drug resistance. Epidrugs, which target DNA methylation and histone modifications, can provide novel options for the treatment of breast cancer by reversing the acquired resistance to treatment. Currently, the most promising approach involves combination therapies consisting of epidrugs with immune checkpoint inhibitors. This review examines the aberrant epigenetic regulation of breast cancer initiation and progression, focusing on modifications related to estrogen signaling, drug resistance, cancer progression, and the epithelial-mesenchymal transition (EMT). It examines existing epigenetic drugs for treating breast cancer, including agents that modify DNA, inhibitors of histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone demethyltransferases. It also delves into ongoing studies on combining epidrugs with other therapies and addresses the upcoming obstacles in this field.
Collapse
Affiliation(s)
- Ibrahim S. Alalhareth
- College of Pharmacy, Najran University, Najran 66256, Saudi Arabia; (I.S.A.); (S.M.A.)
| | - Saleh M. Alyami
- College of Pharmacy, Najran University, Najran 66256, Saudi Arabia; (I.S.A.); (S.M.A.)
| | - Ali H. Alshareef
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Ahmed O. Ajeibi
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Manea F. Al Munjem
- King Khaled Hospital -Najran Health Cluster, Najran 66261, Saudi Arabia;
| | - Ahmad A. Elfifi
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Meshal M. Alsharif
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Seham A. Alzahrani
- Pharmacy Department, Khamis Mushait General Hospital, King Khalid Rd, Al Shifa, Khamis Mushait 62433, Saudi Arabia;
| | - Mohammed A. Alqaad
- Department of Pharmaceutical Care Services, Al Noor Specialized Hospital, Makkah Health, Cluster, Makkah 24241, Saudi Arabia;
| | - Marwa B. Bakir
- Department of Medical Education, College of Medicine, Najran University, Najran 1988, Saudi Arabia;
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia
| |
Collapse
|
34
|
Karpagavalli M, Sindal MD, Arunachalam JP, Chidambaram S. miRNAs, piRNAs, and lncRNAs: A triad of non-coding RNAs regulating the neurovascular unit in diabetic retinopathy and their therapeutic potentials. Exp Eye Res 2025; 251:110236. [PMID: 39800284 DOI: 10.1016/j.exer.2025.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow. These interconnections between the neurovascular components get compromised due to hyperglycemia and are further associated with the progression of DR early on in the disease. As a result, therapeutic approaches are needed to avert the advancement of DR by acting at its initial stage to delay or prevent the pathogenesis. Non-coding RNAs (ncRNAs) such as microRNAs, piwi-interacting RNAs, and long non-coding RNAs regulate various cellular components in the neurovascular unit. These ncRNAs are key regulators of neurodegeneration, apoptosis, inflammation, and oxidative stress in DR. In this review, research related to alterations in the expression of ncRNAs and, correspondingly, their effect on the disintegration of the neurovascular coupling will be discussed briefly to understand the potential of ncRNAs as therapeutic targets for treating this debilitating disease.
Collapse
Affiliation(s)
| | | | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
35
|
Mitsunaga S, Ikeda M, Ueno M, Kobayashi S, Tsuda M, Miki I, Kuwahara T, Hara K, Takayama Y, Matsunaga Y, Hanada K, Shimizu A, Yoshida H, Nomoto T, Takahashi K, Iwamoto H, Iwama H, Hatano E, Nakata K, Nakamura M, Sudo H, Takizawa S, Ochiai A. Robust circulating microRNA signature for the diagnosis and early detection of pancreatobiliary cancer. BMC Med 2025; 23:23. [PMID: 39838364 PMCID: PMC11752661 DOI: 10.1186/s12916-025-03849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND A new circulating biomarker superior to carbohydrate antigen 19-9 (CA19-9) is needed for diagnosing pancreatobiliary cancer (PBca). The aim of this study was to identify serum microRNA (miRNA) signatures comprising reproducible and disease-related miRNAs. METHODS This multicenter study involved patients with treatment-naïve PBca and healthy participants. The optimized serum processing conditions were evaluated using t-distributed stochastic neighbor embedding (t-SNE) visualization. Serum miRNA candidates for disease association were selected using weighted gene coexpression network analysis (WGCNA). A miRNA signature combining multiple serum miRNAs was tested in exploratory, validation, and independent validation sets. The synthesis and secretion of diagnostic miRNAs were evaluated using human pancreatic cancer cells. RESULTS In total, 284 (150 healthy and 134 PBca) of 827 serum samples were processed within 2 h of blood collection before freezing, distributed in the same area as that in the t-SNE map, and assigned to an exploratory set. The 193 optimized samples were assigned to either the validation (50 healthy, 47 PBca) or independent validation (50 healthy, 46 PBca) set. Index-1, a combination of five serum miRNAs (hsa-miR-1343-5p, hsa-miR-4632-5p, hsa-miR-4665-5p, hsa-miR-665, and hsa-miR-6803-5p) with disease association in WGCNA, showed a sensitivity and specificity of > 80% and an AUC outperforming that of CA19-9 in the exploratory, validation, and independent validation sets. The AUC of Index-1 was superior to that of CA19-9 (0.856 vs. 0.649, p = 0.038) for detecting T1 tumors. miR-665, a component of Index-1, was expressed in human pancreatic cancer cells, and its transfection inhibited cell growth. CONCLUSIONS The serum miRNA signature Index-1 is useful for detecting PBca and could facilitate the early diagnosis of PBca. These findings can help improve clinical PBca detection by providing an optimized biomarker that overcomes the limitations of the current standard.
Collapse
Affiliation(s)
- Shuichi Mitsunaga
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Satoshi Kobayashi
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Masahiro Tsuda
- Department of Gastroenterological Oncology, Hyogo Cancer Center, Akashi, Japan
| | - Ikuya Miki
- Department of Gastroenterological Oncology, Hyogo Cancer Center, Akashi, Japan
| | - Takamichi Kuwahara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yukiko Takayama
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Yutaro Matsunaga
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Keiji Hanada
- Department of Gastroenterology, Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Akinori Shimizu
- Department of Gastroenterology, Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Hitoshi Yoshida
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, Japan
| | - Tomohiro Nomoto
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, Japan
| | - Kenji Takahashi
- Department of Medicine, Division of Gastroenterology, Asahikawa Medical University, Asahikawa, Japan
| | - Hidetaka Iwamoto
- Department of Medicine, Division of Gastroenterology, Asahikawa Medical University, Asahikawa, Japan
| | - Hideaki Iwama
- Department of Gastroenterological Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Etsuro Hatano
- Department of Gastroenterological Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | - Atsushi Ochiai
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
36
|
Wang W, Lokman NA, Barry SC, Oehler MK, Ricciardelli C. LGR5: An emerging therapeutic target for cancer metastasis and chemotherapy resistance. Cancer Metastasis Rev 2025; 44:23. [PMID: 39821694 PMCID: PMC11742290 DOI: 10.1007/s10555-024-10239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
Cancer stem cells play an important role in tumor progression and chemotherapy resistance. Leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) has been identified as a cancer stem cell marker in several cancer types. LGR5 is involved in cancer development and progression via several pathways including WNT/β-catenin signaling pathway. LGR5 plays a role in tumor progression by promoting cancer cell migration, invasion, metastasis, and angiogenesis in many cancers including colorectal, brain, gastric, and ovarian cancer. This review summarises the current knowledge on the expression and functional role of LGR5 in cancers, the molecular mechanisms regulated by LGR5, and the relationship between LGR5 and chemotherapy resistance. The review also includes highlights potential strategies to inhibit LGR5 expression and function. The majority of functional studies have shown that LGR5 plays an important role in promoting cancer progression, metastasis and chemotherapy resistance however, in some contexts LGR5 can also activate tumor-suppressive pathways and LGR5 negative cells can also promote cancer progression. The review highlights that targeting LGR5 is a promising anti-cancer treatment but the functional effect of LGR5 on tumor cells is complex may be dependent on cancer type, tumor microenvironment and cross-talk with other molecules in the LGR5 signaling pathway.
Collapse
Affiliation(s)
- Wanqi Wang
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia
| | - Simon C Barry
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, 5005, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, 5000, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
37
|
Singh R, Ha SE, Yu TY, Ro S. Dual Roles of miR-10a-5p and miR-10b-5p as Tumor Suppressors and Oncogenes in Diverse Cancers. Int J Mol Sci 2025; 26:415. [PMID: 39796267 PMCID: PMC11720153 DOI: 10.3390/ijms26010415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer is a complex genetic disorder characterized by abnormalities in both coding and regulatory non-coding RNAs. microRNAs (miRNAs) are key regulatory non-coding RNAs that modulate cancer development, functioning as both tumor suppressors and oncogenes. miRNAs play critical roles in cancer progression, influencing key processes such as initiation, promotion, and metastasis. They exert their effects by targeting tumor suppressor genes, thereby facilitating cancer progression, while also inhibiting oncogenes to prevent further disease advancement. The miR-10 family, particularly miR-10a-5p and miR-10b-5p (miR-10a/b-5p), is notably involved in cancer progression. Intriguingly, their functions can differ across different cancers, sometimes promoting and at other times suppressing tumor growth depending on the cancer type and target genes. This review explores the dual roles of miR-10a/b-5p as tumor-suppressive miRNAs (TSmiRs) or oncogenic miRNAs (oncomiRs) in various cancers by examining their molecular and cellular mechanisms and their impact on the tumor microenvironment. Furthermore, we discuss the potential of miR-10a/b-5p as therapeutic targets, emphasizing miRNA-based strategies for cancer treatment. The insights discussed in this review aim to advance our understanding of miR-10a/b-5p's roles in tumor biology and their application in developing innovative cancer therapies.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
| | - Tae Yang Yu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
- Division of Endocrinology and Metabolism, Department of Medicine, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
- RosVivo Therapeutics, Applied Research Facility, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
38
|
Afsar S, Syed RU, Khojali WMA, Masood N, Osman ME, Jyothi JS, Hadi MA, Khalifa AAS, Aboshouk NAM, Alsaikhan HA, Alafnan AS, Alrashidi BA. Non-coding RNAs in BRAF-mutant melanoma: targets, indicators, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:297-317. [PMID: 39167168 DOI: 10.1007/s00210-024-03366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Melanoma, a highly aggressive skin cancer, is often driven by BRAF mutations, such as the V600E mutation, which promotes cancer growth through the MAPK pathway and contributes to treatment resistance. Understanding the role of non-coding RNAs (ncRNAs) in these processes is crucial for developing new therapeutic strategies. This review aims to elucidate the relationship between ncRNAs and BRAF mutations in melanoma, focusing on their regulatory roles and impact on treatment resistance. We comprehensively reviewed current literature to synthesize evidence on ncRNA-mediated regulation of BRAF-mutant melanoma and their influence on therapeutic responses. Key ncRNAs, including microRNAs and long ncRNAs, were identified as significant regulators of melanoma development and therapy resistance. MicroRNAs such as miR-15/16 and miR-200 families modulate critical pathways like Wnt signaling and melanogenesis. Long ncRNAs like ANRIL and SAMMSON play roles in cell growth, invasion, and drug susceptibility. Specific ncRNAs, such as BANCR and RMEL3, intersect with the MAPK pathway, highlighting their potential as therapeutic targets or biomarkers in BRAF-mutant melanoma. Additionally, ncRNAs involved in drug resistance, such as miR-579-3p and miR-1246, target processes like autophagy and immune checkpoint regulation. This review highlights the pivotal roles of ncRNAs in regulating BRAF-mutant melanoma and their contribution to drug resistance. These findings underscore the potential of ncRNAs as biomarkers and therapeutic targets, paving the way for innovative treatments to improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh, 517502, India.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, 81442, Hail, Saudi Arabia.
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, 81451, Ha'il,, Saudi Arabia
| | - Mhdia Elhadi Osman
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - J Siva Jyothi
- Department of Pharmaceutics, Hindu College of Pharmacy, Andhra Pradesh, India
| | - Mohd Abdul Hadi
- Department of Pharmaceutics, Bhaskar Pharmacy College, Moinabad, R.R.District, Hyderabad, 500075, Telangana, India
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | | | | | | |
Collapse
|
39
|
Korleski J, Sudhir S, Rui Y, Caputo CA, Sall S, Johnson AL, Khela HS, Madhvacharyula T, Rasamsetty A, Li Y, Lal B, Zhou W, Smith-Connor K, Tzeng SY, Green JJ, Laterra J, Lopez-Bertoni H. miR-217-5p NanomiRs Inhibit Glioblastoma Growth and Enhance Effects of Ionizing Radiation via EZH2 Inhibition and Epigenetic Reprogramming. Cancers (Basel) 2024; 17:80. [PMID: 39796709 PMCID: PMC11719642 DOI: 10.3390/cancers17010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM. Methods: We utilized computational analyses to identify a subset of clinically relevant genes that were predicted to be repressed in a Polycomb repressive complex 2 (PRC2)-dependent manner in GBM upon induction of stem cell-driving events. These associations were validated in patient-derived GBM neurosphere models using state-of-the-art molecular techniques to express, silence, and measure microRNA (miRNA) and gene expression changes. Advanced Poly(β-amino ester) nanoparticle formulations (PBAEs) were used to deliver miRNAs in vivo to orthotopic human GBM tumor models. Results: We show that glioma stem cell (GSC) formation and tumor propagation involve the crosstalk between multiple epigenetic mechanisms, resulting in the repression of the miRNAs that regulate PRC2 function and histone H3 lysine 27 tri-methylation (H3K27me3). We also identified miR-217-5p as an EZH2 regulator repressed in GSCs and showed that miR-217-5p reconstitution using advanced nanoparticle formulations re-activates the PRC2-repressed genes, inhibits GSC formation, impairs tumor growth, and enhances the effects of ionizing radiation in an orthotopic model of GBM. Conclusions: These findings suggest that inhibiting PRC2 function by targeting EZH2 with miR-217-5p advanced nanoparticle formulations could have a therapeutic benefit in GBM.
Collapse
Affiliation(s)
- Jack Korleski
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sweta Sudhir
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher A. Caputo
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Sophie Sall
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harmon S. Khela
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tanmaya Madhvacharyula
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Anisha Rasamsetty
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Karen Smith-Connor
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Baltimore, MD 21205, USA (S.Y.T.)
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (T.M.); (Y.L.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| |
Collapse
|
40
|
Hossain MM, Mishra AK, Yadav AK, Ismail M, Sata TN, Sah AK, Banik A, Sharma G, Venugopal SK. Free fatty acid-induced DDX3 inhibits autophagy via miR-141 upregulation in diet-induced MASLD mice model system. Ann Hepatol 2024; 30:101758. [PMID: 39631458 DOI: 10.1016/j.aohep.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/25/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION AND OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the primary causes of chronic liver disease and may lead to liver cirrhosis and hepatocellular carcinoma. Recent reports suggested that DEAD-box RNA helicase (DDX3) acts as a sensor of free fat accumulation and may modulate the pathogenesis via miRNAs. Hence, we hypothesized that DDX3 might modulate MASLD progression via miRNA-141-mediated inhibition of Sirt-1 and autophagy. MATERIALS AND METHODS RNA and total protein were isolated from free fatty acid-treated HepG2 cells or CDAA-fed C57BL/6 mice (6 mice per group) for 6, 18, 32, or 54 weeks. The cells were transfected with DDX3 or miR-141 or siRNA to DDX3, and Western blots for autophagy markers were performed. RESULTS The FFAs induced the DDX3 and miRNA-141 expression, while downregulating Sirt-1, beclin-1, Atg7, and LC3-II. Overexpression of DDX3 resulted in increased miRNA-141. Overexpression of DDX3 or miRNA-141 downregulated Sirt-1 expression and autophagy marker proteins, while these effects were reversed with siRNA to DDX3. The expression of both DDX3 and miRNA-141 was significantly increased, while autophagy markers were downregulated in CDAA-fed mice. CONCLUSIONS These results confirmed that FFA-induced DDX3 induced the expression of miRNA-141, which in turn targeted Sirt-1 and decreased autophagy.
Collapse
Affiliation(s)
- Md Musa Hossain
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Amit K Mishra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, USA
| | - Ajay K Yadav
- Department of Medical and Molecular genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Md Ismail
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Teja Naveen Sata
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Amrendra K Sah
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Arnab Banik
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Gopal Sharma
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Senthil K Venugopal
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India.
| |
Collapse
|
41
|
Singh V, Sen A, Saini S, Dwivedi S, Agrawal R, Bansal A, Shekhar S. MicroRNA Significance in Cancer: An Updated Review on Diagnostic, Prognostic, and Therapeutic Perspectives. EJIFCC 2024; 35:265-284. [PMID: 39810890 PMCID: PMC11726331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The article provides a thorough and up-to-date analysis of the role that microRNAs (miRNAs) within the realm of cancer therapy, paying specific attention to their diagnostic, prognostic as well as therapeutic capabilities. The miRNAs (small non-coding RNAs) are the current major genes that regulate gene expression. They are a key factor in the genesis of cancer. They are oncogenes, or tumor suppressors that play key functions in the signaling pathway that contribute to the development of cancer. This article focuses on the double importance of microRNAs for cancer oncogenesis. This includes both their ability to inhibit cancer suppressor genes and the stimulation of cancer-causing oncogenes. MicroRNAs have been identified for a long time as biomarkers to help in diagnosing cancer and have distinct signatures specific to different kinds of cancer. There are many detection strategies including RT-qPCR, Next Generation Sequencing (NGS) as well as Microarray Analysis that have been evaluated to prove their effectiveness in aiding the non-invasive diagnosis of cancer. The paper provides an overview of the importance of miRNAs to prognosis, highlighting their ability to forecast tumor progression as well as outcomes for cancer patients. In addition, their therapeutic value remains a subject of research. Research is being conducted in order to investigate miRNA-targeting therapy including antisense oligonucleotides, or small molecules inhibitors as possible treatment options for cancer. These methods could favor more specific and individualized approaches than the current techniques. The article also focuses on the current challenges and future prospects linked to miRNA research and demonstrates the complex biological functions they play as well as clinical applications that require investigation. The review is the source of information for researchers, clinicians and scientists who are interested in advancing studies into cancer research as well as personalized treatments.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Aniruddha Sen
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Sapna Saini
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Shailendra Dwivedi
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Ruchika Agrawal
- Department of ENT, All India Institute of Medical Sciences Gorakhpur, 273008, India
| | - Akash Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Shashank Shekhar
- Department of Radiotherapy, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| |
Collapse
|
42
|
Puccio N, Manzotti G, Mereu E, Torricelli F, Ronchetti D, Cumerlato M, Craparotta I, Di Rito L, Bolis M, Traini V, Manicardi V, Fragliasso V, Torrente Y, Amodio N, Bolli N, Taiana E, Ciarrocchi A, Piva R, Neri A. Combinatorial strategies targeting NEAT1 and AURKA as new potential therapeutic options for multiple myeloma. Haematologica 2024; 109:4040-4055. [PMID: 38988264 PMCID: PMC11609815 DOI: 10.3324/haematol.2024.285470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple myeloma (MM) is a dreadful disease, marked by the uncontrolled proliferation of clonal plasma cells within the bone marrow. It is characterized by a highly heterogeneous clinical and molecular background, supported by severe genomic alterations. Important de-regulation of long non-coding RNA (lncRNA) expression, which can influence progression and therapy resistance, has been reported in MM patients. NEAT1 is a lncRNA essential for nuclear paraspeckles and is involved in the regulation of gene expression. We showed that NEAT1 supports MM proliferation, making this lncRNA an attractive therapeutic candidate. Here, we used a combinatorial strategy integrating transcriptomic and computational approaches with functional high-throughput drug screening to identify compounds that synergize with NEAT1 inhibition in restraining MM cell growth. AURKA inhibitors were identified as top-scoring drugs in these analyses. We showed that the combination of NEAT1 silencing and AURKA inhibitors in MM profoundly impairs microtubule organization and mitotic spindle assembly, finally leading to cell death. Analysis of the large publicly available CoMMpass dataset showed that, in MM patients, AURKA expression is strongly associated with reduced progression-free survival (P<0.0001) and overall survival (P<0.0001) probabilities and patients with high levels of expression of both NEAT1 and AURKA have a worse clinical outcome. Finally, using RNA-sequencing data from NEAT1 knockdown MM cells, we identified the AURKA allosteric regulator TPX2 as a new NEAT1 target in MM and as a mediator of the interplay between AURKA and NEAT1, therefore providing a possible explanation for the synergistic activity observed upon their combinatorial inhibition.
Collapse
Affiliation(s)
- Noemi Puccio
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia
| | | | - Michela Cumerlato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin
| | - Ilaria Craparotta
- Computational Oncology Unit, Oncology Department, Mario Negri IRCCS, Milan
| | - Laura Di Rito
- Computational Oncology Unit, Oncology Department, Mario Negri IRCCS, Milan
| | - Marco Bolis
- Computational Oncology Unit, Oncology Department, Mario Negri IRCCS, Milan; Bioinformatics Core Unit, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Valentina Traini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan
| | - Veronica Manicardi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Novystem Spa, Milan
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan
| | - Elisa Taiana
- Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia.
| |
Collapse
|
43
|
Mirzaei S, Ahangari F, Faramarzi F, Khoshnazar SM, Khormizi FZ, Aghagolzadeh M, Rostami M, Asghariazar V, Alimohammadi M, Rahimzadeh P, Farahani N. MicroRNA-146 family: Molecular insights into their role in regulation of signaling pathways in glioma progression. Pathol Res Pract 2024; 264:155707. [PMID: 39536541 DOI: 10.1016/j.prp.2024.155707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioma is a highly lethal brain cancer in humans. Despite advancements in treatment, the prognosis for patients remains unfavorable. Epigenetic factors, along with their interactions and non-coding RNAs (ncRNAs), are crucial in glioma cells' development and aggressive characteristics. MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) that modulate the expression of various genes by binding to target mRNA molecules. They play a critical role in regulating essential biological mechanisms such as cell proliferation and differentiation, cell cycle, and apoptosis. MiR-146a/miR-146b is a significant and prevalent miRNA whose expression alterations are linked to various pathological changes in cancer cells, as well as the modulation of several cellular signaling pathways, including NF-κB, TGF-β, PI3K/Akt, and Notch-1. Scientists may identify novel targets in clinical settings by studying the complicated link between Mir-146a/mir-146b, drug resistance, molecular pathways, and pharmacological intervention in gliomas. Additionally, its interactions with other ncRNAs, such as circular RNA and long non-coding RNA, contribute to the pathogenesis of glioma. As well as miR-146 holds potential as both a diagnostic and therapeutic biomarker for patients with this condition. In the current review, we investigate the significance of miRNAs in the context of glioma, with a particular focus on the critical role of Mir-146a/mir-146b in glioma tumors. Additionally, we examined the clinical relevance of this miRNA, highlighting its potential implications for diagnosis and treatment.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahboobeh Aghagolzadeh
- Department of Biology, Faculty of Basic Sciences, University of Shahid Chamran of Ahvaz, Ahvaz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
44
|
Veglia Tranchese R, Battista S, Cerchia L, Fedele M. Ferroptosis in Cancer: Epigenetic Control and Therapeutic Opportunities. Biomolecules 2024; 14:1443. [PMID: 39595619 PMCID: PMC11592303 DOI: 10.3390/biom14111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a critical pathway in cancer biology. This review delves into the epigenetic mechanisms that modulate ferroptosis in cancer cells, focusing on how DNA methylation, histone modifications, and non-coding RNAs influence the expression and function of essential genes involved in this process. By unraveling the complex interplay between these epigenetic mechanisms and ferroptosis, the article sheds light on novel gene targets and functional insights that could pave the way for innovative cancer treatments to enhance therapeutic efficacy and overcome resistance in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council—CNR, 80131 Naples, Italy; (R.V.T.); (S.B.); (L.C.)
| |
Collapse
|
45
|
Diamantopoulos MA, Adamopoulos PG, Scorilas A. Small non-coding RNAs as diagnostic, prognostic and predictive biomarkers of gynecological cancers: an update. Expert Rev Mol Diagn 2024; 24:979-995. [PMID: 39390687 DOI: 10.1080/14737159.2024.2408740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs) comprise a heterogeneous cluster of RNA molecules. Emerging evidence suggests their involvement in various aspects of tumorigenesis, particularly in gynecological malignancies. Notably, ncRNAs have been implicated as mediators within tumor signaling pathways, exerting their influence through interactions with RNA or proteins. These findings further highlight the hypothesis that ncRNAs constitute therapeutic targets and point out their clinical potential as stratification biomarkers. AREAS COVERED The review outlines the use of small ncRNAs, including miRNAs, tRNA-derived small RNAs, PIWI-interacting RNAs and circular RNAs, for diagnostic, prognostic, and predictive purposes in gynecological cancers. It aims to increase our knowledge of their functions in tumor biology and their translation into clinical practice. EXPERT OPINION By leveraging interdisciplinary collaborations, scientists can decipher the riddle of small ncRNA biomarkers as diagnostic, prognostic and predictive biomarkers of gynecological tumors. Integrating small ncRNA-based assays into clinical practice will allow clinicians to provide cure plans for each patient, reducing the likelihood of adverse responses. Nevertheless, addressing challenges such as standardizing experimental methodologies and refining diagnostic assays is imperative for advancing small ncRNA research in gynecological cancer.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Hetta HF, Hamed HM, Mekky MA, Abdel-Malek MO, Hassan WA. Circulating microRNA-21, microRNA-122, and microRNA-222 as diagnostic biomarkers for hepatitis c virus-related hepatocellular carcinoma. EGYPTIAN LIVER JOURNAL 2024; 14:78. [DOI: 10.1186/s43066-024-00385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/27/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background and aim
MicroRNAs (miRs) are now a well-known subject in various tumor genesis and are studied as early diagnostic biomarker. Many arrays of miRs were incorporated in the pathogenesis of HCV-related hepatocellular carcinomas (HCV-HCC). In this respect, we aimed to evaluate the diagnostic role of circulating miR-21, miR-122, and miR-222 in Egyptian patients with HCV-HCC.
Patient and methods
Between June 2018 and April 2019, a cross-sectional comparative study was designed to evaluate the circulating miR-21, miR-122, and miR-222 by quantitative Real-Time PCR. For analytical purposes, patients were categorized into three groups: chronic HCV group (CHC-group, n = 22), HCV-related liver cirrhosis (LC-group, n = 22), and HCV-related hepatocellular carcinoma (HCV-HCC-group, n = 54).
Results
Serum levels of miR-21 and miR-222 increased with the progressive course from CHC to LC and HCC; p < .001. Serum levels of miR-122 in HCC patients were significantly lower than non-HCC patients (CHC and LC patients, n = 44); p < .001. However, the differences in levels of serum miR-122 between CHC and LC were not statistically significant; P = 0.8.
ROC curve analysis showed that the sensitivity and specificity of miR-21 were 61.1% and 95.5%, miR-222 were 71.7% and 93.2%, and miR-122 were 98.2% and 100%. The positive predictive value for miRNA-21, miRNA-122, and miRNA-222 were 13.4%, 93.3%, and 10.5% respectively. The Negative predictive value for miRNA-21, miRNA-122, and miRNA-222 were 94.3%, 97.8%, and 92.7% respectively.
Conclusion
MiR-21 and miR-222 could be potential markers for advanced liver damage, while miR-122 had the best diagnostic accuracy and could be a promising marker for detection of HCC.
Collapse
|
47
|
Pasculli E, Gadaleta RM, Arconzo M, Cariello M, Moschetta A. The Role of Exogenous microRNAs on Human Health: The Plant-Human Trans-Kingdom Hypothesis. Nutrients 2024; 16:3658. [PMID: 39519491 PMCID: PMC11547593 DOI: 10.3390/nu16213658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
MicroRNAs (miRNAs) are small, endogenous, single-stranded RNAs that act on gene silencing at the post-transcriptional level by binding to a target messenger RNA (mRNA), leading to its degradation or inhibiting translation into functional proteins. The key role of miRNAs in development, proliferation, differentiation andapoptosis has been deeply investigated, revealing that deregulation in their expression is critical in various diseases, such as metabolic disorders and cancer. Since these small molecules initially evolved as a mechanism of protection against viruses and transposable elements, the fascinating hypothesis that they can move between organisms both of the same or different species has been postulated. Trans-kingdom is the term used to define the migration that occurs between species. This mechanism has been well analyzed between plants and their pests, in order to boost defense and increase pathogenicity, respectively. Intriguingly, in the last decades, the plant-human trans-kingdom migration via food intake hypothesis arose. In particular, various studies highlighted the ability of exogenous miRNAs, abundant in the mainly consumed plant-derived food, to enter the human body affecting gene expression. Notably, plant miRNAs can resist the strict conditions of the gastrointestinal tract through a methylation step that occurs during miRNA maturation, conferring high stability to these small molecules. Recent studies observed the anti-tumoral, immune modulator and anti-inflammatory abilities of trans-kingdom interaction between plant and human. Here, we depict the existing knowledge and discuss the fascinating plant-human trans-kingdom interaction, highlighting first the eventual role of plant miRNAs from foods on our somatic gene identity card and then the potential impact of using plant miRNAs as novel therapeutic avenues.
Collapse
Affiliation(s)
- Emanuela Pasculli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
- INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Maria Arconzo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
- INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
- INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
48
|
Zheng H, Keyvani F, Sadeghzadeh S, Mantaila DF, Rahman FA, Quadrilatero J, Poudineh M. Rapid miRNA detection in skin interstitial fluid using a hydrogel microneedle patch integrated with DNA probes and graphene oxide. LAB ON A CHIP 2024; 24:4989-4997. [PMID: 39327995 DOI: 10.1039/d4lc00715h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
MicroRNA (miRNA) is a type of short, non-coding nucleic acid molecule that plays essential roles in diagnosing and prognosing various types of cancer. MiRNA is abundantly present in skin interstitial fluid (ISF), providing real-time and localized physiological information. Hydrogel microneedle (HMN) patches enable miRNA collection in a fast, pain-free, minimally invasive, and user-friendly manner. In this study, we introduced a fluorescence-based HMN assay, namely the HMN-miR sensor, composed of methacrylated hyaluronic acid (MeHA) and a graphene oxide-probe DNA (GO.pDNA) conjugate for miR21 and miR210 detection. The HMN-miR sensor demonstrates excellent skin penetration efficiency, rapid ISF collection capability, and sufficient miRNA detection and sequence identification specificity. The HMN-miR sensor facilitates a new assay that, with further optimization, could be applied in future clinical settings. Its simple fabrication process and excellent biocompatibility give it significant potential for various clinical uses, such as personalized cancer treatment and monitoring the healing progress of burn wounds.
Collapse
Affiliation(s)
- Hanjia Zheng
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Fatemeh Keyvani
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Sadegh Sadeghzadeh
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Dragos F Mantaila
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Fasih A Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
49
|
Zhou S, Cheng W, Liu Y, Gao H, Yu L, Zeng Y. MiR-125b-5p alleviates pulmonary fibrosis by inhibiting TGFβ1-mediated epithelial-mesenchymal transition via targeting BAK1. Respir Res 2024; 25:382. [PMID: 39427175 PMCID: PMC11491022 DOI: 10.1186/s12931-024-03011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
This study explores the role and potential mechanisms of microRNA-125b-5p (miR-125b-5p) in pulmonary fibrosis (PF). PF is a typical outcome of many chronic lung diseases, with poor prognosis and the lack of appropriate medical treatment because PF's molecular mechanisms remain poorly understood. In this study, using in vitro and in vivo analyses, we find that miR-125b-5p is likely a potent regulator of lung fibrosis. The findings reveal that, on the one hand, miR-125b-5p not only specifically decreases in the epithelial-mesenchymal transition (EMT) of lung epithelial cells, but also shows a downregulation trend in the lung tissues of mice with PF. On the other hand, overexpression of miR-125b-5p on the cellular and animal levels downregulates EMT and fibrotic phenotypes, respectively. To clarify the molecular mechanism of the "therapeutic" effect of miR-125b-5p, we use the target prediction tool combined with a dual luciferase assay and complete a rescue experiment by constructing the overexpression vector of the target gene Bcl-2 homologous antagonist/ killer (BAK1), thus confirming that miR-125b-5p can effectively inhibit EMT and fibrosis process by targeting BAK1 gene. MiR-125b-5p inhibits the EMT in lung epithelial cells by negatively regulating BAK1, while overexpression of miR-125b-5p can alleviate lung fibrosis. The findings suggest that MiR-125b-5p/BAK1 can serve as a potential treatment target for PF.
Collapse
Affiliation(s)
- Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, China
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Wenzhao Cheng
- Fujian Provincial Key Laboratory of Lung Stem Cells, Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yifei Liu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Yiming Zeng
- Fujian Provincial Key Laboratory of Lung Stem Cells, Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China.
| |
Collapse
|
50
|
Thi Pham KH, Tran MH, Nam LB, Pham PTV, Nguyen TK. Structure, Inhibitors, and Biological Function in Nervous System and Cancer of Ubiquitin-Specific Protease 46. Bioinform Biol Insights 2024; 18:11779322241285982. [PMID: 39410943 PMCID: PMC11475357 DOI: 10.1177/11779322241285982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) prevent ubiquitination by eliminating ubiquitin from their substrates. Deubiquitinating enzymes have important roles in a number of cell biology subfields that are highly relevant to diseases like neurodegeneration, cancer, autoimmune disorders, and long-term inflammation. Deubiquitinating enzymes feature a well-defined active site and, for the most part, catalytic cysteine, which makes them appealing targets for small-molecule drug development. Ubiquitin-specific protease 46 (USP46) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Over the past 10 years, some studies have steadily demonstrated the significance of USP46 in several biological processes, although it was identified later and early research progress was modest. Specifically, in the last few years, the carcinogenic properties of USP46 have become more apparent. In the current review, we provide a comprehensive overview of the current knowledge about USP46 including its characteristics, structure, inhibitors, function in diseases, especially in the nervous system, and the correlation of USP46 with cancers.
Collapse
Affiliation(s)
- Khanh Huyen Thi Pham
- Department of Pharmacy, School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
- College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Manh Hung Tran
- Department of Pharmacy, School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
| | - Le Ba Nam
- Faculty of Pharmacy, Thanh Do University, Hanoi City, Vietnam
| | - Phu Tran Vinh Pham
- Department of Biomedical Science, VN-UK Institute for Research and Executive Education, The University of Danang, Danang City, Vietnam
| | - Tan Khanh Nguyen
- Scientific Management Department, Dong A University, Danang City, Vietnam
| |
Collapse
|