1
|
Awosika JA, Gulley JL, Pastor DM. Deficient Mismatch Repair and Microsatellite Instability in Solid Tumors. Int J Mol Sci 2025; 26:4394. [PMID: 40362635 PMCID: PMC12072705 DOI: 10.3390/ijms26094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
The integrity of the genome is maintained by mismatch repair (MMR) proteins that recognize and repair base mismatches and insertion/deletion errors generated during DNA replication and recombination. A defective MMR system results in genome-wide instability and the progressive accumulation of mutations. Tumors exhibiting deficient MMR (dMMR) and/or high levels of microsatellite instability (termed "microsatellite instability high", or MSI-H) have been shown to possess fundamental differences in clinical, pathological, and molecular characteristics, distinguishing them from their "microsatellite stable" (MSS) counterparts. Molecularly, they are defined by a high mutational burden, genetic instability, and a distinctive immune profile. Their distinct genetic and immunological profiles have made dMMR/MSI-H tumors particularly amenable to treatment with immune checkpoint inhibitors (ICIs). The ongoing development of biomarker-driven therapies and the evaluation of novel combinations of immune-based therapies, with or without the use of conventional cytotoxic treatment regimens, continue to refine treatment strategies with the goals of maximizing therapeutic efficacy and survival outcomes in this distinct patient population. Moreover, the resultant knowledge of the mechanisms by which these features are suspected to render these tumors more responsive, overall, to immunotherapy may provide information regarding the potential optimization of this therapeutic approach in tumors with proficient MMR (pMMR)/MSS tumors.
Collapse
Affiliation(s)
- Joy A. Awosika
- Gastrointestinal Malignancies Section, Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle M. Pastor
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Montaldo NP, Nilsen HL, Bordin DL. Targeting base excision repair in precision oncology. DNA Repair (Amst) 2025; 149:103844. [PMID: 40359788 DOI: 10.1016/j.dnarep.2025.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Targeting the DNA damage response (DDR) is a key strategy in cancer therapy, leveraging tumour-specific weaknesses in DNA repair pathways to enhance treatment efficacy. Traditional treatments, such as chemotherapy and radiation, use a broad, damage-inducing approach, whereas precision oncology aims to tailor therapies to specific genetic mutations or vulnerabilities. The clinical success of PARP inhibitors has renewed the interest in targeting DNA repair as a therapeutic strategy. Expanding the precision oncology toolbox by targeting the base excision repair (BER) pathway presents a promising avenue for cancer therapy, particularly in tumours that rely heavily on this pathway due to deficiencies in other DNA repair mechanisms. This review discusses how targeting BER could improve treatment outcomes, particularly in DDR-defective cancers. With ongoing advancements in biomarker discovery and drug development, BER-targeted therapies hold significant potential for refining precision oncology approaches.
Collapse
Affiliation(s)
- Nicola P Montaldo
- Department of Microbiology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway; CRESCO - Centre for embryology and healthy Development, University of Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Microbiology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway; CRESCO - Centre for embryology and healthy Development, University of Oslo, Norway.
| | - Diana L Bordin
- Akershus University Hospital, Department of Clinical Molecular Biology, Unit for Precision Medicine, Lørenskog, Norway
| |
Collapse
|
3
|
Aoun RJN, Kalady MF. Hereditary Colorectal Cancer: From Diagnosis to Surgical Options. Clin Colon Rectal Surg 2025; 38:179-190. [PMID: 40292001 PMCID: PMC12020645 DOI: 10.1055/s-0044-1787884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Hereditary colorectal cancer (CRC) syndromes account for up to 5% of CRC. Patients have an increased risk of CRC and extracolonic cancers, both of which develop at an early age. The main polyposis syndromes include familial adenomatous polyposis, MYH-associated polyposis, Peutz-Jeghers syndrome, juvenile polyposis syndrome, and PTEN hamartoma syndrome. The non-polyposis syndromes include Lynch syndrome and familial colorectal cancer type X. Each of the syndromes have distinct but sometimes overlapping phenotypes. Clinical evaluation and ultimately the underlying germline genetic pathogenic variants define the syndromes. Each syndrome has polyp, CRC, and extracolonic risks and management is based on early and timely surveillance with therapeutic and often extended prophylactic surgery. Surgical intervention strategies are individualized, considering not only the earlier onset of malignancies and heightened risks for metachronous cancers but also the patient's needs and quality of life. This article reviews the different diagnostic approaches to hereditary CRC and highlights subsequent disease-specific management and surgical decision-making strategies.
Collapse
Affiliation(s)
- Rami James N. Aoun
- Division of Colon and Rectal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew F. Kalady
- Division of Colon and Rectal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
4
|
Lee KM, Castro E, Ratcliffe J, Lerner C, Çağlayan M. Nick sealing of polβ mismatch insertion products by LIG1 and LIG3α during 8-oxoG bypass leads to mutagenic or error-free base excision repair. J Biol Chem 2025; 301:108540. [PMID: 40286853 DOI: 10.1016/j.jbc.2025.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
Base excision repair (BER) requires a coordination at the downstream steps involving gap filling by DNA polymerase (pol) β and subsequent nick sealing by DNA ligase (LIG) 1 or 3α. We previously reported that a failure in DNA ligase function, stemming from an impairment in nick sealing of polβ nucleotide insertion products, leads to faulty repair events. Yet, how the fidelity of 8-oxoG bypass by polβ affects the efficiency of ligation remains unclear. Here, we show that LIG1 and LIG3α seal the resulting nick repair product of polβ mutagenic insertion of dATP opposite 8-oxoG, while LIG3α exhibits an inability to ligate polβ dCTP:8-oxoG insertion product, demonstrating that the identity of BER ligase plays a critical role in repair outcomes at the final step. Furthermore, our results show that a lack of ribonucleotide insertion by polβ during 8-oxoG bypass diminishes the repair coordination with both ligases, highlighting the critical role of nucleotide selectivity in maintaining BER accuracy. Finally, our results reveal that AP-Endonuclease 1 (APE1) proofreads nick repair intermediates containing 3'-mismatches or ribonucleotides templating 8-oxoG. Overall, our findings provide a mechanistic insight into how the dual coding potential of the oxidative lesion in -anti versus -syn conformation could govern error-prone versus error-free repair outcomes, leading to deviations in the BER pathway coordination and the formation of deleterious DNA intermediates.
Collapse
Affiliation(s)
- Kar Men Lee
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Erick Castro
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Jacob Ratcliffe
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Camden Lerner
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
5
|
Joo JE, Viana-Errasti J, Buchanan DD, Valle L. Genetics, genomics and clinical features of adenomatous polyposis. Fam Cancer 2025; 24:38. [PMID: 40237887 PMCID: PMC12003455 DOI: 10.1007/s10689-025-00460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/16/2025] [Indexed: 04/18/2025]
Abstract
Adenomatous polyposis syndromes are hereditary conditions characterised by the development of multiple adenomas in the gastrointestinal tract, particularly in the colon and rectum, significantly increasing the risk of colorectal cancer and, in some cases, extra-colonic malignancies. These syndromes are caused by germline pathogenic variants (PVs) in genes involved in Wnt signalling and DNA repair. The main autosomal dominant adenomatous polyposis syndromes include familial adenomatous polyposis (FAP) and polymerase proofreading-associated polyposis (PPAP), caused by germline PVs in APC and the POLE and POLD1 genes, respectively. Autosomal recessive syndromes include those caused by biallelic PVs in the DNA mismatch repair genes MLH1, MSH2, MSH6, PMS2, MSH3 and probably MLH3, and in the base excision repair genes MUTYH, NTHL1 and MBD4. This review provides an in-depth discussion of the genetic and molecular mechanisms underlying hereditary adenomatous polyposis syndromes, their clinical presentations, tumour mutational signatures, and emerging approaches for the treatment of the associated cancers. Considerations for genetic testing are described, including post-zygotic mosaicism, non-coding PVs, the interpretation of variants of unknown significance and cancer risks associated with monoallelic variants in the recessive genes. Despite advances in genetic testing and the recent identification of new adenomatous polyposis genes, many cases of multiple adenomas remain genetically unexplained. Non-genetic factors, including environmental risk factors, prior oncologic treatments, and bacterial genotoxins colonising the intestine - particularly colibactin-producing Escherichia coli - have emerged as alternative pathogenic mechanisms.
Collapse
Affiliation(s)
- Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Julen Viana-Errasti
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Doctoral Program in Biomedicine, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia.
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia.
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain.
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
6
|
Trasviña-Arenas CH, Dissanayake UC, Tamayo N, Hashemian M, Lin WJ, Demir M, Hoyos-Gonzalez N, Fisher AJ, Cisneros GA, Horvath MP, David SS. Structure of human MUTYH and functional profiling of cancer-associated variants reveal an allosteric network between its [4Fe-4S] cluster cofactor and active site required for DNA repair. Nat Commun 2025; 16:3596. [PMID: 40234396 PMCID: PMC12000561 DOI: 10.1038/s41467-025-58361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
MUTYH is a clinically important DNA glycosylase that thwarts mutations by initiating base-excision repair at 8-oxoguanine (OG):A lesions. The roles for its [4Fe-4S] cofactor in DNA repair remain enigmatic. Functional profiling of cancer-associated variants near the [4Fe-4S] cofactor reveals that most variations abrogate both retention of the cofactor and enzyme activity. Surprisingly, R241Q and N238S retained the metal cluster and bound substrate DNA tightly, but were completely inactive. We determine the crystal structure of human MUTYH bound to a transition state mimic and this shows that Arg241 and Asn238 build an H-bond network connecting the [4Fe-4S] cluster to the catalytic Asp236 that mediates base excision. The structure of the bacterial MutY variant R149Q, along with molecular dynamics simulations of the human enzyme, support a model in which the cofactor functions to position and activate the catalytic Asp. These results suggest that allosteric cross-talk between the DNA binding [4Fe-4S] cofactor and the base excision site of MUTYH regulate its DNA repair function.
Collapse
Affiliation(s)
- Carlos H Trasviña-Arenas
- Department of Chemistry, University of California, Davis, CA, USA
- Research Center on Aging, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Upeksha C Dissanayake
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Nikole Tamayo
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | - Mohammad Hashemian
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | - Wen-Jen Lin
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | - Merve Demir
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | | | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA.
| | - Martin P Horvath
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA, USA.
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA.
| |
Collapse
|
7
|
Yang Y, Wang P, Zhou K, Zhang W, Liu S, Ouyang J, Bai M, Ding G, Huang S, Jia Z, Zhang A. HUWE1-Mediated Degradation of MUTYH Facilitates DNA Damage and Mitochondrial Dysfunction to Promote Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412250. [PMID: 39921445 PMCID: PMC11967787 DOI: 10.1002/advs.202412250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/26/2025] [Indexed: 02/10/2025]
Abstract
The role of MUTYH, a DNA repair glycosylase in the pathogenesis of acute kidney injury (AKI) is unclear. In this study, it is found that MUTYH protein levels are significantly decreased in the kidneys of cisplatin- or folic acid (FA)-induced mouse AKI models and patients with AKI. MUTYH deficiency aggravates renal dysfunction and tubular injury following cisplatin and FA treatment, along with the accumulation of 7, 8-dihydro-8-oxoguanine (8-oxoG) and impairs mitochondrial function. Importantly, the overexpression of type 2 MUTYH (nuclear) significantly ameliorates cisplatin-induced apoptosis, oxidative stress, mitochondrial dysfunction, and DNA damage in vivo and in vitro. In contrast, overexpression of type 1 MUTYH (mitochondrial) shows a marginal effect against cisplatin-induced injury, indicating the chief role of type 2 MUTYH in antagonizing AKI. Interestingly, the results also indicate that the upregulation of the E3 ligase HUWE1 causes the ubiquitination and degradation of MUTYH in tubular epithelial cells. HUWE1 knockout or treatment with the HUWE1 inhibitor BI8622 significantly protect against cisplatin-induced AKI. Taken together, these results suggest that the ubiquitin E3 ligase HUWE1-mediates ubiquitination and degradation of MUTYH can aggravate DNA damage in the nucleus and mitochondria and promote AKI. Targeting the HUWE1/MUTYH pathway may be a potential strategy for AKI treatment.
Collapse
Affiliation(s)
- Yunwen Yang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Peipei Wang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Kaiqian Zhou
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Wen Zhang
- Department of NephrologyAffiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028P. R. China
| | - Suwen Liu
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021P. R. China
| | - Jing Ouyang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Mi Bai
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Guixia Ding
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Songming Huang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Zhanjun Jia
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Aihua Zhang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| |
Collapse
|
8
|
Borsotti E, Nava FL, Benedicenti F, Cini L, Magarotto A, Ferrari D, Cantù P, Vitellaro M, Rausa E, Cavalcoli F. Hereditary Colorectal Cancer Syndromes: Small Bowel Cancer Risk and Endoscopic Surveillance Strategies. Diagnostics (Basel) 2025; 15:819. [PMID: 40218169 PMCID: PMC11988710 DOI: 10.3390/diagnostics15070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Hereditary colorectal cancer syndromes, including familial adenomatous polyposis (FAP), Lynch syndrome (LS), and Peutz-Jeghers syndrome (PJS), are associated with an increased risk of small bowel cancer (SBC). Due to the low incidence and non-specific presentation of SBC, effective surveillance strategies are essential for early detection and management. This review aims to evaluate and compare current endoscopic techniques for small bowel surveillance in these patients. Methods: A comprehensive review was conducted using peer-reviewed studies sourced from PubMed. Various endoscopic modalities, including capsule endoscopy (CE), device-assisted enteroscopy (DAE), and intraoperative enteroscopy (IOE), were assessed for their diagnostic yield, safety, and clinical utility. Surveillance recommendations of the different syndromes were also examined. Results: CE offers high sensitivity but lacks histological sampling capability. DAE, including double-balloon enteroscopy (DBE) and single-balloon enteroscopy (SBE), enables direct visualization, biopsy, and therapeutic interventions, albeit with greater procedural complexity. In FAP, duodenal surveillance follows the Spigelman classification to stratify cancer risk, while jejunal and ileal polyps remain less studied. LS patients have an increased SBC risk, warranting tailored endoscopic approaches. In PJS, surveillance aims to mitigate intussusception risks and allow early malignancy detection. Conclusions: Optimized surveillance strategies in hereditary colorectal cancer syndromes require a multimodal approach, integrating advanced endoscopic techniques with genetic risk stratification. Centralized care in tertiary centers improves outcomes by ensuring standardized surveillance protocols and enhancing early cancer detection. Artificial intelligence (AI) applied to CE and DAE is shaping promising prospects for the future surveillance of small bowel polyps by enhancing diagnostic accuracy and reducing the duration of the diagnostic process. Further research should investigate AI-assisted imaging and molecular biomarkers to optimize screening strategies.
Collapse
Affiliation(s)
- Edoardo Borsotti
- Gastroenterology and Digestive Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.B.); (L.C.); (A.M.); (P.C.); (F.C.)
| | - Francesca Laura Nava
- Colorectal Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Felice Benedicenti
- Gastroenterology and Digestive Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.B.); (L.C.); (A.M.); (P.C.); (F.C.)
| | - Laura Cini
- Gastroenterology and Digestive Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.B.); (L.C.); (A.M.); (P.C.); (F.C.)
| | - Andrea Magarotto
- Gastroenterology and Digestive Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.B.); (L.C.); (A.M.); (P.C.); (F.C.)
| | - Davide Ferrari
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (D.F.); (M.V.); (E.R.)
| | - Paolo Cantù
- Gastroenterology and Digestive Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.B.); (L.C.); (A.M.); (P.C.); (F.C.)
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (D.F.); (M.V.); (E.R.)
| | - Emanuele Rausa
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (D.F.); (M.V.); (E.R.)
| | - Federica Cavalcoli
- Gastroenterology and Digestive Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (E.B.); (L.C.); (A.M.); (P.C.); (F.C.)
| |
Collapse
|
9
|
Hemker SL, Marsh A, Hernandez F, Glick E, Clark G, Bashir A, Jiang K, Kitzman JO. Saturation mapping of MUTYH variant effects using DNA repair reporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640912. [PMID: 40093110 PMCID: PMC11908140 DOI: 10.1101/2025.03.01.640912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Variants of uncertain significance (VUS) limit the actionability of genetic testing. A prominent example is MUTYH, a base excision repair factor associated with polyposis and colorectal cancer, which has a pathogenic variant carrier rate approaching 1 in 50 individuals in some populations. To systematically interrogate variant function in MUTYH, we coupled deep mutational scanning with a DNA repair reporter containing its lesion substrate, 8OG:A. Our variant-to-function map covers >97% of all possible MUTYH point variants (n=10,941) and achieves 100% accuracy classifying the pathogenicity of known clinical variants (n=247). Leveraging a large clinical registry, we observe significant associations with colorectal polyps and cancer, with more severely impaired missense variants conferring greater risk. We recapitulate known functional differences between pathogenic founder alleles, and highlight sites of complete missense intolerance, including residues that intercalate DNA and coordinate essential Zn2+ or Fe-S clusters. This map provides a resource to resolve the 1,032 existing missense VUS and 90 variants with conflicting interpretations in MUTYH, and demonstrates a scalable strategy to interrogate other clinically relevant DNA repair factors.
Collapse
Affiliation(s)
- Shelby L. Hemker
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | - Elena Glick
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Grace Clark
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa Bashir
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Krystal Jiang
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jacob O. Kitzman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Gilbert S. Omenn Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Walker R, Joo JE, Mahmood K, Clendenning M, Como J, Preston SG, Joseland S, Pope BJ, Medeiros ABD, Murillo BV, Pachter N, Sweet K, Spigelman AD, Groves A, Gleeson M, Bernatowicz K, Poplawski N, Andrews L, Healey E, Gallinger S, Grant RC, Win AK, Hopper JL, Jenkins MA, Torrezan GT, Rosty C, Macrae FA, Winship IM, Buchanan DD, Georgeson P. Adenomas from individuals with pathogenic biallelic variants in the MUTYH and NTHL1 genes demonstrate base excision repair tumour mutational signature profiles similar to colorectal cancers, expanding potential diagnostic and variant classification applications. Transl Oncol 2025; 52:102266. [PMID: 39793275 PMCID: PMC11774829 DOI: 10.1016/j.tranon.2024.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Colorectal cancers (CRCs) from people with biallelic germline likely pathogenic/pathogenic variants in MUTYH or NTHL1 exhibit specific single base substitution (SBS) mutational signatures, namely combined SBS18 and SBS36 (SBS18+SBS36), and SBS30, respectively. The aim was to determine if adenomas from biallelic cases demonstrated these mutational signatures at diagnostic levels. METHODS Whole-exome sequencing of FFPE tissue and matched blood-derived DNA was performed on 9 adenomas and 15 CRCs from 13 biallelic MUTYH cases, on 7 adenomas and 2 CRCs from 5 biallelic NTHL1 cases and on 27 adenomas and 26 CRCs from 46 non-hereditary (sporadic) participants. All samples were assessed for COSMIC v3.2 SBS mutational signatures. RESULTS In biallelic MUTYH cases, SBS18+SBS36 signature proportions in adenomas (mean±standard deviation, 65.6 %±29.6 %) were not significantly different to those observed in CRCs (76.2 % ± 20.5 %, p-value=0.37), but were significantly higher compared with non-hereditary adenomas (7.6 % ± 7.0 %, p-value=3.4 × 10-4). Similarly, in biallelic NTHL1 cases, SBS30 signature proportions in adenomas (74.5 %±9.4 %) were similar to those in CRCs (78.8 % ± 2.4 %) but significantly higher compared with non-hereditary adenomas (2.8 % ± 3.6 %, p-value=5.1 × 10-7). Additionally, a compound heterozygote with the c.1187G>A p.(Gly396Asp) pathogenic variant and the c.533G>C p.(Gly178Ala) variant of unknown significance (VUS) in MUTYH demonstrated high levels of SBS18+SBS36 in four adenomas and one CRC, providing evidence for reclassification of the VUS to pathogenic. CONCLUSIONS SBS18+SBS36 and SBS30 were enriched in adenomas at comparable proportions to those observed in CRCs from biallelic MUTYH and biallelic NTHL1 cases, respectively. Therefore, testing adenomas may improve the identification of biallelic cases and facilitate variant classification, ultimately enabling opportunities for CRC prevention.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia.
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Susan G Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Ana B D Medeiros
- Clinical and Functional Genomics Group, International Research Centre/CIPE, A.C. Camargo Cancer Centre, Sao Paulo, 01508-010, Brazil
| | - Brenely V Murillo
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia; Medical School, University of Western Australia, Perth, WA, 6009, Australia; School of Medicine, Curtin University, Perth, WA, 6845, Australia
| | - Kevin Sweet
- Division of Human Genetics, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Allan D Spigelman
- Hunter Family Cancer Service, Newcastle, NSW, 2298, Australia; St Vincent's Cancer Genetics Unit, Sydney, NSW, 2290, Australia; Surgical Professorial Unit, UNSW Clinical School of Clinical Medicine, Sydney, NSW, 2052, Australia
| | | | | | | | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Lesley Andrews
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Emma Healey
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Randwick, New South Wales 2031 Australia; Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, New South Wales 2500 Australia
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert C Grant
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aung K Win
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - Giovana T Torrezan
- Clinical and Functional Genomics Group, International Research Centre/CIPE, A.C. Camargo Cancer Centre, Sao Paulo, 01508-010, Brazil; National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia; Envoi Specialist Pathologists, Brisbane, QLD, 4059, Australia; University of Queensland, Brisbane, QLD, 4072, Australia
| | - Finlay A Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, 3000, Australia; Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, 3000, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia. https://twitter.com/dan_buchanan
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia. https://twitter.com/petergeorgeson
| |
Collapse
|
11
|
Takao M, Yamaguchi T, Eguchi H, Suzuki O, Mori Y, Chika N, Yamada T, Okazaki Y, Tomita N, Nomizu T, Momma T, Takayama T, Tanakaya K, Akagi K, Tanabe N, Ishida H. Predictive modeling for the germline pathogenic variant of the APC gene in patients with adenomatous polyposis: proposing a new APC score. Surg Today 2025; 55:229-237. [PMID: 38970662 DOI: 10.1007/s00595-024-02894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The precise diagnosis and medical management of patients with suspected familial adenomatous polyposis should be based on genetic testing, which may not always be available. Therefore, establishing a new model for predicting the likelihood of a germline pathogenic variant (GPV) of APC based on its clinical manifestations could prove to be useful in clinical practice. METHODS The presence of GPVs of APC gene was investigated in 162 patients with adenomatous polyposis (≥ 10 polyps) using a multigene panel or single-gene testing. To generate a predictive model for GPV of the APC gene, a logistic regression analysis was performed using the clinicopathological variables available at the time of the diagnosis of adenomatous polyposis. RESULTS Ninety (55.6%) patients had GPV of the APC gene. According to a multivariate logistic regression analysis, age < 40 years, polyps ≥ 100, fundic gland polyposis, and a family history of colorectal polyposis were found to be independent predictors of the GPV of APC and were used to establish a formula for predicting the GPV of APC using the four predictors. The prediction model had an area under the curve of 0.91 (0.86-0.96) according to a receiver operating characteristic analysis. CONCLUSION The model for predicting the GPV of APC will help patients with adenomatous polyposis and physicians make decisions about genetic testing.
Collapse
Affiliation(s)
- Misato Takao
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Tatsuro Yamaguchi
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan.
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Diseases and Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Okihide Suzuki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yoshiko Mori
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Noriyasu Chika
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases and Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naohiro Tomita
- Division of Lower GI Surgery, Department of Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Tadashi Nomizu
- Department of Surgery, Hoshi General Hospital, Fukushima, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kohji Tanakaya
- Department of Surgery, NHO Iwakuni Clinical Center, Yamaguchi, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Noriko Tanabe
- Department of Genomic Medicine, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
12
|
García-Simón N, Valentín F, Romero A. Genetic predisposition to polyposis syndromes. Clin Transl Oncol 2025:10.1007/s12094-024-03825-6. [PMID: 39794684 DOI: 10.1007/s12094-024-03825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/07/2024] [Indexed: 01/13/2025]
Abstract
Hereditary polyposis syndromes are significant contributors to colorectal cancer (CRC). These syndromes are characterized by the development of various types and numbers of polyps, distinct inheritance patterns, and extracolonic manifestations. This review explores these syndromes with a focus on their genetic characteristics. Advances in diagnostics, particularly the identification of pathogenic germline variants through massive sequencing technologies, have enhanced our understanding of the genetic alterations associated with polyp formation and CRC risk. Identifying pathogenic variants beyond traditional diagnostic criteria improves the management and surveillance of these syndromes. Genetic diagnosis not only refines patient treatment and surveillance, but also informs relatives of potential risks, enabling appropriate management. However, challenges persist in determining the pathogenicity of newly discovered mutations due to their low prevalence. This review covers hereditary polyposis syndromes, from well-established to newly recognized types, providing insights into their genetic landscapes and highlighting the need for tailored surveillance based on genotype.
Collapse
Affiliation(s)
- Natalia García-Simón
- Hereditary Cancer Unit, Medical Oncology Department, Puerta de Hierro University Hospital, Majadahonda, 28222, Madrid, Spain
| | - Fátima Valentín
- Gastroenterology Department, Biomedical Research Institute (IDIPHISA), Puerta de Hierro University Hospital, Majadahonda, 28222, Madrid, Spain
| | - Atocha Romero
- Hereditary Cancer Unit, Medical Oncology Department, Puerta de Hierro University Hospital, Majadahonda, 28222, Madrid, Spain.
| |
Collapse
|
13
|
Trendowski MR, Lusk CM, Wenzlaff AS, Neslund-Dudas C, Purrington KS, Beebe-Dimmer JL, Schwartz AG. Association of Germline Pathogenic Variants in MUTYH and Other DNA Damage Response Genes With Lung Cancer Risk Among Non-Hispanic Whites and African Americans. JCO Precis Oncol 2025; 9:e2400558. [PMID: 39854657 PMCID: PMC11771983 DOI: 10.1200/po-24-00558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
PURPOSE Although lung cancer is one of the most common malignancies, the underlying genetics regarding susceptibility remain poorly understood. We characterized the spectrum of pathogenic/likely pathogenic (P/LP) germline variants within DNA damage response (DDR) genes among lung cancer cases and controls in non-Hispanic Whites (NHWs) and African Americans (AAs). MATERIALS AND METHODS Rare, germline variants in 67 DDR genes with evidence of pathogenicity were identified using the ClinVar database. These P/LP variants were genotyped in a sample of 3,040 lung cancer cases and controls from the Inflammation, Health, Ancestry, and Lung Epidemiology study (NHW: n = 1,915; AA: n = 1,125) and were tested for their association with lung cancer using multivariate logistic regression adjusting for age, sex, pack-years, and race. RESULTS We identified 49 unique rare P/LP variants in 21 genes among 156 carriers. Approximately 5.9% of lung cancer cases and 4.2% of controls carried at least one P/LP variant. P/LP variants in DDR genes were more common in lung cancer cases, particularly those diagnosed with adenocarcinoma (odds ratio [OR], 1.46 [95% CI, 1.00 to 2.14]). MUTYH variants were associated with lung cancer overall (OR, 1.82 [95% CI, 1.10 to 3.12]), with the strongest associations among never smokers (OR, 3.37 [95% CI, 1.08 to 10.26]), and in individuals who do not meet current USPSTF screening criteria (OR, 2.85 [95% CI, 1.20 to 7.53]). CONCLUSION Germline variants in DDR genes appear to be associated with lung cancer, particularly when examined by gene subtype and morphologic subtype. MUTYH, a gene historically associated with colorectal and other GI malignancies, emerged as a candidate gene that should be examined in individuals who do not have a significant smoking history.
Collapse
Affiliation(s)
- Matthew R. Trendowski
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christine M. Lusk
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Angela S. Wenzlaff
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Kristen S. Purrington
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jennifer L. Beebe-Dimmer
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ann G. Schwartz
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
14
|
Park JE, Lee T, Cho EH, Jang MA, Won D, Park B, Ki CS, Kong SY. Carrier Frequency and Incidence of MUTYH-Associated Polyposis Based on Database Analysis in East Asians and Koreans. Ann Lab Med 2025; 45:77-84. [PMID: 39497414 PMCID: PMC11609714 DOI: 10.3343/alm.2024.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/23/2024] [Accepted: 09/11/2024] [Indexed: 11/30/2024] Open
Abstract
Background MUTYH-associated polyposis is an autosomal recessive disorder associated with an increased lifetime risk of colorectal cancer and a moderately increased risk of ovarian, bladder, breast, and endometrial cancers. We analyzed the carrier frequency and estimated the incidence of MUTYH-associated polyposis in East Asian and Korean populations, for which limited data were previously available. Methods We examined 125,748 exomes from the gnomAD database, including 9,197 East Asians, and additional data from 5,305 individuals in the Korean Variant Archive and 1,722 in the Korean Reference Genome Database. All MUTYH variants were interpreted according to the American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines and the Sequence Variant Interpretation guidelines from ClinGen. Results The global carrier frequency of MUTYH-associated polyposis was 1.29%, with Europeans (non-Finnish) having the highest frequency of 1.86% and Ashkenazi Jews the lowest at 0.06%. East Asians and Koreans had a carrier frequency of 0.35% and 0.37% and an estimated incidence of 1 in 330,409 and 1 in 293,304 in Koreans, respectively, which were substantially lower than the global average of 1 in 24,160 and the European (non-Finnish) incidence of 1 in 11,520. Conclusions This was the first study to investigate the frequency of carriers of MUTYH-associated polyposis in East Asians, including specific subgroups, utilizing gnomAD and a Korean genome database. Our data provide valuable reference information for future investigations of MUTYH-associated polyposis to understand the genetic diversity and specific variants associated with this condition in East Asian populations.
Collapse
Affiliation(s)
- Jong Eun Park
- Department of Laboratory Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | | | - Eun Hye Cho
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dongju Won
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Boyoung Park
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | | | - Sun-Young Kong
- Division of Rare and Refractory Cancer, Targeted Therapy Branch of Research Institute, National Cancer Center, Goyang, Korea
- Department of Laboratory Medicine, National Cancer Center, Goyang, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang, Korea
| |
Collapse
|
15
|
Wang J, Li C, Han J, Xue Y, Zheng X, Wang R, Radak Z, Nakabeppu Y, Boldogh I, Ba X. Reassessing the roles of oxidative DNA base lesion 8-oxoGua and repair enzyme OGG1 in tumorigenesis. J Biomed Sci 2025; 32:1. [PMID: 39741341 DOI: 10.1186/s12929-024-01093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/08/2024] [Indexed: 01/02/2025] Open
Abstract
ROS cause multiple forms of DNA damage, and among them, 8-oxoguanine (8-oxoGua), an oxidized product of guanine, is one of the most abundant. If left unrepaired, 8-oxoGua may pair with A instead of C, leading to a mutation of G: C to T: A during DNA replication. 8-Oxoguanine DNA glycosylase 1 (OGG1) is a tailored repair enzyme that recognizes 8-oxoGua in DNA duplex and initiates the base excision repair (BER) pathway to remove the lesion and ensure the fidelity of the genome. The accumulation of genomic 8-oxoGua and the dysfunction of OGG1 is readily linked to mutagenesis, and subsequently aging-related diseases and tumorigenesis; however, the direct experimental evidence has long been lacking. Recently, a series of studies have shown that guanine oxidation in the genome has a conservative bias, with the tendency to occur in the regulatory regions, thus, 8-oxoGua is not only a lesion to be repaired, but also an epigenetic modification. In this regard, OGG1 is a specific reader of this base modification. Substrate recognition and/or excision by OGG1 can cause DNA conformation changes, affect chromatin modifications, thereby modulating the transcription of genes involved in a variety of cellular processes, including inflammation, cell proliferation, differentiation, and apoptosis. Thus, in addition to the potential mutagenicity, 8-oxoGua may contribute to tumor development and progression through the altered gene expression stemming from its epigenetic effects.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Chunshuang Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Jinling Han
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yaoyao Xue
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Ruoxi Wang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, 1123, Hungary
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
16
|
Cordero C, Mehta KPM, Weaver TM, Ling JA, Freudenthal BD, Cortez D, Roberts SA. Contributing factors to the oxidation-induced mutational landscape in human cells. Nat Commun 2024; 15:10722. [PMID: 39715760 PMCID: PMC11666792 DOI: 10.1038/s41467-024-55497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers. Potassium bromate (KBrO3)-induced 8-oxoGs occur with similar sequence preferences as their derived substitutions, indicating that the reactivity of specific oxidants dictates mutation sequence specificity. While 8-oxoG occurs uniformly across chromatin, 8-oxoG-induced mutations are elevated in compact genomic regions, within nucleosomes, and at inward facing guanines within strongly positioned nucleosomes. Cryo-electron microscopy structures of OGG1-nucleosome complexes indicate that these effects originate from OGG1's ability to flip outward positioned 8-oxoG lesions into the catalytic pocket while inward facing lesions are occluded by the histone octamer. Mutation spectra from human cells with DNA repair deficiencies reveals contributions of a DNA repair network limiting 8-oxoG mutagenesis, where OGG1- and MUTYH-mediated base excision repair is supplemented by the replication-associated factors Pol η and HMCES. Transcriptional asymmetry of KBrO3-induced mutations in OGG1- and Pol η-deficient cells also demonstrates transcription-coupled repair can prevent 8-oxoG-induced mutation. Thus, oxidant chemistry, chromatin structures, and DNA repair processes combine to dictate the oxidative mutational landscape in human genomes.
Collapse
Affiliation(s)
- Cameron Cordero
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Kavi P M Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA.
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Justin A Ling
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA.
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Steven A Roberts
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
17
|
Demir O, Saglam KA, Yilmaz M, Apuhan T, Cebi AH, Turkyilmaz A. Secondary findings in genes related to cancer phenotypes in Turkish exome sequencing data from 2020 individuals. Am J Med Genet A 2024; 194:e63806. [PMID: 38940262 DOI: 10.1002/ajmg.a.63806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Big data generated from exome sequencing (ES) and genome sequencing (GS) analyses can be used to detect actionable and high-penetrance variants that are not directly associated with the primary diagnosis of patients but can guide their clinical follow-up and treatment. Variants that are classified as pathogenic/likely pathogenic and are clinically significant but not directly associated with the primary diagnosis of patients are defined as secondary findings (SF). The aim of this study was to examine the frequency and variant spectrum of cancer-related SF in 2020 Turkish ES data and to discuss the importance of the presence of cancer-related SF in at-risk family members in terms of genetic counseling and follow-up. A total of 2020 patients from 2020 different families were evaluated by ES. SF were detected in 28 unrelated cases (1.38%), and variants in BRCA2 (11 patients) and MLH1 (4 patients) genes were observed most frequently. A total of 21 different variants were identified, with 4 of them (c.9919_9932del and c.3653del in the BRCA2 gene, c.2002A>G in the MSH2 gene, c.26_29del in the TMEM127 gene) being novel variations. In three different families, c.1189C>T (p.Gln397*) variation in BRCA2 gene was detected, suggesting that this may be a common variant in the Turkish population. This study represents the largest cohort conducted in the Turkish population, examining the frequency and variant spectrum of cancer-related SF. With the identification of frequent variations and the detection of novel variations, the findings of this study have contributed to the variant spectrum. Genetic testing conducted in family members is presented as real-life data, showcasing the implications in terms of counseling, monitoring, and treatment through case examples.
Collapse
Affiliation(s)
- Oguzhan Demir
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Kubra Adanur Saglam
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Yilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Tuna Apuhan
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Alper Han Cebi
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
18
|
Lee KM, Castro E, Ratcliffe JE, Çağlayan M. Mutagenic ligation of polβ mismatch insertion products during 8-oxoG bypass by LIG1 and LIG3α at the downstream steps of base excision repair pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619805. [PMID: 39484546 PMCID: PMC11526974 DOI: 10.1101/2024.10.23.619805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Base excision repair (BER) maintains genome integrity by fixing oxidized bases that could be formed when reactive oxygen species attack directly on the DNA. We previously reported the importance of a proper coordination at the downstream steps involving gap filling by DNA polymerase (pol) β and subsequent nick sealing by DNA ligase (LIG) 1 or 3α. Yet, how the fidelity of 8-oxoG bypass by polβ affects the efficiency of ligation remains unclear. Here, we show that LIG1 can seal nick products of polβ after both dATP and dCTP insertions during 8- oxoG bypass, while ribonucleotide insertions completely diminish the repair coordination with both ligases, highlighting a critical role for nucleotide selectivity in maintaining BER accuracy. Furthermore, our results demonstrate that LIG3α exhibits an inability to ligate nicks of polβ dCTP:8-oxoG insertion or with preinserted 3'-dC:8-oxoG. Finally, AP-Endonuclease 1 (APE1) proofreads nick repair intermediates containing 3'-dA/rA and 3'-dC/rC mismatches templating 8-oxoG. Overall, our findings provide a mechanistic insight into how the dual coding potential of the oxidative lesion and identity of BER ligase govern mutagenic versus error-free repair outcomes at the final steps and how the ribonucleotide challenge compromises the BER coordination leading to the formation of deleterious repair intermediates.
Collapse
|
19
|
Young CL, Beichman AC, Mas Ponte D, Hemker SL, Zhu L, Kitzman JO, Shirts BH, Harris K. A maternal germline mutator phenotype in a family affected by heritable colorectal cancer. Genetics 2024; 228:iyae166. [PMID: 39403956 PMCID: PMC11631438 DOI: 10.1093/genetics/iyae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Variation in DNA repair genes can increase cancer risk by elevating the rate of oncogenic mutation. Defects in one such gene, MUTYH, are known to elevate the incidence of colorectal cancer in a recessive Mendelian manner. Recent evidence has also linked MUTYH to a mutator phenotype affecting normal somatic cells as well as the female germline. Here, we use whole genome sequencing to measure germline de novo mutation rates in a large extended family containing both mothers and fathers who are affected by pathogenic MUTYH variation. By developing novel methodology that uses siblings as "surrogate parents" to identify de novo mutations, we were able to include mutation data from several children whose parents were unavailable for sequencing. In the children of mothers affected by the pathogenic MUTYH genotype p.Y179C/V234M, we identify an elevation of the C>A mutation rate that is weaker than mutator effects previously reported to be caused by other pathogenic MUTYH genotypes, suggesting that mutation rates in normal tissues may be useful for classifying cancer-associated variation along a continuum of severity. Surprisingly, we detect no significant elevation of the C>A mutation rate in children born to a father with the same MUTYH genotype, and we similarly find that the mutator effect of the mouse homolog Mutyh appears to be localized to embryonic development, not the spermatocytes. Our results suggest that maternal MUTYH variants can cause germline mutations by attenuating the repair of oxidative DNA damage in the early embryo.
Collapse
Affiliation(s)
- Candice L Young
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
- Department of Molecular and Cellular Biology, University of Washington, 1705 NE Pacific St, Seattle, WA 98195, USA
| | - Annabel C Beichman
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - David Mas Ponte
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Shelby L Hemker
- Department of Human Genetics, University of Michigan, 1241 Catherine St, Ann Arbor, MI 48109, USA
| | - Luke Zhu
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, 1241 Catherine St, Ann Arbor, MI 48109, USA
| | - Brian H Shirts
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, P.O. Box 19024, Seattle, WA 98109, USA
| |
Collapse
|
20
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
21
|
Young CL, Beichman AC, Mas-Ponte D, Hemker SL, Zhu L, Kitzman JO, Shirts BH, Harris K. A maternal germline mutator phenotype in a family affected by heritable colorectal cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.08.23299304. [PMID: 38196581 PMCID: PMC10775336 DOI: 10.1101/2023.12.08.23299304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Variation in DNA repair genes can increase cancer risk by elevating the rate of oncogenic mutation. Defects in one such gene, MUTYH, are known to elevate the incidence of colorectal cancer in a recessive Mendelian manner. Recent evidence has also linked MUTYH to a mutator phenotype affecting normal somatic cells as well as the female germline. Here, we use whole genome sequencing to measure germline de novo mutation rates in a large extended family containing both mothers and fathers who are affected by pathogenic MUTYH variation. By developing novel methodology that uses siblings as "surrogate parents" to identify de novo mutations, we were able to include mutation data from several children whose parents were unavailable for sequencing. In the children of mothers affected by the pathogenic MUTYH genotype p.Y179C/V234M, we identify an elevation of the C>A mutation rate that is weaker than mutator effects previously reported to be caused by other pathogenic MUTYH genotypes, suggesting that mutation rates in normal tissues may be useful for classifying cancer-associated variation along a continuum of severity. Surprisingly, we detect no significant elevation of the C>A mutation rate in children born to a father with the same MUTYH genotype, and we similarly find that the mutator effect of the mouse homolog Mutyh appears to be localized to embryonic development, not the spermatocytes. Our results suggest that maternal MUTYH variants can cause germline mutations by attenuating the repair of oxidative DNA damage in the early embryo.
Collapse
Affiliation(s)
- Candice L. Young
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
- Department of Molecular and Cellular Biology, University of Washington, 1705 NE Pacific St, Seattle, WA 98195
| | - Annabel C. Beichman
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
| | - David Mas-Ponte
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
| | - Shelby L. Hemker
- Department of Human Genetics, University of Michigan, 1241 Catherine St, Ann Arbor, MI 48109
| | - Luke Zhu
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
| | - Jacob O. Kitzman
- Department of Human Genetics, University of Michigan, 1241 Catherine St, Ann Arbor, MI 48109
| | - Brian H. Shirts
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, P.O. Box 19024, Seattle, WA 98109
| |
Collapse
|
22
|
Kozak M, Negrete D, Balzer BL, Gaddam S, Guindi M, Hutchings DA, Larson BK, Waters KM. Analysis of the Application of Professional Society Screening Guidelines for Colorectal Polyposis Syndromes at a Single Institution. Mod Pathol 2024; 37:100567. [PMID: 39025407 DOI: 10.1016/j.modpat.2024.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Several professional society guidelines suggest germline genetic testing for colorectal polyposis syndromes in patients with ≥10 lifetime adenomatous polyps. This study evaluated the factors associated with genetic testing decisions and outcomes when germline testing was recommended per guidelines. Surgical archives revealed 145 patients with a recommendation for germline genetic polyposis testing based on guidelines. Demographic data and medical history were collected to examine their association with testing decisions and results. Germline genetic testing was ordered in 90 out of 145 patients and was ordered in younger patients with more lifetime adenomas. Pathogenic alterations were detected in 12 out of 53 patients who completed testing. Younger ages and higher numbers of lifetime adenomas were not associated with the detection of germline genetic alterations. In fact, patients with a pathogenic germline alteration had higher median ages and fewer lifetime adenomas than those without an alteration. Half of the 12 patients with a pathogenic germline mutation were not White non-Hispanic, although White non-Hispanic patients comprised 75.5% of those tested. This study supports the 10 adenomatous polyp threshold for recommending germline genetic polyposis testing, as an alteration was detected in a sizable proportion (>20%) of patients tested. Although a younger age and a higher number of lifetime adenomas were associated with an increased likelihood of ordered tests, no evidence was found to support these additional factors in testing decisions.
Collapse
Affiliation(s)
- Michael Kozak
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - David Negrete
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bonnie L Balzer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Srinivas Gaddam
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Maha Guindi
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Danielle A Hutchings
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brent K Larson
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kevin M Waters
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
23
|
Thet M, Plazzer JP, Capella G, Latchford A, Nadeau EAW, Greenblatt MS, Macrae F. Phenotype Correlations With Pathogenic DNA Variants in the MUTYH Gene: A Review of Over 2000 Cases. Hum Mutat 2024; 2024:8520275. [PMID: 40225933 PMCID: PMC11918913 DOI: 10.1155/2024/8520275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 04/15/2025]
Abstract
MUTYH-associated polyposis (MAP) is an autosomal recessive disorder where the inheritance of constitutional biallelic pathogenic MUTYH variants predisposes a person to the development of adenomas and colorectal cancer (CRC). It is also associated with extracolonic and extraintestinal manifestations that may overlap with the phenotype of familial adenomatous polyposis (FAP). Currently, there are discrepancies in the literature regarding whether certain phenotypes are truly associated with MAP. This narrative review is aimed at exploring the phenotypic spectrum of MAP to better characterize the MAP phenotype. Literature search was conducted to identify articles reporting on MAP-specific phenotypes. Clinical data from 2109 MAP patients identified from the literature showed that 1123 patients (53.2%) had CRC. Some patients with CRC had no associated adenomas, suggesting that adenomas are not an obligatory component of MAP. Carriers of the two missense founder variants, and possibly truncating variants, had an increased cancer risk when compared to those who carry other pathogenic variants. It has been suggested that somatic G:C > T:A transversions are a mutational signature of MAP and could be used as a biomarker in screening and identifying patients with atypical MAP, or in associating certain phenotypes with MAP. The extracolonic and extraintestinal manifestations that have been associated with MAP include duodenal adenomas, duodenal cancer, fundic gland polyps, gastric cancer, ovarian cancer, bladder cancer, and skin cancer. The association of breast cancer and endometrial cancer with MAP remains disputed. Desmoid tumors and congenital hypertrophy of the retinal pigment epithelium (CHRPEs) are rarely reported in MAP but have long been seen in FAP patients and thus could act as a distinguishing feature between the two. This collection of MAP phenotypes will assist in the assessment of pathogenic MUTYH variants using the American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) Variant Interpretation Guidelines and ultimately improve patient care.
Collapse
Affiliation(s)
- Monica Thet
- Melbourne Medical SchoolThe University of Melbourne, Parkville, Victoria, Australia
- Department of MedicineUniversity of MelbourneRoyal Melbourne Hospital, Parkville, Australia
- Department of Colorectal Medicine and GeneticsRoyal Melbourne Hospital, Parkville, Australia
| | - John-Paul Plazzer
- Department of Colorectal Medicine and GeneticsRoyal Melbourne Hospital, Parkville, Australia
| | - Gabriel Capella
- Hereditary Cancer ProgramCatalan Institute of OncologyIDIBELLHospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Andrew Latchford
- Polyposis RegistrySt Mark's Hospital, Harrow, UK
- Department of Surgery and CancerImperial College, London, UK
| | - Emily A. W. Nadeau
- Department of MedicineUniversity of VermontLarner College of Medicine, Burlington, Vermont, USA
| | - Marc S. Greenblatt
- Department of MedicineUniversity of VermontLarner College of Medicine, Burlington, Vermont, USA
| | - Finlay Macrae
- Department of MedicineUniversity of MelbourneRoyal Melbourne Hospital, Parkville, Australia
- Department of Colorectal Medicine and GeneticsRoyal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
24
|
Senga SS, Bisson WH, Colacci A. Key characteristics of carcinogens meet hallmarks for prevention-cutting the Gordian knot. Front Oncol 2024; 14:1420687. [PMID: 39435286 PMCID: PMC11491790 DOI: 10.3389/fonc.2024.1420687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/05/2024] [Indexed: 10/23/2024] Open
Abstract
The complexity of cancer requires a comprehensive approach to understand its diverse manifestations and underlying mechanisms. Initially outlined by Hanahan and Weinberg in 2000 and updated in 2010, the hallmarks of cancer provide a conceptual basis for understanding inherent variability in cancer biology. Recent expansions have further elucidated additional hallmarks, including phenotypic plasticity and senescent cells. The International Agency for Research on Cancer (IARC) has identified the key characteristics of carcinogens (KCCs) to evaluate their carcinogenic potential. We analyzed chemicals of concern for environmental exposure that interact with specific receptors to induce genomic instability, epigenetic alterations, immune suppression, and receptor-mediated effects, thereby contributing to chronic inflammation. Despite their varying degrees of carcinogenicity, these chemicals have similar KCC profiles. Our analysis highlights the pivotal role of receptor binding in activating most other KCCs, underscoring their significance in cancer initiation. Although KCCs are associated with early molecular or cellular events, they do not encompass processes directly linked to full cellular malignancy. Thus, there is a need to integrate clear endpoints that anchor KCCs to the acquisition of a complete malignant phenotype into chemical testing. From the perspective of toxicology and cancer research, an all-encompassing strategy that incorporates both existing and novel KCCs and cancer hallmarks is essential to enable the targeted identification of prevalent carcinogens and facilitate zone-specific prevention strategies. To achieve this goal, collaboration between the KCC and cancer hallmarks communities becomes essential.
Collapse
Affiliation(s)
- Sasi S. Senga
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - William H. Bisson
- Integrative Toxicology and Cancer Prevention, Durham, NC, United States
| | - Annamaria Colacci
- Agency for Prevention, Environment and Energy, Emilia-Romagna (Arpae), Bologna, Italy
- Alma Mater Institute on Healthy Planet – University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Walker R, Joo JE, Mahmood K, Clendenning M, Como J, Preston SG, Joseland S, Pope BJ, Medeiros ABD, Murillo BV, Pachter N, Sweet K, Spigelman AD, Groves A, Gleeson M, Bernatowicz K, Poplawski N, Andrews L, Healey E, Gallinger S, Grant RC, Win AK, Hopper JL, Jenkins MA, Torrezan GT, Rosty C, Macrae FA, Winship IM, Buchanan DD, Georgeson P. Adenomas from individuals with pathogenic biallelic variants in the MUTYH and NTHL1 genes demonstrate base excision repair tumour mutational signature profiles similar to colorectal cancers, expanding potential diagnostic and variant classification applications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311713. [PMID: 39148833 PMCID: PMC11326331 DOI: 10.1101/2024.08.08.24311713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Colorectal cancers (CRCs) from people with biallelic germline likely pathogenic/pathogenic variants in MUTYH or NTHL1 exhibit specific single base substitution (SBS) mutational signatures, namely combined SBS18 and SBS36 (SBS18+SBS36), and SBS30, respectively. The aim was to determine if adenomas from biallelic cases demonstrated these mutational signatures at diagnostic levels. Methods Whole-exome sequencing of FFPE tissue and matched blood-derived DNA was performed on 9 adenomas and 15 CRCs from 13 biallelic MUTYH cases, on 7 adenomas and 2 CRCs from 5 biallelic NTHL1 cases and on 27 adenomas and 26 CRCs from 46 non-hereditary (sporadic) participants. All samples were assessed for COSMIC v3.2 SBS mutational signatures. Results In biallelic MUTYH cases, SBS18+SBS36 signature proportions in adenomas (mean±standard deviation, 65.6%±29.6%) were not significantly different to those observed in CRCs (76.2%±20.5%, p-value=0.37), but were significantly higher compared with non-hereditary adenomas (7.6%±7.0%, p-value=3.4×10-4). Similarly, in biallelic NTHL1 cases, SBS30 signature proportions in adenomas (74.5%±9.4%) were similar to those in CRCs (78.8%±2.4%) but significantly higher compared with non-hereditary adenomas (2.8%±3.6%, p-value=5.1×10-7). Additionally, a compound heterozygote with the c.1187G>A p.(Gly396Asp) pathogenic variant and the c.533G>C p.(Gly178Ala) variant of unknown significance (VUS) in MUTYH demonstrated high levels of SBS18+SBS36 in four adenomas and one CRC, providing evidence for reclassification of the VUS to pathogenic. Conclusions SBS18+SBS36 and SBS30 were enriched in adenomas at comparable proportions observed in CRCs from biallelic MUTYH and biallelic NTHL1 cases, respectively. Therefore, testing adenomas may improve the identification of biallelic cases and facilitate variant classification, ultimately enabling opportunities for CRC prevention.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Susan G Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Ana B D Medeiros
- Clinical and Functional Genomics Group, International Research Centre/CIPE, A.C. Camargo Cancer Centre, Sao Paulo, 01508-010, Brazil
| | - Brenely V Murillo
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
- Medical School, University of Western Australia, Perth, WA, 6009, Australia
- School of Medicine, Curtin University, Perth, WA, 6845, Australia
| | - Kevin Sweet
- Division of Human Genetics, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Allan D Spigelman
- Hunter Family Cancer Service, Newcastle, NSW, 2298, Australia
- St Vincent's Cancer Genetics Unit, Sydney, NSW, 2290, Australia
- Surgical Professorial Unit, UNSW Clinical School of Clinical Medicine, Sydney, NSW, 2052, Australia
| | | | | | | | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Lesley Andrews
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Emma Healey
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Randwick, New South Wales 2031 Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, New South Wales 2500 Australia
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert C Grant
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aung K Win
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - Giovana T Torrezan
- Clinical and Functional Genomics Group, International Research Centre/CIPE, A.C. Camargo Cancer Centre, Sao Paulo, 01508-010, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, 4059, Australia
- University of Queensland, Brisbane, QLD, 4072, Australia
| | - Finlay A Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3000, Australia
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3000, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| |
Collapse
|
26
|
McVeigh TP, Lalloo F, Monahan KJ, Latchford A, Durkie M, Mein R, Baple EL, Hanson H. Carrier testing for partners of MUTYH variant carriers: UK Cancer Genetics Group recommendations. J Med Genet 2024; 61:813-816. [PMID: 38816194 PMCID: PMC11287623 DOI: 10.1136/jmg-2024-109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/18/2024] [Indexed: 06/01/2024]
Affiliation(s)
- Terri Patricia McVeigh
- Cancer Genetics Unit, Royal Marsden Hospital NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Manchester University Hospitals Foundation Trust, Manchester, UK
| | - Kevin J Monahan
- St Mark's the National Bowel Hospital and Academic Institute, London, UK
- Imperial College London, London, UK
| | - Andrew Latchford
- The Polyposis Registry, St Mark's Centre for Familial Intestinal Cancer, St Mark's Hospital, London, UK
- Surgery and Cancer, Imperial College London, London, UK
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, North East and Yorkshire Genomic Laboratory Hub, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | - Emma L Baple
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Helen Hanson
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
27
|
Kim H, Pak Y. Isomerization Pathways of a Mismatched Base Pair of A:8OG in Free Duplex DNA. J Chem Inf Model 2024; 64:4511-4517. [PMID: 38767002 DOI: 10.1021/acs.jcim.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The A:8OG base pair (bp) is the outcome of DNA replication of the mismatched C:8OG bp. A high A:8OG bp population increases the C/G to A/T transversion mutation, which is responsible for various diseases. MutY is an important enzyme in the error-proof cycle and reverts A:8OG to C:8OG bp by cleaving adenine from the A:8OG bp. Several X-ray crystallography studies have determined the structure of MutY during the lesion scanning and lesion recognition stages. Interestingly, glycosidic bond (χ) angles of A:8OG bp in those two lesion recognition structures were found to differ, which implies that χ-torsion isomerization should occur during the lesion recognition process. In this study, as a first step to understanding this isomerization process, we characterized the intrinsic dynamic features of A:8OG in free DNAs by a free energy landscape simulation at the all-atom level. In this study, four isomerization states were assigned in the order of abundance: Aanti:8OGsyn > Aanti:8OGanti > Asyn:8OGanti ≈ Asyn:8OGsyn. Of these bp states, only 8OG in Asyn:8OGanti was located in the extrahelical space, whereas the purine bases (A and 8OG) in the other bp states remained inside the DNA helix. Also, free energy landscapes showed that the isomerization processes connecting these four bp states proceeded mostly in the intrahelical space via successive single glycosidic bond rotations of either A or 8OG.
Collapse
Affiliation(s)
- Hyeonjun Kim
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
28
|
Thet M, Plazzer JP, Capella G, Latchford A, Nadeau EA, Greenblatt MS, Macrae F. Phenotype correlations with pathogenic DNA variants in the MUTYH gene. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307143. [PMID: 38798681 PMCID: PMC11118659 DOI: 10.1101/2024.05.15.24307143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
MUTYH -associated polyposis (MAP) is an autosomal recessive disorder where the inheritance of constitutional biallelic pathogenic MUTYH variants predisposes a person to the development of adenomas and colorectal cancer (CRC). It is also associated with extracolonic and extraintestinal manifestations that may overlap with the phenotype of familial adenomatous polyposis (FAP). Currently, there are discrepancies in the literature regarding whether certain phenotypes are truly associated with MAP. This narrative review aims to explore the phenotypic spectrum of MAP to better characterise the MAP phenotype. A literature search was conducted to identify articles reporting on MAP-specific phenotypes. Clinical data from 2109 MAP patients identified from the literature showed that 1123 patients (53.2%) had CRC. Some patients with CRC had no associated adenomas, suggesting that adenomas are not an obligatory component of MAP. Carriers of the two missense founder variants, and possibly truncating variants, had an increased cancer risk when compared to those who carry other pathogenic variants. It has been suggested that somatic G:C>T:A transversions are a mutational signature of MAP, and could be used as a biomarker in screening and identifying patients with atypical MAP, or in associating certain phenotypes with MAP. The extracolonic and extraintestinal manifestations that have been associated with MAP include duodenal adenomas, duodenal cancer, fundic gland polyps, gastric cancer, ovarian cancer, bladder cancer and skin cancer. The association of breast cancer and endometrial cancer with MAP remains disputed. Desmoids and Congenital Hypertrophy of the Retinal Pigment Epithelium (CHRPEs) are rarely reported in MAP, but have long been seen in FAP patients, and thus could act as a distinguishing feature between the two. This collection of MAP phenotypes will assist in the assessment of pathogenic MUTYH variants using the American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) Variant Interpretation Guidelines, and ultimately improve patient care.
Collapse
|
29
|
Utzman PH, Mays VP, Miller BC, Fairbanks MC, Brazelton WJ, Horvath MP. Metagenome mining and functional analysis reveal oxidized guanine DNA repair at the Lost City Hydrothermal Field. PLoS One 2024; 19:e0284642. [PMID: 38718041 PMCID: PMC11078426 DOI: 10.1371/journal.pone.0284642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
The GO DNA repair system protects against GC → TA mutations by finding and removing oxidized guanine. The system is mechanistically well understood but its origins are unknown. We searched metagenomes and abundantly found the genes encoding GO DNA repair at the Lost City Hydrothermal Field (LCHF). We recombinantly expressed the final enzyme in the system to show MutY homologs function to suppress mutations. Microbes at the LCHF thrive without sunlight, fueled by the products of geochemical transformations of seafloor rocks, under conditions believed to resemble a young Earth. High levels of the reductant H2 and low levels of O2 in this environment raise the question, why are resident microbes equipped to repair damage caused by oxidative stress? MutY genes could be assigned to metagenome-assembled genomes (MAGs), and thereby associate GO DNA repair with metabolic pathways that generate reactive oxygen, nitrogen and sulfur species. Our results indicate that cell-based life was under evolutionary pressure to cope with oxidized guanine well before O2 levels rose following the great oxidation event.
Collapse
Affiliation(s)
- Payton H. Utzman
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Vincent P. Mays
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Briggs C. Miller
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary C. Fairbanks
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Martin P. Horvath
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
30
|
Church J. The Natural History of Hereditary Colorectal Cancer Syndromes: From Phenotype to Genotype? Where Do We Stand and What Does the Future Hold? Clin Colon Rectal Surg 2024; 37:127-132. [PMID: 38606050 PMCID: PMC11006442 DOI: 10.1055/s-0043-1770380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Applying the concept of a "natural history" to hereditary colorectal cancer is an interesting exercise because the way the syndromes are approached has changed so drastically. However, the exercise is instructive as it forces us to think in depth about where we are, where we have been, and, most helpfully, about where we may be going. In this article the diagnosis, along with endoscopic and surgical management of hereditary colorectal cancer are discussed in the context of their history and the changes in genomics and technology that have occurred over the last one hundred years.
Collapse
Affiliation(s)
- James Church
- Division of Colorectal Surgery, Department of Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
31
|
Karstensen JG, Hansen TVO, Burisch J, Djursby M, Højen H, Madsen MB, Jespersen N, Jelsig AM. Re-evaluating the genotypes of patients with adenomatous polyposis of unknown etiology: a nationwide study. Eur J Hum Genet 2024; 32:588-592. [PMID: 38467732 PMCID: PMC11061120 DOI: 10.1038/s41431-024-01585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
In the Danish Polyposis Register, patients with over 100 cumulative colorectal adenomas of unknown genetic etiology, named in this study colorectal polyposis (CP), is registered and treated as familial adenomatous polyposis (FAP). In this study, we performed genetic analyses, including whole genome sequencing (WGS), of all Danish patients registered with CP and estimated the detection rate of pathogenic variants (PV). We identified 231 families in the Polyposis Register, 31 of which had CP. A polyposis-associated gene panel was performed and, if negative, patients were offered WGS and screening for mosaicism in blood and/or adenomas. Next-generation sequencing (NGS) was carried out for 27 of the families (four declined). PVs were detected in 11 families, and WGS revealed three additional structural variants in APC. Mosaicism of a PV in APC was detected in two families. As the variant detection rate of eligible families was 60%, 93% of families in the register now have a known genetic etiology.
Collapse
Affiliation(s)
- John Gásdal Karstensen
- Danish Polyposis Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas V Overeem Hansen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Johan Burisch
- Danish Polyposis Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Gastrounit, Medical Division, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Malene Djursby
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Helle Højen
- Danish Polyposis Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Majbritt Busk Madsen
- Center for Genomic Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Niels Jespersen
- Danish Polyposis Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Anne Marie Jelsig
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
32
|
Majumdar C, Demir M, Merrill SR, Hashemian M, David SS. FSHing for DNA Damage: Key Features of MutY Detection of 8-Oxoguanine:Adenine Mismatches. Acc Chem Res 2024; 57:1019-1031. [PMID: 38471078 PMCID: PMC10993402 DOI: 10.1021/acs.accounts.3c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Base excision repair (BER) enzymes are genomic superheroes that stealthily and accurately identify and remove chemically modified DNA bases. DNA base modifications erode the informational content of DNA and underlie many disease phenotypes, most conspicuously, cancer. The "OG" of oxidative base damage, 8-oxo-7,8-dihydroguanine (OG), is particularly insidious due to its miscoding ability that leads to the formation of rare, pro-mutagenic OG:A mismatches. Thwarting mutagenesis relies on the capture of OG:A mismatches prior to DNA replication and removal of the mis-inserted adenine by MutY glycosylases to initiate BER. The threat of OG and the importance of its repair are underscored by the association between inherited dysfunctional variants of the MutY human homologue (MUTYH) and colorectal cancer, known as MUTYH-associated polyposis (MAP). Our functional studies of the two founder MUTYH variants revealed that both have compromised activity and a reduced affinity for OG:A mismatches. Indeed, these studies underscored the challenge of the recognition of OG:A mismatches that are only subtly structurally different than T:A base pairs. Since the original discovery of MAP, many MUTYH variants have been reported, with most considered to be "variants of uncertain significance." To reveal features associated with damage recognition and adenine excision by MutY and MUTYH, we have developed a multipronged chemical biology approach combining enzyme kinetics, X-ray crystallography, single-molecule visualization, and cellular repair assays. In this review, we highlight recent work in our laboratory where we defined MutY structure-activity relationship (SAR) studies using synthetic analogs of OG and A in cellular and in vitro assays. Our studies revealed the 2-amino group of OG as the key distinguishing feature of OG:A mismatches. Indeed, the unique position of the 2-amino group in the major groove of OGsyn:Aanti mismatches provides a means for its rapid detection among a large excess of highly abundant and structurally similar canonical base pairs. Furthermore, site-directed mutagenesis and structural analysis showed that a conserved C-terminal domain β-hairpin "FSH'' loop is critical for OG recognition with the "His" serving as the lesion detector. Notably, MUTYH variants located within and near the FSH loop have been associated with different forms of cancer. Uncovering the role(s) of this loop in lesion recognition provided a detailed understanding of the search and repair process of MutY. Such insights are also useful to identify mutational hotspots and pathogenic variants, which may improve the ability of physicians to diagnose the likelihood of disease onset and prognosis. The critical importance of the "FSH" loop in lesion detection suggests that it may serve as a unique locus for targeting probes or inhibitors of MutY/MUTYH to provide new chemical biology tools and avenues for therapeutic development.
Collapse
Affiliation(s)
- Chandrima Majumdar
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Merve Demir
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Steven R. Merrill
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Mohammad Hashemian
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Sheila S. David
- Department of Chemistry, University
of California, Davis, California 95616, United States
| |
Collapse
|
33
|
Cipri S, Del Baldo G, Carai A, Cacchione A, Agolini E, Novelli A, Rossi S, Colafati GS, Boccuto L, Mastronuzzi A. A second case report of medulloblastoma in a patient carrying biallelic pathogenic MUTYH germline variants. Neuropathol Appl Neurobiol 2024; 50:e12968. [PMID: 38477379 DOI: 10.1111/nan.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Selene Cipri
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Cacchione
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), University "Gabriele D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, South Carolina, USA
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
34
|
Rosty C, Brosens LAA. Pathology of Gastrointestinal Polyposis Disorders. Gastroenterol Clin North Am 2024; 53:179-200. [PMID: 38280747 DOI: 10.1016/j.gtc.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Gastrointestinal polyposis disorders are a group of syndromes defined by clinicopathologic features that include the predominant histologic type of colorectal polyp and specific inherited gene mutations. Adenomatous polyposis syndromes comprise the prototypical familial adenomatous polyposis syndrome and other recently identified genetic conditions inherited in a dominant or recessive manner. Serrated polyposis syndrome is defined by arbitrary clinical criteria. The diagnosis of hamartomatous polyposis syndromes can be suggested from the histologic characteristics of colorectal polyps and the association with various extraintestinal manifestations. Proper identification of affected individuals is important due to an increased risk of gastrointestinal and extragastrointestinal cancers.
Collapse
Affiliation(s)
- Christophe Rosty
- Envoi Specialist Pathologists, Brisbane, Queensland 4059, Australia; University of Queensland, Brisbane, Queensland 4072, Australia; Department of Clinical Pathology, Colorectal Oncogenomics Group, Victorian Comprehensive Cancer Centre, The University of Melbourne, Victoria 3051, Australia.
| | - Lodewijk A A Brosens
- Department of Pathology University Medical Center Utrecht, Utrecht University, Postbus 85500, 3508, Utrecht, Galgenwaad, The Netherlands
| |
Collapse
|
35
|
Conlon S, Khuu C, Trasviña-Arenas CH, Xia T, Hamm ML, Raetz AG, David SS. Cellular Repair of Synthetic Analogs of Oxidative DNA Damage Reveals a Key Structure-Activity Relationship of the Cancer-Associated MUTYH DNA Repair Glycosylase. ACS CENTRAL SCIENCE 2024; 10:291-301. [PMID: 38435525 PMCID: PMC10906249 DOI: 10.1021/acscentsci.3c00784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 03/05/2024]
Abstract
The base excision repair glycosylase MUTYH prevents mutations associated with the oxidatively damaged base, 8-oxo-7,8-dihydroguanine (OG), by removing undamaged misincorporated adenines from OG:A mispairs. Defects in OG:A repair in individuals with inherited MUTYH variants are correlated with the colorectal cancer predisposition syndrome known as MUTYH-associated polyposis (MAP). Herein, we reveal key structural features of OG required for efficient repair by human MUTYH using structure-activity relationships (SAR). We developed a GFP-based plasmid reporter assay to define SAR with synthetically generated OG analogs in human cell lines. Cellular repair results were compared with kinetic parameters measured by adenine glycosylase assays in vitro. Our results show substrates lacking the 2-amino group of OG, such as 8OI:A (8OI = 8-oxoinosine), are not repaired in cells, despite being excellent substrates in in vitro adenine glycosylase assays, new evidence that the search and detection steps are critical factors in cellular MUTYH repair functionality. Surprisingly, modification of the O8/N7H of OG, which is the distinguishing feature of OG relative to G, was tolerated in both MUTYH-mediated cellular repair and in vitro adenine glycosylase activity. The lack of sensitivity to alterations at the O8/N7H in the SAR of MUTYH substrates is distinct from previous work with bacterial MutY, indicating that the human enzyme is much less stringent in its lesion verification. Our results imply that the human protein relies almost exclusively on detection of the unique major groove position of the 2-amino group of OG within OGsyn:Aanti mispairs to select contextually incorrect adenines for excision and thereby thwart mutagenesis. These results predict that MUTYH variants that exhibit deficiencies in OG:A detection will be severely compromised in a cellular setting. Moreover, the reliance of MUTYH on the interaction with the OG 2-amino group suggests that disrupting this interaction with small molecules may provide a strategy to develop potent and selective MUTYH inhibitors.
Collapse
Affiliation(s)
- Savannah
G. Conlon
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Graduate
Program in Chemistry and Chemical Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Cindy Khuu
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlos H. Trasviña-Arenas
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Tian Xia
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Graduate
Program in Chemistry and Chemical Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Michelle L. Hamm
- Department
of Chemistry, University of Richmond, 410 Westhampton Way, Richmond, Virginia 23173, United States
| | - Alan G. Raetz
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sheila S. David
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Graduate
Program in Chemistry and Chemical Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
36
|
Ohno M, Takano N, Hidaka K, Sasaki F, Yamauchi K, Aoki Y, Nohmi T, Nakabeppu Y, Nakatsu Y, Tsuzuki T. Oxidative stress accelerates intestinal tumorigenesis by enhancing 8-oxoguanine-mediated mutagenesis in MUTYH-deficient mice. Genome Res 2024; 34:47-56. [PMID: 38290979 PMCID: PMC10904009 DOI: 10.1101/gr.278326.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Oxidative stress-induced DNA damage and its repair systems are related to cancer etiology; however, the molecular basis triggering tumorigenesis is not well understood. Here, we aimed to explore the causal relationship between oxidative stress, somatic mutations in pre-tumor-initiated normal tissues, and tumor incidence in the small intestines of MUTYH-proficient and MUTYH-deficient mice. MUTYH is a base excision repair enzyme associated with human colorectal cancer. Mice were administered different concentrations of potassium bromate (KBrO3; an oxidizing agent)-containing water for 4 wk for mutagenesis studies or 16 wk for tumorigenesis studies. All Mutyh -/- mice treated with >0.1% KBrO3 developed multiple tumors, and the average tumor number increased dose dependently. Somatic mutation analysis of Mutyh -/-/rpsL transgenic mice revealed that G:C > T:A transversion was the only mutation type correlated positively with KBrO3 dose and tumor incidence. These mutations preferentially occurred at 5'G in GG and GAA sequences in rpsL This characteristic mutation pattern was also observed in the genomic region of Mutyh -/- tumors using whole-exome sequencing. It closely corresponded to signature 18 and SBS36, typically caused by 8-oxo-guanine (8-oxoG). 8-oxoG-induced mutations were sequence context dependent, yielding a biased amino acid change leading to missense and stop-gain mutations. These mutations frequently occurred in critical amino acid codons of known cancer drivers, Apc or Ctnnb1, known for activating Wnt signal pathway. Our results indicate that oxidative stress contributes to increased tumor incidence by elevating the likelihood of gaining driver mutations by increasing 8-oxoG-mediated mutagenesis, particularly under MUTYH-deficient conditions.
Collapse
Affiliation(s)
- Mizuki Ohno
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan;
| | - Noriko Takano
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kyoko Hidaka
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Center for Fundamental Education, The University of Kitakyushu, Kitakyushu, Fukuoka 802-8577, Japan
| | - Fumiko Sasaki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kazumi Yamauchi
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Radiobiology, Institute for Environmental Sciences, Kamikita, Aomori 039-3212, Japan
| | - Yasunobu Aoki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Japan Society for the Promotion of Science, San Francisco Office, Berkeley, California 94704, USA
| | - Yoshimichi Nakatsu
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Teruhisa Tsuzuki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
37
|
Paller CJ, Tukachinsky H, Maertens A, Decker B, Sampson JR, Cheadle JP, Antonarakis ES. Pan-Cancer Interrogation of MUTYH Variants Reveals Biallelic Inactivation and Defective Base Excision Repair Across a Spectrum of Solid Tumors. JCO Precis Oncol 2024; 8:e2300251. [PMID: 38394468 PMCID: PMC10901435 DOI: 10.1200/po.23.00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Biallelic germline pathogenic variants of the base excision repair (BER) pathway gene MUTYH predispose to colorectal cancer (CRC) and other cancers. The possible association of heterozygous variants with broader cancer susceptibility remains uncertain. This study investigated the prevalence and consequences of pathogenic MUTYH variants and MUTYH loss of heterozygosity (LOH) in a large pan-cancer analysis. MATERIALS AND METHODS Data from 354,366 solid tumor biopsies that were sequenced as part of routine clinical care were analyzed using a validated algorithm to distinguish germline from somatic MUTYH variants. RESULTS Biallelic germline pathogenic MUTYH variants were identified in 119 tissue biopsies. Most were CRCs and showed increased tumor mutational burden (TMB) and a mutational signature consistent with defective BER (COSMIC Signature SBS18). Germline heterozygous pathogenic variants were identified in 5,991 biopsies and their prevalence was modestly elevated in some cancer types. About 12% of these cancers (738 samples: including adrenal gland cancers, pancreatic islet cell tumors, nonglioma CNS tumors, GI stromal tumors, and thyroid cancers) showed somatic LOH for MUTYH, higher rates of chromosome 1p loss (where MUTYH is located), elevated genomic LOH, and higher COSMIC SBS18 signature scores, consistent with BER deficiency. CONCLUSION This analysis of MUTYH alterations in a large set of solid cancers suggests that in addition to the established role of biallelic pathogenic MUTYH variants in cancer predisposition, a broader range of cancers may possibly arise in MUTYH heterozygotes via a mechanism involving somatic LOH at the MUTYH locus and defective BER. However, the effect is modest and requires confirmation in additional studies before being clinically actionable.
Collapse
Affiliation(s)
- Channing J Paller
- Johns Hopkins University School of Medicine, Oncology, Baltimore, MD
| | | | - Alexandra Maertens
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD
| | | | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jeremy P Cheadle
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Emmanuel S Antonarakis
- University of Minnesota Masonic Cancer Center, Division of Hematology, Oncology and Transplantation, Minneapolis, MN
| |
Collapse
|
38
|
Spier I, Yin X, Richardson M, Pineda M, Laner A, Ritter D, Boyle J, Mur P, Hansen TVO, Shi X, Mahmood K, Plazzer JP, Ognedal E, Nordling M, Farrington SM, Yamamoto G, Baert-Desurmont S, Martins A, Borras E, Tops C, Webb E, Beshay V, Genuardi M, Pesaran T, Capellá G, Tavtigian SV, Latchford A, Frayling IM, Plon SE, Greenblatt M, Macrae FA, Aretz S. Gene-specific ACMG/AMP classification criteria for germline APC variants: Recommendations from the ClinGen InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel. Genet Med 2024; 26:100992. [PMID: 37800450 PMCID: PMC10922469 DOI: 10.1016/j.gim.2023.100992] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE The Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) was established by the International Society for Gastrointestinal Hereditary Tumours and the Clinical Genome Resource, who set out to develop recommendations for the interpretation of germline APC variants underlying Familial Adenomatous Polyposis, the most frequent hereditary polyposis syndrome. METHODS Through a rigorous process of database analysis, literature review, and expert elicitation, the APC VCEP derived gene-specific modifications to the ACMG/AMP (American College of Medical Genetics and Genomics and Association for Molecular Pathology) variant classification guidelines and validated such criteria through the pilot classification of 58 variants. RESULTS The APC-specific criteria represented gene- and disease-informed specifications, including a quantitative approach to allele frequency thresholds, a stepwise decision tool for truncating variants, and semiquantitative evaluations of experimental and clinical data. Using the APC-specific criteria, 47% (27/58) of pilot variants were reclassified including 14 previous variants of uncertain significance (VUS). CONCLUSION The APC-specific ACMG/AMP criteria preserved the classification of well-characterized variants on ClinVar while substantially reducing the number of VUS by 56% (14/25). Moving forward, the APC VCEP will continue to interpret prioritized lists of VUS, the results of which will represent the most authoritative variant classification for widespread clinical use.
Collapse
Affiliation(s)
- Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany; European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547
| | - Xiaoyu Yin
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany; Department of Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Australia; Department of Medicine, University of Melbourne, Parkville, Australia.
| | | | - Marta Pineda
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547; Hereditary Cancer Program, Catalan Institute of Oncology - ONCOBELL, IDIBELL, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | | | - Deborah Ritter
- Baylor College of Medicine, Houston, TX; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Julie Boyle
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology - ONCOBELL, IDIBELL, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Thomas V O Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, University of Melbourne, Parkville, Australia; Melbourne Bioinformatics, University of Melbourne, Parkville, Australia
| | - John-Paul Plazzer
- Department of Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Australia
| | | | - Margareta Nordling
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Susan M Farrington
- Cancer Research UK Edinburgh Centre, the University of Edinburgh, Edinburgh, United Kingdom
| | - Gou Yamamoto
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | | | | | | | - Carli Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Maurizio Genuardi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, and Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Gabriel Capellá
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547; Hereditary Cancer Program, Catalan Institute of Oncology - ONCOBELL, IDIBELL, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Sean V Tavtigian
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Andrew Latchford
- Polyposis Registry, St. Mark's Hospital, London, United Kingdom; Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Ian M Frayling
- Polyposis Registry, St. Mark's Hospital, London, United Kingdom; Inherited Tumour Syndromes Research Group, Institute of Cancer & Genetics, Cardiff University, United Kingdom
| | - Sharon E Plon
- Baylor College of Medicine, Houston, TX; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Marc Greenblatt
- Larner College of Medicine, University of Vermont, Burlington, VT
| | - Finlay A Macrae
- Department of Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany; European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS) - Project ID No 739547
| |
Collapse
|
39
|
Zhu YX, He M, Li KJ, Wang YK, Qian N, Wang ZF, Sheng H, Sui Y, Zhang DD, Zhang K, Qi L, Zheng DQ. Novel insights into the effects of 5-hydroxymethfurural on genomic instability and phenotypic evolution using a yeast model. Appl Environ Microbiol 2024; 90:e0164923. [PMID: 38108644 PMCID: PMC10807415 DOI: 10.1128/aem.01649-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
5-Hydroxymethfurural (5-HMF) is naturally found in a variety of foods and beverages and represents a main inhibitor in the lignocellulosic hydrolysates used for fermentation. This study investigated the impact of 5-HMF on the genomic stability and phenotypic plasticity of the yeast Saccharomyces cerevisiae. Using next-generation sequencing technology, we examined the genomic alterations of diploid S. cerevisiae isolates that were subcultured on a medium containing 1.2 g/L 5-HMF. We found that in 5-HMF-treated cells, the rates of chromosome aneuploidy, large deletions/duplications, and loss of heterozygosity were elevated compared with that in untreated cells. 5-HMF exposure had a mild impact on the rate of point mutations but altered the mutation spectrum. Contrary to what was observed in untreated cells, more monosomy than trisomy occurred in 5-HMF-treated cells. The aneuploidy mutant with monosomic chromosome IX was more resistant to 5-HMF than the diploid parent strain because of the enhanced activity of alcohol dehydrogenase. Finally, we found that overexpression of ADH6 and ZWF1 effectively stabilized the yeast genome under 5-HMF stress. Our findings not only elucidated the global effect of 5-HMF on the genomic integrity of yeast but also provided novel insights into how chromosomal instability drives the environmental adaptability of eukaryotic cells.IMPORTANCESingle-cell microorganisms are exposed to a range of stressors in both natural and industrial settings. This study investigated the effects of 5-hydroxymethfurural (5-HMF), a major inhibitor found in baked foods and lignocellulosic hydrolysates, on the chromosomal instability of yeast. We examined the mechanisms leading to the distinct patterns of 5-HMF-induced genomic alterations and discovered that chromosomal loss, typically viewed as detrimental to cell growth under most conditions, can contribute to yeast tolerance to 5-HMF. Our results increased the understanding of how specific stressors stimulate genomic plasticity and environmental adaptation in yeast.
Collapse
Affiliation(s)
- Ying-Xuan Zhu
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
- Ocean College, Zhejiang University, Zhoushan, China
| | - Min He
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| | - Ke-Jing Li
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ye-Ke Wang
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Ning Qian
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ze-Fei Wang
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| | - Huan Sheng
- Ocean College, Zhejiang University, Zhoushan, China
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan, China
| | | | - Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Lei Qi
- Ocean College, Zhejiang University, Zhoushan, China
| | - Dao-Qiong Zheng
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
- Ocean College, Zhejiang University, Zhoushan, China
| |
Collapse
|
40
|
Peña-López J, Jiménez-Bou D, Ruíz-Gutiérrez I, Martín-Montalvo G, Alameda-Guijarro M, Rueda-Lara A, Ruíz-Giménez L, Higuera-Gómez O, Gallego A, Pertejo-Fernández A, Sánchez-Cabrero D, Feliu J, Rodríguez-Salas N. Prevalence and Distribution of MUTYH Pathogenic Variants, Is There a Relation with an Increased Risk of Breast Cancer? Cancers (Basel) 2024; 16:315. [PMID: 38254803 PMCID: PMC10813893 DOI: 10.3390/cancers16020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND MUTYH has been implicated in hereditary colonic polyposis and colorectal carcinoma. However, there are conflicting data refgarding its relationship to hereditary breast cancer. Therefore, we aimed to assess if MUTYH mutations contribute to breast cancer susceptibility. METHODS We retrospectively reviewed 3598 patients evaluated from June 2018 to June 2023 at the Hereditary Cancer Unit of La Paz University Hospital, focusing on those with detected MUTYH variants. RESULTS Variants of MUTYH were detected in 56 patients (1.6%, 95%CI: 1.2-2.0). Of the 766 patients with breast cancer, 14 patients were carriers of MUTYH mutations (1.8%, 95%CI: 0.5-3.0). The prevalence of MUTYH mutation was significantly higher in the subpopulation with colonic polyposis (11.3% vs. 1.1%, p < 0.00001, OR = 11.2, 95%CI: 6.2-22.3). However, there was no significant difference in the prevalence within the subpopulation with breast cancer (1.8% vs. 1.5%, p = 0.49, OR = 1.2, 95%CI: 0.7-2.3). CONCLUSION In our population, we could not establish a relationship between MUTYH and breast cancer. These findings highlight the necessity for a careful interpretation when assessing the role of MUTYH mutations in breast cancer risk.
Collapse
Affiliation(s)
- Jesús Peña-López
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Diego Jiménez-Bou
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Icíar Ruíz-Gutiérrez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Gema Martín-Montalvo
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | | - Antonio Rueda-Lara
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Leticia Ruíz-Giménez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Oliver Higuera-Gómez
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Alejandro Gallego
- Department of Medical Oncology, Clínica Universidad de Navarra, 28027 Madrid, Spain
| | | | | | - Jaime Feliu
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | |
Collapse
|
41
|
Chakraborty B, Agarwal S, Kori S, Das R, Kashaw V, Iyer AK, Kashaw SK. Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective. Curr Med Chem 2024; 31:3286-3326. [PMID: 37151060 DOI: 10.2174/0929867330666230505165031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/09/2023]
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
Collapse
Affiliation(s)
- Biswadip Chakraborty
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, ISF College of Pharmacy, Moga-Punjab, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
42
|
Valle L, Monahan KJ. Genetic predisposition to gastrointestinal polyposis: syndromes, tumour features, genetic testing, and clinical management. Lancet Gastroenterol Hepatol 2024; 9:68-82. [PMID: 37931640 DOI: 10.1016/s2468-1253(23)00240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 11/08/2023]
Abstract
Gastrointestinal tract polyposis is characterised by the presence of multiple polyps, particularly in the colorectum, and encompasses both cancer predisposition genetic syndromes and non-syndromic clinical manifestations. The sources of the heterogeneity observed in polyposis syndromes relate to genetic cause, mode of inheritance, polyp burden and histological type, and spectrum and frequency of extracolonic manifestations. These features determine the clinical management of carriers, including strategies for cancer prevention and early detection, and oncological treatments. Despite substantial progress in identifying the genetic causes of polyposis, a large proportion of cases remain genetically unexplained. Although some of these cases might be due to lifestyle, environmental factors, or cancer treatments, it is likely that additional polyposis predisposition genes will be identified. This Review provides an overview of the known syndromes and genes, genetic testing, and clinical management of patients with polyposis, and recent advances and challenges in the field of gastrointestinal polyposis.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Programme, Catalan Institute of Oncology, Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Kevin J Monahan
- The St Mark's Centre for Familial Intestinal Cancer Lynch Syndrome & Family Cancer Clinic & Polyposis Registry, St Mark's Hospital, London, UK; Imperial College, London, UK.
| |
Collapse
|
43
|
Dolan M, St. John N, Zaidi F, Doyle F, Fasullo M. High-throughput screening of the Saccharomyces cerevisiae genome for 2-amino-3-methylimidazo [4,5-f] quinoline resistance identifies colon cancer-associated genes. G3 (BETHESDA, MD.) 2023; 13:jkad219. [PMID: 37738679 PMCID: PMC11025384 DOI: 10.1093/g3journal/jkad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/25/2022] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic agents found in charred meats and cigarette smoke. However, few eukaryotic resistance genes have been identified. We used Saccharomyces cerevisiae (budding yeast) to identify genes that confer resistance to 2-amino-3-methylimidazo[4,5-f] quinoline (IQ). CYP1A2 and NAT2 activate IQ to become a mutagenic nitrenium compound. Deletion libraries expressing human CYP1A2 and NAT2 or no human genes were exposed to either 400 or 800 µM IQ for 5 or 10 generations. DNA barcodes were sequenced using the Illumina HiSeq 2500 platform and statistical significance was determined for exactly matched barcodes. We identified 424 ORFs, including 337 genes of known function, in duplicate screens of the "humanized" collection for IQ resistance; resistance was further validated for a select group of 51 genes by growth curves, competitive growth, or trypan blue assays. Screens of the library not expressing human genes identified 143 ORFs conferring resistance to IQ per se. Ribosomal protein and protein modification genes were identified as IQ resistance genes in both the original and "humanized" libraries, while nitrogen metabolism, DNA repair, and growth control genes were also prominent in the "humanized" library. Protein complexes identified included the casein kinase 2 (CK2) and histone chaperone (HIR) complex. Among DNA Repair and checkpoint genes, we identified those that function in postreplication repair (RAD18, UBC13, REV7), base excision repair (NTG1), and checkpoint signaling (CHK1, PSY2). These studies underscore the role of ribosomal protein genes in conferring IQ resistance, and illuminate DNA repair pathways for conferring resistance to activated IQ.
Collapse
Affiliation(s)
- Michael Dolan
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Nick St. John
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Faizan Zaidi
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Francis Doyle
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Michael Fasullo
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| |
Collapse
|
44
|
Rausa E, Colletti G, Ciniselli CM, Signoroni S, Duroni V, Cavalcoli F, Magarotto A, Ricci MT, Brignola C, Biasoni D, Verderio P, Vitellaro M. Superior rectal artery preservation to reduce anastomotic leak rates in familial adenomatous polyposis patients treated with total colectomy and ileorectal anastomosis. Tech Coloproctol 2023; 27:1327-1334. [PMID: 37688717 DOI: 10.1007/s10151-023-02858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Total colectomy with ileorectal anastomosis (TC/IRA) is one of the prophylactic surgical options in patients with familial adenomatous polyposis (FAP). This study investigated the effectiveness of superior rectal artery (SRA) preservation during TC/IRA in reducing anastomotic leakage (AL). METHODS This retrospective study was based on prospectively collected data (01/2000 - 12/2022) at the National Cancer Institute, Milan, Italy. FAP patients undergoing TC/IRA were enrolled. A 1:1 propensity score matching (PSM) was performed. Associations between SRA preservation and complications were investigated using univariate and multivariate analysis. RESULTS The study population included 211 patients undergoing TC/IRA (Sex: 106 Male, 105 Female; Age: median 30 yrs, IQR: 20-48 yrs), 82 with SRA preservation (SRA group) and 129 without SRA preservation (controls). After PSM, 75 patients were considered for each group. SRA preservation was associated with fewer complications (OR 0.331, 95% CI 0.116; 0.942) in univariate logistic regression analysis. AL events were significantly fewer in the SRA group than in the control group (0 vs 12, p = 0.028). The SRA group had fewer overall surgical complication and pelvic sepsis rates (p = 0.020 and p = 0.028, respectively). Median operative time was significantly longer in the SRA group (340 min vs 240 min, p<0.001), and median hospital stay was significantly shorter (6 vs 7 days, p=0.017). Twenty-seven patients in the SRA group experienced intraoperative anastomotic bleeding, which was controlled endoscopically. Superimposable results were obtained analyzing the whole patient cohort. CONCLUSIONS SRA preservation can be considered an advantage in this patient population, despite adding a further technical step during surgery and thereby prolonging the operative time. Intraoperative endoscopic checking of possible anastomotic bleeding sites is recommended.
Collapse
Affiliation(s)
- E Rausa
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, Italy
| | - G Colletti
- Colorectal Surgery Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, Italy
| | - C M Ciniselli
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, Italy.
| | - S Signoroni
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, Italy
| | - V Duroni
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, Italy
| | - F Cavalcoli
- Gastroenterology and Gastrointestinal Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A Magarotto
- Gastroenterology and Gastrointestinal Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M T Ricci
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, Italy
| | - C Brignola
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, Italy
| | - D Biasoni
- Pediatric Surgical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - P Verderio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, Italy
| | - M Vitellaro
- Unit of Hereditary Digestive Tract Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, Italy
- Colorectal Surgery Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, Italy
| |
Collapse
|
45
|
Bijukumar S, Murugesan T, Dhanapal AR, Mubarak SJ, Vedagiri H, Jayaraman A. Construing recombinant ZFP160 from Aspergillus terreus as pterin deaminase enzyme. Biotechnol Appl Biochem 2023; 70:2150-2162. [PMID: 37766485 DOI: 10.1002/bab.2515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Pterin deaminase stands as a metalloenzyme and exhibits both antitumor and anticancer activities. Therefore, this study aimed to explore the molecular function of zinc finger protein-160 (zfp160) from Aspergillus terreus with its enzyme mechanism in detail. Subsequently, preliminary molecular docking studies on zfp160 from A. terreus were done. Next, the cloning and expression of zfp160 protein were carried out. Following, protein expression was induced and purified through nickel NTA column with imidazole gradient elution. Through the Mascot search engine tool, the expressed protein of MALDI-TOF was confirmed by 32 kDa bands of SDS-PAGE. Furthermore, its enzymatic characterization and biochemical categorization were also explored. The optimum conditions for enzyme were determined to be pH 8, temperature 35°C, km 50 μm with folic acid as substrate, and Vmax of 24.16 (IU/mL). Further, in silico analysis tried to explore the interactions and binding affinity of various substrates to the modeled pterin deaminase from A. terreus. Our results revealed the binding mode of different substrate molecules with pterin deaminase using the approximate scoring functions that possibly correlate with actual experimental binding affinities. Following this, molecular dynamic simulations provided the in-depth knowledge on deciphering functional mechanisms of pterin deaminase over other drugs.
Collapse
Affiliation(s)
- Sajitha Bijukumar
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Thandeeswaran Murugesan
- Bharathiar Cancer Theranostics Research Centre (BCTRC), RUSA2.0, Bharathiar University, Coimbatore, India
| | - Anand Raj Dhanapal
- Chemistry and Bioprospecting Division, Institute of Forest Genetics and Tree Breeding (IFGTB), Indian Council of Forestry Research and Education (ICFRE), Coimbatore, Tamil Nadu, India
| | - Shoufia Jabeen Mubarak
- Medical Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Hemamalini Vedagiri
- Medical Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Angayarkanni Jayaraman
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- Bharathiar Cancer Theranostics Research Centre (BCTRC), RUSA2.0, Bharathiar University, Coimbatore, India
| |
Collapse
|
46
|
Haas S, Strassburg CP, Nattermann J, Hueneburg R. [Results of Endoscopic Screening and Therapy of the Duodenum in MUTYH-associated Polyposis]. Zentralbl Chir 2023; 148:502-507. [PMID: 37995714 DOI: 10.1055/a-2194-0901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
MUTYH-associated polyposis (MAP) is a very rare autosomal recessive polyposis syndrome. It is caused by a homozygous or compound heterozygous germline mutation in the MUTYH gene. MAP is characterised by numerous colorectal adenomas; furthermore there is an increased risk for colorectal cancer (CRC). However, the phenotype can be highly variable; for example, affected individuals also have an increased risk of polyps of the upper gastrointestinal tract and development of duodenal carcinomas.This study included 15 patients with evidence of a pathogenic MUTYH variant, who were screened at the National Center for Hereditary Tumor Syndromes. Oesophagogastroduodenoscopy (EGD) results were prospectively recorded in a database from 2012 to 2023.At least one EGD (median 4, range 1-15) was performed in 15 patients, seven of whom carried a homozygous and 8 a compound heterozygous pathogenic MUTYH variant. The median surveillance period was 115 months (range, 3-215 months). The median age at baseline was 44 (range 17-65) years. A total of 72 EGDs were performed (median 4; range 1-15). Five patients had duodenal adenomas; histology showed tubular adenomas with low grade intraepithelial dysplasia (LGIEN) in all of these cases. The total number of duodenal adenomas detected was 48, and the median number was 3 (range, 1-37). Neither high grade intraepithelial neoplasia (HGIEN) nor duodenal cancer was detected during the surveillance period.Patients with MUTYH-associated polyposis should be managed in a multidisciplinary centre for hereditary tumour disease. Our cohort showed more patients with duodenal adenomas than in previously published data. However, no progression to HGIEN or duodenal carcinomas was observed as a result of the endoscopic therapy performed.
Collapse
Affiliation(s)
- Sonja Haas
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Bonn, Bonn, Deutschland
- Nationales Zentrum für erbliche Tumorerkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Christian P Strassburg
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Bonn, Bonn, Deutschland
- Nationales Zentrum für erbliche Tumorerkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Jacob Nattermann
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Bonn, Bonn, Deutschland
- Nationales Zentrum für erbliche Tumorerkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Robert Hueneburg
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Bonn, Bonn, Deutschland
- Nationales Zentrum für erbliche Tumorerkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| |
Collapse
|
47
|
Zhao B, Sun W, Wang Y, Wu X, Li Y, Wang W, Ni M, Yan P, Dou X, Wang L, Chen M. Monoallelic deleterious MUTYH mutations generate colorectal cancer: A case report. Clin Case Rep 2023; 11:e8229. [PMID: 38033687 PMCID: PMC10686896 DOI: 10.1002/ccr3.8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Here we reported a particular case of MUTYH-associated polyposis (MAP) that had only one rare heterozygous variant, but some particular clinical manifestations contributed to occur in this male patient by only one defective MUTYH allele were worth of further investigation. We reported a case of MAP. It is about a 33-year-old man with chief complaints of hematochezia who had multiple polyps that were found in his colon via colonoscopy. He followed his doctor's advice and performed a genetic analysis examination. Germline test was positive for a major heterozygous variant: chr1:45800165 on the MUTYH gene. MUTYH gene sequence analysis confirmed the following heterozygous variant: c.55CT (p.R19X) in exon 2 (ClinVar NM_001128425). Unfortunately, his mother and daughter have the ILK variant according to genetic analysis. However, this variant at the site was not detected in his father. Various types of polyps were found on repeated colonoscopy, which tended to become latent cancerous in the future. This case indicated that awareness of the risk of carcinogenesis of polyps in carriers of monoallelic variants might accordingly increase, and our understanding of the type of genetically related disease will be enhanced by us.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Wenqi Sun
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yunrong Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xinrong Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yifan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Weiwei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Muhan Ni
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Peng Yan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xiaotan Dou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Min Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
48
|
Sanchez-Mete L, Mosciatti L, Casadio M, Vittori L, Martayan A, Stigliano V. MUTYH-associated polyposis: Is it time to change upper gastrointestinal surveillance? A single-center case series and a literature overview. World J Gastrointest Oncol 2023; 15:1891-1899. [DOI: 10.4251/wjgo.v15.i11.1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The presence of Spigelman stage (SS) IV duodenal polyposis is considered the most significant risk factor for duodenal cancer in patients with MUTYH-associated polyposis (MAP). However, advanced SS disease is rarely reported in MAP patients, and no clear recommendations on small bowel (SB) surveillance have been proposed in this patient setting.
AIM To research more because that case reports of duodenal cancers in MAP suggest that they may develop in the absence of advanced benign SS disease and often involve the distal portion of the duodenum.
METHODS We describe a series of MAP patients followed up at the Regina Elena National Cancer Institute of Rome (Italy). A literature overview on previously reported SB cancers in MAP is also provided.
RESULTS We identified two (6%) SB adenocarcinomas with no previous history of duodenal polyposis. Our observations, supported by literature evidence, suggest that the formula for staging duodenal polyposis and predicting risk factors for distal duodenum and jejunal cancer may need to be adjusted to take this into account rather than focusing solely on the presence or absence of SS IV disease.
CONCLUSION Our study emphasizes the need for further studies to define appropriate upper gastrointestinal surveillance programs in MAP patients.
Collapse
Affiliation(s)
- Lupe Sanchez-Mete
- Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| | - Lorenzo Mosciatti
- Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| | - Marco Casadio
- Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| | - Luigi Vittori
- Department of Radiological, Oncological and Pathological Sciences, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| | - Aline Martayan
- Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| | - Vittoria Stigliano
- Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| |
Collapse
|
49
|
Ponces Ramalhão J, Afonso M, Macedo M, Araújo M. Atypical hypertrophy of retinal pigment epithelium manifesting as the first sign of familial adenomatous polyposis. BMJ Case Rep 2023; 16:e254350. [PMID: 37963665 PMCID: PMC10649494 DOI: 10.1136/bcr-2022-254350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
A female patient in her 20s presented to a routine ophthalmology appointment. Medical history was unremarkable. Family history was notable for intestinal cancer of a second-degree relative, diagnosed in her late 60s. Fundus examination revealed bilateral, multiple, flat, oval, pigmented lesions with an irregular halo of atrophy. The patient was diagnosed with atypical congenital hypertrophy of retinal pigmented epithelium. Investigation of extraocular associations was performed, including upper and lower endoscopy, which revealed 500-1000 colonic polyps with a maximum size 25 mm. Pathology did not reveal submucosal invasion. Genetic testing detected an adenomatous polyposis coli mutation (heterozygotic variant c.3183_3187delACAAA p.(Gln1062*)).
Collapse
Affiliation(s)
- João Ponces Ramalhão
- Departamento de Oftalmologia, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Miguel Afonso
- Departamento de Oftalmologia, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Mafalda Macedo
- Departamento de Oftalmologia, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Maria Araújo
- Departamento de Oftalmologia, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| |
Collapse
|
50
|
Diao W, Farrell JD, Wang B, Ye F, Wang Z. Preorganized Internal Electric Field Promotes a Double-Displacement Mechanism for the Adenine Excision Reaction by Adenine DNA Glycosylase. J Phys Chem B 2023; 127:8551-8564. [PMID: 37782825 DOI: 10.1021/acs.jpcb.3c04928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Adenine DNA glycosylase (MutY) is a monofunctional glycosylase, removing adenines (A) misinserted opposite 8-oxo-7,8-dihydroguanine (OG), a common product of oxidative damage to DNA. Through multiscale calculations, we decipher a detailed adenine excision mechanism of MutY that is consistent with all available experimental data, involving an initial protonation step and two nucleophilic displacement steps. During the first displacement step, N-glycosidic bond cleavage is accompanied by the attack of the carboxylate group of residue Asp144 at the anomeric carbon (C1'), forming a covalent glycosyl-enzyme intermediate to stabilize the fleeting oxocarbenium ion. After departure of the excised base, water nucleophiles can be recruited to displace Asp144, completing the catalytic cycle with retention of stereochemistry at the C1' position. The two displacement reactions are found to mostly involve the movement of the oxocarbenium ion, occurring with large charge reorganization and thus sensitive to the internal electric field (IEF) exerted by the polar protein environment. Intriguingly, we find that the negatively charged carboxylate group is a good nucleophile for the oxocarbenium ion, yet an unactivated water molecule is not, and that the electric field catalysis strategy is used by the enzyme to enable its unique double-displacement reaction mechanism. A strong IEF, pointing toward 5' direction of the substrate sugar ring, greatly facilitates the second displacement reaction at the expense of elevating the barrier of the first one, thereby allowing both reactions to occur. These findings not only increase our understanding of the strategies used by DNA glycosylases to repair DNA lesions, but also have important implications for how internal/external electric field can be applied to modulate chemical reactions.
Collapse
Affiliation(s)
- Wenwen Diao
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - James D Farrell
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Zhanfeng Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|