1
|
Inchingolo R, Acquafredda F, Ferraro V, Laera L, Surico G, Surgo A, Fiorentino A, Marini S, de'Angelis N, Memeo R, Spiliopoulos S. Non-surgical treatment of hilar cholangiocarcinoma. World J Gastrointest Oncol 2021; 13:1696-1708. [PMID: 34853644 PMCID: PMC8603446 DOI: 10.4251/wjgo.v13.i11.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/30/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer of the biliary confluence also known as hilar cholangiocarcinoma (HC) or Klatskin tumor, is a rare type of neoplastic disease constituting approximately 40%-60% of intrahepatic malignancies, and 2% of all cancers. The prognosis is extremely poor and the majority of Klatskin tumors are deemed unresectable upon diagnosis. Most patients with unresectable bile duct cancer die within the first year after diagnosis, due to hepatic failure, and/or infectious complications secondary to biliary obstruction. Curative treatments include surgical resection and liver transplantation in highly selected patients. Nevertheless, very few patients are eligible for surgery or transplant at the time of diagnosis. For patients with unresectable HC, radiotherapy, chemotherapy, photodynamic therapy, and liver-directed minimally invasive procedures such as percutaneous image-guided ablation and intra-arterial chemoembolization are recommended treatment options. This review focuses on currently available treatment options for unresectable HC and discusses future perspectives that could optimize outcomes.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Interventional Radiology Unit, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70124, Italy
| | - Fabrizio Acquafredda
- Interventional Radiology Unit, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70124, Italy
| | - Valentina Ferraro
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Letizia Laera
- Department of Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Gianmarco Surico
- Department of Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Alba Fiorentino
- Department of Radiation Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Stefania Marini
- Department of Radiology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Nicola de'Angelis
- Unit of Minimally Invasive and Robotic Digestive Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Stavros Spiliopoulos
- 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Athens 12461, Greece
| |
Collapse
|
2
|
Arora M, Bogenberger JM, Abdelrahman A, Leiting JL, Chen X, Egan JB, Kasimsetty A, Lenkiewicz E, Malasi S, Uson PLS, Nagalo BM, Zhou Y, Salomao MA, Kosiorek HE, Braggio E, Barrett MT, Truty MJ, Borad MJ. Evaluation of NUC-1031: a first-in-class ProTide in biliary tract cancer. Cancer Chemother Pharmacol 2020; 85:1063-1078. [PMID: 32440762 DOI: 10.1007/s00280-020-04079-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE NUC1031 is a first-in-class ProTide, that is a gemcitabine pro-drug designed to overcome putative mechanisms of resistance, including decreased expression of hENT/hCNT transporters, absence of activating enzymes such as deoxycytidine kinase (dCK) and presence of degrading enzymes such as cytidine deaminase (CDA). We undertook comprehensive pre-clinical evaluation of NUC1031 in biliary tract cancer (BTC) models, given that gemcitabine/cisplatin is a standard first-line therapy in advanced BTC. METHODS Here, we compared the in vitro activity of NUC1031 in comparison to gemcitabine, validate putative mechanism(s) of action, assessed potential biomarkers of sensitivity or resistance, and performed combination studies with cisplatin. We also evaluated the in vivo efficacy of NUC1031 and gemcitabine using a CDA-high cholangiocarcinoma patient-derived xenograft (PDX) model. RESULTS In a panel of BTC cell lines (N = 10), NUC1031 had less potency than gemcitabine in multiple cellular assays. NUC1031 did not demonstrate evidence of greater synergy over gemcitabine in combination with cisplatin. Surprisingly, efficacy of both gemcitabine and NUC1031 was not found to be correlated with hENT/hCTN, dCK or CDA transcript levels. Gemcitabine and NUC1031 showed equivalent efficacy in a CDA-high PDX model in vivo contradicting the primary rationale of NUC1031 design. CONCLUSION NUC1031 did not exhibit evidence of superior activity over gemcitabine, as a single-agent, or in combination with cisplatin, in either our in vivo or in vitro BTC models. Given that the largest Phase 3 study (ClinicalTrials.gov: NCT0314666) to date in BTC is underway (N = 828) comparing NUC1031/cisplatin to gemcitabine/cisplatin, our results suggest that a more conservative clinical evaluation path would be more appropriate.
Collapse
Affiliation(s)
- Mansi Arora
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | | | | | - Xianfeng Chen
- Department of Informatics, Mayo Clinic, Scottsdale, AZ, USA
| | - Jan B Egan
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Aradhana Kasimsetty
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Elzbieta Lenkiewicz
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Smriti Malasi
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Pedro Luiz Serrano Uson
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Bolni Marius Nagalo
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - Marcela A Salomao
- Department of Lab Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Heidi E Kosiorek
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Esteban Braggio
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Cancer Biology, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - Michael T Barrett
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA.
| |
Collapse
|
3
|
Zhan M, Wang H, Xu SW, Yang LH, Chen W, Zhao SX, Shen H, Liu Q, Yang RM, Wang J. Variants in oxidative stress-related genes affect the chemosensitivity through Nrf2-mediated signaling pathway in biliary tract cancer. EBioMedicine 2019; 48:143-160. [PMID: 31590928 PMCID: PMC6838379 DOI: 10.1016/j.ebiom.2019.08.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Oxidative stress and their effectors play critical roles in carcinogenesis and chemoresistance. However, the role of oxidative stress-related genes variants in biliary tract cancer (BTC) chemoresistance remains unknown. In this work, we aim to investigate oxidative stress-dependent molecular mechanisms underlying chemoresistance, and find potential biomarkers to predict chemotherapy response for BTC. METHODS Sixty-six SNPs in 21 oxidative stress-related genes were genotyped and analyzed in 367 BTC patients. Immunoblot, immunohistochemical, immunofluorescent, quantitative PCR, chromatin immunoprecipitation analysis and study of animal xenograft models were performed to discover oxidative stress-related susceptibility genes underlying chemoresistance mechanism of BTC. FINDINGS We found that 3 functional polymorphisms (CAT_rs769217, GPX4_rs4807542, and GSR_rs3779647), which were shown to affect their respective gene expression levels, modified the effect of chemotherapy on overall survival (OS). We then demonstrated that knockdown of GPX4, CAT, or GSR induced chemoresistance through elevation of ROS level and activation of Nrf2-ABCG2 pathway in BTC cell lines. Moreover, the association between Nrf2 expression and BTC prognosis is only found in patients who received chemotherapy. Knockdown of Nrf2 enhanced chemosensitivity or even eliminated postoperative recurrence in BTC xenograft mouse models. Importantly, upon chemotherapy treatment patients harboring high oxidative stress-related score received higher survival benefit from adjuvant chemotherapy compared with patients with low oxidative stress-related score. INTERPRETATION The result of our study suggests, for the first time, that the oxidative stress-related score calculated by combining variations in CAT, GPX4, and GSR or Nrf2 expression could be used for predicting the chemosensitivity of BTC patients. FUND: This work was supported by the National Science Foundation of China, Foundation of Shanghai Shen Kang Hospital Development Center, and Shanghai Outstanding Academic Leaders Plan.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sun-Wang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin-Hua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Hui Shen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui-Meng Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China.
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
4
|
Mishra SK, Kumari N, Krishnani N. Molecular pathogenesis of gallbladder cancer: An update. Mutat Res 2019; 816-818:111674. [PMID: 31330366 DOI: 10.1016/j.mrfmmm.2019.111674] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 01/17/2023]
Abstract
Gallbladder carcinoma (GBC) is the most aggressive gastrointestinal malignancy throughout the world, with wide geographical variance. It is the subtype of biliary tract malignancy that has the poorest prognosis and lower survival among all biliary tract malignancies. Various factors are associated with GBC pathogenesis such as environmental, microbial, metabolic and molecular. Chronic inflammation of gallbladder due to presence of gallstone or microbial infection (eg. Salmonella or H. pylori) results in sustained production of inflammatory mediators in the tissue microenvironment, which can cause genomic changes linked to carcinogenesis. Genetic alterations are one of the major factors, associated with aggressiveness and prognosis. Researches have been done to explore suitable biomarker for early diagnosis and identify altered molecular pathways to develop appropriate biomarkers for early diagnosis, therapy and predicting prognosis. Different agents for targeted therapy against actionable mutations of molecules like EGFR, VEGF, mTOR, HER2, PDL-1, PD-1, MET, PI3K, N-cadherin, VEGFR, MEK1 and MEK2 are being tried. Despite these advancements, there is dismal improvement in the survival of GBC patients. Genetic aberrations other than actionable mutations and epigenetic modification including aberrant expressions of micro-RNAs, are also being studied both as diagnostic biomarker and therapeutic targets. Complex pathogenesis of GBC still needs to be unfolded. In this review we focus on the molecular pathogenesis of GBC elucidated till date along with future directions that can be explored to achieve better management of GBC patients.
Collapse
Affiliation(s)
- Shravan Kumar Mishra
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Niraj Kumari
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Narendra Krishnani
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
5
|
Li M, Liu F, Zhang F, Zhou W, Jiang X, Yang Y, Qu K, Wang Y, Ma Q, Wang T, Bai L, Wang Z, Song X, Zhu Y, Yuan R, Gao Y, Liu Y, Jin Y, Li H, Xiang S, Ye Y, Zhang Y, Jiang L, Hu Y, Hao Y, Lu W, Chen S, Gu J, Zhou J, Gong W, Zhang Y, Wang X, Liu X, Liu C, Liu H, Liu Y, Liu Y. Genomic ERBB2/ ERBB3 mutations promote PD-L1-mediated immune escape in gallbladder cancer: a whole-exome sequencing analysis. Gut 2019; 68:1024-1033. [PMID: 29954840 DOI: 10.1136/gutjnl-2018-316039] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Patients with gallbladder carcinoma (GBC) lack effective treatment methods largely due to the inadequacy of both molecular characterisation and potential therapeutic targets. We previously uncovered a spectrum of genomic alterations and identified recurrent mutations in the ErbB pathway in GBC. Here, we aimed to study recurrent mutations of genes and pathways in a larger cohort of patients with GBC and investigate the potential mechanisms and clinical significance of these mutations. DESIGN We performed whole-exome sequencing (WES) in 157 patients with GBC. Functional experiments were applied in GBC cell lines to explore the oncogenic roles of ERBB2/ERBB3 hotspot mutations, their correlation with PD-L1 expression and the underlying mechanisms. ERBB inhibitors and a PD-L1 blocker were used to evaluate the anticancer activities in co-culture systems in vitro and in vivo. RESULTS WES identified ERBB2 and ERBB3 mutations at a frequency of 7%-8% in the expanded cohort, and patients with ERBB2/ERBB3 mutations exhibited poorer prognoses. A set of in vitro and in vivo experiments revealed increased proliferation/migration on ERBB2/ERBB3 mutation. Ectopic expression of ERBB2/ERBB3 mutants upregulated PD-L1 expression in GBC cells, effectively suppressed normal T-cell-mediated cytotoxicity in vitro through activation of the PI3K/Akt signalling pathway and contributed to the growth and progression of GBC in vivo. Treatment with an ERBB2/ERBB3 inhibitor or a PD-L1 monoclonal antibody reversed these immunosuppressive effects, and combined therapy revealed promising therapeutic activities. CONCLUSIONS ERBB2/ERBB3 mutations may serve as useful biomarkers in identifying patients who are sensitive to ERBB2/ERBB3 inhibitors and PD-L1 monoclonal antibody treatment. TRIAL REGISTRATION NUMBER NCT02442414;Pre-results.
Collapse
Affiliation(s)
- Maolan Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Fatao Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yueqi Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Ma
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Ting Wang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Lu Bai
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Zheng Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yidi Zhu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Ruiyan Yuan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yuan Gao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yongchen Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yunpeng Jin
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Huaifeng Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shanshan Xiang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yijian Zhang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Lin Jiang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yunping Hu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yajuan Hao
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Wei Lu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shili Chen
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Jun Gu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Jian Zhou
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yong Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Xiyong Liu
- Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Liu
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| |
Collapse
|
6
|
Kriegsmann M, Roessler S, Kriegsmann K, Renner M, Longuespée R, Albrecht T, Loeffler M, Singer S, Mehrabi A, Vogel MN, Pathil A, Köhler B, Springfeld C, Rupp C, Weiss KH, Goeppert B. Programmed cell death ligand 1 (PD-L1, CD274) in cholangiocarcinoma - correlation with clinicopathological data and comparison of antibodies. BMC Cancer 2019; 19:72. [PMID: 30646854 PMCID: PMC6332835 DOI: 10.1186/s12885-018-5254-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) may arise in the intra- or extrahepatic biliary tract and is associated with a poor prognosis. Despite recent advances, to date there is still no established targeted therapeutic approach available. Non-surgical therapeutic agents are urgently needed, as most patients are non-eligible to surgical resection. Anti-PD-L1 therapy prevents cancer cells from evading the immune system and has emerged as a new treatment option in several cancer entities. Recently, PD-L1 expression has been analyzed in comparably small CCA patient cohorts. However, a systematic validation of different PD-L1 antibodies has not been performed in CCA so far. METHODS We stained a tissue microarray consisting of 170 patients, including 72 intrahepatic cholangiocarcinomas (iCCAs), 57 perihilar cholangiocarcinomas (pCCAs) and 41 distal cholangiocarcinomas (dCCAs) by immunohistochemistry and evaluated PD-L1 positivity in tumor and stromal cells. We analyzed three different PD-L1 antibodies (clones 28-8, SP142, and SP263) that are frequently used and recommended for predictive diagnostic testing in other cancer types. RESULTS For PD-L1 antibody clone SP263, 5% of iCCAs, 4% of pCCAs and 3% of dCCAs exhibited PD-L1 expression on tumor cells, thereby showing the highest frequencies of PD-L1 positivity. Accordingly, highest PD-L1 positivity rates of stromal cells with 31% in iCCA, 40% in pCCA and 61% in dCCA were detected for clone SP263. Agreement of PD-L1 positivity in tumor cells was moderate for clone 28-8 and SP263 (κ = 0.44) and poor between 28-8 and SP142 (κ = 0.13), as well as SP142 and SP263 (κ = 0.11), respectively. Statistical analyses of PD-L1 expression (clone SP263) on tumor cells with clinicopathological data revealed a positive correlation with shortened overall survival in CCA patients. CONCLUSIONS Selection of appropriate PD-L1 antibodies and careful evaluation of immunohistochemical staining patterns have a significant impact on PD-L1 testing in CCA. Clinical trials are necessary to investigate the putative beneficial effects of PD-L1 targeted immunotherapy in CCA patients.
Collapse
Affiliation(s)
- Mark Kriegsmann
- Institute of Pathology, University Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Katharina Kriegsmann
- Department of Rheumatology, Oncology and Hematology, University of Heidelberg, Heidelberg, Germany
| | - Marcus Renner
- Institute of Pathology, University Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Rémi Longuespée
- Institute of Pathology, University Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Moritz Loeffler
- Institute of Pathology, University Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Stephan Singer
- Institute of Pathology, University Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General Visceral and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Monika Nadja Vogel
- Diagnostic and Interventional Radiology, Thoraxklinik at University Hospital of Heidelberg, Heidelberg, Germany
| | - Anita Pathil
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
| | - Bruno Köhler
- Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Christian Rupp
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Karl Heinz Weiss
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany. .,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.
| |
Collapse
|
7
|
Sun W, Lee J, Zhang S, Benyshek C, Dokmeci MR, Khademhosseini A. Engineering Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801039. [PMID: 30643715 PMCID: PMC6325626 DOI: 10.1002/advs.201801039] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/10/2018] [Indexed: 05/18/2023]
Abstract
Advances in genomic sequencing and bioinformatics have led to the prospect of precision medicine where therapeutics can be advised by the genetic background of individuals. For example, mapping cancer genomics has revealed numerous genes that affect the therapeutic outcome of a drug. Through materials and cell engineering, many opportunities exist for engineers to contribute to precision medicine, such as engineering biosensors for diagnosis and health status monitoring, developing smart formulations for the controlled release of drugs, programming immune cells for targeted cancer therapy, differentiating pluripotent stem cells into desired lineages, fabricating bioscaffolds that support cell growth, or constructing "organs-on-chips" that can screen the effects of drugs. Collective engineering efforts will help transform precision medicine into a more personalized and effective healthcare approach. As continuous progress is made in engineering techniques, more tools will be available to fully realize precision medicine's potential.
Collapse
Affiliation(s)
- Wujin Sun
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Junmin Lee
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Shiming Zhang
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Cole Benyshek
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Mehmet R. Dokmeci
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
- Department of RadiologyUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Ali Khademhosseini
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
- Department of RadiologyUniversity of California–Los AngelesLos AngelesCA90095USA
- Jonsson Comprehensive Cancer CenterUniversity of California–Los Angeles10833 Le Conte AveLos AngelesCA90024USA
- Department of Chemical and Biomolecular EngineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center of NanotechnologyDepartment of PhysicsKing Abdulaziz UniversityJeddah21569Saudi Arabia
- Department of Bioindustrial TechnologiesCollege of Animal Bioscience and TechnologyKonkuk UniversitySeoul05029Republic of Korea
| |
Collapse
|
8
|
Bogenberger JM, DeLeon TT, Arora M, Ahn DH, Borad MJ. Emerging role of precision medicine in biliary tract cancers. NPJ Precis Oncol 2018; 2:21. [PMID: 30302397 PMCID: PMC6170410 DOI: 10.1038/s41698-018-0064-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Biliary tracts cancers (BTCs) are a diverse group of aggressive malignancies with an overall poor prognosis. Genomic characterization has uncovered many putative clinically actionable aberrations that can also facilitate the prognostication of patients. As such, comprehensive genomic profiling is playing a growing role in the clinical management of BTCs. Currently however, there is only one precision medicine approved by the US Food and Drug Administration (FDA) for the treatment of BTCs. Herein, we highlight the prevalence and prognostic, diagnostic, and predictive significance of recurrent mutations and other genomic aberrations with current clinical implications or emerging relevance to clinical practice. Some ongoing clinical trials, as well as future areas of exploration for precision oncology in BTCs are highlighted.
Collapse
Affiliation(s)
- James M. Bogenberger
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ USA
| | - Thomas T. DeLeon
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ USA
| | - Mansi Arora
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ USA
| | - Daniel H. Ahn
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ USA
| | - Mitesh J. Borad
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN USA
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ USA
| |
Collapse
|
9
|
Zhan M, Yang RM, Wang H, He M, Chen W, Xu SW, Yang LH, Liu Q, Long MM, Wang J. Guided chemotherapy based on patient-derived mini-xenograft models improves survival of gallbladder carcinoma patients. Cancer Commun (Lond) 2018; 38:48. [PMID: 30016995 PMCID: PMC6050666 DOI: 10.1186/s40880-018-0318-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/06/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gallbladder carcinoma is highly aggressive and resistant to chemotherapy, with no consistent strategy to guide first line chemotherapy. However, patient-derived xenograft (PDX) model has been increasingly used as an effective model for in preclinical study of chemosensitivity. METHODS Mini-PDX model was established using freshly resected primary lesions from 12 patients with gallbladder to examine the sensitivity with five of the most commonly used chemotherapeutic agents, namely gemcitabine, oxaliplatin, 5-fluorouracil, nanoparticle albumin-bound (nab)-paclitaxel, and irinotecan. The results were used to guide the selection of chemotherapeutic agents for adjunctive treatment after the surgery. Kaplan-Meier method was used to compare overall survival (OS) and disease free survival (DFS) with 45 patients who received conventional chemotherapy with gemcitabine and oxaliplatin. RESULTS Cell viability assays based on mini-PDX model revealed significant heterogeneities in drug responsiveness. Kaplan-Meier analysis showed that patients in the PDX-guided chemotherapy group had significantly longer median OS (18.6 months; 95% CI 15.9-21.3 months) than patients in the conventional chemotherapy group (13.9 months; 95% CI 11.7-16.2 months) (P = 0.030; HR 3.18; 95% CI 1.47-6.91). Patients in the PDX-guided chemotherapy group also had significantly longer median DFS (17.6 months; 95% CI 14.5-20.6 months) than patients in the conventional chemotherapy group (12.0 months; 95% CI 9.7-14.4 months) (P = 0.014; HR 3.37; 95% CI 1.67-6.79). CONCLUSION The use of mini-PDX model to guide selection of chemotherapeutic regimens could improve the outcome in patients with gallbladder carcinoma.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Rui-meng Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Min He
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Sun-wang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Lin-hua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 P. R. China
| | - Man-mei Long
- Department of Pathology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011 P. R. China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| |
Collapse
|
10
|
Hoyos S, Navas MC, Restrepo JC, Botero RC. Current controversies in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1461-1467. [PMID: 28756216 DOI: 10.1016/j.bbadis.2017.07.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinoma represents 10% of primary liver malignancies and accounts for less than 3% of all gastrointestinal malignant tumors, with an enormous geographical variation. This neoplasia can arise from the biliary tract epithelium or hepatic progenitor cells. Depending on the anatomic localization, it is classified into three subtypes: intrahepatic, perihilar and distal. This fact is one of the main difficulties, because there are many studies that indistinctly include the results in the management of these different types of cholangiocarcinoma, without differentiating its location and even including gallbladder cancer. There are many controversial points in epidemiology, liver transplantation as a treatment, limitations of different results by group and type of treatment, histological testing and chemotherapy. This is a narrative review about topics in cholangiocarcinoma. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Sergio Hoyos
- Hepatobiliary and Liver Transplant Program, Hospital Pablo Tobon Uribe-Universidad de Antioquia, Medellín, Colombia; Grupo Gastrohepatologia, Facultad de Medicina, Universidad of Antioquía UdeA, Calle 70 No. 52-21, Medellin, Colombia; Epidemiology, University CES, Medellin, Colombia.
| | - Maria-Cristina Navas
- Grupo Gastrohepatologia, Facultad de Medicina, Universidad of Antioquía UdeA, Calle 70 No. 52-21, Medellin, Colombia
| | - Juan-Carlos Restrepo
- Hepatobiliary and Liver Transplant Program, Hospital Pablo Tobon Uribe-Universidad de Antioquia, Medellín, Colombia; Grupo Gastrohepatologia, Facultad de Medicina, Universidad of Antioquía UdeA, Calle 70 No. 52-21, Medellin, Colombia
| | | |
Collapse
|
11
|
Huang SB, Zheng CX. Gene alterations and epigenetic changes in intrahepatic cholangiocarcinoma. Expert Rev Anticancer Ther 2016; 17:89-96. [PMID: 27893290 DOI: 10.1080/14737140.2017.1266261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shao-Bin Huang
- Department of Pancreato-biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao-Xu Zheng
- Department of Pancreato-biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Terai K, Jiang M, Tokuyama W, Murano T, Takada N, Fujimura K, Ebinuma H, Kishimoto T, Hiruta N, Schneider WJ, Bujo H. Levels of soluble LR11/SorLA are highly increased in the bile of patients with biliary tract and pancreatic cancers. Clin Chim Acta 2016; 457:130-6. [PMID: 27079357 DOI: 10.1016/j.cca.2016.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND The utility of molecules derived from cancer cells as biomarkers of the pathological status in biliary tract and pancreatic cancers is still limited. Soluble LDL receptor relative with 11 ligand-binding repeats (sLR11), a molecule released from immature cells, has been shown to be a circulating biomarker for early stage hematological malignancies. METHODS We have evaluated the pathological significance of bile sLR11 levels in 147 samples from 72 patients with biliary tract cancer (BTC), pancreatic cancer (PC), or benign diseases. RESULTS The bile sLR11 levels in the cancer patients were significantly increased compared with those in patients without cancer, independent of cytological detection of cancer cells in bile. The average bile sLR11 levels in cancer patients were significantly higher than in those with benign diseases, while levels of bile carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) were not different. LR11 protein was found to be highly expressed in the BTC and PC cells. The LR11 transcript levels in cholangiocarcinoma and pancreatic cancer cell lines were sharply induced during proliferation and significantly increased under hypoxic conditions. CONCLUSIONS Therefore, sLR11 levels in bile may be indicative of cancer cell conditions and may serve as potential novel biomarker in patients with BTC and PC.
Collapse
Affiliation(s)
- Kensuke Terai
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan; Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan; Department of Biomolecular Science, Toho University Graduate School of Science, Funabashi, Japan
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Wataru Tokuyama
- Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan
| | - Takeyoshi Murano
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Nobuo Takada
- Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Kengo Fujimura
- Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan
| | - Hiroyuki Ebinuma
- Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan
| | - Toshihiko Kishimoto
- Department of Biomolecular Science, Toho University Graduate School of Science, Funabashi, Japan
| | - Nobuyuki Hiruta
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan; Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan
| | - Wolfgang J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan.
| |
Collapse
|