1
|
Saadh MJ, Torabi Fard N, Hussein A, Mirzazadeh A, Siavashi M, SeyedMoharami F, Noroozi S, Soleimani Samarkhazan H. Mesenchymal stem cells in the bone marrow microenvironment: a double-edged sword for AML. J Cancer Res Clin Oncol 2025; 151:193. [PMID: 40542231 DOI: 10.1007/s00432-025-06244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 06/09/2025] [Indexed: 06/22/2025]
Abstract
Mesenchymal stem cells (MSCs) play a pivotal role in supporting acute myeloid leukemia (AML) cell survival, proliferation, and drug resistance through various mechanisms, including the release of soluble factors, direct cell-cell interactions, and the creation of a leukemia-supportive niche. Conversely, MSCs also demonstrate potential inhibitory effects on AML, including the induction of apoptosis, cell cycle arrest, and the modulation of immune responses. These contrasting effects highlight the complexities of MSC-AML interactions and emphasize the need for further research to understand their therapeutic potential fully. Targeting MSCs represents a promising avenue for AML treatment. Strategies aimed at modifying MSC-mediated support of AML cells, such as inhibiting pro-survival signaling pathways, disrupting the leukemia-supportive niche, and enhancing the immune-stimulatory functions of MSCs, could offer novel therapeutic approaches. However, it is essential to acknowledge the limitations of current research. Further investigations are necessary to elucidate the precise mechanisms underlying the dual effects of MSCs in AML, to identify biomarkers that predict patient response to MSC-targeted therapies, and to develop strategies to overcome potential challenges associated with MSC-based interventions. In conclusion, understanding the multifaceted role of MSCs in AML pathogenesis is crucial for developing innovative therapeutic approaches. By harnessing the potential of MSCs and targeting their interactions with AML cells, we can explore novel strategies to improve treatment outcomes and enhance the overall management of this challenging hematological malignancy. This review underscores the intricate relationship between MSCs and AML within the bone marrow microenvironment.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Nima Torabi Fard
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmed Hussein
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Amirhossein Mirzazadeh
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Siavashi
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh SeyedMoharami
- Department of Hematology and Blood Banking, School of Medicine Cancer Molecular Pathology Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Shekoofeh Noroozi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Soleimani Samarkhazan
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mavaei M, Farokhi S, Yousefi MH, Fakouri A, Shadab A, Abdolmohammadi MH, Fallahian F, Afkhami H. Exploring two tumor treatment strategies: effectiveness of ribosome inactivating proteins and mesenchymal stem cells/MSC derived extracellular vesicles in cancer treatment. Front Oncol 2025; 15:1533065. [PMID: 40444089 PMCID: PMC12120475 DOI: 10.3389/fonc.2025.1533065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/15/2025] [Indexed: 06/02/2025] Open
Abstract
Cancer is a complex and heterogeneous disease that often requires multifaceted treatment strategies to achieve optimal therapeutic outcomes. Given the limitations of single-agent therapies, particularly in the face of intricate biological signaling networks and treatment resistance, there is a growing need for combinatory approaches. This article presents a novel hypothesis: the simultaneous use of ribosome-inactivating proteins (RIPs) and mesenchymal stem cells (MSCs) or MSC-derived extracellular vesicles (EVs) in cancer treatment. RIPs, with their potent cytotoxic properties, can target tumor cells effectively, while MSCs, known for their tumor-homing abilities and regenerative potential, can serve as delivery vehicles, potentially enhancing the targeting precision and reducing the systemic toxicity of RIPs. This hypothesis explores the synergistic potential of combining these two therapeutic modalities, leveraging the advantages of both techniques to create a more effective cancer treatment strategy. By combining RIPs' ability to inhibit protein synthesis with MSCs or MSC-derived EVs' capability to modulate the tumor microenvironment and deliver therapeutic agents. This approach offers a promising avenue for overcoming cancer's inherent complexity. However, challenges remain, such as optimizing dosing protocols, addressing safety concerns, and ensuring efficient drug delivery. Future research and clinical trials are necessary to validate this combination as a viable cancer therapy.
Collapse
Affiliation(s)
- Maryamosadat Mavaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Hasan Yousefi
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | | | - Faranak Fallahian
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hamed Afkhami
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
3
|
Sun MX, Zhu HC, Yu Y, Yao Y, Li HY, Feng FB, Wang QY, Liu RJ, Sun CG. Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review). Int J Oncol 2025; 66:36. [PMID: 40145557 PMCID: PMC12068849 DOI: 10.3892/ijo.2025.5742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The focus on breast cancer treatment has shifted from the cytotoxic effects of single drugs on tumor cells to multidimensional multi‑pathway synergistic intervention strategies targeting the tumor microenvironment (TME). The activation of the Wnt signaling pathway in the TME of breast cancer cells serves a key regulatory role in tissue homeostasis and is a key driver of the carcinogenic process. Modulating the crosstalk between the Wnt pathway and TME of breast cancer is key for understanding the biological behavior of breast cancer and advancing the development of novel antitumor drugs. The present review aimed to summarize the complex mechanisms of the Wnt signaling pathway in the breast cancer TME, interactions between the Wnt signaling pathway and components of the breast cancer TME and breast cancer‑associated genes, as well as the interactions between the Wnt signaling pathway and other signaling cascades at the molecular level. Furthermore, the present review aimed to highlight the unique advantages of the Wnt signaling pathway in the macro‑regulation of the TME and the current therapeutic strategies targeting the Wnt signaling pathway, their potential clinical value and future research directions in breast cancer treatment.
Collapse
Affiliation(s)
- Meng Xuan Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Han Ci Zhu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yang Yu
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Yan Yao
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
| | - Hua Yao Li
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Fu Bin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
| | - Qing Yang Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Rui Juan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
| | - Chang Gang Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
4
|
Trigo CM, Rodrigues JS, Camões SP, Solá S, Miranda JP. Mesenchymal stem cell secretome for regenerative medicine: Where do we stand? J Adv Res 2025; 70:103-124. [PMID: 38729561 PMCID: PMC11976416 DOI: 10.1016/j.jare.2024.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapies have yielded beneficial effects in a broad range of preclinical models and clinical trials for human diseases. In the context of MSC transplantation, it is widely recognized that the main mechanism for the regenerative potential of MSCs is not their differentiation, with in vivo data revealing transient and low engraftment rates. Instead, MSCs therapeutic effects are mainly attributed to its secretome, i.e., paracrine factors secreted by these cells, further offering a more attractive and innovative approach due to the effectiveness and safety of a cell-free product. AIM OF REVIEW In this review, we will discuss the potential benefits of MSC-derived secretome in regenerative medicine with particular focus on respiratory, hepatic, and neurological diseases. Both free and vesicular factors of MSC secretome will be detailed. We will also address novel potential strategies capable of improving their healing potential, namely by delivering important regenerative molecules according to specific diseases and tissue needs, as well as non-clinical and clinical studies that allow us to dissect their mechanisms of action. KEY SCIENTIFIC CONCEPTS OF REVIEW MSC-derived secretome includes both soluble and non-soluble factors, organized in extracellular vesicles (EVs). Importantly, besides depending on the cell origin, the characteristics and therapeutic potential of MSC secretome is deeply influenced by external stimuli, highlighting the possibility of optimizing their characteristics through preconditioning approaches. Nevertheless, the clarity around their mechanisms of action remains ambiguous, whereas the need for standardized procedures for the successful translation of those products to the clinics urges.
Collapse
Affiliation(s)
- Catarina M Trigo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S Rodrigues
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio P Camões
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P Miranda
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
5
|
Yasumura Y, Teshima T, Nagashima T, Michishita M, Shigechika H, Taira Y, Suzuki R, Matsumoto H. Canine adipose-derived mesenchymal stromal cells inhibit the growth of canine hematologic malignancy cell lines. Regen Ther 2025; 28:301-313. [PMID: 39867136 PMCID: PMC11757230 DOI: 10.1016/j.reth.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Intestinal lymphoma may be latent in some dogs with chronic inflammatory enteropathy. Mesenchymal stromal cells (MSCs) have potential therapeutic applications for refractory chronic inflammatory enteropathy, but their impact on the development of potential intestinal lymphomas has not yet been evaluated. Therefore, this study was performed to investigate the effect of canine adipose-derived MSCs (cADSCs) on the growth of canine lymphoma cell lines to assess the safety of MSC-based therapy in terms of pro- and anti-tumorigenic effects. Methods CADSCs were co-cultured with canine lymphoma/leukemia cell lines of various lineages, with or without cell-to-cell contact, to evaluate their effects on proliferation, apoptosis, and cell cycle progression in vitro. Additionally, a bioluminescent canine lymphoma cell line, established through firefly luciferase transduction, was co-injected with varying doses of cADSCs into immunocompromised mice. The growth of canine lymphoma cells was monitored over time in vivo using bioluminescence imaging. Results CADSCs inhibited the proliferation of all canine lymphoma/leukemia cell lines in a dose-dependent manner in vitro, under conditions allowing cell-to-cell contact. This inhibition occurred via the induction of apoptosis, G0/G1 phase cell cycle arrest, or both mechanisms. However, these effects were lost when the cells were physically separated using Transwell inserts. In xenotransplantation mouse models, cADSCs dose-dependently inhibited canine lymphoma cell growth and lung metastasis, as indicated by reduced bioluminescence signals. Conclusions This study has demonstrated for the first time that cADSCs inhibit the growth of different lineages of canine lymphoma/leukemia cells both in vitro and in vivo. These findings suggest that MSC-based cell therapy could potentially be applied to canine chronic inflammatory enteropathy without increasing the risk of promoting the growth of latent intestinal lymphomas.
Collapse
Affiliation(s)
- Yuyo Yasumura
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Hiroki Shigechika
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Yoshiaki Taira
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Hirotaka Matsumoto
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
6
|
Wang C, Song R, Yuan J, Hou G, Chu AL, Huang Y, Xiao C, Chai T, Sun C, Liu Z. Exosome-Shuttled METTL14 From AML-Derived Mesenchymal Stem Cells Promotes the Proliferation and Radioresistance in AML Cells by Stabilizing ROCK1 Expression via an m6A-IGF2BP3-Dependent Mechanism. Drug Dev Res 2025; 86:e70025. [PMID: 39690960 DOI: 10.1002/ddr.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 11/17/2024] [Indexed: 12/19/2024]
Abstract
Acute myelogenous leukemia (AML)-derived mesenchymal stem cells (MSCs) (AML-MSCs) have been identified to play a significant role in AML progression. The functions of MSCs mainly depend on their paracrine action. Here, we investigated whether AML-MSCs functioned in AML cells by transferring METTL14 (Methyltransferase 14) into AML cells via exosomes. Functional analyses were conducted using MTT assay, 5-ethynyl-2-deoxyuridine assay and flow cytometry. qRT-PCR and western blot analyses detected levels of mRNAs and proteins. Exosomes (exo) were isolated from AML-MSCs by ultracentrifugation. The m6A modification profile was determined by methylated RNA immunoprecipitation (MeRIP) assay. The interaction between Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and Rho Kinase 1 (ROCK1) was validated using RIP assay. AML-MSCs incubation promoted the proliferation and radioresistance in AML cells. Moreover, AML-MSCs incubation led to increases in m6A levels and METTL14 levels in AML cells. METTL14 was transferred into AML cells by packaging into exosomes of AML-MSCs. The knockdown of METTL14 in AML-MSCs exosomes could reduce the proliferation and radioresistance in AML cells. Mechanistically, METTL14 induced ROCK1 m6A modification and stabilized its expression by an m6A-IGF2BP3-dependent mechanism. Rescue assay showed that ROCK1 overexpression reversed the inhibitory effects of METTL14 silencing in AML-MSCs exosomes on AML cell proliferation and radioresistance. Exosome-shuttled METTL14 from AML-MSCs promoted proliferation and conferred radioresistance in AML cells by stabilizing ROCK1 expression via an m6A-IGF2BP3-dependent mechanism.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Rui Song
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jinjin Yuan
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Ge Hou
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - A Lan Chu
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yangyang Huang
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Chenhu Xiao
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Ting Chai
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Chen Sun
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Zongwen Liu
- Department of Radiation Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
7
|
Mohseni A, Salehi F, Rostami S, Hadiloo K, Hashemi M, Baridjavadi Z, Ahangari F, Karami N, Samani F, Tahmasebi S, Farahani N, Taheriazam A. Harnessing the power of exosomes for diagnosis, prognosis, and treatment of hematological malignancies. Stem Cell Res Ther 2025; 16:6. [PMID: 39773361 PMCID: PMC11708188 DOI: 10.1186/s13287-024-04125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are small extracellular vesicles of endocytic origin released by various cell types. They consist of lipid bilayers containing macromolecules such as lipids, proteins, microRNAs, growth factors, cytokines, and carbohydrates. Exosomes play a critical role in the diagnosis and treatment of various diseases. For instance, exosome contents have been utilized as biomarkers in body fluids (urine, saliva, serum) to identify cancers, autoimmune diseases, and inflammatory conditions such as sepsis. Due to their small size and ability to reach tumor microenvironments, exosomes are also used as carriers for chemotherapeutic drugs in drug delivery systems. Furthermore, evidence indicates that malignant cells release exosomes into the tumor microenvironment, influencing immune cells in a paracrine manner. Additionally, immune cell-derived exosomes, such as those from Natural Killer (NK) cells or cytotoxic T lymphocytes (CTLs), show potential as therapeutic agents in treating malignancies like leukemia. This review discusses the diagnostic role of exosomes in various hematological malignancies and explores the therapeutic potential of immune cell-derived exosomes in these diseases.
Collapse
Affiliation(s)
- Amirata Mohseni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Fatemeh Salehi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Samaneh Rostami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kaveh Hadiloo
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Baridjavadi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institue of Iran, Tehran, Iran
| | - Najibeh Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Samani
- Blood Transfusion Research Center, High Institute for Research and Education in transfusion medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Kinoshita J, Doden K, Sakimura Y, Hayashi S, Saito H, Tsuji T, Yamamoto D, Moriyama H, Minamoto T, Inaki N. Crosstalk Between Omental Adipose-Derived Stem Cells and Gastric Cancer Cells Regulates Cancer Stemness and Chemotherapy Resistance. Cancers (Basel) 2024; 16:4275. [PMID: 39766174 PMCID: PMC11674675 DOI: 10.3390/cancers16244275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Peritoneal metastasis (PM) remains a major challenge in patients with gastric cancer (GC) and occurs preferentially in adipose-rich organs, such as the omentum. Adipose-derived stem cells (ASCs) may influence cancer behavior. This study aimed to investigate whether ASCs isolated from the omentum can act as progenitors of cancer-associated fibroblasts (CAFs) and analyze their effects on the cancer stem cell (CSC) niche and the treatment resistance of GC cells. Methods: ASCs were isolated from the human omentum and their cellular characteristics were analyzed during co-culturing with GC cells. Results: ASCs express CAF markers and promote desmoplasia in cancer stroma in a mouse xenograft model. When co-cultured with GC cells, ASCs enhanced the sphere-forming efficiency of MKN45 and MKN74 cells. ASCs increased IL-6 secretion and enhanced the expression of Nanog and CD44v6 in GC cells; however, these changes were suppressed by the inhibition of IL-6. Xenograft mouse models co-inoculated with MKN45 cells and ASCs showed enhanced CD44v6 and Nanog expression and markedly reduced apoptosis induced by 5-FU treatment. Conclusion: This study improves our understanding of ASCs' role in PM treatment resistance and has demonstrated the potential for new treatment strategies targeting ASCs.
Collapse
Affiliation(s)
- Jun Kinoshita
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Kenta Doden
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Yusuke Sakimura
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Saki Hayashi
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Hiroto Saito
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Toshikatsu Tsuji
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Daisuke Yamamoto
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Hideki Moriyama
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Toshinari Minamoto
- Japan Community Health Care Organization Kanazawa Hospital, Kanazawa 920-8610, Japan;
- Department of Molecular and Cellular Pathology, Kanazawa University, Kanazawa 920-8640, Japan
| | - Noriyuki Inaki
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| |
Collapse
|
9
|
Jalilivand S, Nabigol M, Bakhtiyaridovvombaygi M, Gharehbaghian A. Bone marrow mesenchymal stem cell exosomes suppress JAK/STAT signaling pathway in acute myeloid leukemia in vitro. Blood Res 2024; 59:43. [PMID: 39704857 PMCID: PMC11662102 DOI: 10.1007/s44313-024-00051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Despite advances in the treatment of acute myeloid leukemia (AML), refractory forms of this malignancy and relapse remain common. Therefore, development of novel, synergistic targeted therapies are needed urgently. Recently, mesenchymal stem cells (MSCs) have been shown to be effective in treating various diseases, with most of their therapeutic outcomes attributed to their exosomes. In the current study, we investigated the effects of bone marrow mesenchymal stem cell (BM-MSC) exosomes on the expression of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling genes involved in AML pathogenesis. MATERIAL AND METHODS Exosomes were isolated from BM-MSCs and confirmed using transmission electron microscopy, dynamic light scattering, and flow cytometry. Subsequently, the exosome concentration was estimated using the bicinchoninic acid assay, and HL-60 cells were cocultured with 100 µg/mL of BM-MSC exosomes. Finally, the JAK2, STAT3, and STAT5 expression levels were analyzed using qRT-PCR. RESULTS The exosome characterization results confirmed that most isolated nanoparticles exhibited a round morphology, expressed CD9, CD63, and CD81, which are specific protein markers for exosome identification, and ranged between 80 and 100 nm in diameter. Furthermore, qRT-PCR analysis revealed a significant downregulation of JAK2, STAT3, and STAT5 in HL-60 cells treated with 100 μg/mL of BM-MSC exosomes. CONCLUSION Since JAK/STAT signaling contributes to AML survival, our findings suggest that the downregulation of JAK/STAT genes by BM-MSC exosomes in leukemic cells may aid in designing a potent therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Sahar Jalilivand
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nabigol
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Chhipa AS, Boscaro V, Gallicchio M, Patel S. The curious case of type I interferon signaling in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189204. [PMID: 39477031 DOI: 10.1016/j.bbcan.2024.189204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Cytokines are the crucial signaling proteins that mediate the crosstalks between the cells of tumor microenvironment (TME). Interferon-1 (IFN-1) are the important cytokines that are widely known for their tumor suppressive roles comprising of cancer cell intrinsic and extrinsic mechanisms. Despite having known antitumor effects, IFN-1 are also reported to have tumor promoting functions under varying circumstances. This dichotomy in the functions of IFN-1 is largely attributed to the acute and chronic activation of IFN-1 signaling in TME. The chronic activation of IFN-1 signaling in tumor cells results in altered stimulation of downstream pathways that result in the expression of tumor promoting proteins, while the acute IFN-1 signaling activation maintains its tumor inhibiting functions. In the present review, we have discussed the anti- and pro-tumor actions of IFN-1 signaling under acute and chronic IFN-1 signaling activation. We have also discussed the downstream changes in signaling components that result in tumor supportive functions of a constitutive IFN-1 signaling. We have further discussed the possible strategies to overcome the detrimental effects of chronic IFN-1 pathway activation and to successfully employ IFN-1 for their beneficial anti-tumor effects.
Collapse
Affiliation(s)
- Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481 Ahmedabad, India; Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Valentina Boscaro
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | | | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481 Ahmedabad, India.
| |
Collapse
|
11
|
Antoon R, Overdevest N, Saleh AH, Keating A. Mesenchymal stromal cells as cancer promoters. Oncogene 2024; 43:3545-3555. [PMID: 39414984 PMCID: PMC11602730 DOI: 10.1038/s41388-024-03183-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
Mesenchymal stromal cells (MSCs) are important cellular constituents of tumor stroma that play an active role in tumor development. Complex interactions between MSCs and cancer promote tumor progression by creating a favorable milieu for tumor cell proliferation, angiogenesis, motility, invasion, and metastasis. The cellular heterogeneity, source of origin, diversity in isolation methods, culture techniques and model systems of MSCs, together with the different tumor subtypes, add to the complexity of MSC-tumor interactions. In this review, we discuss the mechanisms of MSC-mediated tumor promotion and evaluate cell-stromal interactions between cancer cells, MSCs, cells of the tumor microenvironment (TME), and the extracellular matrix (ECM). A more thorough understanding of tumor-MSC interactions is likely to lead to better cancer management.
Collapse
Affiliation(s)
| | | | - Amr H Saleh
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Armand Keating
- Krembil Research Institute, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- University Health Network, Toronto, ON, Canada.
| |
Collapse
|
12
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Eroz I, Kakkar PK, Lazar RA, El-Jawhari J. Mesenchymal Stem Cells in Myelodysplastic Syndromes and Leukaemia. Biomedicines 2024; 12:1677. [PMID: 39200142 PMCID: PMC11351218 DOI: 10.3390/biomedicines12081677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are one of the main residents in the bone marrow (BM) and have an essential role in the regulation of haematopoietic stem cell (HSC) differentiation and proliferation. Myelodysplastic syndromes (MDSs) are a group of myeloid disorders impacting haematopoietic stem and progenitor cells (HSCPs) that are characterised by BM failure, ineffective haematopoiesis, cytopenia, and a high risk of transformation through the expansion of MDS clones together with additional genetic defects. It has been indicated that MSCs play anti-tumorigenic roles such as in cell cycle arrest and pro-tumorigenic roles including the induction of metastasis in MDS and leukaemia. Growing evidence has shown that MSCs have impaired functions in MDS, such as decreased proliferation capacity, differentiation ability, haematopoiesis support, and immunomodulation function and increased inflammatory alterations within the BM through some intracellular pathways such as Notch and Wnt and extracellular modulators abnormally secreted by MSCs, including increased expression of inflammatory factors and decreased expression of haematopoietic factors, contributing to the development and progression of MDSs. Therefore, MSCs can be targeted for the treatment of MDSs and leukaemia. However, it remains unclear what drives MSCs to behave abnormally. In this review, dysregulations in MSCs and their contributions to myeloid haematological malignancies will be discussed.
Collapse
Affiliation(s)
- Ilayda Eroz
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Prabneet Kaur Kakkar
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Renal Antoinette Lazar
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Jehan El-Jawhari
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
14
|
Mei R, Wan Z, Yang C, Shen X, Wang R, Zhang H, Yang R, Li J, Song Y, Su H. Advances and clinical challenges of mesenchymal stem cell therapy. Front Immunol 2024; 15:1421854. [PMID: 39100671 PMCID: PMC11294097 DOI: 10.3389/fimmu.2024.1421854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
In recent years, cell therapy has provided desirable properties for promising new drugs. Mesenchymal stem cells are promising candidates for developing genetic engineering and drug delivery strategies due to their inherent properties, including immune regulation, homing ability and tumor tropism. The therapeutic potential of mesenchymal stem cells is being investigated for cancer therapy, inflammatory and fibrotic diseases, among others. Mesenchymal stem cells are attractive cellular carriers for synthetic nanoparticles for drug delivery due to their inherent homing ability. In this review, we comprehensively discuss the various genetic and non-genetic strategies of mesenchymal stem cells and their derivatives in drug delivery, tumor therapy, immune regulation, tissue regeneration and other fields. In addition, we discuss the current limitations of stem cell therapy and the challenges in clinical translation, aiming to identify important development areas and potential future directions.
Collapse
Affiliation(s)
- Ruiyan Mei
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xiangjing Shen
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haihua Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Rui Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
15
|
Cantero MJ, Bueloni B, Gonzalez Llamazares L, Fiore E, Lameroli L, Atorrasagasti C, Mazzolini G, Malvicini M, Bayo J, García MG. Modified mesenchymal stromal cells by in vitro transcribed mRNA: a therapeutic strategy for hepatocellular carcinoma. Stem Cell Res Ther 2024; 15:208. [PMID: 38992782 PMCID: PMC11241816 DOI: 10.1186/s13287-024-03806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) tropism for tumours allows their use as carriers of antitumoural factors and in vitro transcribed mRNA (IVT mRNA) is a promising tool for effective transient expression without insertional mutagenesis risk. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine with antitumor properties by stimulating the specific immune response. The aim of this work was to generate modified MSCs by IVT mRNA transfection to overexpress GM-CSF and determine their therapeutic effect alone or in combination with doxorubicin (Dox) in a murine model of hepatocellular carcinoma (HCC). METHODS DsRed or GM-CSF IVT mRNAs were generated from a cDNA template designed with specific primers followed by reverse transcription. Lipofectamine was used to transfect MSCs with DsRed (MSC/DsRed) or GM-CSF IVT mRNA (MSC/GM-CSF). Gene expression and cell surface markers were determined by flow cytometry. GM-CSF secretion was determined by ELISA. For in vitro experiments, the J774 macrophage line and bone marrow monocytes from mice were used to test GM-CSF function. An HCC model was developed by subcutaneous inoculation (s.c.) of Hepa129 cells into C3H/HeN mice. After s.c. injection of MSC/GM-CSF, Dox, or their combination, tumour size and mouse survival were evaluated. Tumour samples were collected for mRNA analysis and flow cytometry. RESULTS DsRed expression by MSCs was observed from 2 h to 15 days after IVT mRNA transfection. Tumour growth remained unaltered after the administration of DsRed-expressing MSCs in a murine model of HCC and MSCs expressing GM-CSF maintained their phenotypic characteristic and migration capability. GM-CSF secreted by modified MSCs induced the differentiation of murine monocytes to dendritic cells and promoted a proinflammatory phenotype in the J774 macrophage cell line. In vivo, MSC/GM-CSF in combination with Dox strongly reduced HCC tumour growth in C3H/HeN mice and extended mouse survival in comparison with individual treatments. In addition, the tumours in the MSC/GM-CSF + Dox treated group exhibited elevated expression of proinflammatory genes and increased infiltration of CD8 + T cells and macrophages. CONCLUSIONS Our results showed that IVT mRNA transfection is a suitable strategy for obtaining modified MSCs for therapeutic purposes. MSC/GM-CSF in combination with low doses of Dox led to a synergistic effect by increasing the proinflammatory tumour microenvironment, enhancing the antitumoural response in HCC.
Collapse
Affiliation(s)
- María José Cantero
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Barbara Bueloni
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucrecia Gonzalez Llamazares
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Esteban Fiore
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucia Lameroli
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Catalina Atorrasagasti
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Malvicini
- Cancer Immunobiology Laboratory, IIMT, Universidad Austral - CONICET, Buenos Aires, Argentina
| | - Juan Bayo
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana G García
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
16
|
Hermansyah D, Syarifah S, Muhar AM, Putra A. Unveiling Paclitaxel-Induced Mesenchymal Stem Cells: orchestrating Nrf2 Modulation and Apoptosis in CD44+/CD24- Cancer Stem Cells. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:319-328. [PMID: 38978966 PMCID: PMC11228077 DOI: 10.2147/bctt.s457548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
Background Mesenchymal Stem Cells (MSCs) and Cancer Stem Cells (CSC) play pivotal roles in cancer progression and therapeutic responses. This study aimed to explored the effect of MSCs induced by paclitaxel on CSC expressing the CD44+/CD24- phenotype, focusing on Nrf2 modulation and apoptosis induction. Methods MSCs were characterized for adherence, differentiation potential, and surface markers via standard culture, staining assays, and flow cytometry, respectively. CSCs isolated from MDA-MB-231 using MACS and were characterized based on morphology and CD44+/CD24- expression. Co-culture experiments evaluated the cytotoxic effect of Paclitaxel-induced MSCs on CSC viability using MTT assays. Flow cytometry analysis assessed apoptosis induction via annexin V-PI staining and Nrf2 and Caspase-3 gene expression were measure by qRT-PCR analysis. Results MSCs exhibited typical adherence and differentiation capabilities, confirming their mesenchymal lineage. CSCs displayed an elongated morphology and expressed CD44+/CD24-, characteristic of stem-like behavior. Paclitaxel induced dose-dependent Nrf2 gene expression in MSCs. Co-culture with Paclitaxel-induced MSCs reduced CSC viability in a dose-dependent manner, with a significant decrease observed at a 5:1 MSCs:CSC ratio. Co-culture decreased the Nrf2 gene expression and increased apoptosis in CSCs, with higher caspase-3 gene expression compared to solitary paclitaxel treatment. Conclusion Paclitaxel-induced MSCs decreased Nrf2 expression and significantly decreased CSC viability while enhancing apoptosis. This suggests a potential strategy to mitigate paclitaxel resistance in CD44+/CD24- CSCs. Leveraging Paclitaxel-induced MSCs presents a promising avenue for targeting Nrf2 and promoting apoptosis in CSCs, potentially improving the efficacy of chemotherapy and addressing resistance mechanisms in cancer treatment.
Collapse
Affiliation(s)
- Dedy Hermansyah
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Siti Syarifah
- Department of Pharmacology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Adi Muradi Muhar
- Department of Doctoral Degree Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research Indonesia, Semarang, Central Java, Indonesia
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Central Java, Indonesia
| |
Collapse
|
17
|
Sun L, Rao S, Kerim K, Lu J, Li H, Zhao S, Shen P, Sun W. A chemically adjustable BMP6-IL6 axis in mesenchymal stem cells drives acute myeloid leukemia cell differentiation. Biochem Pharmacol 2024; 225:116262. [PMID: 38705535 DOI: 10.1016/j.bcp.2024.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Chemotherapy alone or in combination with allogeneic stem cell transplantation has been the standard of care for acute myeloid leukemia (AML) for decades. Leukemia relapse with limited treatment options remains the main cause of treatment failure. Therefore, an effective and safe approach to improve treatment outcomes is urgently needed for most AML patients. Mesenchymal stem cells (MSCs) have been reported to efficiently induce apoptosis and shape the fate of acute myeloid leukemia cells. Here, we identified LG190155 as a potent compound that enhances the antileukemia efficiency of MSCs. Pretreatment of MSCs with LG190155 significantly provoked differentiation in both AML patient-derived primary leukemia cells and AML cell lines and reduced the tumor burden in the AML mouse model. Using the quantitative proteomic technique, we discovered a pivotal mechanism that mediates AML cell differentiation, in which autocrine bone morphogenetic protein 6 (BMP6) in MSCs boosted IL-6 secretion and further acted on leukemic cells to trigger differentiation. Furthermore, the activity of the BMP6-IL6 axis was dramatically enhanced by activating vitamin D receptor (VDR) in MSCs. Our data illustrated an effective preactivated approach to reinforcing the antileukemia effect of MSCs, which could serve as an effective therapeutic strategy for AML.
Collapse
Affiliation(s)
- Luchen Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shangrui Rao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kamran Kerim
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jianhua Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hongzheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shengsheng Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Pingping Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Shenzhen Research Institute of NanJing University, Shenzhen 518000, China.
| | - Weijian Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
18
|
Taheri M, Tehrani HA, Dehghani S, Alibolandi M, Arefian E, Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle. Med Res Rev 2024; 44:1596-1661. [PMID: 38299924 DOI: 10.1002/med.22023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Targeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging. Therefore, targeting a single hallmark or pathway with a single targeted therapeutic will not be efficient for fighting against tumor heterogeneity. Mesenchymal stem cells (MSCs) possess favorable characteristics for cellular therapy, including their hypoimmune nature, inherent tumor-tropism property, straightforward isolation, and multilineage differentiation potential. MSCs can be loaded with various chemotherapeutics and oncolytic viruses. The combination of these intrinsic features with the possibility of genetic manipulation makes them a versatile tumor delivery vehicle that can be used for in vivo selective tumor delivery of various chemotherapeutic and biological therapeutics. MSCs can be used as biofactory for the local production of chemical or biological anticancer agents at the tumor site. MSC-mediated immunotherapy could facilitate the sustained release of immunotherapeutic agents specifically at the tumor site, and allow for the achievement of therapeutic concentrations without the need for repetitive systemic administration of high therapeutic doses. Despite the enthusiasm evoked by preclinical studies that used MSC in various cancer therapy approaches, the translation of MSCs into clinical applications has faced serious challenges. This manuscript, with a critical viewpoint, reviewed the preclinical and clinical studies that have evaluated MSCs as a selective tumor delivery tool in various cancer therapy approaches, including gene therapy, immunotherapy, and chemotherapy. Then, the novel nanotechnology and bioengineering approaches that can improve the potency of MSC for tumor targeting and overcoming challenges related to their low localization at the tumor sites are discussed.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Yuce M, Albayrak E. Paracrine Factors Released from Tonsil-Derived Mesenchymal Stem Cells Inhibit Proliferation of Hematological Cancer Cells Under Hyperthermia in Co-culture Model. Appl Biochem Biotechnol 2024; 196:4105-4124. [PMID: 37897623 DOI: 10.1007/s12010-023-04757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising biological therapeutic candidates in cancer treatment. As a source of MSCs, palatine tonsil tissue is one of the secondary lymphoid organs that form an essential part of the immune system, and the relation between the secondary lymphoid organs and cancer progression leads us to investigate the effect of tonsil-derived MSCs (T-MSC) on cancer treatment. We aimed to determine the anti-tumoral effects of T-MSCs cultured at the febrile temperature (40 °C) on hematological cancer cell lines. The co-culture of cancer cells with T-MSCs was carried out under fever and normal culture conditions, and then the cell viability was determined by cell counting. In addition, apoptosis rate and cell cycle arrest were determined by flow cytometry. We confirmed the apoptotic effect of T-MSC co-culture at the transcriptional level by using real-time polymerase chain reaction (RT-PCR). We found that co-culture of cancer cells with T-MSCs significantly decreased the viable cell number under the febrile and normal culture conditions. Besides, the T-MSC co-culture induced apoptosis on K562 and MOLT-4 cells and induced the cell cycle arrest at the G2/M phase on MOLT-4 cells. The apoptotic effect of T-MSC co-culture under febrile stimulation was confirmed at the transcriptional level. Our study has highlighted the anti-tumoral effect of the cellular interaction between the T-MSCs and human hematological cancer cells during in vitro co-culture under hyperthermia.
Collapse
Affiliation(s)
- Melek Yuce
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, 55139, Atakum, Samsun, Turkey.
| | - Esra Albayrak
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, 55139, Atakum, Samsun, Turkey
| |
Collapse
|
20
|
Gil-Chinchilla JI, Zapata AG, Moraleda JM, García-Bernal D. Bioengineered Mesenchymal Stem/Stromal Cells in Anti-Cancer Therapy: Current Trends and Future Prospects. Biomolecules 2024; 14:734. [PMID: 39062449 PMCID: PMC11275142 DOI: 10.3390/biom14070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are one of the most widely used cell types in advanced therapies due to their therapeutic potential in the regulation of tissue repair and homeostasis, and immune modulation. However, their use in cancer therapy is controversial: they can inhibit cancer cell proliferation, but also potentially promote tumour growth by supporting angiogenesis, modulation of the immune milieu and increasing cancer stem cell invasiveness. This opposite behaviour highlights the need for careful and nuanced use of MSCs in cancer treatment. To optimize their anti-cancer effects, diverse strategies have bioengineered MSCs to enhance their tumour targeting and therapeutic properties or to deliver anti-cancer drugs. In this review, we highlight the advanced uses of MSCs in cancer therapy, particularly as carriers of targeted treatments due to their natural tumour-homing capabilities. We also discuss the potential of MSC-derived extracellular vesicles to improve the efficiency of drug or molecule delivery to cancer cells. Ongoing clinical trials are evaluating the therapeutic potential of these cells and setting the stage for future advances in MSC-based cancer treatment. It is critical to identify the broad and potent applications of bioengineered MSCs in solid tumour targeting and anti-cancer agent delivery to position them as effective therapeutics in the evolving field of cancer therapy.
Collapse
Affiliation(s)
- Jesús I. Gil-Chinchilla
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
| | - Agustín G. Zapata
- Department of Cell Biology, Complutense University, 28040 Madrid, Spain;
| | - Jose M. Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Medicine, University of Murcia, 30120 Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
21
|
Gao X, Ren H, Zhang Z, Cao S, Zhang B, Sun Q, Melino G, Huang H. Human lung cancer-derived mesenchymal stem cells promote tumor growth and immunosuppression. Biol Direct 2024; 19:39. [PMID: 38755705 PMCID: PMC11097554 DOI: 10.1186/s13062-024-00479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The presence of mesenchymal stem cells has been confirmed in some solid tumors where they serve as important components of the tumor microenvironment; however, their role in cancer has not been fully elucidated. The aim of this study was to investigate the functions of mesenchymal stem cells isolated from tumor tissues of patients with non-small cell lung cancer. RESULTS Human lung cancer-derived mesenchymal stem cells displayed the typical morphology and immunophenotype of mesenchymal stem cells; they were nontumorigenic and capable of undergoing multipotent differentiation. These isolated cells remarkably enhanced tumor growth when incorporated into systems alongside tumor cells in vivo. Importantly, in the presence of mesenchymal stem cells, the ability of peripheral blood mononuclear cell-derived natural killer and activated T cells to mediate tumor cell destruction was significantly compromised. CONCLUSION Collectively, these data support the notion that human lung cancer-derived mesenchymal stem cells protect tumor cells from immune-mediated destruction by inhibiting the antitumor activities of natural killer and T cells.
Collapse
Affiliation(s)
- Xiaoyan Gao
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 Tieyi Road, Beijing, 100038, China
| | - He Ren
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 Tieyi Road, Beijing, 100038, China
| | - Zhengrong Zhang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 Tieyi Road, Beijing, 100038, China
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shuai Cao
- Department of Orthopedics, Civil Aviation General Hospital, No.1 Gaojing Street, Chaoyang District, Beijing, 100123, China
| | - Bo Zhang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 Tieyi Road, Beijing, 100038, China
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
- DZNE German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 Tieyi Road, Beijing, 100038, China.
| |
Collapse
|
22
|
Taheri M, Tehrani HA, Dehghani S, Rajabzadeh A, Alibolandi M, Zamani N, Arefian E, Ramezani M. Signaling crosstalk between mesenchymal stem cells and tumor cells: Implications for tumor suppression or progression. Cytokine Growth Factor Rev 2024; 76:30-47. [PMID: 38341337 DOI: 10.1016/j.cytogfr.2024.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stem cells (MSCs) have been extensively used in various therapeutic applications over the last two decades, particularly in regenerative medicine and cancer treatment. MSCs have the ability to differentiate into mesodermal and non-mesodermal lineages, which makes them a popular choice in tissue engineering and regenerative medicine. Studies have shown that MSCs have inherent tumor-suppressive properties and can affect the behavior of multiple cells contributing to tumor development. Additionally, MSCs possess a tumor tropism property and have a hypoimmune nature. The intrinsic features of MSCs along with their potential to undergo genetic manipulation and be loaded with various anticancer therapeutics have motivated researchers to use them in different cancer therapy approaches without considering their complex dynamic biological aspects. However, despite their desirable features, several reports have shown that MSCs possess tumor-supportive properties. These contradictory results signify the sophisticated nature of MSCs and warn against the potential therapeutic applications of MSCs. Therefore, researchers should meticulously consider the biological properties of MSCs in preclinical and clinical studies to avoid any undesirable outcomes. This manuscript reviews preclinical studies on MSCs and cancer from the last two decades, discusses how MSC properties affect tumor progression and explains the mechanisms behind tumor suppressive and supportive functions. It also highlights critical cellular pathways that could be targeted in future studies to improve the safety and effectiveness of MSC-based therapies for cancer treatment. The insights obtained from this study will pave the way for further clinical research on MSCs and development of more effective cancer treatments.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rajabzadeh
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nina Zamani
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Abatay Sel F, Erol A, Suleymanoglu M, Kuruca DS, Savran Oguz F. Easy and Rapid Methods for Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Human Umbilical Wharton's Jelly-Derived Mesenchymal Stem Cells. Methods Mol Biol 2024; 2736:77-84. [PMID: 37140810 DOI: 10.1007/7651_2023_479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
These protocols describe modified methods that use Ficoll-Paque density gradient for umbilical cord blood-derived mesenchymal stem cells and explant method for Wharton's jelly-derived mesenchymal stem cells. The Ficoll-Paque density gradient method allows to obtain mesenchymal stem cells while eliminating monocytic cells. In this method, precoating the cell culture flasks with fetal bovine serum helps remove the monocytic cells and instruct more pure mesenchymal stem cells. On the other hand, the explant method for Wharton's jelly-derived mesenchymal stem cell is user-friendly and cost-effective than enzymatic methods. In this chapter, we provide a collection of protocols to obtain mesenchymal stem cells from human umbilical cord blood and Wharton's jelly.
Collapse
Affiliation(s)
- Figen Abatay Sel
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
- Department of Medical Biology, Istanbul University, Institute of Graduate Studies in Health Science, Istanbul, Turkey
| | - Ayse Erol
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Mediha Suleymanoglu
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Durdane Serap Kuruca
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Turkey
- Istanbul Atlas University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Fatma Savran Oguz
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| |
Collapse
|
24
|
Borzone FR, Giorello MB, Sanmartin MC, Yannarelli G, Martinez LM, Chasseing NA. Mesenchymal stem cells and cancer-associated fibroblasts as a therapeutic strategy for breast cancer. Br J Pharmacol 2024; 181:238-256. [PMID: 35485850 DOI: 10.1111/bph.15861] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is the most common type of cancer and the leading cause of death among women. Recent evidence suggests that mesenchymal stromal/stem cells and cancer-associated fibroblasts (CAFs) have an essential role in cancer progression, invasion and therapy resistance. Therefore, they are considered as highly promising future therapeutic targets against breast cancer. The intrinsic tumour tropism and immunomodulatory capacities of mesenchymal stromal/stem cells are of special relevance for developing mesenchymal stromal/stem cells-based anti-tumour therapies that suppress primary tumour growth and metastasis. In addition, the utilization of therapies that target the stromal components of the tumour microenvironment in combination with standard drugs is an innovative tool that could improve patients' response to therapies and their survival. In this review, we discuss the currently available information regarding the possible use of mesenchymal stromal/stem cells-derived anti-tumour therapies, as well as the utilization of therapies that target CAFs in breast cancer microenvironment. Finally, these data can serve as a guide map for future research in this field, ultimately aiding the effective transition of these results into the clinic. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Sanmartin
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Xing Z, Lin D, Hong Y, Ma Z, Jiang H, Lu Y, Sun J, Song J, Xie L, Yang M, Xie X, Wang T, Zhou H, Chen X, Wang X, Gao J. Construction of a prognostic 6-gene signature for breast cancer based on multi-omics and single-cell data. Front Oncol 2023; 13:1186858. [PMID: 38074669 PMCID: PMC10698552 DOI: 10.3389/fonc.2023.1186858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/25/2023] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the females' most common malignant tumors there are large individual differences in its prognosis. We intended to uncover novel useful genetic biomarkers and a risk signature for BC to aid determining clinical strategies. METHODS A combined significance (p combined) was calculated for each gene by Fisher's method based on the RNA-seq, CNV, and DNA methylation data from TCGA-BRCA. Genes with a p combined< 0.01 were subjected to univariate cox and Lasso regression, whereby an RS signature was established. The predicted performance of the RS signature would be assessed in GSE7390 and GSE20685, and emphatically analyzed in triple-negative breast cancer (TNBC) patients, while the expression of immune checkpoints and drug sensitivity were also examined. GSE176078, a single-cell dataset, was used to validate the differences in cellular composition in tumors between TNBC patients with different RS. RESULTS The RS signature consisted of C15orf52, C1orf228, CEL, FUZ, PAK6, and SIRPG showed good performance. It could distinguish the prognosis of patients well, even stratified by disease stages or subtypes and also showed a stronger predictive ability than traditional clinical indicators. The down-regulated expressions of many immune checkpoints, while the decreased sensitivity of many antitumor drugs was observed in TNBC patients with higher RS. The overall cells and lymphocytes composition differed between patients with different RS, which could facilitate a more personalized treatment. CONCLUSION The six genes RS signature established based on multi-omics data exhibited well performance in predicting the prognosis of BC patients, regardless of disease stages or subtypes. Contributing to a more personalized treatment, our signature might benefit the outcome of BC patients.
Collapse
Affiliation(s)
- Zeyu Xing
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongcai Lin
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuting Hong
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Zihuan Ma
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Hongnan Jiang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Ye Lu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jiale Sun
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jiarui Song
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Li Xie
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Man Yang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xintong Xie
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Tianyu Wang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Hong Zhou
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiaoqi Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiang Wang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jidong Gao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
26
|
Merino JJ, Cabaña-Muñoz ME. Nanoparticles and Mesenchymal Stem Cell (MSC) Therapy for Cancer Treatment: Focus on Nanocarriers and a si-RNA CXCR4 Chemokine Blocker as Strategies for Tumor Eradication In Vitro and In Vivo. MICROMACHINES 2023; 14:2068. [PMID: 38004925 PMCID: PMC10673568 DOI: 10.3390/mi14112068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023]
Abstract
Mesenchymal stem cells (MSCs) have a high tropism for the hypoxic microenvironment of tumors. The combination of nanoparticles in MSCs decreases tumor growth in vitro as well as in rodent models of cancers in vivo. Covalent conjugation of nanoparticles with the surface of MSCs can significantly increase the drug load delivery in tumor sites. Nanoparticle-based anti-angiogenic systems (gold, silica and silicates, diamond, silver, and copper) prevented tumor growth in vitro. For example, glycolic acid polyconjugates enhance nanoparticle drug delivery and have been reported in human MSCs. Labeling with fluorescent particles (coumarin-6 dye) identified tumor cells using fluorescence emission in tissues; the conjugation of different types of nanoparticles in MSCs ensured success and feasibility by tracking the migration and its intratumor detection using non-invasive imaging techniques. However, the biosafety and efficacy; long-term stability of nanoparticles, and the capacity for drug release must be improved for clinical implementation. In fact, MSCs are vehicles for drug delivery with nanoparticles and also show low toxicity but inefficient accumulation in tumor sites by clearance of reticuloendothelial organs. To solve these problems, the internalization or conjugation of drug-loaded nanoparticles should be improved in MSCs. Finally, CXCR4 may prove to be a promising target for immunotherapy and cancer treatment since the delivery of siRNA to knock down this alpha chemokine receptor or CXCR4 antagonism has been shown to disrupt tumor-stromal interactions.
Collapse
Affiliation(s)
- José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), 28040 Madrid, Spain
| | | |
Collapse
|
27
|
Balasubramanian I, Bandyopadhyay S, Flores J, Bianchi‐Smak J, Lin X, Liu H, Sun S, Golovchenko NB, Liu Y, Wang D, Patel R, Joseph I, Suntornsaratoon P, Vargas J, Green PHR, Bhagat G, Lagana SM, Ying W, Zhang Y, Wang Z, Li WV, Singh S, Zhou Z, Kollias G, Farr LA, Moonah SN, Yu S, Wei Z, Bonder EM, Zhang L, Kiela PR, Edelblum KL, Ferraris R, Liu T, Gao N. Infection and inflammation stimulate expansion of a CD74 + Paneth cell subset to regulate disease progression. EMBO J 2023; 42:e113975. [PMID: 37718683 PMCID: PMC10620768 DOI: 10.15252/embj.2023113975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.
Collapse
Affiliation(s)
| | | | - Juan Flores
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Xiang Lin
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Haoran Liu
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Shengxiang Sun
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | | | - Yue Liu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Dahui Wang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Radha Patel
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Ivor Joseph
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Justin Vargas
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Peter HR Green
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Govind Bhagat
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Stephen M Lagana
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Wang Ying
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Yi Zhang
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Zhihan Wang
- Department of StatisticsRutgers UniversityNew BrunswickNJUSA
| | - Wei Vivian Li
- Department of Biostatistics and EpidemiologyRutgers UniversityNew BrunswickNJUSA
| | - Sukhwinder Singh
- Department of PathologyRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Zhongren Zhou
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNJUSA
| | - George Kollias
- Biomedical Sciences Research Centre, “Alexander Fleming”VariGreece
| | - Laura A Farr
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shannon N Moonah
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shiyan Yu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Zhi Wei
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Edward M Bonder
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Lanjing Zhang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
- Department of PathologyPenn Medicine Princeton Medical CenterPlainsboroNJUSA
| | - Pawel R Kiela
- Departments of Pediatrics and Immunology, and Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research CenterThe University of Arizona Health SciencesTucsonAZUSA
| | - Karen L Edelblum
- Center for Immunity and InflammationRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ta‐Chiang Liu
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | - Nan Gao
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| |
Collapse
|
28
|
Sun L, Yao Y. Mesenchymal stem/stromal cells- a principal element for tumour microenvironment heterogeneity. Front Immunol 2023; 14:1274379. [PMID: 37885883 PMCID: PMC10599013 DOI: 10.3389/fimmu.2023.1274379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of the tumor microenvironment (TME) is a major obstacle in cancer treatment, making most therapeutic interventions palliative rather than curative. Previous studies have suggested that the reason for the low efficacy of immunotherapy and the relapse of the original responders over time may be due to the complex network of mesenchymal stem/stromal cells (MSCs), a population of multipotent progenitor cells existing in a variety of tissues. Cancer-associated MSCs (CA-MSCs) have already been isolated from various types of tumors and are characterized by their vigorous pro-tumorigenic functions. Although the roles of CA-MSCs from different sources vary widely, their origins are still poorly understood. Current evidence suggests that when local resident or distally recruited MSCs interact with tumor cells and other components in the TME, "naïve" MSCs undergo genetic and functional changes to form CA-MSCs. In this review, we mainly focus on the multiple roles of CA-MSCs derived from different sources, which may help in elucidating the formation and function of the entire TME, as well as discover innovative targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu University, Kunshan, China
| |
Collapse
|
29
|
Diehm YF, Thomé J, Will P, Kotsougiani-Fischer D, Haug VF, Siegwart LC, Kneser U, Fischer S. Stem Cell-Enriched Hybrid Breast Reconstruction Reduces Risk for Capsular Contracture in a Hybrid Breast Model. Plast Reconstr Surg 2023; 152:572-580. [PMID: 36735813 DOI: 10.1097/prs.0000000000010260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hybrid breast reconstruction (HBR) combines silicone implants with fat grafting to improve implant coverage, treating local tissue deficiencies and leading to a more natural breast appearance. Recent data also indicated less capsular contracture after HBR. The authors developed a novel technique and animal model of cell-assisted (CA) HBR to illuminate its effects on capsular contracture. METHODS Animals received silicone implants in a dorsal submuscular pocket. Although animals of the HBR group received fat grafting around the implant without stem cell enrichment, rats of the CA-HBR1 and the CA-HBR2 groups received stem cell-enriched fat grafting with 2 × 10 6 and 4 × 10 6 adipose-derived stem cells immediately after implant insertion. On day 60, animals underwent sonography and elastography imaging and were euthanized, and outcome analysis was performed by means of histology, immunohistochemistry, chemical collagen quantification, and gene expression analysis. RESULTS With this novel technique, long-term survival of adipose-derived stem cells within the implant pocket was demonstrated after 60 days after implant insertion. CA-HBR led to significantly reduced thickness and collagen density of capsular contractures. In addition, CA-HBR resulted in reduced fibrotic responses with less occurrence of collagen type I and transforming growth factor-β in capsule tissue. Moreover, the addition of stem cells suppressed fibrotic and inflammatory responses on a genetic level with significant underexpression of collagen type I and transforming growth factor-β1. CONCLUSIONS With this new technique and animal model, the authors observed a preventive effect on capsular contracture substantiating the basis of clinical outcomes of HBR. The authors propose that the addition of stem cells to HBR might booster its beneficial results. CLINICAL RELEVANCE STATEMENT Stem cell-enriched fat grafting around silicone implants may reduce the risk for capsular contracture after silicone breast implantation. While fat grafting alone already shows beneficial effects, the addition of stem cells to the fat graft can potentiate this effect.
Collapse
Affiliation(s)
- Yannick F Diehm
- From the Department of Hand, Plastic, and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen; University of Heidelberg
| | - Julia Thomé
- From the Department of Hand, Plastic, and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen; University of Heidelberg
| | - Patrick Will
- From the Department of Hand, Plastic, and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen; University of Heidelberg
| | - Dimitra Kotsougiani-Fischer
- From the Department of Hand, Plastic, and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen; University of Heidelberg
- Private Practice for Plastic and Aesthetic Surgery, Aesthetikon Mannheim and Heidelberg
| | - Valentin F Haug
- From the Department of Hand, Plastic, and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen; University of Heidelberg
| | - Laura C Siegwart
- From the Department of Hand, Plastic, and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen; University of Heidelberg
| | - Ulrich Kneser
- From the Department of Hand, Plastic, and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen; University of Heidelberg
| | - Sebastian Fischer
- From the Department of Hand, Plastic, and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen; University of Heidelberg
- Private Practice for Plastic and Aesthetic Surgery, Aesthetikon Mannheim and Heidelberg
| |
Collapse
|
30
|
Sun L, Yang N, Chen B, Bei Y, Kang Z, Zhang C, Zhang N, Xu P, Yang W, Wei J, Ke J, Sun W, Li X, Shen P. A novel mesenchymal stem cell-based regimen for acute myeloid leukemia differentiation therapy. Acta Pharm Sin B 2023; 13:3027-3042. [PMID: 37521858 PMCID: PMC10372914 DOI: 10.1016/j.apsb.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 08/01/2023] Open
Abstract
Currently the main treatment of acute myeloid leukemia (AML) is chemotherapy combining hematopoietic stem cell transplantation. However, the unbearable side effect of chemotherapy and the high risk of life-threatening infections and disease relapse following hematopoietic stem cell transplantation restrict its application in clinical practice. Thus, there is an urgent need to develop alternative therapeutic tactics with significant efficacy and attenuated adverse effects. Here, we revealed that umbilical cord-derived mesenchymal stem cells (UC-MSC) efficiently induced AML cell differentiation by shuttling the neutrophil elastase (NE)-packaged extracellular vesicles (EVs) into AML cells. Interestingly, the generation and release of NE-packaged EVs could be dramatically increased by vitamin D receptor (VDR) activation in UC-MSC. Chemical activation of VDR by using its agonist 1α,25-dihydroxyvitamin D3 efficiently enhanced the pro-differentiation capacity of UC-MSC and then alleviated malignant burden in AML mouse model. Based on these discoveries, to evade the risk of hypercalcemia, we synthetized and identified sw-22, a novel non-steroidal VDR agonist, which exerted a synergistic pro-differentiation function with UC-MSC on mitigating the progress of AML. Collectively, our findings provided a non-gene editing MSC-based therapeutic regimen to overcome the differentiation blockade in AML.
Collapse
Affiliation(s)
- Luchen Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Nanfei Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Bing Chen
- Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Yuncheng Bei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Zisheng Kang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4, Ireland
| | - Peipei Xu
- Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Wei Yang
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Jiangqiong Ke
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Weijian Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Pingping Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
31
|
Xu Y, Hu J, Lv Q, Shi C, Qiu M, Xie L, Liu W, Yang B, Shan W, Cheng Y, Zhao B, Chen X. Endometrium-derived mesenchymal stem cells suppress progression of endometrial cancer via the DKK1-Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2023; 14:159. [PMID: 37287079 DOI: 10.1186/s13287-023-03387-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) therapy is an attractive treatment option for various cancers. Whether MSCs can be used to treat well-differentiated endometrial cancer (EC) remains unclear. The aim of this study is to explore the potential therapeutic effects of MSCs on EC and the underlying mechanisms. METHODS The effects of adipose-derived MSCs (AD-MSCs), umbilical-cord-derived MSCs (UC-MSCs), and endometrium-derived MSCs (eMSCs) on the malignant behaviors of EC cells were explored via in vitro and in vivo experiments. Three EC models, including patient-derived EC organoid lines, EC cell lines, and EC xenograft model in female BALB/C nude mice, were used for this study. The effects of MSCs on EC cell proliferation, apoptosis, migration, and the growth of xenograft tumors were evaluated. The potential mechanisms by which eMSCs inhibit EC cell proliferation and stemness were explored by regulating DKK1 expression in eMSCs or Wnt signaling in EC cells. RESULTS Our results showed that eMSCs had the highest inhibitory effect on EC cell viability, and EC xenograft tumor growth in mice compared to AD-MSCs and UC-MSCs. Conditioned medium (CM) obtained from eMSCs significantly suppressed the sphere-forming ability and stemness-related gene expression of EC cells. In comparison to AD-MSCs and UC-MSCs, eMSCs had the highest level of Dickkopf-related protein 1 (DKK1) secretion. Mechanistically, eMSCs inhibited Wnt/β-catenin signaling in EC cells via secretion of DKK1, and eMSCs suppressed EC cell viability and stemness through DKK1-Wnt/β-catenin signaling. Additionally, the combination of eMSCs and medroxyprogesterone acetate (MPA) significantly inhibited the viability of EC organoids and EC cells compared with eMSCs or MPA alone. CONCLUSIONS The eMSCs, but not AD-MSCs or UC-MSCs, could suppress the malignant behaviors of EC both in vivo and in vitro via inhibiting the Wnt/β-catenin signaling pathway by secreting DKK1. The combination of eMSCs and MPA effectively inhibited EC growth, indicating that eMSCs may potentially be a new therapeutic strategy for young EC patients desiring for fertility preservation.
Collapse
Affiliation(s)
- Yuhui Xu
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jiali Hu
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Qiaoying Lv
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Chenyi Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, People's Republic of China
| | - Mengdi Qiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, People's Republic of China
| | - Liying Xie
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Wei Liu
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Bingyi Yang
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Weiwei Shan
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Yali Cheng
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, People's Republic of China.
| | - Xiaojun Chen
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
32
|
TomyTomcy A, Sindhu ER. Mesenchymal stem cells- an excellent therapeutic agent for cancer. Asia Pac J Clin Oncol 2023. [PMID: 37190944 DOI: 10.1111/ajco.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Despite rapid advancement in research of diagnostics and therapeutics, cancer is the most dangerous disease-causing millions of deaths worldwide. Many of the conventional anticancer therapies can even lead to developing resistance to therapy and recurrence of cancer. To find a new, alternative treatment strategy for a variety of ailments scientists and researchers have turned their attention to cell therapies and regenerative medicine. Stem cells are now being researched for their extensive potential application in therapy for several incurable illnesses including cancer. One of the most often employed cell types for regenerative medicine is mesenchymal stem cells. Mesenchymal stem cells (MSCs) are considered a promising source of stem cells in personalized cell-based therapies. The inherent tumor tropic and immune-modulatory properties of MSCs can be used to target cancer cells. This review aims to focus on the anticancer properties of MSCs and their effect on different signaling pathways. Later on, we discuss the advantages of engineered MSCs over non-engineered MSCsin cancer therapy.
Collapse
Affiliation(s)
- Anjilikal TomyTomcy
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Edakkadath Raghavan Sindhu
- Division of Biochemistry, Department of Clinical Laboratory Services and Translational Research, Malabar Cancer Centre, Kannur, Kerala, India
| |
Collapse
|
33
|
Park JY, Park JY, Jeong YG, Park JH, Park YH, Kim SH, Khang D. Pancreatic Tumor-Targeting Stemsome Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300934. [PMID: 37114740 DOI: 10.1002/adma.202300934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Indexed: 06/13/2023]
Abstract
Owing to the intrinsic ability of stem cells to target the tumor environment, stem-cell-membrane-functionalized nanocarriers can target and load active anticancer drugs. In this work, a strategy that focuses on stem cells that self-target pancreatic cancer cells is developed. In particular, malignant deep tumors such as pancreatic cancer cells, one of the intractable tumors that currently have no successful clinical strategy, are available for targeting and destruction. By gaining the targeting ability of stem cells against pancreatic tumor cells, stem cell membranes can encapsulate nano-polylactide-co-glycolide loaded with doxorubicin to target and reduce deep pancreatic tumor tissues. Considering the lack of known target proteins on pancreatic tumor cells, the suggested platform technology can be utilized for targeting any malignant tumors in which surface target receptors are unavailable.
Collapse
Affiliation(s)
- Jun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Jun Young Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Yeon Ho Park
- Department of Surgery, Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, College of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
- Ectosome Inc., Incheon, 21999, South Korea
| |
Collapse
|
34
|
Gordon JAR, Evans MF, Ghule PN, Lee K, Vacek P, Sprague BL, Weaver DL, Stein GS, Stein JL. Identification of molecularly unique tumor-associated mesenchymal stromal cells in breast cancer patients. PLoS One 2023; 18:e0282473. [PMID: 36940196 PMCID: PMC10027225 DOI: 10.1371/journal.pone.0282473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 03/21/2023] Open
Abstract
The tumor microenvironment is a complex mixture of cell types that bi-directionally interact and influence tumor initiation, progression, recurrence, and patient survival. Mesenchymal stromal cells (MSCs) of the tumor microenvironment engage in crosstalk with cancer cells to mediate epigenetic control of gene expression. We identified CD90+ MSCs residing in the tumor microenvironment of patients with invasive breast cancer that exhibit a unique gene expression signature. Single-cell transcriptional analysis of these MSCs in tumor-associated stroma identified a distinct subpopulation characterized by increased expression of genes functionally related to extracellular matrix signaling. Blocking the TGFβ pathway reveals that these cells directly contribute to cancer cell proliferation. Our findings provide novel insight into communication between breast cancer cells and MSCs that are consistent with an epithelial to mesenchymal transition and acquisition of competency for compromised control of proliferation, mobility, motility, and phenotype.
Collapse
Affiliation(s)
- Jonathan A. R. Gordon
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Mark F. Evans
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Prachi N. Ghule
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Kyra Lee
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Pamela Vacek
- Department of Surgery, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Brian L. Sprague
- Department of Surgery, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Donald L. Weaver
- Department of Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Gary S. Stein
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| | - Janet L. Stein
- Department of Biochemistry, Larner College of Medicine at the University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
35
|
Azadi S, Torkashvand E, Mohammadi E, Tafazzoli-Shadpour M. Analysis of EMT induction in a non-invasive breast cancer cell line by mesenchymal stem cell supernatant: Study of 2D and 3D microfluidic based aggregate formation and migration ability, and cytoskeleton remodeling. Life Sci 2023; 320:121545. [PMID: 36871932 DOI: 10.1016/j.lfs.2023.121545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
AIMS The process of Epithelial-to-mesenchymal transition (EMT) as a phenotypic invasive shift and the factors affecting it, are under extensive research. Application of supernatants of human adipose-derived mesenchymal stem cells (hADMSCs) on non-invasive cancer cells is a well known method of in vitro induction of EMT like process. While previous researches have focused on the effects of hADMSCs supernatant on the biochemical signaling pathways of the cells through expression of different proteins and genes, we investigated pro-carcinogic alterations of physico-mechanical cues in terms of changes in cell motility and aggregated formation in 3D microenvironments, and cytoskeletal actin-myosin content and fiber arrangement. MAIN METHODS MCF-7 cancer cells were treated by the supernatant from 48 hour-starved hADMSCs, and their vimentin/E-cadherin expressions were evaluated. The invasive potential of treated and non-treated cells was measured and compared through aggregate formation and migration capability. Furthermore, alterations in cell and nucleus morphologies were studied, and F-actin and myosin-II alterations in terms of content and arrangement were investigated. KEY FINDINGS Results indicated that application of hADMSCs supernatant enhanced vimentin expression as the biomarker of EMT, and induced pro-carcinogenic effects on non-invasive cancer cells through increased invasive potential by higher cell motility and reduced aggregate formation, rearrangement of actin structure and generation of more stress fibers, together with increased myosin II that lead to enhanced cell motility and traction force. SIGNIFICANCE Our results indicated that in vitro induction of EMT through mesenchymal supernatant influenced biophysical features of cancer cells through cytoskeletal remodeling that emphasizes the interconnection of chemical and physical signaling pathways during cancer progress and invasion. Results give a better insight to EMT as a biological process and the synergy between biochemical and biophysical parameters that contribute to this process, and eventually assist in improving cancer treatment strategies.
Collapse
Affiliation(s)
- Shohreh Azadi
- Cell Engineering and Biomicrofluidic Systems Lab, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Elham Torkashvand
- Cell Engineering and Biomicrofluidic Systems Lab, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ehsan Mohammadi
- Cell Engineering and Biomicrofluidic Systems Lab, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Tafazzoli-Shadpour
- Cell Engineering and Biomicrofluidic Systems Lab, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
36
|
Oncologic Safety and Efficacy of Cell-Assisted Lipotransfer for Breast Reconstruction in a Murine Model of Residual Breast Cancer. Aesthetic Plast Surg 2023; 47:412-422. [PMID: 35918436 DOI: 10.1007/s00266-022-03021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cell-assisted lipotransfer (CAL) is a novel technique for fat grafting that combines the grafting of autologous fat and adipose-derived stromal cells (ASCs) to enhance fat graft retention; however, its oncologic safety is controversial. METHODS Herein, we investigated the oncologic safety of CAL for breast reconstruction using a murine model of residual breast cancer. Various concentrations of 4T1 cells (murine breast cancer cells) were injected into female mastectomized BALB/c mice to determine the appropriate concentration for injection. One week after injection, mice were divided into control (100 μL fat), low CAL (2.5 × 105 ASCs/100 μL fat), and high CAL (1.0 × 106 ASCs/100 μL fat) groups, and fat grafting was performed. The injection of 5.0 × 103 4T1 cells was appropriate to produce a murine model of residual breast cancer. RESULTS The weight of the fat tumor mass was significantly higher in the high CAL group than in the other groups (p < 0.05). However, the estimated tumor weight was not significantly different between the groups. Additionally, the fat graft survival rate was significantly higher in the high CAL group than in the control and low CAL groups (p < 0.05). No significant difference was noted in the percentage of Ki-67-positive cells, suggesting that tumor proliferation was not significantly different between the groups. CONCLUSION In summary, CAL significantly improved fat graft survival without affecting tumor size and proliferation in a murine model of residual breast cancer. These results highlight the oncologic safety of CAL for breast reconstruction. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
37
|
Mesenchymal/stromal stem cells: necessary factors in tumour progression. Cell Death Discov 2022; 8:333. [PMID: 35869057 PMCID: PMC9307857 DOI: 10.1038/s41420-022-01107-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
Mesenchymal/stromal stem cells (MSCs) are a crucial component of the tumour microenvironment (TME). They can be recruited from normal tissues into the TME and educated by tumour cells to transform into tumour-associated MSCs, which are oncogenic cells that promote tumour development and progression by impacting or transforming into various kinds of cells, such as immune cells and endothelial cells. Targeting MSCs in the TME is a novel strategy to prevent malignant processes. Exosomes, as communicators, carry various RNAs and proteins and thus link MSCs and the TME, which provides options for improving outcomes and developing targeted treatment.
Collapse
|
38
|
Yüce M, Albayrak E. Hyperthermia-stimulated tonsil-mesenchymal stromal cells suppress hematological cancer cells through downregulation of IL-6. J Cell Biochem 2022; 123:1966-1979. [PMID: 36029519 DOI: 10.1002/jcb.30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
There are contradictory reports on the use of mesenchymal stromal cells (MSCs) in cancer therapy. Variable outcomes have been associated with several factors including cancer pathology, experimental procedure, MSC source tissue, and individual genetic differences. It is also known that MSCs exert their therapeutic effects with various paracrine factors released from these cells. The profiles of the factors released from MSCs are altered by heat shock, hypoxia, oxidative stress, starvation or various agents such as inflammatory cytokines, and their therapeutic potential is affected. In this study, the antitumor potential of conditioned media (CM), which contains paracrine factors, of mild hyperthermia-stimulated mesenchymal stromal cells derived from lymphoid organ tonsil tissue (T-MSC) was investigated in comparison with CM obtained from T-MSCs grew under normal culture conditions. CM was obtained from T-MSCs that were successfully isolated from palatine tonsil tissue and characterized. The cytotoxic effect of CM on the growth of hematological cancer cell lines at different concentrations (1:1 and 1:2) was demonstrated by methylthiazoldiphenyl-tetrazolium bromide analysis. In addition, the apoptotic effect of T-MSC-CM treatment was evaluated on the cancer cells using Annexin-V/PI detection method by flow cytometry. The pro/anti-apoptotic and cytokine-related gene expressions were also analyzed by real-time polymerase chain reaction post T-MSC-CM treatment. In conclusion, we demonstrated that the factors released from hyperthermia-stimulated T-MSCs induced apoptosis in hematological cancer cell lines in a dose-dependent manner. Importantly, our results at the transcriptional level support that the factors and cytokines released from hyperthermia-stimulated T-MSC may exert antitumoral effects in cancer cells by downregulation of IL-6 that promotes tumorigenesis. These findings reveal that T-MSC-CM can be a powerful cell-free therapeutical strategy for cancer therapy.
Collapse
Affiliation(s)
- Melek Yüce
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, Atakum/Samsun, Turkey
| | - Esra Albayrak
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, Atakum/Samsun, Turkey
| |
Collapse
|
39
|
Nachmias B, Zimran E, Avni B. Mesenchymal stroma/stem cells: Haematologists' friend or foe? Br J Haematol 2022; 199:175-189. [PMID: 35667616 PMCID: PMC9796884 DOI: 10.1111/bjh.18292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are non-haematopoietic cells found in fetal and adult organs, that play important roles in tissue repair, inflammation and immune modulation. MSCs residing in the bone marrow interact closely with haematopoietic cells and comprise an important component of the microenvironment supporting haematopoiesis, in both health and disease states. Since their identification in 1970, basic scientific and preclinical research efforts have shed light on the role of MSCs in the regulation of haematopoiesis and evoked interest in their clinical application in haematopoietic stem cell transplantation (HSCT) and malignant haematology. Over the last two decades, these research efforts have led to numerous clinical trials, which have established the safety of MSC therapy; however, the optimal mode of administration and the benefit remain inconclusive. In this paper, we will review the clinical experience with use of MSCs in HSCT for enhancement of engraftment, prevention and treatment of graft-versus-host disease and haemorrhagic cystitis. Then, we will discuss the contradictory evidence regarding tumour-promoting versus tumour-suppressing effects of MSCs in haematological malignancies, which may have relevance for future clinical applications.
Collapse
Affiliation(s)
- Boaz Nachmias
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Eran Zimran
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Batia Avni
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| |
Collapse
|
40
|
Dalmizrak A, Dalmizrak O. Mesenchymal stem cell-derived exosomes as new tools for delivery of miRNAs in the treatment of cancer. Front Bioeng Biotechnol 2022; 10:956563. [PMID: 36225602 PMCID: PMC9548561 DOI: 10.3389/fbioe.2022.956563] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although ongoing medical research is working to find a cure for a variety of cancers, it continues to be one of the major causes of death worldwide. Chemotherapy and immunotherapy, as well as surgical intervention and radiation therapy, are critical components of cancer treatment. Most anti-cancer drugs are given systemically and distribute not just to tumor tissues but also to normal tissues, where they may cause side effects. Furthermore, because anti-cancer drugs have a low delivery efficiency, some tumors do not respond to them. As a result, tumor-targeted drug delivery is critical for improving the safety and efficacy of anti-cancer treatment. Exosomes are microscopic extracellular vesicles that cells produce to communicate with one another. MicroRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids are among the therapeutic cargos found in exosomes. Recently, several studies have focused on miRNAs as a potential therapeutic element for the treatment of cancer. Mesenchymal stem cells (MSC) have been known to have angiogenic, anti-apoptotic, anti-inflammatory and immunomodulatory effects. Exosomes derived from MSCs are gaining popularity as a non-cellular alternative to MSC-based therapy, as this method avoids unwanted lineage differentiation. Therefore more research have focused on transferring miRNAs to mesenchymal stem cells (MSC) and targeting miRNA-loaded exosomes to cancer cells. Here, we initially gave an overview of the characteristics and potentials of MSC as well as the use of MSC-derived exosomes in cancer therapy. Finally, we emphasized the utilization of MSC-derived exosomes for miRNA delivery in the treatment of cancer.
Collapse
Affiliation(s)
- Aysegul Dalmizrak
- Department of Medical Biology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Ozlem Dalmizrak
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Mersin, Turkey
- *Correspondence: Ozlem Dalmizrak,
| |
Collapse
|
41
|
Sun X, Li K, Aryal UK, Li BY, Yokota H. PI3K-activated MSC proteomes inhibit mammary tumors via Hsp90ab1 and Myh9. Mol Ther Oncolytics 2022; 26:360-371. [PMID: 36090473 PMCID: PMC9420348 DOI: 10.1016/j.omto.2022.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Despite the advance in medications in the past decade, aggressive breast cancer such as triple-negative breast cancer is difficult to treat. Here, we examined a counter-intuitive approach to converting human bone marrow-derived mesenchymal stem cells (MSCs) into induced tumor-suppressing cells by administering YS49, a PI3K/Akt activator. Notably, PI3K-activated MSCs generated tumor-suppressive proteomes, while PI3K-inactivated MSCs tumor-promotive proteomes. In a mouse model, the daily administration of YS49-treated MSC-derived CM decreased the progression of primary mammary tumors as well as the colonization of tumor cells in the lung. In the ex vivo assay, the size of freshly isolated human breast cancer tissues, including estrogen receptor positive and negative as well as human epidermal growth factor receptor 2 (HER2) positive and negative, was decreased by YS49-treated MSC-derived CM. Hsp90ab1 was enriched in CM as an atypical tumor-suppressing protein and immunoprecipitated a non-muscle myosin, Myh9. Extracellular Hsp90ab1 and Myh9 exerted the anti-tumor action and inhibited the maturation of bone-resorbing osteoclasts. Collectively, this study demonstrated that the activation of PI3K generated tumor-suppressive proteomes in MSCs and supported the possibility of using patient-derived MSCs for the treatment of breast cancer and bone metastasis.
Collapse
|
42
|
Ramuta TŽ, Kreft ME. Mesenchymal Stem/Stromal Cells May Decrease Success of Cancer Treatment by Inducing Resistance to Chemotherapy in Cancer Cells. Cancers (Basel) 2022; 14:cancers14153761. [PMID: 35954425 PMCID: PMC9367361 DOI: 10.3390/cancers14153761] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Tumours consist of different cell types and an extracellular matrix, all of which together form a complex microenvironment. The tumour microenvironment plays a critical role in various aspects of tumour development and progression. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells that have a tri-lineage differentiation capacity and are one of the key stromal cells in the tumour microenvironment. Following the interaction with cancer cells, they are transformed from naïve MSCs to tumour-associated MSCs, which substantially affect tumour growth and progression as well as the development of chemoresistance in cancer cells. The aim of this review article is to provide an overview of studies that have investigated how MSCs affect the susceptibility of cancer cells to chemotherapeutics. Their results show that MSCs protect cancer cells from chemotherapeutics by influencing several signalling pathways. This knowledge is crucial for the development of new treatment approaches that will lead to improved treatment outcomes. Abstract The tumour microenvironment, which is comprised of various cell types and the extracellular matrix, substantially impacts tumour initiation, progression, and metastasis. Mesenchymal stem/stromal cells (MSCs) are one of the key stromal cells in the tumour microenvironment, and their interaction with cancer cells results in the transformation of naïve MSCs to tumour-associated MSCs. The latter has an important impact on tumour growth and progression. Recently, it has been shown that they can also contribute to the development of chemoresistance in cancer cells. This review provides an overview of 42 studies published between 1 January 2001 and 1 January 2022 that examined the effect of MSCs on the susceptibility of cancer cells to chemotherapeutics. The studies showed that MSCs affect various signalling pathways in cancer cells, leading to protection against chemotherapy-induced damage. Promising results emerged from the use of inhibitors of various signalling pathways that are affected in cancer cells due to interactions with MSCs in the tumour microenvironment. These studies present a good starting point for the investigation of novel treatment approaches and demonstrate the importance of targeting the stroma in the tumour microenvironment to improve treatment outcomes.
Collapse
|
43
|
Jantalika T, Manochantr S, Kheolamai P, Tantikanlayaporn D, Saijuntha W, Pinlaor S, Chairoungdua A, Paraoan L, Tantrawatpan C. Human chorion-derived mesenchymal stem cells suppress JAK2/STAT3 signaling and induce apoptosis of cholangiocarcinoma cell lines. Sci Rep 2022; 12:11341. [PMID: 35790790 PMCID: PMC9256624 DOI: 10.1038/s41598-022-15298-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the damaged epithelial cells of the biliary tract. Previous studies have reported that the multi-potent mesenchymal stem cells (MSCs) activate a series of tumor signaling pathways by releasing several cytokines to influence tumor cell development. However, the roles and mechanisms of human chorion-derived MSCs (CH-MSCs) in cholangiocarcinoma progression have not been fully addressed. This present study aims to examine the effects of conditioned media derived from CH-MSCs (CH-CM) on CCA cell lines and investigate the respective underlying mechanism of action. For this purpose, MSCs were isolated from chorion tissue, and three cholangiocarcinoma cell lines, namely KKU100, KKU213A, and KKU213B, were used. MTT assay, annexin V/PI analysis, and JC-1 staining were used to assess the effects of CH-CM on proliferation and apoptosis of CCA cells, respectively. Moreover, the effect of CH-CM on caspase-dependent apoptotic pathways was also evaluated. The western blotting assay was also used for measuring the expression of JAK2/STAT3 signaling pathway-associated proteins. The results showed that CH-CM suppressed proliferation and promoted apoptosis of CCA cell lines. CH-CM treatment-induced loss of mitochondrial membrane potential (∆Ψm) in CCA cell lines. The factors presented in the CH-CM also inhibited JAK2/STAT3 signaling, reduced the expression of BCL-2, and increased BAX expression in CCA cells. In conclusion, our study suggests that the CH-CM has a potent anti-cancer effect on cholangiocarcinoma cells and thus provides opportunities for use in alternative cell therapy or in combination with a conventional chemotherapeutic drug to increase the efficiency of CCA treatment.
Collapse
Affiliation(s)
- Tanachapa Jantalika
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Duangrat Tantikanlayaporn
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Weerachai Saijuntha
- Biodiversity and Conservation Research Unit, Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Luminita Paraoan
- Department of Biology, Faculty of Arts and Sciences, Edge Hill University, BioSciences Building, St Helens Road, Ormskirk, L39 4QP, UK.
| | - Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand. .,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
44
|
Gilazieva Z, Ponomarev A, Rizvanov A, Solovyeva V. The Dual Role of Mesenchymal Stromal Cells and Their Extracellular Vesicles in Carcinogenesis. BIOLOGY 2022; 11:biology11060813. [PMID: 35741334 PMCID: PMC9220333 DOI: 10.3390/biology11060813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Simple Summary Extracellular vesicles (EVs) are membrane structures that play the role of intermediaries between tumor cells and the tumor microenvironment (TME) because they have the ability to transport lipids, transcription factors, mRNA, and proteins. Mesenchymal stem cells (MSCs) are a major component of the TME and may have different effects on tumor progression using EVs. This review includes information about various studies which have reported that EVs from MSCs can have either antitumor or pro-tumor effects, depending on both the tumor type and developmental stage. It provides an overview of the published data on EV MSCs and their effect on tumor cells. In addition, the use of EV MSCs for the development of new methods for treating oncological diseases is described. Abstract Mesenchymal stem cells (MSCs) are a major component of the tumor microenvironment (TME) and play an important role in tumor progression. MSCs remodel the extracellular matrix, participate in the epithelial–mesenchymal transition, promote the spread of metastases, and inhibit antitumor immune responses in the TME; however, there are also data pertaining to the antitumor effects of MSCs. MSCs activate the cell death mechanism by modulating the expression of proteins involved in the regulation of the cell cycle, angiogenesis receptors, and proapoptotic proteins. One of the main ways in which MSCs and TME interact is through the production of extracellular vesicles (EVs) by cells. Currently, data on the effects of both MSCs and their EVs on tumor cells are rather contradictory. Various studies have reported that EVs from MSCs can have either antitumor or pro-tumor effects, depending on both the tumor type and developmental stage. In this review, we discuss published data on EV MSCs and their effect on tumor cells. The molecular composition of vesicles obtained from MSCs is also presented in the review. In addition, the use of EV MSCs for the development of new methods for treating oncological diseases is described.
Collapse
|
45
|
Pretreatment of umbilical cord derived MSCs with IFN-γ and TNF-α enhances the tumor-suppressive effect on acute myeloid leukemia. Biochem Pharmacol 2022; 199:115007. [DOI: 10.1016/j.bcp.2022.115007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 01/27/2023]
|
46
|
Sanmartin MC, Borzone FR, Giorello MB, Yannarelli G, Chasseing NA. Mesenchymal Stromal Cell-Derived Extracellular Vesicles as Biological Carriers for Drug Delivery in Cancer Therapy. Front Bioeng Biotechnol 2022; 10:882545. [PMID: 35497332 PMCID: PMC9046597 DOI: 10.3389/fbioe.2022.882545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death worldwide, with 10.0 million cancer deaths in 2020. Despite advances in targeted therapies, some pharmacological drawbacks associated with anticancer chemo and immunotherapeutic agents include high toxicities, low bioavailability, and drug resistance. In recent years, extracellular vesicles emerged as a new promising platform for drug delivery, with the advantage of their inherent biocompatibility and specific targeting compared to artificial nanocarriers, such as liposomes. Particularly, mesenchymal stem/stromal cells were proposed as a source of extracellular vesicles for cancer therapy because of their intrinsic properties: high in vitro self-renewal and proliferation, regenerative and immunomodulatory capacities, and secretion of extracellular vesicles that mediate most of their paracrine functions. Moreover, extracellular vesicles are static and safer in comparison with mesenchymal stem/stromal cells, which can undergo genetic/epigenetic or phenotypic changes after their administration to patients. In this review, we summarize currently reported information regarding mesenchymal stem/stromal cell-derived extracellular vesicles, their proper isolation and purification techniques - from either naive or engineered mesenchymal stem/stromal cells - for their application in cancer therapy, as well as available downstream modification methods to improve their therapeutic properties. Additionally, we discuss the challenges associated with extracellular vesicles for cancer therapy, and we review some preclinical and clinical data available in the literature.
Collapse
Affiliation(s)
- María Cecilia Sanmartin
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro - CONICET, Buenos Aires, Argentina
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro - CONICET, Buenos Aires, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
47
|
Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther 2022; 29:1105-1116. [PMID: 35082400 DOI: 10.1038/s41417-022-00427-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/11/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are known as promising sources for cancer therapy and can be utilized as vehicles in cancer gene therapy. MSC-derived exosomes are central mediators in the therapeutic functions of MSCs, known as the novel cell-free alternatives to MSC-based cell therapy. MSC-derived exosomes show advantages including higher safety as well as more stability and convenience for storage, transport and administration compared to MSCs transplant therapy. Unmodified MSC-derived exosomes can promote or inhibit tumors while modified MSC-derived exosomes are involved in the suppression of cancer development and progression via the delivery of several therapeutics molecules including chemotherapeutic drugs, miRNAs, anti-miRNAs, specific siRNAs, and suicide gene mRNAs. In most malignancies, dysregulation of miRNAs not only occurs as a consequence of cancer progression but also is directly involved during tumor initiation and development due to their roles as oncogenes (oncomiRs) or tumor suppressors (TS-miRNAs). MiRNA restoration is usually achieved by overexpression of TS-miRNAs using synthetic miRNA mimics and viral vectors or even downregulation of oncomiRs using anti-miRNAs. Similar to other therapeutic molecules, the efficacy of miRNAs restoration in cancer therapy depends on the effectiveness of the delivery system. In the present review, we first provided an overview of the properties and potentials of MSCs in cancer therapy as well as the application of MSC-derived exosomes in cancer therapy. Finally, we specifically focused on harnessing the MSC-derived exosomes for the aim of miRNA delivery in cancer therapy.
Collapse
|
48
|
Semsarzadeh N, Khetarpal S. Rise of stem cell therapies in aesthetics. Clin Dermatol 2022; 40:49-56. [DOI: 10.1016/j.clindermatol.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
SHEN H, ZHANG D, LIU H. Mesenchymal stem cell conditioned medium azacytidine, panobinostat and GSK126 alleviate TGF-β-induced EMT in lung cancer. FOOD SCIENCE AND TECHNOLOGY 2022; 42. [DOI: 10.1590/fst.53021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Huihui SHEN
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| | - Dongying ZHANG
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| | - Hua LIU
- The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| |
Collapse
|
50
|
Yassine S, Alaaeddine N. Mesenchymal Stem Cell Exosomes and Cancer: Controversies and Prospects. Adv Biol (Weinh) 2021; 6:e2101050. [PMID: 34939371 DOI: 10.1002/adbi.202101050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have displayed a novel therapeutic strategy for a wide range of diseases and conditions. Their secretome and exosome-based paracrine activity are considered as the main processes harboring their diverse therapeutic properties. Several investigations have examined the effects of MSC-derived exosomes on cancer growth, yet, controversial results have always emerged. Although MSC-derived exosomes are able to rigorously enforce the repression of cancer proliferation and progression, it is shown that MSCs exosomal activity displays numerous protumorigenic effects. This discrepancy over the dual effects of MSCs on cancer growth may be mediated by many factors including experimental design, stem cells origins, culture conditions, in addition to cancer-MSCs cross-talks. Despite the controversial effects of MSCs on carcinogenesis, scientists are able to overcome a number of obstacles by modifying MSCs to deliver antioncogenic miRNAs, anticancer drugs, and oncolytic viruses into tumor sites. This review discusses the controversial effects of MSC-derived exosomes on tumorigenesis, investigates the main causes that underlie this discrepancy, summarizes the pattern of engineered-MSCs, and finally highlights how future studies should advance the research in the field of MSCs-based cancer therapies in order to accelerate the transition from preclinical studies to clinical practice.
Collapse
Affiliation(s)
- Sirine Yassine
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, 1100, Lebanon
| | - Nada Alaaeddine
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, 1100, Lebanon
| |
Collapse
|