1
|
Tian L, Xiao J, Zeng Y, Li Y, Wei A, Shen Q, Han Y, Chen Y, Hu Y. Design and synthesis of CDK9/EZH2 dual-target inhibitors to achieve synergistic antitumor effects. Eur J Med Chem 2025; 294:117773. [PMID: 40403644 DOI: 10.1016/j.ejmech.2025.117773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a pivotal role in regulating transcriptional elongation and has emerged as a promising target in cancer therapy. However, it is reported that CDK9 inhibitors cause abnormal upregulation of H3K27me3 in Diffuse Large B-cell Lymphoma (DLBCL) cell lines. Here, we designed a series of dual inhibitors targeting CDK9 and EZH2 by linking two distinct pharmacophores to achieve synergistic antitumor effects. Among these, the potent CDK9/EZH2 inhibitor D16 exhibited impressive inhibitory activities, with IC50 values of 83.9 nM for CDK9 and 108.6 nM for EZH2. Notably, compound D16 induced more significant DNA damage and exhibited greater inhibition of DLBCL proliferation than the single-target inhibitor SNS-032 or C24. In addition, D16 showed potent anti-proliferative activities in various solid tumor cell lines, which may provide an innovative strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Lina Tian
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Jian Xiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Yanping Zeng
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, 1 Xiangshanzhi Road, Hangzhou, 310024, China
| | - Yangsha Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Aihuan Wei
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Qianqian Shen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yixue Han
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yi Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China.
| | - Youhong Hu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China; School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, 1 Xiangshanzhi Road, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
2
|
Ru Y, Zhao F, Zuo H, Gao X, Yan Y, Ma X, Wang Y. Dual CDK6 and CDK9 inhibitors as anti-psoriasis agents: Design, synthesis, and anti-inflammatory activity. Bioorg Med Chem Lett 2025; 127:130316. [PMID: 40550430 DOI: 10.1016/j.bmcl.2025.130316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 06/09/2025] [Accepted: 06/20/2025] [Indexed: 06/28/2025]
Abstract
Skin hyperplasia and aberrant secretion of inflammatory factors are typical features of psoriasis. Given the cooperative role of CDK6-mediated cell proliferation and CDK9-mediated disturbance of inflammatory cytokines in the progression of psoriasis, dual inhibition of CDK6 and CDK9 is expected to not only exert synergetic anti-psoriatic effects but also reduce the toxicity of single-target inhibition. In this study, on the basis of our previously discovered lead, a total of 17 final compounds were designed and synthesized for exploring additional hydrogen bond interactions with hydrophilic residues in the inner pocket of CDK6 or CDK9. Among them, 4, with dual CDK6 and CDK9 inhibitory activities, was capable to ameliorate inflammation in vitro. Furthermore, it inhibited the activation of STAT3 pathway and decreased the mRNA levels of inflammatory factors in IFN-γ/TNF-α-induced HaCaT cells. These findings indicate dual CDK6 and CDK9 inhibitors may emerge as potential therapeutic agents for psoriasis.
Collapse
Affiliation(s)
- Yiming Ru
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Fang Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Haojie Zuo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiuxiu Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yaoyao Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaodong Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| | - Yang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
3
|
Chen S, Huang J, Zhang S, Zheng X, Chen H, Chen TG, Wang L. Design, synthesis and bio-evaluation of 2,5-disubstituted thiazole derivatives for potential treatment of acute myeloid leukemia through targeting CDK9. Bioorg Chem 2025; 160:108436. [PMID: 40215944 DOI: 10.1016/j.bioorg.2025.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 05/04/2025]
Abstract
CDK9 plays a vital role in cellular transcriptional regulation. Hyper-activation of CDK9 leads to the occurrence of various cancers including acute myeloid leukemia, thereby rendering CDK9 an attractive target for cancer treatment. Based on hit compound A4 with 2,5-disubstituted thiazole core identified through the SyntaLinker-Hybrid scheme that shows weak inhibitory activity against both CDK9 and MOLM-13 cells, we designed and synthesized 32 derivatives through structural modification. In vitro anti-proliferative test screened and confirmed that 14 compounds showed highly inhibitory activity against MOLM-13 cells with IC50 values in the micromolar range. Among them, compound 24 displayed the best antiproliferative activity against MOLM-13 cells with an IC50 value of 0.034 μM, which was comparable to the positive drug (BAY1251152, IC50 = 0.031 μM). In vitro kinase inhibition assay results demonstrated that compound 24 had considerable inhibitory activity against CDK9 with an IC50 value of 5.5 nM and a weak inhibitory activity on other CDKs. Further cellular mechanism assays revealed that 24 affected CDK9 signaling pathways, induced cellular apoptosis and arrested cell cycle in the G2/M phase. Finally, further studies of compound 24 about molecular docking, molecular dynamics simulations and ADMET prediction were investigated. Collectively, compound 24 deserves further structural optimization and development for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Sumeng Chen
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Ministry of Education, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jindi Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Ministry of Education, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shipeng Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Ministry of Education, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xinni Zheng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Hongming Chen
- Department of drug and vaccine research, Guangzhou Laboratory, Guangzhou 510530, China.
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China..
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Ministry of Education, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China..
| |
Collapse
|
4
|
Xu J, Zhong Y, Qin M, Zhang Y, Ma Y, Hu B, Fu Q, Sun Y, Cheng M, Liu Y, Li J. Discovery and Administration Optimization of Novel Selective CDK9 Inhibitor, 1-7a-B1, for Improved Pharmacokinetics and Antitumor Efficacy In Vivo. J Med Chem 2025; 68:11586-11605. [PMID: 40392624 DOI: 10.1021/acs.jmedchem.5c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a member of the transcriptional CDK subfamily. In this work, a de novo design strategy was used to obtain a series of novel CDK9 inhibitors. A novel selective CDK9 inhibitor named 1-7a-B1, which possesses significant CDK9 inhibitory activity (IC50 = 6.51 nM), was developed. Research on the mechanism revealed that 1-7a-B1 could induce apoptosis in the HCT116 cell line by inhibiting the phosphorylation of RNA polymerase II at Ser2, which resulted in the inhibition of apoptosis-related gene and protein expression, and these results were validated at the cellular and tumor tissue levels. Furthermore, a 1-7a-B1-based submicrometer emulsion system was successfully developed on the basis of its ADME properties for improved pharmacokinetics and antitumor efficacy in vivo. This study provides a solution for an oral administration strategy for molecules with strong first-pass elimination. Currently, this emulsion system is being researched further for CRC treatment.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengdi Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yufei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Yinuo Ma
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yili Sun
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
- Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
5
|
Alrouji M, Alshammari MS, Anwar S, Venkatesan K, Shamsi A. Mechanistic Roles of Transcriptional Cyclin-Dependent Kinases in Oncogenesis: Implications for Cancer Therapy. Cancers (Basel) 2025; 17:1554. [PMID: 40361480 PMCID: PMC12071579 DOI: 10.3390/cancers17091554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Cyclin-dependent kinases (CDKs) are pivotal in regulating cell cycle progression and transcription, making them crucial targets in cancer research. The two types of CDKs that regulate different biological activities are transcription-associated CDKs (e.g., CDK7, 8, 9, 12, and 13) and cell cycle-associated CDKs (e.g., CDK1, 2, 4, and 6). One characteristic of cancer is the dysregulation of CDK activity, which results in unchecked cell division and tumor expansion. Targeting transcriptional CDKs, which control RNA polymerase II activity and gene expression essential for cancer cell survival, has shown promise as a therapeutic approach in recent research. While research into selective inhibitors for transcriptional CDKs is ongoing, inhibitors that target CDK4/6, such as palbociclib and ribociclib, have demonstrated encouraging outcomes in treating breast cancer. CDK7, CDK8, and CDK9 are desirable targets for therapy since they have shown oncogenic roles in a variety of cancer types, such as colorectal, ovarian, and breast malignancies. Even with significant advancements, creating selective inhibitors with negligible off-target effects is still difficult. This review highlights the need for more research to optimize therapeutic strategies and improve patient outcomes by giving a thorough overview of the non-transcriptional roles of CDKs in cancer biology, their therapeutic potential, and the difficulties in targeting these kinases for cancer treatment.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Mohammed S. Alshammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Saleha Anwar
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, Saudi Arabia
| |
Collapse
|
6
|
Shi C, Wu Y, Zou F, Yuan Y, Hu C, Liu Q, Wu C, Shen L, Wang A, Wang W, Wang B, Liu J, Liu Q. Discovery of a Novel Dihydroisoquinolinone Derivative as a Potent CDK9 Inhibitor Capable of Overcoming L156F Mutant for the Treatment of Hematologic Malignancies. J Med Chem 2025; 68:8106-8123. [PMID: 40198818 DOI: 10.1021/acs.jmedchem.4c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Hematologic malignancies represent the most prevalent type of malignant cancers associated with significant morbidity and mortality rates. Given CDK9's extensive crosstalk with various signaling pathways and its crucial role in maintaining stem cell phenotypes, it emerges as a promising therapeutic target for hematologic malignancies. Despite ongoing efforts, resistance remains a ubiquitous challenge and significant limitation in the management of these malignancies. Here, we discovered a novel potent and selective inhibitor (14) of both CDK9 wild-type and L156F mutant, which inhibited p-Ser2 RNA Pol II, cMYC, and MCL-1, ultimately triggering apoptosis of hematological cancer cells. In vitro studies further revealed that 14 could efficiently suppress the proliferation of a diverse range of hematological cancer cell lines. Additionally, the in vivo efficacies have been demonstrated in different genetic background hematologic cancer cell-derived mice models. Together, these findings highlight the promising potential of this novel CDK9 inhibitor in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Chenliang Shi
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yun Wu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Fengming Zou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Yuan Yuan
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chen Hu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Qingwang Liu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Chao Wu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lijuan Shen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Aoli Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Wenchao Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Beilei Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Jing Liu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Qingsong Liu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Cancer Medicine Engineering Research Center of Anhui Province, Hefei, Anhui 230088, P. R. China
- Primary Cell Engineering Joint Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| |
Collapse
|
7
|
Puleo N, Ram H, Dziubinski ML, Carvette D, Teitel J, Sekhar SC, Bedi K, Robida A, Nakashima MM, Farsinejad S, Iwanicki M, Senkowski W, Ray A, Bollerman TJ, Dunbar J, Richardson P, Taddei A, Hudson C, DiFeo A. Identification of a TNIK-CDK9 Axis as a Targetable Strategy for Platinum-Resistant Ovarian Cancer. Mol Cancer Ther 2025; 24:639-656. [PMID: 39873147 PMCID: PMC11962390 DOI: 10.1158/1535-7163.mct-24-0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Up to 90% of patients with high-grade serous ovarian cancer (HGSC) will develop resistance to platinum-based chemotherapy, posing substantial therapeutic challenges due to a lack of universally druggable targets. Leveraging BenevolentAI's artificial intelligence (AI)-driven approach to target discovery, we screened potential AI-predicted therapeutic targets mapped to unapproved tool compounds in patient-derived 3D models. This identified TNIK, which is modulated by NCB-0846, as a novel target for platinum-resistant HGSC. Targeting by this compound demonstrated efficacy across both in vitro and ex vivo organoid platinum-resistant models. Additionally, NCB-0846 treatment effectively decreased Wnt activity, a known driver of platinum resistance; however, we found that these effects were not solely mediated by TNIK inhibition. Comprehensive AI, in silico, and in vitro analyses revealed CDK9 as another key target driving NCB-0846's efficacy. Interestingly, TNIK and CDK9 co-expression positively correlated, and chromosomal gains in both served as prognostic markers for poor patient outcomes. Combined knockdown of TNIK and CDK9 markedly diminished downstream Wnt targets and reduced chemotherapy-resistant cell viability. Furthermore, we identified CDK9 as a novel mediator of canonical Wnt activity, providing mechanistic insights into the combinatorial effects of TNIK and CDK9 inhibition and offering a new understanding of NCB-0846 and CDK9 inhibitor function. Our findings identified the TNIK-CDK9 axis as druggable targets mediating platinum resistance and cell viability in HGSC. With AI at the forefront of drug discovery, this work highlights how to ensure that AI findings are biologically relevant by combining compound screens with physiologically relevant models, thus supporting the identification and validation of potential drug targets.
Collapse
Affiliation(s)
- Noah Puleo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Precision Health, University of Michigan, Ann Arbor, Michigan
| | - Harini Ram
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Michele L. Dziubinski
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Dylan Carvette
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jessica Teitel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Sreeja C. Sekhar
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Karan Bedi
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Aaron Robida
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | | | - Sadaf Farsinejad
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey
| | - Wojciech Senkowski
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | - Analisa DiFeo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
8
|
Xu Z, Geng Y, Guan L, Niu MM, Xu C, Yang L, Liang S. Discovery of a highly potent, selective, and stable d-amino acid-containing peptide inhibitor of CDK9/cyclin T1 interaction for the treatment of prostate cancer. Eur J Med Chem 2025; 285:117248. [PMID: 39808974 DOI: 10.1016/j.ejmech.2025.117248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a pivotal role in promoting oncogenic transcriptional pathways, significantly contributing to the development and progression of cancer. Given the unique biostability of d-amino acid, the development of d-amino acid-containing peptides (DAACPs) is a promising strategy for cancer treatment. Currently, no DAACPs inhibitor targeting CDK9-cyclin T1 have been reported. Here, we reported the identification of a novel, highly potent, selective and stable DAACPs inhibitor (peptide-5) targeting CDK9-cyclin T1 interaction. Peptide-5 showed nanomolar inhibitory effect against CDK9-cyclin T1 (IC50 = 4.16 ± 0.11 nM). Molecular dynamics (MD) simulation exhibited that peptide-5 stably bound to CDK9. Peptide-5 showed good inhibitory activity against multiple types of prostate cancer cells and demonstrated good biostability in mouse serum. Moreover, peptide-5 suppresses the tumor growth in DU145 cell-derived xenografts nude mice. These data suggest that peptide-5 is a potent antitumor candidate for further research.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Cen Xu
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Li Yang
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Sudong Liang
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
9
|
Hsu JY, Hsu KC, Chou CH, He TY, Lin TE, Sung TY, Yen SC, Hsieh JH, Yang CR, Huang WJ. Structural optimization and biological evaluation of indolin-2-one derivatives as novel CDK8 inhibitors for idiopathic pulmonary fibrosis. Biomed Pharmacother 2025; 184:117891. [PMID: 39955852 DOI: 10.1016/j.biopha.2025.117891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Cyclin-dependent kinase 8 (CDK8) plays a crucial role in the transforming growth factor beta (TGF-β) signaling pathway, which is critical to the pathology of idiopathic pulmonary fibrosis (IPF). CDK8 promotes the epithelial-mesenchymal transition (EMT) and excessive extracellular matrix (ECM) deposition, making it a promising target for IPF treatment. This study focused on optimizing F059-1017, a previously identified CDK8 inhibitor, to enhance its potency. Through integrated structure-based modifications, a series of compounds was synthesized, and their inhibitory effects on CDK8 were tested. Results indicated that substituting with cyclopentanone significantly improved the inhibitory activity, and compound 4j demonstrated the best potency (IC50 = 16 nM). Notably, compared to F059-1017, its potency increased 35-fold, and kinase profiling revealed that the compound was selective for CDK8. Compound 4j inhibited the TGF-β1-induced EMT, cell migration, and morphological changes in A549 cells at a concentration of 0.1 μM and inhibited ECM and EMT protein expressions. In addition, the compound blocked TGF-β1-induced transcriptional changes and inhibited Smad3 and RNA polymerase II phosphorylation. These results highlight the potential of the optimized CDK8 inhibitor as a prospective drug for IPF treatment.
Collapse
Affiliation(s)
- Jui-Yi Hsu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hsuan Chou
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Ying He
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Jui-Hua Hsieh
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Jin Y, Lee Y. Proteolysis Targeting Chimeras (PROTACs) in Breast Cancer Therapy. ChemMedChem 2024; 19:e202400267. [PMID: 39136599 PMCID: PMC11617661 DOI: 10.1002/cmdc.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Indexed: 10/16/2024]
Abstract
Breast cancer (BC) accounts for 30 % of cancer cases among women cancer patients globally, indicating the urgent need for the development of selective therapies targeting BCs. Recently, proteolysis-targeting chimera (PROTAC) has emerged as a promising strategy to target breast cancer. PROTAC is a chimeric molecule consisting of a target protein ligand, an E3 ligase ligand, and conjugating linkers, enabling it to facilitate the degradation of desired target proteins by recruiting E3 ligase in close proximity. Due to the catalytic behavior and direct degradation of BC-causing proteins, PROTAC could achieve high drug efficacy with low doses, drawing great attention for its potential as therapeutics. This review provides cases of the currently developed PROTACs targeting BCs depending on the type of BCs, limitations, and future perspectives of PROTAC in targeting BCs.
Collapse
Affiliation(s)
- Yerim Jin
- Department of ChemistryPusan National UniversityBusan46241Korea
| | - Yeongju Lee
- Department of ChemistryPusan National UniversityBusan46241Korea
| |
Collapse
|
11
|
Sai Madhurya M, Thakur V, Dastari S, Shankaraiah N. Pyrrolo[2,3-d]pyrimidines as potential kinase inhibitors in cancer drug discovery: A critical review. Bioorg Chem 2024; 153:107867. [PMID: 39388837 DOI: 10.1016/j.bioorg.2024.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Pyrrolo[2,3-d]pyrimidine-based kinase inhibitors have emerged as an important class of targeted therapeutics to combat various types of cancer. The distinctive structural feature of pyrrolopyrimidine ring system offers an adaptable platform for designing potent inhibitors of various kinases, crucial in regulating cellular processes. The deazapurine framework inherent to pyrrolopyrimidines bears a conspicuous resemblance to adenine, the natural ligand ATP. The structural mimicry enhances their appeal as potent inhibitors of key kinases. This review reconnoitres the intricate process of designing and developing pyrrolopyrimidine based derivatives, accentuating their structural diversity and the strategic modifications employed to enhance selectivity, potency, and pharmacokinetic properties. The discussion delves into medicinal chemistry strategies, highlighting successful examples that have been progressed to clinical evaluation. Furthermore, the review highlights the promise of pyrrolopyrimidine scaffolds in revolutionizing targeted cancer therapy and provides a pioneering perspective on future directions.
Collapse
Affiliation(s)
- Malyala Sai Madhurya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Vanashree Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sowmya Dastari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
12
|
Wang J, Wen Y, Zhang Y, Wang Z, Jiang Y, Dai C, Wu L, Leng D, He S, Bo X. An interpretable artificial intelligence framework for designing synthetic lethality-based anti-cancer combination therapies. J Adv Res 2024; 65:329-343. [PMID: 38043609 PMCID: PMC11519055 DOI: 10.1016/j.jare.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023] Open
Abstract
INTRODUCTION Synthetic lethality (SL) provides an opportunity to leverage different genetic interactions when designing synergistic combination therapies. To further explore SL-based combination therapies for cancer treatment, it is important to identify and mechanistically characterize more SL interactions. Artificial intelligence (AI) methods have recently been proposed for SL prediction, but the results of these models are often not interpretable such that deriving the underlying mechanism can be challenging. OBJECTIVES This study aims to develop an interpretable AI framework for SL prediction and subsequently utilize it to design SL-based synergistic combination therapies. METHODS We propose a knowledge and data dual-driven AI framework for SL prediction (KDDSL). Specifically, we use gene knowledge related to the SL mechanism to guide the construction of the model and develop a method to identify the most relevant gene knowledge for the predicted results. RESULTS Experimental and literature-based validation confirmed a good balance between predictive and interpretable ability when using KDDSL. Moreover, we demonstrated that KDDSL could help to discover promising drug combinations and clarify associated biological processes, such as the combination of MDM2 and CDK9 inhibitors, which exhibited significant anti-cancer effects in vitro and in vivo. CONCLUSION These data underscore the potential of KDDSL to guide SL-based combination therapy design. There is a need for biomedicine-focused AI strategies to combine rational biological knowledge with developed models.
Collapse
Affiliation(s)
- Jing Wang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yuqi Wen
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yixin Zhang
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Zhongming Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yuyang Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chong Dai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Dongjin Leng
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Song He
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Xiaochen Bo
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| |
Collapse
|
13
|
Liu Y, Xu Z, Hu L, Xia L, Li Q, Zhou W, Chen Y, Li W, Jiang W, Zhu X, Gao X, Xia Y, Zhu Z, Chen S, Ding CZ. Discovery and preclinical profile of YK-2168, a differentiated selective CDK9 inhibitor in clinical development. Bioorg Med Chem Lett 2024; 112:129941. [PMID: 39222890 DOI: 10.1016/j.bmcl.2024.129941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Emerging clinical evidence indicates that selective CDK9 inhibition may provide clinical benefits in the management of certain cancers. Many CDK9 selective inhibitors have entered clinical developments, and are being investigated. No clear winner has emerged because of unforeseen toxicity often observed in clinic with these agents. Therefore, a novel agent with differentiated profiles is still desirable. Herein, we report our design, syntheses of a novel azaindole series of selective CDK9 inhibitors. SAR studies led to a preclinical candidate YK-2168. YK2168 exhibited improved CDK9 selectivity over AZD4573 and BAY1251152; also showed differentiated intravenous PK profile and remarkable solid tumor efficacy in a mouse gastric cancer SNU16 CDX model in preclinical studies. YK-2168 is currently in clinical development in China (CTR20212900).
Collapse
Affiliation(s)
- Yingchun Liu
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Zhaobing Xu
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Lihong Hu
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Li Xia
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qi Li
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wang Zhou
- Nanjing Damei Biopharmaceutical Co. Ltd., Room 226, Second Floor of Comprehensive Office Building in Chemical Industrial Park, 158 Fangshui Road, Nanjing, Jiangsu Province 210023, China
| | - Yadong Chen
- Nanjing Damei Biopharmaceutical Co. Ltd., Room 226, Second Floor of Comprehensive Office Building in Chemical Industrial Park, 158 Fangshui Road, Nanjing, Jiangsu Province 210023, China
| | - Wei Li
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wen Jiang
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Xingxun Zhu
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Xiao Gao
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Yuanfeng Xia
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhenzhen Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shuhui Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Charles Z Ding
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| |
Collapse
|
14
|
Sarott R, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Relocalizing transcriptional kinases to activate apoptosis. Science 2024; 386:eadl5361. [PMID: 39361741 PMCID: PMC11629774 DOI: 10.1126/science.adl5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Kinases are critical regulators of cellular function that are commonly implicated in the mechanisms underlying disease. Most drugs that target kinases are molecules that inhibit their catalytic activity, but here we used chemically induced proximity to convert kinase inhibitors into activators of therapeutic genes. We synthesized bivalent molecules that link ligands of the transcription factor B cell lymphoma 6 (BCL6) to inhibitors of cyclin-dependent kinases (CDKs). These molecules relocalized CDK9 to BCL6-bound DNA and directed phosphorylation of RNA polymerase II. The resulting expression of pro-apoptotic, BCL6-target genes caused killing of diffuse large B cell lymphoma cells and specific ablation of the BCL6-regulated germinal center response. Genomics and proteomics corroborated a gain-of-function mechanism in which global kinase activity was not inhibited but rather redirected. Thus, kinase inhibitors can be used to context-specifically activate transcription.
Collapse
Affiliation(s)
- Roman Sarott
- Department of Chemical and Systems Biology, Stanford University
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University
| | - Basel Karim
- Department of Chemistry, Stanford University
| | | | - Haopeng Yang
- Department of Lymphoma-Myeloma, MD Anderson Cancer Center
| | | | | | - Jason Tse
- Department of Chemical and Systems Biology, Stanford University
| | | | | | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University
| | | | | | - Gerald R. Crabtree
- Department of Pathology, Stanford University
- Department Developmental Biology, Stanford University
| | | |
Collapse
|
15
|
Venkatesan G, Yong Ping C, Chen H, Srinivasan P, Karkhanis AV, Pastorin G. Design, synthesis, molecular modeling and evaluation of 2,4-diaminopyrimidine analogues as promising colorectal cancer drugs. Bioorg Chem 2024; 153:107854. [PMID: 39368143 DOI: 10.1016/j.bioorg.2024.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
The potential of cyclin-dependent kinases (CDKs) as therapeutic targets in cancer treatment is well established. In this study, we present our investigation into a group of 2,4-diaminopyrimidine derivatives that potently inhibit CDK9 and are cytotoxic when tested in colorectal cancer cell lines. We designed and synthesized forty analogues by altering substitutions at C-2 and C-4 position of the pyrimidine system. Among them, compounds 16 h and 16j exhibited strong inhibitory potency against both CDK9 enzymes (IC50 = 11.4 ± 1.4 nM, IC50 = 10.2 ± 1.3 nM respectively) with a significant preference for one over the other, and cytotoxic potency (IC50 = 61 ± 2 nM, IC50 = 20 ± 1 nM respectively) against HCT-116 was discovered through substantial modifications to its structure. Further investigations revealed that compounds 16 h and 16j were directly bound to CDK9, resulting in the suppression of its downstream signaling pathway. This inhibition of cell proliferation occurred by impeding the progression of the cell cycle and inducing apoptosis in cells by suppressing the phosphoryl RNA pol II Ser2. Significantly, compound 16 h and 16j effectively suppressed tumor growth in a xenograft mouse model and exhibited no apparent toxicity. This indicates that CDK9 inhibitors hold great potential as a therapeutic approach for colorectal cancer treatment. Therefore, the aforementioned discoveries are vital for the development of CDK9 inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Gopalakrishnan Venkatesan
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Lower Kent Ridge Road, 4 Science Drive 2, 117544, Singapore.
| | - Chong Yong Ping
- Critical Analytics for Manufacturing Personalized-Medicine Programme (CAMP), Singapore-MIT Alliance for Research and Technology, Singapore. 1 CREATE Way, #12-02 CREATE Tower, 138602, Singapore
| | - Hong Chen
- School of Biological Sciences (SBS), Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
| | - Perumal Srinivasan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, 117583, Singapore
| | - Aneesh V Karkhanis
- Certara UK Ltd., Certara Predictive Technologies Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2B1, United Kingdom
| | - Giorgia Pastorin
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Lower Kent Ridge Road, 4 Science Drive 2, 117544, Singapore
| |
Collapse
|
16
|
Saidahmatov A, Li J, Xu S, Hu X, Gao X, Kan W, Gao L, Li C, Shi Y, Sheng L, Wang P, Zhou Y, Liang X, Li J, Liu H. Discovery of Novel 2-Aminopyridine-Based and 2-Aminopyrimidine-Based Derivatives as Potent CDK/HDAC Dual Inhibitors for the Treatment of Refractory Solid Tumors and Hematological Malignancies. J Med Chem 2024; 67:15220-15245. [PMID: 39178382 DOI: 10.1021/acs.jmedchem.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Co-inhibition of histone deacetylase (HDAC) and cyclin-dependent kinase (CDK) synergizes to produce enhanced antitumor effects and potentially overcomes the drug resistance. In this work, we discovered a series of novel CDK9/HDACs dual inhibitors. Among them, compound 8e was identified to show potent CDK9 and HDAC1 inhibitory activities, with IC50 values at 88.4 and 168.9 nM, respectively, and exhibited antiproliferative capacities against hematological and solid tumor cells. Meanwhile, 8e showed high selectivity for CDK9 and HDAC1, remarkably induced MV-4-11 cell apoptosis and S cell cycle arrests. Furthermore, 8e possessed a significant antitumor potency with a T/C value of 29.98% in the MV-4-11 xenograft model. Interestingly, a potent FLT3/HDAC dual inhibitor 9e was also identified (FLT3/HDAC1/3 IC50 = 30.4/52.4/14.7 nM) and found to possess powerful apoptosis induction ability in MV-4-11 cell and potent antiproliferative capacities against FLT3 mutant-transformed BaF3 cells. Overall, our work provided valuable lead compounds for dual inhibitors with potent anticancer activity.
Collapse
Affiliation(s)
- Abdusaid Saidahmatov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shihao Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Xiangqian Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weijuan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Cong Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yuqiang Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Li Sheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Peipei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Huang Y, Liu W, Zhao C, Shi X, Zhao Q, Jia J, Wang A. Targeting cyclin-dependent kinases: From pocket specificity to drug selectivity. Eur J Med Chem 2024; 275:116547. [PMID: 38852339 DOI: 10.1016/j.ejmech.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.
Collapse
Affiliation(s)
- Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China
| | - Changhao Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaoyu Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
18
|
Zhong Y, Xu J, Ding S, Cao H, Zhang Y, Hu B, Han S, Yang H, Cheng M, Li J, Sun Y, Liu Y. Discovery of novel CDK9 inhibitor with tridentate ligand: Design, synthesis and biological evaluation. Bioorg Chem 2024; 150:107550. [PMID: 38878756 DOI: 10.1016/j.bioorg.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 07/21/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a role in transcriptional regulation, which had become an attractive target for discovery of antitumor agent. In this work, beyond traditional CDK9 inhibitor with bidentate ligands in ATP binding domain, a series of novel CDK9 inhibitor with tridentate ligand were designed and synthesized. Surprisingly, this unique tridentate ligand structure endows better CDK9 inhibition selectivity compared to other CDK subtypes, and the lead candidate compound Z4-7a showed effective proliferation inhibition in HCT116 cells with acceptable pharmacokinetic properties. Research on the mechanism indicated that Z4-7a could induce apoptosis in the HCT116 cell line by inhibiting phosphorylation of RNA polymerase II at Ser2, which resulted in the inhibition of apoptosis-related genes and proteins expression. In brief, introduction of tridentate ligand might work as a promising strategy for the development of novel selective CDK9 inhibitor.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Shaoyue Ding
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiying Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Yufei Zhang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shucheng Han
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yili Sun
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
19
|
Singh P, Kumar V, Jung TS, Lee JS, Lee KW, Hong JC. Uncovering potential CDK9 inhibitors from natural compound databases through docking-based virtual screening and MD simulations. J Mol Model 2024; 30:267. [PMID: 39012568 DOI: 10.1007/s00894-024-06067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
CONTEXT Cyclin-dependent kinase 9 (CDK9) plays a significant role in gene regulation and RNA polymerase II transcription under basal and stimulated conditions. The upregulation of transcriptional homeostasis by CDK9 leads to various malignant tumors and therefore acts as a valuable drug target in addressing cancer incidences. Ongoing drug development endeavors targeting CDK9 have yielded numerous clinical candidate molecules currently undergoing investigation as potential CDK9 modulators, though none have yet received Food and Drug Administration (FDA) approval. METHODS In this study, we employ in silico approaches including the molecular docking and molecular dynamics simulations for the virtual screening over the natural compounds library to identify novel promising selective CDK9 inhibitors. The compounds derived from the initial virtual screening were subsequently employed for molecular dynamics simulations and binding free energy calculations to study the compound's stability under virtual physiological conditions. The first-generation CDK inhibitor Flavopiridol was used as a reference to compare with our novel hit compound as a CDK9 antagonist. The 500-ns molecular dynamics simulation and binding free energy calculation showed that two natural compounds showed better binding affinity and interaction mode with CDK9 receptors over the reference Flavopiridol. They also showed reasonable figures in the predicted absorption, distribution, metabolism, excretion, and toxicity (ADMET) calculations as well as in computational cytotoxicity predictions. Therefore, we anticipate that the proposed scaffolds could contribute to developing potential and selective CDK9 inhibitors subjected to further validations.
Collapse
Affiliation(s)
- Pooja Singh
- Division of Applied Life Science, (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-Daero, Jinju, 52828, Republic of Korea
| | - Vikas Kumar
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-Daero, Jinju, 52828, Republic of Korea
- Computational Biophysics Lab, Basque Center for Materials, Applications, and Nanostructures (BCMaterials), Building Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, 48940, Leioa, Spain
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jeong Sang Lee
- GSCRO, Research Spin-Off Company, Innopolis Jeonbuk, Jeonju, 55069, Korea
- Department of Food and Nutrition, College of Medical Science, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-Daero, Jinju, 52828, Republic of Korea.
- Angel I-Drug Design (AiDD), 33-3 Jinyangho-Ro 44, Jinju, 52650, Republic of Korea.
| | - Jong Chan Hong
- Division of Applied Life Science, (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-Daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
20
|
Yan KN, Nie YQ, Wang JY, Yin GL, Liu Q, Hu H, Sun X, Chen XH. Accelerating PROTACs Discovery Through a Direct-to-Biology Platform Enabled by Modular Photoclick Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400594. [PMID: 38689503 PMCID: PMC11234393 DOI: 10.1002/advs.202400594] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) have emerged as a promising strategy for drug discovery and exploring protein functions, offering a revolutionary therapeutic modality. Currently, the predominant approach to PROTACs discovery mainly relies on an empirical design-synthesis-evaluation process involving numerous cycles of labor-intensive synthesis-purification and bioassay data collection. Therefore, the development of innovative methods to expedite PROTAC synthesis and exploration of chemical space remains highly desired. Here, a direct-to-biology strategy is reported to streamline the synthesis of PROTAC libraries on plates, enabling the seamless transfer of reaction products to cell-based bioassays without the need for additional purification. By integrating amide coupling and light-induced primary amines and o-nitrobenzyl alcohols cyclization (PANAC) photoclick chemistry into a plate-based synthetic process, this strategy produces PROTAC libraries with high efficiency and structural diversity. Moreover, by employing this platform for PROTACs screening, we smoothly found potent PROTACs effectively inhibit triple-negative breast cancer (TNBC) cell growth and induce rapid, selective targeted degradation of cyclin-dependent kinase 9 (CDK9). The study introduces a versatile platform for assembling PROTACs on plates, followed by direct biological evaluation. This approach provides a promising opportunity for high-throughput synthesis of PROTAC libraries, thereby enhancing the efficiency of exploring chemical space and accelerating the discovery of PROTACs.
Collapse
Affiliation(s)
- Ke-Nian Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Qiang Nie
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jia-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guang-Liang Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qia Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoxia Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
21
|
Wang WJ, Gao L, Wang S, Huang W, Meng XY, Hu H, Chen Z, Sun J, Yuan Y, Zhou Y, Diao X, Huang R, Li J, Chen XH. Discovery of Orally Bioavailable and Potent CDK9 Inhibitors for Targeting Transcription Regulation in Triple-Negative Breast Cancer. J Med Chem 2024; 67:10035-10056. [PMID: 38885173 DOI: 10.1021/acs.jmedchem.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Triple-negative breast cancer (TNBC) represents a highly aggressive and heterogeneous malignancy. Currently, effective therapies for TNBC are very limited and remain a significant unmet clinical need. Targeting the transcription-regulating cyclin-dependent kinase 9 (CDK9) has emerged as a promising avenue for therapeutic treatment of TNBC. Herein, we report the design, synthesis, optimization, and evaluation of a new series of aminopyrazolotriazine compounds as orally bioavailable, potent, and CDK9/2 selectivity-improved inhibitors, enabling efficacious inhibition of TNBC cell growth, as well as notable antitumor effect in TNBC models. The compound C35 demonstrated low-nanomolar potency with substantially improved CDK9/2 selectivity, downregulated the CDK9-downstream targets (e.g., MCL-1), and induced apoptosis in TNBC cell lines. Moreover, with the desired oral bioavailability, oral administration of C35 could significantly suppress the tumor progression in two TNBC mouse models. This study demonstrates that target transcriptional regulation is an effective strategy and holds promising potential as a targeted therapy for the treatment of TNBC.
Collapse
Affiliation(s)
- Wen-Jing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Gao
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Simei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wensi Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yu Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ziqiang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingya Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yali Yuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yubo Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan 528400, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan 528400, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
22
|
Hassanzadeh A, Shomali N, Kamrani A, Soltani-Zangbar MS, Nasiri H, Akbari M. Cancer therapy by cyclin-dependent kinase inhibitors (CDKIs): bench to bedside. EXCLI JOURNAL 2024; 23:862-882. [PMID: 38983782 PMCID: PMC11231458 DOI: 10.17179/excli2024-7076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 07/11/2024]
Abstract
A major characteristic of cancer is dysregulated cell division, which results in aberrant growth of cells. Consequently, medicinal targets that prevent cell division would be useful in the fight against cancer. The primary regulator of proliferation is a complex consisting of cyclin and cyclin-dependent kinases (CDKs). The FDA has granted approval for CDK inhibitors (CDKIs) to treat metastatic hormone receptor-positive breast cancer. Specifically, CDK4/6 CDKIs block the enzyme activity of CDK4 and CDK6. Unfortunately, the majority of first-generation CDK inhibitors, also known as pan-CDK inhibitors because they target multiple CDKs, have not been authorized for clinical use owing to their serious side effects and lack of selection. In contrast to this, significant advancements have been created to permit the use of pan-CDK inhibitors in therapeutic settings. Notably, the toxicity and negative consequences of pan-CDK inhibitors have been lessened in recent years thanks to the emergence of combination therapy tactics. Therefore, pan-CDK inhibitors have renewed promise for clinical use when used in a combination regimen. The members of the CDK family have been reviewed and their primary roles in cell cycle regulation were covered in this review. Next, we provided an overview of the state of studies on CDK inhibitors.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Asghar A, Chohan TA, Khurshid U, Saleem H, Mustafa MW, Khursheed A, Alafnan A, Batul R, Bin Break MK, Almansour K, Anwar S. A systematic review on understanding the mechanistic pathways and clinical aspects of natural CDK inhibitors on cancer progression.: Unlocking cellular and biochemical mechanisms. Chem Biol Interact 2024; 393:110940. [PMID: 38467339 DOI: 10.1016/j.cbi.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.
Collapse
Affiliation(s)
- Andleeb Asghar
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Mian Waqar Mustafa
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
| | - Anjum Khursheed
- Department of Pharmacy, Grand Asian University, Sialkot, Pakistan
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| | - Rahila Batul
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| |
Collapse
|
24
|
Zhang Y, Shan L, Tang W, Ge Y, Li C, Zhang J. Recent Discovery and Development of Inhibitors that Target CDK9 and Their Therapeutic Indications. J Med Chem 2024; 67:5185-5215. [PMID: 38564299 DOI: 10.1021/acs.jmedchem.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
CDK9 is a cyclin-dependent kinase that plays pivotal roles in multiple cellular functions including gene transcription, cell cycle regulation, DNA damage repair, and cellular differentiation. Targeting CDK9 is considered an attractive strategy for antitumor therapy, especially for leukemia and lymphoma. Several potent small molecule inhibitors, exemplified by TG02 (4), have progressed to clinical trials. However, many of them face challenges such as low clinical efficacy and multiple adverse reactions and may necessitate the exploration of novel strategies to lead to success in the clinic. In this perspective, we present a comprehensive overview of the structural characteristics, biological functions, and preclinical status of CDK9 inhibitors. Our focus extends to various types of inhibitors, including pan-inhibitors, selective inhibitors, dual-target inhibitors, degraders, PPI inhibitors, and natural products. The discussion encompasses chemical structures, structure-activity relationships (SARs), biological activities, selectivity, and therapeutic potential, providing detailed insight into the diverse landscape of CDK9 inhibitors.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Wentao Tang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yating Ge
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - ChengXian Li
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
25
|
Zhong Y, Xu J, Zhou R, Tang L, Ding S, Ren Z, Song N, Hu B, Yang H, Sun Y, Cheng M, Li J, Liu Y. Identification of a Novel Selective CDK9 Inhibitor for the Treatment of CRC: Design, Synthesis, and Biological Activity Evaluation. J Med Chem 2024; 67:4739-4756. [PMID: 38488882 DOI: 10.1021/acs.jmedchem.3c02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a member of the transcription CDK subfamily. In this work, we preliminarily demonstrated the feasibility of CDK9 as a potent target of treatment for colorectal cancer, and a series of novel CDK9 inhibitors were rationally designed and synthesized based on the structure of AZD5438 (a pan CDKs inhibitor reported by AstraZeneca). A novel selective CDK9 inhibitor named CLZX-205, which possessed significant CDK9 inhibitory activity (IC50 = 2.9 nM) with acceptable pharmacokinetic properties and antitumor efficacy in vitro and in vivo, was developed. Research on the mechanism indicated that CLZX-205 could induce apoptosis in the HCT116 cell line by inhibiting phosphorylation of RNA polymerase II at Ser2, which resulted in the inhibition of apoptosis-related genes and proteins expression, and these results were validated at the cellular and tumor tissue levels. Currently, CLZX-205 is undergoing further research as a promising candidate for CRC treatment.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Ruochen Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shaoyue Ding
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhaohui Ren
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Ning Song
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yili Sun
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
26
|
Koirala M, DiPaola M. Targeting CDK9 in Cancer: An Integrated Approach of Combining In Silico Screening with Experimental Validation for Novel Degraders. Curr Issues Mol Biol 2024; 46:1713-1730. [PMID: 38534727 DOI: 10.3390/cimb46030111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
The persistent threat of cancer remains a significant hurdle for global health, prompting the exploration of innovative approaches in the quest for successful therapeutic interventions. Cyclin-dependent kinase 9 (CDK9), a central player in transcription regulation and cell cycle progression, has emerged as a promising target to combat cancer. Its pivotal role in oncogenic pathways and the pressing need for novel cancer treatments has propelled CDK9 into the spotlight of drug discovery efforts. This article presents a comprehensive study that connects a multidisciplinary approach, combining computational methodologies, experimental validation, and the transformative Proteolysis-Targeting Chimera (PROTAC) technology. By uniting these diverse techniques, we aim to identify, characterize, and optimize a new class of degraders targeting CDK9. We explore these compounds for targeted protein degradation, offering a novel and potentially effective approach to cancer therapy. This cohesive strategy utilizes the combination of computational predictions and experimental insights, with the goal of advancing the development of effective anticancer therapeutics, targeting CDK9.
Collapse
|
27
|
Zheng L, Lu J, Kong DL. Expression of cyclin-dependent kinase 9 is positively correlated with the autophagy level in colon cancer. World J Gastrointest Oncol 2024; 16:314-330. [PMID: 38425408 PMCID: PMC10900151 DOI: 10.4251/wjgo.v16.i2.314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase 9 (CDK9) expression and autophagy in colorectal cancer (CRC) tissues has not been widely studied. CDK9, a key regulator of transcription, may influence the occurrence and progression of CRC. The expression of autophagy-related genes BECN1 and drug resistance factor ABCG2 may also play a role in CRC. Under normal physiological conditions, autophagy can inhibit tumorigenesis, but once a tumor forms, autophagy may promote tumor growth. Therefore, understanding the relationship between autophagy and cancer, particularly how autophagy promotes tumor growth after its formation, is a key motivation for this research. AIM To investigate the relationship between CDK9 expression and autophagy in CRC, assess differences in autophagy between left and right colon cancer, and analyze the associations of autophagy-related genes with clinical features and prognosis. METHODS We collected tumor tissues and paracarcinoma tissues from colon cancer patients with liver metastasis to observe the level of autophagy in tissues with high levels of CDK9 and low levels of CDK9. We also collected primary tissue from left and right colon cancer patients with liver metastasis to compare the autophagy levels and the expression of BECN1 and ABCG2 in the tumor and paracarcinoma tissues. RESULTS The incidence of autophagy and the expression of BECN1 and ABCG2 were different in left and right colon cancer, and autophagy might be involved in the occurrence of chemotherapy resistance. Further analysis of the relationship between the expression of autophagy-related genes CDK9, ABCG2, and BECN1 and the clinical features and prognosis of colorectal cancer showed that the high expression of CDK9 indicated a poor prognosis in colorectal cancer. CONCLUSION This study laid the foundation for further research on the combination of CDK9 inhibitors and autophagy inhibitors in the treatment of patients with CRC.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy of Tianjin, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jia Lu
- Department of Infection Management, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy of Tianjin, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Da-Lu Kong
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy of Tianjin, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
28
|
Wang S, Liu F, Li P, Wang JN, Mo Y, Lin B, Mei Y. Potent inhibitors targeting cyclin-dependent kinase 9 discovered via virtual high-throughput screening and absolute binding free energy calculations. Phys Chem Chem Phys 2024; 26:5377-5386. [PMID: 38269624 DOI: 10.1039/d3cp05582e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Due to the crucial regulatory mechanism of cyclin-dependent kinase 9 (CDK9) in mRNA transcription, the development of kinase inhibitors targeting CDK9 holds promise as a potential treatment strategy for cancer. A structure-based virtual screening approach has been employed for the discovery of potential novel CDK9 inhibitors. First, compounds with kinase inhibitor characteristics were identified from the ZINC15 database via virtual high-throughput screening. Next, the predicted binding modes were optimized by molecular dynamics simulations, followed by precise estimation of binding affinities using absolute binding free energy calculations based on the free energy perturbation scheme. The binding mode of molecule 006 underwent an inward-to-outward flipping, and the new binding mode exhibited binding affinity comparable to the small molecule T6Q in the crystal structure (PDB ID: 4BCF), highlighting the essential role of molecular dynamics simulation in capturing a plausible binding pose bridging docking and absolute binding free energy calculations. Finally, structural modifications based on these findings further enhanced the binding affinity with CDK9. The results revealed that enhancing the molecule's rigidity through ring formation, while maintaining the major interactions, reduced the entropy loss during the binding process and, thus, enhanced binding affinities.
Collapse
Affiliation(s)
- Shipeng Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Fengjiao Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Pengfei Li
- Single Particle, LLC, 10531 4S Commons Dr 166-629, San Diego, CA 92127, USA
| | - Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
29
|
Gao G, Li J, Cao Y, Li X, Qian Y, Wang X, Li M, Qiu Y, Wu T, Wang L, Fang M. Design, synthesis, and biological evaluation of novel 4,4'-bipyridine derivatives acting as CDK9-Cyclin T1 protein-protein interaction inhibitors against triple-negative breast cancer. Eur J Med Chem 2023; 261:115858. [PMID: 37837671 DOI: 10.1016/j.ejmech.2023.115858] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Cyclin-dependent kinase 9 (CDK9) is directly related to tumor development in triple-negative breast cancer (TNBC) patients. Increased CDK9 is significantly associated with poor patient prognosis, while inhibiting CDK9-Cyclin T1 protein-protein interaction has recently been demonstrated as a new approach to TNBC treatment. Herein, we synthesized a novel class of 4,4'-bipyridine derivatives as potential CDK9-Cyclin T1 PPI inhibitors against TNBC. The represented compound B19 was found to be an excellent and selective CDK9-Cyclin T1 PPI inhibitor with good potency against TNBC cell lines while exhibiting lower toxicity in normal human cell lines than the positive compound I-CDK9. Notably, compound B19 showed good pharmacokinetic properties and excellent antitumor activity against TNBC (4T1) allografts in mice with a therapeutic index of more than 42 (TGI4T1(12.5 mg/kg,i.p.) = 63.1% vs. LD50 = 537 mg/kg). Moreover, the administration of B19 in combination with the PARP inhibitor Olaparib results in a significant increase of the antitumor activity in MDA-MB-231 cells relative to that of either single agent. To our knowledge, B19 is the first reported non-metal organic compound that acts as a selective CDK9-Cyclin T1 PPI inhibitor with in vivo antitumor activity, and it may be alone and in combination with PARP inhibitor Olaparib for TNBC therapy.
Collapse
Affiliation(s)
- Guiping Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China; Huaqiao University School of Medicine Science, Quanzhou, 362021, China
| | - Jiayi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Xudan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Yuqing Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China; School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Xiumei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Mengyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Tong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China.
| | - Liqiang Wang
- Huaqiao University School of Medicine Science, Quanzhou, 362021, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
30
|
Wu T, Yu B, Xu Y, Du Z, Zhang Z, Wang Y, Chen H, Zhang LA, Chen R, Ma F, Gong W, Yu S, Qiu Z, Wu H, Xu X, Wang J, Li Z, Bian J. Discovery of Selective and Potent Macrocyclic CDK9 Inhibitors for the Treatment of Osimertinib-Resistant Non-Small-Cell Lung Cancer. J Med Chem 2023; 66:15340-15361. [PMID: 37870244 DOI: 10.1021/acs.jmedchem.3c01400] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Effectiveness of epidermal growth factor receptor (EGFR) inhibitors, including Osimertinib, for treating non-small-cell lung cancer (NSCLC) is limited due to the continuous emergence of drug resistance. Hence, it is urgent to develop new therapeutic approaches. CDK9, a key regulator of RNA transcription, has emerged as a promising target for the development of antitumor drugs due to its crucial role in modulating the levels of antiapoptotic protein Mcl-1. Herein, we present the synthesis, optimization, and evaluation of selective CDK9 inhibitors with a macrocyclic scaffold that effectively suppresses the growth of NSCLC cells. Notably, compound Z11, a potent CDK9 inhibitor (IC50 = 3.20 nM) with good kinase selectivity, significantly inhibits cell proliferation and colony formation and induces apoptosis in Osimertinib-resistant H1975 cells. Furthermore, Z11 demonstrates a significant suppression of tumor growth in six patient-derived organoids, including three organoids resistant to Osimertinib. Overall, Z11 served as a promising macrocycle-based CDK9 inhibitor for treating Osimertinib-resistant NSCLC.
Collapse
Affiliation(s)
- Tizhi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Bin Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yifan Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zekun Du
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhiming Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuxiao Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Haoming Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Li Ao Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Feihai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Weihong Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Sixian Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhixia Qiu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hongxi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xi Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jubo Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
31
|
Wu T, Yu B, Gong W, Zhang J, Yu S, Tian Y, Zhao T, Li Z, Wang J, Bian J. Design and optimization of selective and potent CDK9 inhibitors with flavonoid scaffold for the treatment of acute myeloid leukemia. Eur J Med Chem 2023; 259:115711. [PMID: 37572539 DOI: 10.1016/j.ejmech.2023.115711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Acute myeloid leukemia (AML) is a prevalent hematological tumor associated with a high morbidity and mortality rate. CDK9, functioning as a pivotal transcriptional regulator, facilitates transcriptional elongation through phosphorylation of RNA polymerase II, which further governs the protein levels of Mcl-1 and c-Myc. Therefore, CDK9 has been considered as a promising therapeutic target for AML treatment. Here, we present the design, synthesis, and evaluation of CDK9 inhibitors bearing a flavonoid scaffold. Among them, compound 21a emerged as a highly selective CDK9 inhibitor (IC50 = 6.7 nM), exhibiting over 80-fold selectivity towards most other CDK family members and high kinase selectivity. In Mv4-11 cells, 21a effectively hindered cell proliferation (IC50 = 60 nM) and induced apoptosis by down-regulating Mcl-1 and c-Myc. Notably, 21a demonstrated significant inhibition of tumor growth in the Mv4-11 xenograft tumor model. These findings indicate that compound 21a holds promise as a potential candidate for treating AML.
Collapse
Affiliation(s)
- Tizhi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Bin Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Weihong Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jing Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Sixian Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Tengteng Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Jubo Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
32
|
Sarott R, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Borrowing Transcriptional Kinases to Activate Apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563687. [PMID: 37961702 PMCID: PMC10634765 DOI: 10.1101/2023.10.23.563687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Protein kinases are disease drivers whose therapeutic targeting traditionally centers on inhibition of enzymatic activity. Here chemically induced proximity is leveraged to convert kinase inhibitors into context-specific activators of therapeutic genes. Bivalent molecules that link ligands of the transcription factor B-cell lymphoma 6 (BCL6) to ATP-competitive inhibitors of cyclin-dependent kinases (CDKs) were developed to re-localize CDK to BCL6-bound loci on chromatin and direct phosphorylation of RNA Pol II. The resulting BCL6-target proapoptotic gene expression translated into killing of diffuse large B-cell lymphoma (DLBCL) cells at 72 h with EC50s of 0.9 - 10 nM and highly specific ablation of the BCL6-regulated germinal center response in mice. The molecules exhibited 10,000-fold lower cytotoxicity in normal lymphocytes and are well tolerated in mice. Genomic and proteomic evidence corroborated a gain-of-function mechanism where, instead of global enzyme inhibition, a fraction of total kinase activity is borrowed and re-localized to BCL6-bound loci. The strategy demonstrates how kinase inhibitors can be used to context-specifically activate transcription, accessing new therapeutic space.
Collapse
|
33
|
Hu C, Shen L, Zou F, Wu Y, Wang B, Wang A, Wu C, Wang L, Liu J, Wang W, Liu Q. Predicting and overcoming resistance to CDK9 inhibitors for cancer therapy. Acta Pharm Sin B 2023; 13:3694-3707. [PMID: 37719386 PMCID: PMC10502288 DOI: 10.1016/j.apsb.2023.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 09/19/2023] Open
Abstract
Abnormally activated CDK9 participates in the super-enhancer mediated transcription of short-lived proteins required for cancer cell survival. Targeting CDK9 has shown potent anti-tumor activity in clinical trials among different cancers. However, the study and knowledge on drug resistance to CDK9 inhibitors are very limited. In this study, we established an AML cell line with acquired resistance to a highly selective CDK9 inhibitor BAY1251152. Through genomic sequencing, we identified in the kinase domain of CDK9 a mutation L156F, which is also a coding SNP in the CDK9 gene. By knocking in L156F into cancer cells using CRISPR/Cas9, we found that single CDK9 L156F could drive the resistance to CDK9 inhibitors, not only ATP competitive inhibitor but also PROTAC degrader. Mechanistically, CDK9 L156F disrupts the binding with inhibitors due to steric hindrance, further, the mutation affects the thermal stability and catalytic activity of CDK9 protein. To overcome the drug resistance mediated by the CDK9-L156F mutation, we discovered a compound, IHMT-CDK9-36 which showed potent inhibition activity both for CDK9 WT and L156F mutant. Together, we report a novel resistance mechanism for CDK9 inhibitors and provide a novel chemical scaffold for the future development of CDK9 inhibitors.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Lijuan Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yun Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chao Wu
- Tarapeutics Science Inc., Bengbu 233000, China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
- Precision Medicine Research Laboratory of Anhui Province, Hefei 230088, China
| |
Collapse
|
34
|
Xie S, Zhu J, Li J, Zhan F, Yao H, Xu J, Xu S. Small-Molecule Hydrophobic Tagging: A Promising Strategy of Druglike Technology for Targeted Protein Degradation. J Med Chem 2023; 66:10917-10933. [PMID: 37535706 DOI: 10.1021/acs.jmedchem.3c00736] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Targeted protein degradation (TPD) technologies have catalyzed a paradigm shift in therapeutic strategies and offer innovative avenues for drug design. Hydrophobic tags (HyTs) are bifunctional TPD molecules consisting of a ″lipophilic small-molecule tags″ group and a small-molecule ligand for the target protein. Despite the vast potential of HyTs, they have received relatively limited attention as a promising frontier. Leveraging their lower molecular weight and reduced numbers of hydrogen bond donors/acceptors (HBDs/HBAs) in comparison with proteolysis-targeting chimeras (PROTACs), HyTs present a compelling approach for enhancing druglike properties. In this Perspective, we explore the diverse range of HyT structures and their corresponding degradation mechanisms, thereby illuminating their broad applicability in targeting a diverse array of proteins, including previously elusive targets. Moreover, we scrutinize the challenges and opportunities entailed in developing this technology as a viable and fruitful strategy for drug discovery.
Collapse
Affiliation(s)
- Shaowen Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jingjie Zhu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Junda Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Feiyan Zhan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Hong Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jinyi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215300, China
| |
Collapse
|
35
|
Lin R, Yang J, Liu T, Wang M, Ke C, Luo C, Lin J, Li J, Lin H. Discovery of HyT-Based Degraders of CDK9-Cyclin T1 Complex. Chem Biodivers 2023; 20:e202300769. [PMID: 37349855 DOI: 10.1002/cbdv.202300769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023]
Abstract
Direct modulation of the non-kinase functions of cyclin and CDK-cyclin complexes poses challenges. We utilize hydrophobic tag (HyT) based small-molecule degraders induced degradation of cyclin T1 and its corresponding kinase partner CDK9. LL-CDK9-12 demonstrated the most potent and selective degradation ability, with DC50 values of 0.362 μM against CDK9 and 0.680 μM against cyclin T1. In prostate cancer cells, LL-CDK9-12 showed enhanced anti-proliferative activity than its parental molecule SNS032 and LL-K9-3, the previous reported CDK9-cyclin T1 degrader. Moreover, LL-CDK9-12 suppressed the downstream signaling of CDK9 and AR efficiently. Altogether, LL-CDK9-12 was an effective dual degrader of CDK9-cyclin T1 and helped study the unknown function of CDK9-cyclin T1. These results suggest that HyT-based degraders could be used as a strategy to induce the degradation of protein complexes, providing insights for the design of protein complexes' degraders.
Collapse
Affiliation(s)
- Rongkun Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Jie Yang
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Ting Liu
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Mingyu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chongrong Ke
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Cheng Luo
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528437, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Jiacheng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
36
|
Fang G, Chen H, Cheng Z, Tang Z, Wan Y. Azaindole derivatives as potential kinase inhibitors and their SARs elucidation. Eur J Med Chem 2023; 258:115621. [PMID: 37423125 DOI: 10.1016/j.ejmech.2023.115621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Currently, heterocycles have occupied an important position in the fields of drug design. Among them, azaindole moiety is regarded as one privileged scaffold to develop therapeutic agents. Since two nitrogen atoms of azaindole increase the possibility to form hydrogen bonds in the adenosine triphosphate (ATP)-binding site, azaindole derivatives are important sources of kinase inhibitors. Moreover, some of them have been on the market or in clinical trials for the treatment of some kinase-related diseases (e.g., vemurafenib, pexidartinib, decernotinib). In this review, we focused on the recent development of azaindole derivatives as potential kinase inhibitors based on kinase targets, such as adaptor-associated kinase 1 (AAK1), anaplastic lymphoma kinase (ALK), AXL, cell division cycle 7 (Cdc7), cyclin-dependent kinases (CDKs), dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A), fibroblast growth factor receptor 4 (FGFR4), phosphatidylinositol 3-kinase (PI3K) and proviral insertion site in moloney murine leukemia virus (PIM) kinases. Meanwhile, the structure-activity relationships (SARs) of most azaindole derivatives were also elucidated. In addition, the binding modes of some azaindoles complexed with kinases were also investigated during the SARs elucidation. This review may offer an insight for medicinal chemists to rationally design more potent kinase inhibitors bearing the azaindole scaffold.
Collapse
Affiliation(s)
- Guoqing Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zhiyun Cheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China.
| |
Collapse
|
37
|
Bhurta D, Hossain MM, Bhardwaj M, Showket F, Nandi U, Dar MJ, Bharate SB. Orally bioavailable styryl derivative of rohitukine-N-oxide inhibits CDK9/T1 and the growth of pancreatic cancer cells. Eur J Med Chem 2023; 258:115533. [PMID: 37302342 DOI: 10.1016/j.ejmech.2023.115533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
The chromone alkaloid is one of the classical pharmacophores for cyclin-dependent kinases (CDKs) and represents the first CDK inhibitor to reach clinical trials. Rohitukine (1), a chromone alkaloid isolated from Dysoxylum binectariferum inspired the discovery of several clinical candidates. The N-oxide derivative of rohitukine occurs naturally, with no reports on its biological activity. Herein, we report isolation, biological evaluation, and synthetic modification of rohitukine N-oxide for CDK9/T1 inhibition and antiproliferative activity in cancer cells. Rohitukine N-oxide (2) inhibits CDK9/T1 (IC50 7.6 μM) and shows antiproliferative activity in the colon and pancreatic cancer cells. The chloro-substituted styryl derivatives, 2b, and 2l, inhibit CDK9/T1 with IC50 values of 0.17 and 0.15 μM, respectively. These derivatives display cellular antiproliferative activity in HCT 116 (colon) and MIA PaCa-2 (pancreatic) cancer cells with GI50 values of 2.5-9.7 μM with excellent selectivity over HEK293 (embryonic kidney) cells. Both analogs induce cell death in MIA PaCa-2 cells via inducing intracellular ROS production, reducing mitochondrial membrane potential, and inducing apoptosis. These analogs are metabolically stable in liver microsomes and have a decent oral pharmacokinetics in BALB/c mice. The molecular modeling studies indicated their strong binding at the ATP-binding site of CDK7/H and CDK9/T1.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Md Mehedi Hossain
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Mahir Bhardwaj
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Farheen Showket
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Mohd Jamal Dar
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India.
| |
Collapse
|
38
|
Wu T, Wu X, Xu Y, Chen R, Wang J, Li Z, Bian J. A patent review of selective CDK9 inhibitors in treating cancer. Expert Opin Ther Pat 2023; 33:309-322. [PMID: 37128897 DOI: 10.1080/13543776.2023.2208747] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION The dysregulation of CDK9 protein is greatly related to the proliferation and differentiation of various cancers due to its key role in the regulation of RNA transcription. Moreover, CDK9 inhibition can markedly downregulate the anti-apoptotic protein Mcl-1 which is essential for the survival of tumors. Thus, targeting CDK9 is considered to be a promising strategy for antitumor drug development, and the development of selective CDK9 inhibitors has gained increasing attention. AREAS COVERED This review focuses on the development of selective CDK9 inhibitors reported in patent publications during the period 2020-2022, which were searched from SciFinder and Cortellis Drug Discovery Intelligence. EXPERT OPINION Given that pan-CDK9 inhibitors may lead to serious side effects due to poor selectivity, the investigation of selective CDK9 inhibitors has attracted widespread attention. CDK9 inhibitors make some advance in treating solid tumors and possess the therapeutic potential in EGFR-mutant lung cancer. CDK9 inhibitors with short half-life and intravenous administration might result in transient target engagement and contribute to a better safety profile in vivo. However, more efforts are urgently needed to accelerate the development of CDK9 inhibitors, including the research on new binding modes between ligand and receptor or new protein binding sites.
Collapse
Affiliation(s)
- Tizhi Wu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaowei Wu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yifan Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jubo Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinlei Bian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
39
|
Tokarski RJ, Sharpe CM, Huntsman AC, Mize BK, Ayinde OR, Stahl EH, Lerma JR, Reed A, Carmichael B, Muthusamy N, Byrd JC, Fuchs JR. Bifunctional degraders of cyclin dependent kinase 9 (CDK9): Probing the relationship between linker length, properties, and selective protein degradation. Eur J Med Chem 2023; 254:115342. [PMID: 37071962 DOI: 10.1016/j.ejmech.2023.115342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a promising therapeutic target in multiple cancer types, including acute myeloid leukemia (AML). Protein degraders, also known as proteolysis targeting chimeras (PROTACs), have emerged as tools for the selective degradation of cancer targets, including CDK9, complementing the activity of traditional small-molecule inhibitors. These compounds typically incorporate previously reported inhibitors and a known E3 ligase ligand to induce ubiquitination and subsequent degradation of the target protein. Although many protein degraders have been reported in the literature, the properties of the linker necessary for efficient degradation still require special attention. In this study, a series of protein degraders was developed, employing the clinically tested CDK inhibitor AT7519. The purpose of this study was to examine the effect that linker composition, specifically chain length, would have on potency. In addition to establishing a baseline of activity for various linker compositions, two distinct homologous series, a fully alkyl series and an amide-containing series, were prepared, demonstrating the dependence of degrader potency in these series on linker length and the correlation with predicted physicochemical properties.
Collapse
Affiliation(s)
- Robert J Tokarski
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
| | - Chia M Sharpe
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, United States
| | - Andrew C Huntsman
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
| | - Brittney K Mize
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
| | - Oluwatosin R Ayinde
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
| | - Emily H Stahl
- The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, United States
| | - James R Lerma
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, United States
| | - Andrew Reed
- CCIC Mass Spectrometry and Proteomics, The Ohio State University, Columbus, OH, 43210, United States
| | - Bridget Carmichael
- The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, United States
| | - Natarajan Muthusamy
- The Ohio State University Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, United States
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, United States; University of Cincinnati Cancer Center, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, United States
| | - James R Fuchs
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
40
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
41
|
Mounika P, Gurupadayya B, Kumar HY, Namitha B. An Overview of CDK Enzyme Inhibitors in Cancer Therapy. Curr Cancer Drug Targets 2023; 23:603-619. [PMID: 36959160 DOI: 10.2174/1568009623666230320144713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 03/25/2023]
Abstract
The ability to address the cell cycle in cancer therapy brings up new medication development possibilities. Cyclin-dependent kinases are a group of proteins that control the progression of the cell cycle. The CDK/cyclin complexes are activated when specific CDK sites are phosphorylated. Because of their non-selectivity and severe toxicity, most first-generation CDK inhibitors (also known as pan-CDK inhibitors) have not been authorized for clinical usage. Despite this, significant progress has been made in allowing pan-CDK inhibitors to be employed in clinical settings. Pan-CDK inhibitors' toxicity and side effects have been lowered in recent years because of the introduction of combination therapy techniques. As a result of this, pan-CDK inhibitors have regained a lot of clinical potential as a combination therapy approach. The CDK family members have been introduced in this overview, and their important roles in cell cycle control have been discussed. Then, we have described the current state of CDK inhibitor research, with a focus on inhibitors other than CDK4/6. We have mentioned first-generation pan-CDKIs, flavopiridol and roscovitine, as well as second-generation CDKIs, dinaciclib, P276-00, AT7519, TG02, roniciclib, and RGB-286638, based on their research phases, clinical trials, and cancer targeting. CDKIs are CDK4/6, CDK7, CDK9, and CDK12 inhibitors. Finally, we have looked into the efficacy of CDK inhibitors and PD1/PDL1 antibodies when used together, which could lead to the development of a viable cancer treatment strategy.
Collapse
Affiliation(s)
- Peddaguravagari Mounika
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Namitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
42
|
Alkahtani HM, Zen AA, Obaidullah AJ, Alanazi MM, Almehizia AA, Ansari SA, Aleanizy FS, Alqahtani FY, Aldossari RM, Algamdi RA, Al-Rasheed LS, Abdel-Hamided SG, Abdel-Aziz AAM, El-Azab AS. Synthesis, Cytotoxic Evaluation, and Structure-Activity Relationship of Substituted Quinazolinones as Cyclin-Dependent Kinase 9 Inhibitors. Molecules 2022; 28:120. [PMID: 36615314 PMCID: PMC9822073 DOI: 10.3390/molecules28010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcriptional elongation, through which short-lived antiapoptotic proteins are overexpressed and make cancer cells resistant to apoptosis. Therefore, CDK9 inhibition depletes antiapoptotic proteins, which in turn leads to the reinstatement of apoptosis in cancer cells. Twenty-seven compounds were synthesized, and their CDK9 inhibitory and cytotoxic activities were evaluated. Compounds 7, 9, and 25 were the most potent CDK9 inhibitors, with IC50 values of 0.115, 0.131, and 0.142 μM, respectively. The binding modes of these molecules were studied via molecular docking, which shows that they occupy the adenosine triphosphate binding site of CDK9. Of these three molecules, compound 25 shows good drug-like properties, as it does not violate Lipinski's rule of five. In addition, this molecule shows promising ligand and lipophilic efficiency values and is an ideal candidate for further optimization.
Collapse
Affiliation(s)
- Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham Ng11 8NS, UK
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Fulwah Yahya Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rana M. Aldossari
- Department of Pharmacology & Toxicology, College of Pharmacy, 11 Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Raghad Abdullah Algamdi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Lamees S. Al-Rasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami G. Abdel-Hamided
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
43
|
Design, synthesis and anticancer evaluation of selective 2,4-disubstituted pyrimidine CDK9 inhibitors. Eur J Med Chem 2022; 244:114875. [DOI: 10.1016/j.ejmech.2022.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022]
|
44
|
Wu L, Liu W, Huang Y, Zhu C, Ma Q, Wu Q, Tian L, Feng X, Liu M, Wang N, Xu X, Liu X, Xu C, Qiu J, Xu Z, Liu W, Zhao Q. Development and structure-activity relationship of tacrine derivatives as highly potent CDK2/9 inhibitors for the treatment of cancer. Eur J Med Chem 2022; 242:114701. [DOI: 10.1016/j.ejmech.2022.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
|
45
|
Zhang H, Huang J, Chen R, Cai H, Chen Y, He S, Xu J, Zhang J, Wang L. Ligand- and structure-based identification of novel CDK9 inhibitors for the potential treatment of leukemia. Bioorg Med Chem 2022; 72:116994. [PMID: 36087428 DOI: 10.1016/j.bmc.2022.116994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a vital role in controlling cell transcription and has been an attractive target for cancer treatment. Herein, ten predictive models derived from 1330 unique molecules against CDK9 were constructed based on molecular fingerprints and graphs using two conventional machine learning and four deep learning methods. The evaluation results showed that FP-GNN deep learning architecture performed best for CDK9 inhibitors prediction with the highest BA and F1 values of 0.681 and 0.912 for testing set. We then performed virtual screening to identify new CDK9 inhibitors by incorporating the optimal established predictive model and molecular docking. Five compounds were identified to show broad anticancer activity against various cancer cell lines through bioassays. For example, C9 exhibited antiproliferative activities against HeLa, MOLM-13 and MDA-MB-231 with IC50 values of 2.53, 3.92 and 11.65 μM. Kinase inhibition assay results demonstrated that these compounds displayed submicromolar (214 ∼ 504 nM) inhibitory activities against CDK9. Further cellular mechanism evaluation revealed that C9 suppressed the activity of CDK9 and interfered with the expression of Mcl-1 and cleaved PARP in MOLM-13 cells, resulting in the induction of cellular apoptosis. In addition, C9 displayed a good stability in rat liver microsomes, artificial gastrointestinal fluid and plasm. An online platform (called DEEPCDK9Pred) was developed based on the FP-GNN models to predict or design new CDK9 inhibitors. Collectively, our findings demonstrated that FP-GNN algorithm can achieve accurate prediction of CDK9 inhibitors and the subsequent discovery of C9 as a new potential CDK9 inhibitor deserves further structural modification for the treatment of leukemia.
Collapse
Affiliation(s)
- Huimin Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jindi Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Rui Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Hanxuan Cai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yihao Chen
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuyun He
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiquan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
46
|
He F, Cong W, Yin C, Li C, Zhao S, Wu Z, Hu H, Fang M. Design, synthesis, and biological evaluation of (E)-N′-substitute-4-((4-pyridylpyrimidin-2-yl)amino)benzohydrazide derivatives as novel potential CDK9 inhibitors. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Li J, Liu T, Song Y, Wang M, Liu L, Zhu H, Li Q, Lin J, Jiang H, Chen K, Zhao K, Wang M, Zhou H, Lin H, Luo C. Discovery of Small-Molecule Degraders of the CDK9-Cyclin T1 Complex for Targeting Transcriptional Addiction in Prostate Cancer. J Med Chem 2022; 65:11034-11057. [PMID: 35925880 DOI: 10.1021/acs.jmedchem.2c00257] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aberrant hyperactivation of cyclins results in carcinogenesis and therapy resistance in cancers. Direct degradation of the specific cyclin or cyclin-dependent kinase (CDK)-cyclin complex by small-molecule degraders remains a great challenge. Here, we applied the first application of hydrophobic tagging to induce degradation of CDK9-cyclin T1 heterodimer, which is required to keep productive transcription of oncogenes in cancers. LL-K9-3 was identified as a potent small-molecule degrader of CDK9-cyclin T1. Quantitative and time-resolved proteome profiling exhibited LL-K9-3 induced selective and synchronous degradation of CDK9 and cyclin T1. The expressions of androgen receptor (AR) and cMyc were reduced by LL-K9-3 in 22RV1 cells. LL-K9-3 exhibited enhanced anti-proliferative and pro-apoptotic effects compared with its parental CDK9 inhibitor SNS032 and suppressed downstream signaling of CDK9 and AR more effectively than SNS032. Moreover, LL-K9-3 inhibited AR and Myc-driven oncogenic transcriptional programs and exerted stronger inhibitory effects on several intrinsic target genes of AR than the monomeric CDK9 PROTAC (Thal-SNS032).
Collapse
Affiliation(s)
- Jiacheng Li
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ting Liu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yuanli Song
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Mingyu Wang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Liping Liu
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Hongwen Zhu
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qi Li
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Hualiang Jiang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Kaixian Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Mingliang Wang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hua Lin
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Cheng Luo
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.,The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
48
|
Lücking U. New Opportunities for the Utilization of the Sulfoximine Group in Medicinal Chemistry from the Drug Designer's Perspective**. Chemistry 2022; 28:e202201993. [DOI: 10.1002/chem.202201993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Ulrich Lücking
- FoRx Therapeutics AG Lichtstrasse 35, WSJ-350.3.05 4056 Basel Switzerland
| |
Collapse
|
49
|
Fang Y, Wang Y, Spector BM, Xiao X, Yang C, Li P, Yuan Y, Ding P, Xiao ZX, Zhang P, Qiu T, Zhu X, Price DH, Li Q. Dynamic regulation of P-TEFb by 7SK snRNP is integral to the DNA damage response to regulate chemotherapy sensitivity. iScience 2022; 25:104844. [PMID: 36034227 PMCID: PMC9399290 DOI: 10.1016/j.isci.2022.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022] Open
Abstract
Testicular germ cell tumors and closely related embryonal stem cells are exquisitely sensitive to cisplatin, a feature thought to be linked to their pluripotent state and p53 status. It remains unclear whether and how cellular state is coordinated with p53 to confer cisplatin sensitivity. Here, we report that positive transcription elongation factor b (P-TEFb) determines cell fate upon DNA damage. We find that cisplatin rapidly activates P-TEFb by releasing it from inhibitory 7SK small nuclear ribonucleoprotein complex. P-TEFb directly phosphorylates pluripotency factor estrogen-related receptor beta (ESRRB), and induces its proteasomal degradation to enhance pro-survival glycolysis. On the other hand, P-TEFb is required for the transcription of a substantial portion of p53 target genes, triggering cell death during prolonged cisplatin treatment. These results reveal previously underappreciated roles of P-TEFb to coordinate the DNA damage response. We discuss the implications for using P-TEFb inhibitors to treat cancer and ameliorate cisplatin-induced ototoxicity.
P-TEFb regulates pro-survival and pro-death pathways during DNA damage response P-TEFb promotes ESRRB proteasomal degradation to enhance pro-survival glycolysis P-TEFb induces a substantial portion of p53 target genes to trigger cell death Chemical inhibitors of P-TEFb blocks cisplatin- or UV-induced cell death
Collapse
Affiliation(s)
- Yin Fang
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | | | - Xue Xiao
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Chao Yang
- Division of Bioinformatics, Sichuan Cunde Therapeutics, Chengdu 610093, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Ping Li
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yuan Yuan
- Division of Bioinformatics, Sichuan Cunde Therapeutics, Chengdu 610093, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Ping Ding
- Division of Bioinformatics, Sichuan Cunde Therapeutics, Chengdu 610093, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Peixuan Zhang
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Zhu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Corresponding author
| | - David H. Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
- Corresponding author
| | - Qintong Li
- Departments of Pediatrics and Obstetrics & Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, College of Life Sciences, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
- Corresponding author
| |
Collapse
|
50
|
Abstract
Cyclin-dependent kinase (CDK) 9 associates mainly with cyclin T1 and forms the positive transcription elongation factor b (p-TEFb) complex responsible for transcriptional regulation. It has been shown that CDK9 modulates the expression and activity of oncogenes, such as MYC and murine double minute 4 (MDM4), and it also plays an important role in development and/or maintenance of the malignant cell phenotype. Malfunction of CDK9 is frequently observed in numerous cancers. Recent studies have highlighted the function of CDK9 through a variety of mechanisms in cancers, including the formation of new complexes and epigenetic alterations. Due to the importance of CDK9 activation in cancer cells, CDK9 inhibitors have emerged as promising candidates for cancer therapy. Natural product-derived and chemically synthesized CDK9 inhibitors are being examined in preclinical and clinical research. In this review, we summarize the current knowledge on the role of CDK9 in transcriptional regulation, epigenetic regulation, and different cellular factor interactions, focusing on new advances. We show the importance of CDK9 in mediating tumorigenesis and tumor progression. Then, we provide an overview of some CDK9 inhibitors supported by multiple oncologic preclinical and clinical investigations. Finally, we discuss the perspective and challenge of CDK9 modulation in cancer.
Collapse
|