1
|
Zupancic M, Kostopoulou ON, Marklund L, Dalianis T. Therapeutic options for human papillomavirus-positive tonsil and base of tongue cancer. J Intern Med 2025; 297:608-629. [PMID: 40246777 PMCID: PMC12087873 DOI: 10.1111/joim.20088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The incidences of human papillomavirus-positive (HPV+) tonsillar and base tongue squamous cell carcinomas (TSCC and BOTSCC) have increased in recent decades. Notably, HPV+ TSCC and BOTSCC have a significantly better prognosis than their HPV-negative counterparts when treated with current surgical options, radiotherapy, or intensified chemoradiotherapy. However, a cure is not achieved in 20% of patients with HPV+ TSCC/BOTSCC. Meanwhile, cured patients often present with severe chronic side effects. This necessitates novel tailored alternatives, such as targeted therapy, immune checkpoint inhibitors (ICIs), and treatment de-escalation, together with better follow-up. Current precision medicine therefore focuses on detecting predictive and driver cancer genes to better stratify patient treatment, provide those with poor prognostic markers targeted therapy, and select those with favorable markers for de-escalated therapy. Moreover, detecting cell-free HPV DNA (cfHPV DNA) in plasma before and after treatment has been attempted to improve follow-up. In this context, this perspective discusses the significance of optimally defining HPV+ status, which requires HPV DNA and p16INKa overexpression, using prognostic markers, such as high CD8+ T-cell counts and HPV E2 mRNA expression, tumor size, and following cfHPV DNA for patient selection for specific therapies. Clinical trials with ICI with/without chemotherapy, targeted therapy with specific inhibitors-such as phosphoinositide 3-kinase and fibroblast growth factor receptor inhibitors-or immune therapy with various HPV-based vaccines for treating recurrences have yielded promising results.
Collapse
Affiliation(s)
- Mark Zupancic
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Medical Unit Head, Neck, Lung, and Skin Cancer, Theme CancerKarolinska University HospitalStockholmSweden
| | | | - Linda Marklund
- Medical Unit Head, Neck, Lung, and Skin Cancer, Theme CancerKarolinska University HospitalStockholmSweden
- Department of Surgical SciencesSection of Otolaryngology and Head and Neck SurgeryUppsala UniversityUppsalaSweden
- Division of Ear Nose and Throat DiseasesDepartment of Clinical Sciences Intervention and TechnologyKarolinska InstitutetStockholmSweden
| | - Tina Dalianis
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Medical Unit Head, Neck, Lung, and Skin Cancer, Theme CancerKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Xiao Q, Liu Y, Li T, Wang C, He S, Zhai L, Yang Z, Zhang X, Wu Y, Liu Y. Viral oncogenesis in cancer: from mechanisms to therapeutics. Signal Transduct Target Ther 2025; 10:151. [PMID: 40350456 PMCID: PMC12066790 DOI: 10.1038/s41392-025-02197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 05/14/2025] Open
Abstract
The year 2024 marks the 60th anniversary of the discovery of the Epstein-Barr virus (EBV), the first virus confirmed to cause human cancer. Viral infections significantly contribute to the global cancer burden, with seven known Group 1 oncogenic viruses, including hepatitis B virus (HBV), human papillomavirus (HPV), EBV, Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), and human immunodeficiency virus (HIV). These oncogenic viruses induce cellular transformation and cancer development by altering various biological processes within host cells, particularly under immunosuppression or co-carcinogenic exposures. These viruses are primarily associated with hepatocellular carcinoma, gastric cancer, cervical cancer, nasopharyngeal carcinoma, Kaposi sarcoma, lymphoma, and adult T-cell leukemia/lymphoma. Understanding the mechanisms of viral oncogenesis is crucial for identifying and characterizing the early biological processes of virus-related cancers, providing new targets and strategies for treatment or prevention. This review first outlines the global epidemiology of virus-related tumors, milestone events in research, and the process by which oncogenic viruses infect target cells. It then focuses on the molecular mechanisms by which these viruses induce tumors directly or indirectly, including the regulation of oncogenes or tumor suppressor genes, induction of genomic instability, disruption of regular life cycle of cells, immune suppression, chronic inflammation, and inducing angiogenesis. Finally, current therapeutic strategies for virus-related tumors and recent advances in preclinical and clinical research are discussed.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Tingting Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyu Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
3
|
Poppe LK, Roller N, Medina-Enriquez MM, Lassoued W, Burnett D, Lothstein KE, Khelifa AS, Miyamoto M, Gulley JL, Jochems C, Schlom J, Gameiro SR. Combination of HDAC inhibition and cytokine enhances therapeutic HPV vaccine therapy. J Immunother Cancer 2025; 13:e011074. [PMID: 40316302 PMCID: PMC12049950 DOI: 10.1136/jitc-2024-011074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/17/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Human papillomavirus (HPV)-associated malignancies continue to present a major health concern despite the development of prophylactic vaccines. Standard therapies offer limited benefit to patients with advanced-stage disease. Despite improved outcomes with programmed cell death protein-1 (PD-1) targeted therapies, treatment resistance and modest response rates highlight a significant unmet need to develop novel therapies for these patients. PDS0101 (designated HPV vaccine) is a liposomal nanoparticle HPV16-specific therapeutic vaccine that has been shown to generate strong HPV-specific responses in preclinical and clinical studies. Here we assess the efficacy of this HPV vaccine in combination with the tumor-targeting immunocytokine NHS-IL12 (PDS01ADC), plus either αPD-1 or the class I histone deacetylase inhibitor Entinostat. METHODS Mice bearing HPV16+, αPD-1 refractory TC-1 and mEER tumors were treated with HPV vaccine, NHS-IL12, and either αPD-1 or Entinostat to determine antitumor efficacy and survival benefits. A comprehensive analysis of the tumor microenvironment was performed using flow cytometry, multiplex immunofluorescence, chemokine and cytokine assessment, and single-cell RNA sequencing with T-cell receptor (TCR) enrichment. RESULTS Combination of HPV vaccine and NHS-IL12 with either Entinostat or αPD-1 yielded significant antitumor activity and prolonged survival in αPD-1 refractory models of HPV16+ cancer, with superior activity employing Entinostat versus αPD-1 combination. Entinostat triple therapy increased overall and HPV16-specific tumor CD8+ T-cell infiltration with heightened cytotoxicity. TCR sequencing revealed a CD8+ T-cell clone unique to vaccine-treated cohorts, which displayed an enriched cytotoxic transcriptional profile with triple therapy. These effects were paralleled by strong differentiation of tumor-associated macrophages (TAMs) towards pro-inflammatory, antitumor M1-like cell states. Single-cell transcriptomic analysis indicated all three agents were required for highest modulation of both CD8+ T cells and TAMs conducive to tumor control. A biomarker signature reflecting the preclinical findings was found to be associated with improved survival in patients with HPV-associated malignancies. CONCLUSION Together, these findings provide a rationale for the combination of HPV vaccine, NHS-IL12, and Entinostat in the clinical setting for patients with HPV16-associated malignancies.
Collapse
Affiliation(s)
- Lisa K Poppe
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas Roller
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Miriam Marlene Medina-Enriquez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wiem Lassoued
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Burnett
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine E Lothstein
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Asma S Khelifa
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Masaya Miyamoto
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Jochems
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sofia R Gameiro
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
V B N, Kumar R. Meta-analysis of clinical trial on the comparative efficacy and safety profiles of immunotherapeutic strategies in cervical cancer. Crit Rev Oncol Hematol 2025; 209:104673. [PMID: 40023464 DOI: 10.1016/j.critrevonc.2025.104673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Over the years, there have been significant advancements in the field of cervical cancer research in developing new treatment approaches. One of the significant breakthroughs in cancer treatment is the emergence of immunotherapy that can be used as a standalone treatment or in combination with other cancer therapies. Immunotherapy has shown promising results in clinical trials and has become a viable strategy for treating cancer and improves the quality of life for cancer patients and overall survival rate. Here in the systematic review we are focusing towards the effectiveness and safety of immunotherapy in cervical cancer or HPV infections CIN with clinical trial data. The data extracted had from those studies were analyzed through certain statistical methods and subgroup analysis for validating and concluding our objective. PubMed and Science direct database were used for searching the studies with applied screening and filtering and 49 main reports were included for the studies. The immunotherapies subdivided to immune checkpoint inhibitors, cellular therapy and Vaccine were separately analysed through meta-analysis for the conclusion. The Pembrolizumab (immune checkpoint inhibitor), T cell therapy and Bivalent (Ecoli expressed) vaccine were analysed to be higher effective. Thus for future exploration on immunotherapy in cervical cancer, it was described in our studies of a combination of Ecoli rec HPV bivalent vaccine followed by Pembrolizumab or T cell therapy thus improving the immune mediated action against the cancer. Apart from that, a hypothetical model of multiepitope production on ecoli for vaccine generation has also been explained.
Collapse
Affiliation(s)
- Navya V B
- Department of Bioscience and Engineering, National Institute of Technology, Calicut, Kozhikode, Kerala, India
| | - Ravindra Kumar
- Department of Bioscience and Engineering, National Institute of Technology, Calicut, Kozhikode, Kerala, India.
| |
Collapse
|
5
|
Wu M, Liu J, Liu L, Yang Y, Liu H, Yu L, Zeng H, Yuan S, Xu R, Liu H, Jiang H, Qu S, Wang L, Chen Y, Wang J, Zhang Y, He S, Feng L, Han J, Zeng W, Wang H, Huang Y. Autologous Peripheral Vγ9Vδ2 T Cell Synergizes with αβ T Cell Through Antigen Presentation and BTN3A1 Blockade in Immunotherapy of Cervical Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2401230. [PMID: 40091603 PMCID: PMC12079532 DOI: 10.1002/advs.202401230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/07/2025] [Indexed: 03/19/2025]
Abstract
New treatment strategies are urgently needed for patients with advanced cervical cancer (CC). Here, a synergistic anti-CC effect of a novel combinatorial immunotherapy with adoptively transferred autologous Vγ9Vδ2 T cells and αβ T cells is shown. The pivotal role of both circulating and tumor-infiltrating Vγ9Vδ2 T cells in anti-CC immunity is uncovered. Importantly, autologous Vγ9Vδ2 T cells show a synergistic anti-CC effect with αβ T cells not only through killing tumor directly, but also by promoting the activation and tumoricidal activity of syngeneic αβ T cells through antigen presentation, which can be further boosted by conventional chemotherapy. Moreover, Vγ9Vδ2 T cells can restore the tumoricidal function of αβ T cell through competitively binding to BTN3A1, a TCR-Vγ9Vδ2 ligand on CC cells upregulated by IFN-γ derived from activated αβ T cell. These findings uncover a critical synergistic effect of autologous Vγ9Vδ2 T cells and αβ T cells in immunotherapy of CC and reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Min Wu
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Liting Liu
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Yifan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hong Liu
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Long Yu
- Beckman Coulter Commercial Enterprise (China) Co., LtdShanghai200122China
| | - Haihong Zeng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shuo Yuan
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Ruiyi Xu
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Hangyu Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Han Jiang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shen Qu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Liming Wang
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jingyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuwei Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shan He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Junyan Han
- Department of Immunology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hui Wang
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineZhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
6
|
Fulton NE, Horn TD, Demerhi S. Inciting commensal human papillomavirus immunity to combat cancer. Trends Cancer 2025:S2405-8033(25)00098-6. [PMID: 40316467 DOI: 10.1016/j.trecan.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
The incidence of squamous cell carcinoma (SCC) is rising, especially in immunosuppressed individuals, highlighting the need for new prevention strategies. Commensal human papillomaviruses (cHPVs) are associated with cutaneous SCC (cSCC) in immunosuppressed patients. Because of the intricate interactions between T cell immunity and cHPVs in virus-colonized tissues, we propose that enhancing T cell immunity against cHPVs through vaccination could suppress SCC.
Collapse
Affiliation(s)
- Natalie E Fulton
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas D Horn
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Shadmehr Demerhi
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Ranasinghe V, McMillan N. Novel therapeutic strategies for targeting E6 and E7 oncoproteins in cervical cancer. Crit Rev Oncol Hematol 2025; 211:104721. [PMID: 40216282 DOI: 10.1016/j.critrevonc.2025.104721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
Cervical cancer is the fourth most common cause of cancer-related mortality among women worldwide. The main aetiological factor for developing cervical cancer is the persistent infection of Human papillomavirus (HPV). The E6 and E7 oncoproteins produced by HPV mainly contribute to the carcinogenic process by inhibiting the function of tumour suppressor genes. The E6 protein causes degradation of p53 leading to impaired cellular stress response. In contrast, the E7 protein impairs the activity of retinoblastoma protein (pRb) resulting in continuous cell cycle propagation. Even though screening programmes and prophylactic vaccination have reduced the incidence of cervical cancer, the disease burden is still high, especially in low socioeconomic countries. Treatment of cervical cancer involves a multimodal strategy incorporating surgery, chemotherapy, and radiotherapy. Most of these management approaches use invasive techniques and are associated with adverse effects. Drug resistance is observed over time with chemotherapeutic agents. Hence there is a crucial need for developing novel targeted treatment strategies for cervical cancer. The E6 and E7 viral oncoproteins are continuously expressed in HPV infected cells making them ideal targets for developing therapies. Therapeutic DNA vaccines, gene therapy involving RNA interference technology, and CRISPR are currently under intensive study. These technologies represent a productive and promising approach for the future treatment of cervical cancer. Moreover, several new compounds demonstrate significant anti-cancer effects against cervical cancer. This review provides an updated account of therapeutic strategies currently under research targeting the E6 and E7 viral oncoproteins.
Collapse
Affiliation(s)
- Vindya Ranasinghe
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4215, Australia.
| | - Nigel McMillan
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4215, Australia.
| |
Collapse
|
8
|
Zafar M, Sweis N, Kapoor H, Gantt G. Advances and Challenges in the Treatment of HPV-Associated Lower Genital Tract Cancers by Immune Checkpoint Blockers: Insights from Basic and Clinical Science. Cancers (Basel) 2025; 17:1260. [PMID: 40282436 PMCID: PMC12026392 DOI: 10.3390/cancers17081260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Human papillomavirus (HPV)-related lower genital cancers, including cervical cancer, anal squamous cell carcinoma (SCC), vaginal cancer, vulvar cancer, and penile cancer, pose a significant health burden, with approximately 45,000 new cases diagnosed annually. Current effective treatment modalities include chemoradiotherapy, systemic chemotherapy, and immune checkpoint inhibitors (ICIs). The tumor microenvironment in HPV-related cancers is characterized by immune evasion mechanisms, including the modulation of immune checkpoints such as PD-L1/PD-1. HPV oncoproteins E5, E6, and E7 play crucial roles in this process, altering the expression of immune inhibitory molecules and the recruitment of immune cells. ICIs, such as programmed cell death protein 1 (PD-1) inhibitors, have shown efficacy in enhancing the immune response against HPV-associated tumors by blocking proteins that allow cancer cells to evade immune surveillance. Recent studies have demonstrated that HPV-positive tumors exhibit a more favorable response to ICI-based therapies compared to HPV-negative tumors. The integration of ICIs into treatment regimens for HPV-related cancers has been supported by several clinical trials. The inclusion of ICIs in the treatment approach for HPV-related lower genital cancers presents a promising opportunity for improving patient outcomes. Ongoing research and clinical trials are advancing our understanding of the immune microenvironment and the therapeutic potential of immunotherapy for these cancers.
Collapse
|
9
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2025; 67:1336-1366. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Floudas CS, Goswami M, Donahue RN, Strauss J, Pastor DM, Redman JM, Brownell I, Turkbey EB, Steinberg SM, Cordes LM, Marté JL, Khan MH, McMahon S, Lamping E, Manu M, Manukyan M, Brough DE, Lankford A, Jochems C, Schlom J, Gulley JL. PRGN-2009 and bintrafusp alfa for patients with advanced or metastatic human papillomavirus-associated cancer. Cancer Immunol Immunother 2025; 74:155. [PMID: 40116923 PMCID: PMC11928712 DOI: 10.1007/s00262-025-04009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND This first-in-human phase 1 study (NCT04432597) evaluated the safety and recommended phase 2 dose (RP2D) of PRGN-2009, a gorilla adenoviral-vector targeting oncoproteins E6, E7 (human papillomavirus (HPV)16/18) and E5 (HPV16), as monotherapy (Arm 1A) and combined with the bifunctional TGF-β "trap"/anti-PD-L1 fusion protein bintrafusp alfa (BA; Arm 1B), in patients with recurrent/metastatic HPV-associated cancer. METHODS Patients with ≥ 1 prior treatment (immunotherapy allowed) received PRGN-2009 (1 × 1011 particle units or 5 × 1011 particle units, subcutaneously) every 2 weeks for 3 doses, then every 4 weeks (Arm 1A), or PRGN-2009 (RP2D, schedule per Arm 1A) and BA (1200 mg, intravenously) every 2 weeks (Arm 1B). Primary endpoints were safety and RP2D of PRGN-2009; secondary objectives included overall response rate (ORR) and overall survival (OS). RESULTS Seventeen patients were treated. In Arm 1A (n = 6) there were no dose limiting toxicities or grade 3/4 treatment-related adverse events (TRAEs), 5 × 1011 PU was selected as RP2D, no responses were observed, and median OS (mOS) was 7.4 months (95% CI 2.9-26.8). In Arm 1B (n = 11), grade 3/4 TRAEs occurred in 27% of patients, ORR was 20% for all patients (22% in checkpoint-resistant patients), and mOS was 24.6 months (95% CI 9.6-not reached). Multifunctional HPV-specific T cells were increased or induced de novo in 80% of patients and not impacted by anti-vector antibodies. Higher serum IL-8 at baseline associated with shorter OS. CONCLUSIONS PRGN-2009 was well tolerated, and immune responses were observed to PRGN-2009. Encouraging anti-tumor activity and OS were noted in the combination with BA arm, consisting mainly of checkpoint-resistant patients. Trial Registration ClinicalTrials.gov Identifier: NCT04432597.
Collapse
Affiliation(s)
- Charalampos S Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Meghali Goswami
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julius Strauss
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M Pastor
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jason M Redman
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evrim B Turkbey
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Cordes
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L Marté
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maheen H Khan
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheri McMahon
- Office of Research Nursing, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Lamping
- Office of Research Nursing, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michell Manu
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Manuk Manukyan
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | - Caroline Jochems
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Yuan Z, Wang JH, Cui H, Wang SY, Wei B, Cui JX. Mapping the landscape of gastric cancer immunotherapy: Bibliometric insights into advances and hotspots. World J Gastrointest Oncol 2025; 17:100997. [PMID: 40092931 PMCID: PMC11866247 DOI: 10.4251/wjgo.v17.i3.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immunotherapy has surfaced as a promising therapeutic modality for gastric cancer (GC). A comprehensive review of advancements, current status, and research trends in GC immunotherapy is essential to inform future investigative efforts. AIM To delineate the trends, advancements, and focal points in immunotherapy for GC. METHODS We performed a bibliometric analysis of 2906 articles in English concerning GC immunotherapy published from 2000 to December 20, 2023, indexed in the Web of Science Core Collection. Data analysis and visualization were facilitated by CiteSpace (6.1.6R), VOSviewer v.1.6.17, and GraphPad Prism v8.0.2. RESULTS There has been an increase in the annual publication rate of GC immunotherapy research. China leads in publication volume, while the United States demonstrates the highest citation impact. Fudan University is notable for its citation frequency and publication output. Co-citation analysis and keyword frequency revealed and highlighted a focus on GC prognosis, the tumor microenvironment (TME), and integrative immunotherapy with targeted therapy. Emerging research areas include gastroesophageal junction cancer, adoptive immunotherapy, and the role of Treg cell in immunotherapy. CONCLUSION GC immunotherapy research is an expanding field attracting considerable scientific interest. With the clinical adoption of immunotherapy in GC, the primary goals are to enhance treatment efficacy and patient outcomes. Unlike hematological malignancies, GC's solid TME presents distinct immunological challenges that may attenuate the cytotoxic effects of immune cells on cancer cells. For instance, although CAR-T therapy is effective in hematological malignancies, it has underperformed in GC settings. Current research is centered on overcoming immunosuppression within the TME, with a focus on combinations of targeted therapy, adoptive immunotherapy, Treg cell dynamics, and precise prognosis prediction in immunotherapy. Additionally, immunotherapy's role in treating gastroesophageal junction cancer has become a novel research focus.
Collapse
Affiliation(s)
- Zhen Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Hang Wang
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Cui
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shu-Yuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian-Xin Cui
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Singh P, Khatib MN, R R, Kaur M, Srivastava M, Barwal A, Rajput GVS, Rajput P, Syed R, Sharma G, Kumar S, Shabil M, Pandey S, Brar M, Bushi G, Mehta R, Sah S, Goh KW, Satapathy P, Gaidhane AM, Samal SK. Advancements and challenges in personalized neoantigen-based cancer vaccines. Oncol Rev 2025; 19:1541326. [PMID: 40160263 PMCID: PMC11949952 DOI: 10.3389/or.2025.1541326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Advancements in personalized neoantigen-based cancer vaccines are ushering in a new era in oncology, targeting unique genetic alterations within tumors to enhance treatment precision and efficacy. Neoantigens, specific to cancer cells and absent in normal tissues, are at the heart of these vaccines, promising to direct the immune system specifically against the tumor, thereby maximizing therapeutic efficacy while minimizing side effects. The identification of neoantigens through genomic and proteomic technologies is central to developing these vaccines, allowing for the precise mapping of a tumor's mutational landscape. Despite advancements, accurately predicting which neoantigens will elicit strong immune responses remains challenging due to tumor variability and the complexity of immune system interactions. This necessitates further refinement of bioinformatics tools and predictive models. Moreover, the efficacy of these vaccines heavily depends on innovative delivery methods that enhance neoantigen presentation to the immune system. Techniques like encapsulating neoantigens in lipid nanoparticles and using viral vectors are critical for improving vaccine stability and delivery. Additionally, these vaccines contribute towards achieving Sustainable Development Goal 3.8, promoting universal health coverage by advancing access to safe and effective cancer treatments. This review delves into the potential of neoantigen-based vaccines to transform cancer treatment, examining both revolutionary advancements and the ongoing challenges they face.
Collapse
Affiliation(s)
- Parminder Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | | | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Mohali, Punjab, India
| | - G. V. Siva Rajput
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Rukshar Syed
- IES Institute of Pharmacy, IES University, Bhopal, Madhya Pradesh, India
| | - Gajendra Sharma
- New Delhi Institute of Management, Tughlakabad Institutional Area, New Delhi, India
| | - Sunil Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
| | - Muhammed Shabil
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Sakshi Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| | - Manvinder Brar
- Chitkara Centre for Research and Development, Chitkara University, Solan, Himachal Pradesh, India
| | - Ganesh Bushi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rachana Mehta
- Clinical Microbiology, RDC, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Sanjit Sah
- Department of Paediatrics, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed-to-be-University), Pimpri, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed-to-be-University), Pimpri, Pune, Maharashtra, India
- Department of Medicine, Korea Universtiy, Seoul, Republic of Korea
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
- Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
| | - Prakasini Satapathy
- University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| | - Abhay M. Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education, Wardha, India
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Ibibulla N, Lu P, Nuerrula Y, Hu X, Aihemaiti M, Wang Y, Zhang H. Effectiveness and safety of ICIs for the treatment of advanced CC: a systematic review and meta-analysis. Front Immunol 2025; 16:1542850. [PMID: 40134429 PMCID: PMC11933070 DOI: 10.3389/fimmu.2025.1542850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Background The use of immune checkpoint inhibitors has recently become a promising and innovative therapeutic option for patients suffering from advanced recurrent or metastatic cervical cancer(CC), and several studies of immunotherapy have been published or have revealed stage-by-stage results at international congresses. Nevertheless, there is a lack of meta-analyses of ICIs for advanced CC in past Meta-analysis. Method This meta-analysis rigorously followed the PRISMA guidelines, using Review Manager V.5.4 and R(v4.2.2) software for data synthesis. Hazard ratios, risk ratios, and risk differences were calculated, with statistical significance assessed via the Mantel-Haenszel test. Heterogeneity was evaluated using the Higgins I2 statistic, and sensitivity analyses were conducted if heterogeneity surpassed 50%. The efficacy outcomes examined and gathered included the overall response rate (ORR), progress-free survival, overall survival(OS), and the adverse events (AEs), crucial for understanding the efficacy and safety of ICIs in advanced cervical cancer. Result The results demonstrate significant efficacy and manageable safety of ICIs in advanced cervical cancer. In RCTs, ICIs improved OS (HR = 0.66, 95% CI: 0.58-0.75, P < 0.00001) and PFS (HR = 0.67, 95% CI: 0.59-0.75, P < 0.0001), with a 34% and 33% reduction in death and progression risks, respectively. ORR was higher in ICIs groups (RR = 1.39, 95% CI: 1.08-1.80, P = 0.01). Single-arm studies supported these findings (ORR: RD = 0.31, 95% CI: 0.22-0.40, P < 0.0001). Safety profiles were manageable, with comparable TRAEs in RCTs and higher incidences in single-arm studies. Subgroup analysis revealed superior OS benefits in PD-L1-positive patients (CPS ≥1, HR = 0.65, 95% CI: 0.50-0.84, P = 0.001) and significant efficacy in squamous cell carcinoma (HR = 0.67, P < 0.00001). Sensitivity analysis confirmed robust OS results (I² = 0%) and stable ORR despite heterogeneity. Risk of bias was low to moderate. Conclusion Our meta-analysis reveals that immune checkpoint inhibitors (ICIs) significantly prolong overall survival in advanced cervical cancer patients, reducing the hazard ratio for death. Despite heterogeneity in outcomes, ICIs offer substantial treatment benefits. Further research is needed to optimize usage and monitor AEs. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023387789.
Collapse
Affiliation(s)
- Nurbia Ibibulla
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Pengfei Lu
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yiliyaer Nuerrula
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xueqin Hu
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Mulati Aihemaiti
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yubo Wang
- Pharmacy Department, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hua Zhang
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
14
|
Li J, Zhou X, Wu L, Ma J, Tan Y, Wu S, Zhu J, Wang Q, Shi Q. Optimal early endpoint for second-line or subsequent immune checkpoint inhibitors in previously treated advanced solid cancers: a systematic review. BMC Cancer 2025; 25:293. [PMID: 39966752 PMCID: PMC11837729 DOI: 10.1186/s12885-025-13712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The administration of second-line or subsequent immune checkpoint inhibitors (ICIs) in previously treated patients with advanced solid cancers has been clinically investigated. However, previous clinical trials lacked an appropriate primary endpoint for efficacy assessment. This systematic review aimed to explore the most optimal early efficacy endpoint for such trials. METHODS Phase 2 or 3 clinical trials involving patients with advanced solid cancers with disease progression following standard first-line therapy receiving second-line or subsequent ICI administration, with adequate survival outcome data, were included from PubMed, Embase, Web of Science, and Cochrane Library databases before February 2023. Quality assessment was conducted using the Cochrane tool and Newcastle-Ottawa Quality Assessment Scale for Cohort Studies for randomized controlled trials (RCTs) and non-randomized trials, respectively. Objective response rate (ORR) and progression-free survival (PFS) at 3, 6, and 9 months were investigated as potential early efficacy endpoint candidates for 12-month overall survival (OS), with a strong correlation defined as Pearson's correlation coefficient r ≥ 0.8. RESULTS A total of 64 RCTs comprising 22,725 patients and 106 non-randomized prospective trials involving 10,608 participants were eligible for modeling and external validation, respectively. RCTs examined 15 different cancer types, predominantly non-small-cell lung cancer (NSCLC) (17, 28%), melanoma (9, 14%), and esophageal squamous cell carcinoma (5, 8%). The median sample size of RCTs was 124 patients, and the median follow-up time was 3.2-57.7 months. The ORR (r = 0.38; 95% confidence interval [CI], 0.18-0.54) and PFS (r = 0.42; 95% CI, 0.14-0.64) exhibited weak trial-level correlations with OS. Within ICI treatment arms, the r values of ORR and 3-, 6-, and 9-month PFS with 12-month OS were 0.61 (95% CI, 0.37-0.79), 0.78 (95% CI, 0.62-0.88), 0.84 (95% CI, 0.77-0.90), and 0.86 (95% CI, 0.79-0.90), respectively. External validation of 6-month PFS indicated an acceptable discrepancy between actual and predicted 12-month OS. CONCLUSIONS In non-randomized phase 2 trials on second-line or subsequent ICI therapy in patients with advanced solid cancers, 6-month PFS could serve as an early efficacy endpoint. However, early efficacy endpoints are not recommended in RCTs to replace OS.
Collapse
Affiliation(s)
- Jingqiu Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoding Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Wu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiabao Ma
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Tan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Songke Wu
- Department of Oncology, People'S Hospital of Cangxi County, Guangyuan, China.
| | - Jie Zhu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qifeng Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuling Shi
- Center for Cancer Prevention Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Lien AC, Johnson GS, Guan T, Burns CP, Parker JM, Dong L, Wakefield MR, Fang Y. The Past, Present, and Future of Cervical Cancer Vaccines. Vaccines (Basel) 2025; 13:201. [PMID: 40006746 PMCID: PMC11861678 DOI: 10.3390/vaccines13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Since the introduction of prophylactic HPV vaccines, both HPV infection rates and cervical cancer rates have subsequently dropped. Yet, cervical cancer remains the fourth most common cancer diagnosis in women globally. As HPV and its role in the development of cervical cancer become better understood, vaccines have emerged as a front runner for improved therapeutic cervical cancer treatment. Recent studies have shown that protein and DNA vaccines may be effectively delivered via the use of several different vectors, while combination therapy with immune checkpoint inhibitors provides even more effective treatment. Further investigation and additional clinical studies into specific vaccine strategies are necessary to determine how effective vaccines are as therapeutic treatment for cervical cancer. This review intends to summarize some of the most promising research on cervical cancer vaccines. Such a study may be helpful for gynecologists to prevent and manage patients with HPV infection.
Collapse
Affiliation(s)
- Alexander C. Lien
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (A.C.L.); (C.P.B.); (J.M.P.)
| | - Grace S. Johnson
- Department of Liberal Arts, Arizona State University, Tempe, AZ 85281, USA;
| | - Tianyun Guan
- Department of Obstetrics and Gynecology, The Nanhua Hospital, Nanhua University, Hengyang 410004, China; (T.G.); (L.D.)
| | - Caitlin P. Burns
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (A.C.L.); (C.P.B.); (J.M.P.)
| | - Jacob M. Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (A.C.L.); (C.P.B.); (J.M.P.)
| | - Lijun Dong
- Department of Obstetrics and Gynecology, The Nanhua Hospital, Nanhua University, Hengyang 410004, China; (T.G.); (L.D.)
| | - Mark R. Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (A.C.L.); (C.P.B.); (J.M.P.)
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
16
|
Zhou Y, Wei Y, Tian X, Wei X. Cancer vaccines: current status and future directions. J Hematol Oncol 2025; 18:18. [PMID: 39962549 PMCID: PMC11834487 DOI: 10.1186/s13045-025-01670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Cancer continues to be a major global health burden, with high morbidity and mortality. Building on the success of immune checkpoint inhibitors and adoptive cellular therapy, cancer vaccines have garnered significant interest, but their clinical success remains modest. Benefiting from advancements in technology, many meticulously designed cancer vaccines have shown promise, warranting further investigations to reach their full potential. Cancer vaccines hold unique benefits, particularly for patients resistant to other therapies, and they offer the ability to initiate broad and durable T cell responses. In this review, we highlight the antigen selection for cancer vaccines, introduce the immune responses induced by vaccines, and propose strategies to enhance vaccine immunogenicity. Furthermore, we summarize key features and notable clinical advances of various vaccine platforms. Lastly, we delve into the mechanisms of tumor resistance and explore the potential benefits of combining cancer vaccines with standard treatments and other immunomodulatory approaches to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yingqiong Zhou
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
17
|
Zhang Y, Qiu K, Ren J, Zhao Y, Cheng P. Roles of human papillomavirus in cancers: oncogenic mechanisms and clinical use. Signal Transduct Target Ther 2025; 10:44. [PMID: 39856040 PMCID: PMC11760352 DOI: 10.1038/s41392-024-02083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/19/2024] [Accepted: 11/24/2024] [Indexed: 01/27/2025] Open
Abstract
Human papillomaviruses, particularly high-risk human papillomaviruses, have been universally considered to be associated with the oncogenesis and progression of various cancers. The genome of human papillomaviruses is circular, double-stranded DNA that encodes early and late proteins. Each of the proteins is of crucial significance in infecting the epithelium of host cells persistently and supporting viral genome integrating into host cells. Notably, E6 and E7 proteins, classified as oncoproteins, trigger the incidence of cancers by fostering cell proliferation, hindering apoptosis, evading immune surveillance, promoting cell invasion, and disrupting the balance of cellular metabolism. Therefore, targeting human papillomaviruses and decoding molecular mechanisms by which human papillomaviruses drive carcinogenesis are of great necessity to better treat human papillomaviruses-related cancers. Human papillomaviruses have been applied clinically to different facets of human papillomavirus-related cancers, including prevention, screening, diagnosis, treatment, and prognosis. Several types of prophylactic vaccines have been publicly utilized worldwide and have greatly decreased the occurrence of human papillomavirus-related cancers, which have benefited numerous people. Although various therapeutic vaccines have been developed and tested clinically, none of them have been officially approved to date. Enhancing the efficacy of vaccines and searching for innovative technologies targeting human papillomaviruses remain critical challenges that warrant continuous research and attention in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ping Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
18
|
Zheng Q, He M, Mao Z, Huang Y, Li X, Long L, Guo M, Zou D. Advancing the Fight Against Cervical Cancer: The Promise of Therapeutic HPV Vaccines. Vaccines (Basel) 2025; 13:92. [PMID: 39852871 PMCID: PMC11768687 DOI: 10.3390/vaccines13010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Human papillomavirus (HPV) is a major global health issue and is recognized as the leading cause of cervical cancer. While prophylactic vaccination programs have led to substantial reductions in both HPV infection rates and cervical cancer incidence, considerable burdens of HPV-related diseases persist, particularly in developing countries with inadequate vaccine coverage and uptake. The development of therapeutic vaccines for HPV represents an emerging strategy that has the potential to bolster the fight against cervical cancer. Unlike current prophylactic vaccines designed to prevent new infections, therapeutic vaccines aim to eradicate or treat existing HPV infections, as well as HPV-associated precancers and cancers. This review focuses on clinical studies involving therapeutic HPV vaccines for cervical cancer, specifically in three key areas: the treatment of cervical intraepithelial neoplasia; the treatment of cervical cancer in combination with or without chemotherapy, radiotherapy, or immune checkpoint inhibitors; and the role of prophylaxis following completion of treatment. Currently, there are no approved therapeutic HPV vaccines worldwide; however, active progress is being made in clinical research and development using multiple platforms such as peptides, proteins, DNA, RNA, bacterial vectors, viral vectors, and cell-based, each offering relative advantages and limitations for delivering HPV antigens and generating targeted immune responses. We outline preferred vaccine parameters, including indications, target populations, safety considerations, efficacy considerations, and immunization strategies. Lastly, we emphasize that therapeutic vaccines for HPV that are currently under development could be an important new tool in fighting against cervical cancer.
Collapse
Affiliation(s)
- Qian Zheng
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; (Q.Z.); (Z.M.); (L.L.)
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
- Organoid Transformational Research Center, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Misi He
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
- Organoid Transformational Research Center, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Zejia Mao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; (Q.Z.); (Z.M.); (L.L.)
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
| | - Yue Huang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
| | - Xiuying Li
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
| | - Ling Long
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; (Q.Z.); (Z.M.); (L.L.)
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
- Organoid Transformational Research Center, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Mingfang Guo
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
| | - Dongling Zou
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; (Q.Z.); (Z.M.); (L.L.)
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China; (M.H.); (Y.H.); (X.L.); (M.G.)
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing 400030, China
- Organoid Transformational Research Center, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
19
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
20
|
Sun Z, Wu Z, Su X. Developing an Effective Therapeutic HPV Vaccine to Eradicate Large Tumors by Genetically Fusing Xcl1 and Incorporating IL-9 as Molecular Adjuvants. Vaccines (Basel) 2025; 13:49. [PMID: 39852828 PMCID: PMC11768903 DOI: 10.3390/vaccines13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Human papillomavirus (HPV) is a prevalent infection affecting both men and women, leading to various cytological lesions. Therapeutic vaccines mount a HPV-specific CD8+ cytotoxic T lymphocyte response, thus clearing HPV-infected cells. However, no therapeutic vaccines targeting HPV are currently approved for clinical treatment due to limited efficacy. Our goal is to develop a vaccine that can effectively eliminate tumors caused by HPV. METHODS We genetically fused the chemokine XCL1 with the E6 and E7 proteins of HPV16 to target cDC1 and enhance the vaccine-induced cytotoxic T cell response, ultimately developing a DNA vaccine. Additionally, we screened various interleukins and identified IL-9 as an effective molecular adjuvant for our DNA vaccine. RESULTS The fusion of Xcl1 significantly improved the quantity and quality of the specific CD8+ T cells. The fusion of Xcl1 also increased immune cell infiltration into the tumor microenvironment. The inclusion of IL-9 significantly elevated the vaccine-induced specific T cell response and enhanced anti-tumor efficacy. IL-9 promotes the formation of central memory T cells. CONCLUSIONS the fusion of Xcl1 and the use of IL-9 as a molecular adjuvant represent promising strategies for vaccine development.
Collapse
Affiliation(s)
- Zhongjie Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Newish Biological R&D Center, Wuxi 214111, China
| | - Zhongyan Wu
- Newish Biological R&D Center, Wuxi 214111, China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Zhou Y, Zhang T, Wang Z, Xu X. Augmented immunogenicity of the HPV16 DNA vaccine via dual adjuvant approach: integration of CpG ODN into plasmid backbone and co-administration with IL-28B gene adjuvant. Virol J 2025; 22:3. [PMID: 39780219 PMCID: PMC11707914 DOI: 10.1186/s12985-024-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models. In this study, we employed multifaceted approach to enhance the potency of the HPV16 DNA vaccine. Strategies including inserting CpG oligodeoxynucleotide (CpG ODNs) into the vaccine vector backbone, selecting cytokine gene adjuvants, combining plasmids encoding mE6/HSP70 and mE7/HSP70, and utilizing electroporation for vaccination. Our findings revealed that mice immunized with CpG-modified vaccines, coupled with an IL-28B gene adjuvant exhibited heightened antigen-specific CD8+ T cell responses. Additionally, the combination of mE6/HSP70 and mE7/HSP70 plasmids synergistically enhanced the specific CD8+ T cell response. Furthermore, vaccination with CpG-modified mE7/HSP70 and mE6/HSP70 plasmids, alongside the Interleukin-28B (IL-28B) gene adjuvant, generated substantial preventive and therapeutic antitumor effects against HPV E6- and E7-expressing tumors in C57BL/6 mice. These results suggested that integrating these multiple strategies into an HPV DNA vaccine holds promise for effectively controlling HPV infection and related diseases.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Department of Immunology, Hebei North University, Zhangjiakou, China
| | - Ting Zhang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhirong Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuemei Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
22
|
Damani M, Mhaske A, Dighe S, Sawarkar SP. Immunotherapy in Cervical Cancer: An Evolutionary Paradigm in Women's Reproductive Health. Crit Rev Ther Drug Carrier Syst 2025; 42:55-88. [PMID: 40084517 DOI: 10.1615/critrevtherdrugcarriersyst.2025044498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cervical cancer is the fourth most common cause of morbidity and mortality in women. The major causative factor for cervical cancer is primary prolonged infection with human papillomavirus, along with secondary factors such as immunodeficiency, smoking, low socioeconomic standards, poor hygiene, and overuse of oral contraceptives. A grave need exists to practice novel strategies to overcome existing drawbacks of conventional therapy such as chemotherapy, radiation therapy, and surgery. Cancer immunotherapy works by strengthening the immune system of the host to combat against the cancerous cells. Immunotherapy in cervical cancer treatment has demonstrated long-lasting effects; however, the response to such therapies was nominal due to its prominent limitations such as immunosuppressive behavior of the tumor. Presently plethora of nanoplatforms such as polymeric nanoparticles, micelles, liposomes, and dendrimers are being maneuvered with cancer immunotherapy. The amalgamation of nanotechnology and immunotherapy in the treatment of cervical cancer is conceivable due to the mutual association between the tumor microenvironment and immunosurveillance. Safety concerns of nanoplatforms with immunotherapeutics such as toxicity, inflammation, and unwanted accumulation in tissues could be surmounted by surface modification methods. This review highlights the benefits of the amalgamation of nanotechnology and immunotherapy to improve shortcomings applicable to the conventional delivery of cancer treatment. We also aim to outline the nanoimmunotherapy sophistications and future translational avenues in this rapidly flourishing cancer treatment modality.
Collapse
Affiliation(s)
- Mansi Damani
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India
| | - Akshada Mhaske
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sayali Dighe
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| |
Collapse
|
23
|
Liu X, Lei X, Huang S, Yang X. Current Perspectives of Immunotherapy for Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2025; 28:185-201. [PMID: 38031784 DOI: 10.2174/0113862073255266231025111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Hepatocellular carcinoma is the sixth most common tumor and the third leading cause of cancer death worldwide. It ranks fourth in the spectrum of malignant tumor incidence and second in the order of death from major malignant tumors in China. Hepatocellular carcinoma is a complex ecosystem containing non-tumor cells (mainly immune-related cells), and its immunotherapy can stimulate the recognition of specific tumor antigens, inhibit the proliferation of cancer cells, and produce over-memory lymphocytes, which can prevent recurrence. So, immunotherapy of hepatocellular carcinoma is increasingly becoming a research hotspot in liver cancer treatment. With the intensive research in recent years, great progress has been made in immunotherapy for hepatocellular carcinoma, including immune checkpoint inhibitors, pericyte therapy, vaccination, and antiviral therapy. In addition, the study found that the therapeutic effect of combination therapy was enhanced compared to monotherapy. This review summarizes the most prominent immunotherapies currently available for the clinical treatment of patients with HCC and the main opportunities and challenges facing HCC research.
Collapse
Affiliation(s)
- Xiaoyi Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
24
|
Zeng Q, Zhang S, Leng N, Xing Y. Advancing tumor vaccines: Overcoming TME challenges, delivery strategies, and biomaterial-based vaccine for enhanced immunotherapy. Crit Rev Oncol Hematol 2025; 205:104576. [PMID: 39581246 DOI: 10.1016/j.critrevonc.2024.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Tumor vaccines, as an immunotherapeutic approach, harness the body's immune cells to provoke antitumor responses, which have shown promising efficacy in clinical settings. However, the immunosuppressive tumor microenvironment (TME) and the ineffective vaccine delivery systems hinder the progression of many vaccines beyond phase II trials. This article begins with a comprehensive review of the complex interactions between tumor vaccines and TME, summarizing the current state of vaccine clinical research. Subsequently, we review recent advancements in targeted vaccine delivery systems and explore biomaterial-based tumor vaccines as a strategy to improve the efficacy of both delivery systems and treatment. Finally, we have presented our perspectives on tumor vaccine development, aiming to advance the field towards the creation of more effective tumor vaccines.
Collapse
Affiliation(s)
- Qingsong Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shibo Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ning Leng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
25
|
Wei J, Li W, Zhang P, Guo F, Liu M. Current trends in sensitizing immune checkpoint inhibitors for cancer treatment. Mol Cancer 2024; 23:279. [PMID: 39725966 DOI: 10.1186/s12943-024-02179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically transformed the treatment landscape for various malignancies, achieving notable clinical outcomes across a wide range of indications. Despite these advances, resistance to immune checkpoint blockade (ICB) remains a critical clinical challenge, characterized by variable response rates and non-durable benefits. However, growing research into the complex intrinsic and extrinsic characteristics of tumors has advanced our understanding of the mechanisms behind ICI resistance, potentially improving treatment outcomes. Additionally, robust predictive biomarkers are crucial for optimizing patient selection and maximizing the efficacy of ICBs. Recent studies have emphasized that multiple rational combination strategies can overcome immune checkpoint resistance and enhance susceptibility to ICIs. These findings not only deepen our understanding of tumor biology but also reveal the unique mechanisms of action of sensitizing agents, extending clinical benefits in cancer immunotherapy. In this review, we will explore the underlying biology of ICIs, discuss the significance of the tumor immune microenvironment (TIME) and clinical predictive biomarkers, analyze the current mechanisms of resistance, and outline alternative combination strategies to enhance the effectiveness of ICIs, including personalized strategies for sensitizing tumors to ICIs.
Collapse
Grants
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
Collapse
Affiliation(s)
- Jing Wei
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Wenke Li
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Pengfei Zhang
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Ming Liu
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
26
|
Zhang X, Yin WJ, Zhang AL, Zhang XX, Ding LJ, Zhang J, He ST, Yan JP. Meta-analysis of efficacy and safety of pembrolizumab for the treatment of advanced or recurrent cervical cancer. J OBSTET GYNAECOL 2024; 44:2390564. [PMID: 39150330 DOI: 10.1080/01443615.2024.2390564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/18/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND This meta-analysis seeks to assess the efficacy and safety of pembrolizumab in individuals with advanced or recurrent cervical cancer. METHODS Databases from PubMed, Embase, and the Cochrane Library were all thoroughly searched for pertinent research. Outcomes include complete response (CR), partial response (PR), stable disease (SD), disease progression (PD), overall response rate (ORR), disease control rate (DCR), median progression-free survival (mPFS), median overall survival (mOS), and adverse events (AEs) were retrieved for further analysis. RESULTS Ten trials with 721 patients were included in this meta-analysis. The pooled results for patients with cervical cancer receiving pembrolizumab were as follows: CR (0.06, 95%CI: 0.02-0.10), PR (0.15, 95%CI: 0.08-0.22), SD (0.16, 95%CI: 0.13-0.20), PD (0.50, 95%CI: 0.25-0.75), ORR (0.26, 95%CI: 0.11-0.41) and DCR (0.42, 95%CI: 0.13-0.71), respectively. Regarding survival analysis, the pooled mPFS and mOS were 3.81 and 10.15 months. Subgroup analysis showed that pembrolizumab in combination was more beneficial in CR (0.16 vs. 0.03, p = 0.012), PR (0.24 vs. 0.08, p = 0.032), SD (0.11 vs. 0.19, p = 0.043), ORR (0.42 vs. 0.11, p = 0.014), and mPFS (5.54 months vs. 2.27 months, p < 0.001) than as single agent. The three most common AEs were diarrhoea (0.25), anaemia (0.25), and nausea (0.21), and the incidence of grade 3-5 AEs was significantly lower, rarely surpassing 0.10. CONCLUSIONS For patients with advanced or recurrent cervical cancer, this systematic review and meta-analysis demonstrated that pembrolizumab had a favourable efficacy and tolerability. Future research will primarily focus on optimising customised regiments that optimally integrate pembrolizumab into new therapies and combination strategies. Designed to maximise patient benefit and efficiently control adverse effects while maintaining a high standard of living.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pharmacy, Kunming Yan'an Hospital, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wen-Jie Yin
- Department of Pharmacy, Kunming Yan'an Hospital, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ai-Li Zhang
- Department of Pharmacy, Kunming Yan'an Hospital, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao-Xiao Zhang
- Department of Pharmacy, Kunming Yan'an Hospital, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li-Juan Ding
- Department of Pharmacy, Kunming Yan'an Hospital, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiao Zhang
- Department of Basic Medicine, Zhaotong Health Vocational College, Zhaotong, Yunnan, China
| | - Shu-Ting He
- College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Jie-Ping Yan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Wang B, Liang Y, Wu Y, Li Q, Zeng Y, Liu L, Cao W, Geng X, Huang Y, Wu Y, Pan J, Zhang X, Gu JJ. Sintilimab plus HPV vaccine for recurrent or metastatic cervical cancer. J Immunother Cancer 2024; 12:e009898. [PMID: 39608975 PMCID: PMC11603683 DOI: 10.1136/jitc-2024-009898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE Recurrent or metastatic cervical cancer (r/m CC) presents limited treatment options for patients failed or progressed quickly following first-line therapy. This study investigated the potential of sintilimab with a prophylactic human papillomavirus (HPV) quadrivalent vaccine as a second-line treatment for r/m CC. METHODS In this phase 2 clinical trial, patients with r/m CC previously unresponsive or intolerant to standard treatments for metastatic or recurrent lesions were enrolled. Participants received sintilimab (3 mg/kg for body weight <60 kg; 200 mg for ≥60 kg) every 3 weeks until 24 months or 35 cycles and 3 doses of the HPV quadrivalent vaccine (initial dose prior to sintilimab initiation, with subsequent doses at 2 and 6 months). The primary endpoint was the objective response rate (ORR). A Simon two-stage optimal design was used. RESULTS From October 2019 to October 2022, 13 patients with r/m CC were enrolled. ORR achieved 53.8% (95% CI 25.1% to 80.8%), and the disease control rate was 76.9% (95% CI 46.2% to 95.0%). Median follow-up duration was 16.07 months (range: 3.64-48.2 months), and median progressive free survival was 7.16 months (95% CI 1.91 -not applicable (NA)). The median overall survival (OS) was not reached (95% CI 9.89 -NA). Hypothyroidism (15.6%) was the most common treatment-related adverse event (AE). No grade 3 or above AEs were observed. CONCLUSIONS This study suggests the combination of sintilimab plus prophylactic HPV vaccine offers a potentially promising therapeutic strategy for patients with r/m CC unresponsive or intolerant to standard therapies.Trial registration numberNCT04096911.
Collapse
Affiliation(s)
- Buhai Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Yichen Liang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuechao Wu
- The Fifth People's Hospital of Changshu, Changshu, China
| | - Qiuxian Li
- Leshan Geriatric Specialized Hospital, Leshan, Sichuan, China
| | - Yichun Zeng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Liqin Liu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenmiao Cao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoru Geng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuxiang Huang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Yinxia Wu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiulin Pan
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou University, Yangzhou, Jiangsu, China
| | - Xian Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - J Juan Gu
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
28
|
Karan S, Affonso De Oliveira JF, Moreno-Gonzalez MA, Steinmetz NF. A Self-Amplifying Human Papillomavirus 16 Vaccine Candidate Delivered by Tobacco Mosaic Virus-Like Particles. ACS APPLIED BIO MATERIALS 2024; 7:7675-7683. [PMID: 39512153 PMCID: PMC11648571 DOI: 10.1021/acsabm.4c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Virus-like particles (VLPs) are naturally occurring delivery platforms with potential for mRNA vaccines that can be used as an alternative to lipid nanoparticles. Here we describe a self-amplifying mRNA vaccine based on tobacco mosaic virus (TMV) expressing a mutated E7 protein from human papillomavirus 16 (HPV16). E7 is an early gene that plays a central role in viral replication and the oncogenic transformation of host cells, but nononcogenic mutant E7 proteins can suppress this activity. Immunization studies involving the delivery of self-amplifying mutant E7 mRNA packaged with TMV coat proteins confirmed the elicitation of E7-specific IgG antibodies. Additional in vitro splenocyte proliferation and cytokine profiling assays indicated the activation of humoral and cellular immune responses. We conclude that TMV particles are suitable for the delivery of mRNA vaccines and can preserve their integrity and functionality in vitro and in vivo.
Collapse
Affiliation(s)
- Sweta Karan
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center for Nano Immuno Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jessica Fernanda Affonso De Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center for Nano Immuno Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Miguel A Moreno-Gonzalez
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center for Nano Immuno Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center for Nano Immuno Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Cai Z, Qiao Y, Wuri Q, Zhang K, Qu X, Zhang S, Wu H, Wu J, Wang C, Yu X, Kong W, Zhang H. Flt3 ligand augments immune responses to soluble PD1-based DNA vaccine via expansion of type 1 conventional DCs. Int Immunopharmacol 2024; 141:112956. [PMID: 39168022 DOI: 10.1016/j.intimp.2024.112956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
DNA vaccines are prospective for their efficient manufacturing process, but their immunogenicity is limited as they cannot efficiently induce CD8+ T cell responses. A promising approach is to induce cross-presentation by targeting antigens to DCs. Flt3L can expand the number of type 1 conventional DCs and thereby improve cross-presentation. In this study, we first constructed a DNA vaccine expressing soluble PD1 and found that the therapeutic effect of targeting DCs with only the sPD1 vaccine was limited. When combined the vaccine with Flt3L, the anti-tumor effect was significantly enhanced. Considering the complexity of tumors and that a single method may not be able to activate a large number of effective CD8+ T cells, we combined different drugs and the vaccine with Flt3L based on the characteristics of different tumors. In 4T1 model, we reduced Tregs through cyclophosphamide. In Panc02 model, we increased activated DCs by using aCD40. Both strategies triggered strong CD8+ T cell responses and significantly improved the therapeutic effect. Our study provides important support for the clinical exploration of DC-targeted DNA vaccines in combination with Flt3L.
Collapse
Affiliation(s)
- Zongyu Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Yaru Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Qimuge Wuri
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Ke Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Xueli Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Shiqi Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China.
| |
Collapse
|
30
|
Qiu W, Zheng Y, Shen F, Wang Z, Huang Q, Guo W, Wang Q, Yang P, He F, Cao Z, Cao J. Rapid Hemostasis Tumor In Situ Hydrogel Vaccines for Colorectal Cancer Chemo-Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61679-61691. [PMID: 39480969 DOI: 10.1021/acsami.4c13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Due to the high heterogeneity and the immunosuppressive microenvironment of tumors, most single antigen tumor vaccines often fail to elicit potent antitumor immune responses in clinical trials, resulting in unsatisfactory therapy effects. Hence, personalized tumor vaccines have become a promising modality for cancer immunotherapy. Here, we have developed a tumor in situ hydrogel vaccine (AH/DA-OR) capable of rapid hemostasis for personalized tumor immunotherapy, composed of dopamine-grafted hyaluronic acid (HA/DA) combined with sodium alginate (ALG), with coloaded oxaliplatin (OXA) and resiquimod (R848). The ALG and HA framework imparts excellent biocompatibility to the hydrogel, and dopamine (DA) modification endows it with rapid hemostatic functionality. Following local peritumor injection of AH/DA-OR into the tumor, the in situ hydrogel vaccine achieved the sustained release of the chemotherapeutic agent, OXA, inducing immunogenic cell death in tumor cells and effectively releasing personalized tumor-associated antigens to activate immune responses. Simultaneously, local R848 adjuvant sustained release at the tumor site enhanced immune responses, minimized drug side effects, and amplified immunotherapy effects. Finally, the hydrogel vaccine effectively activated host immune responses to suppress CT26 colorectal cancer growth in vivo, also exhibiting superior inhibition of untreated tumor growth at distant sites. This strategy of rapid hemostasis of tumor in situ hydrogel vaccine holds significant clinical potential and provides a paradigm for achieving secure and robust immunotherapy.
Collapse
Affiliation(s)
- Wenjing Qiu
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Institute of Digestive Diseases, South China University of Technology, Guangzhou 510180, People's Republic of China
| | - Yunsheng Zheng
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Institute of Digestive Diseases, South China University of Technology, Guangzhou 510180, People's Republic of China
| | - Fei Shen
- Institute of Clinical Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Zilu Wang
- Institute of Clinical Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
| | - Qing Huang
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Institute of Digestive Diseases, South China University of Technology, Guangzhou 510180, People's Republic of China
| | - Wenfeng Guo
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Institute of Digestive Diseases, South China University of Technology, Guangzhou 510180, People's Republic of China
| | - Qiang Wang
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Institute of Digestive Diseases, South China University of Technology, Guangzhou 510180, People's Republic of China
| | - Ping Yang
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Institute of Digestive Diseases, South China University of Technology, Guangzhou 510180, People's Republic of China
| | - Feng He
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Institute of Clinical Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Institute of Digestive Diseases, South China University of Technology, Guangzhou 510180, People's Republic of China
| | - Ziyang Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Institute of Clinical Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Institute of Clinical Medicine, Guangzhou First People's Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
- Institute of Digestive Diseases, South China University of Technology, Guangzhou 510180, People's Republic of China
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, People's Republic of China
| |
Collapse
|
31
|
Liao JB, Dai JY, Reichow JL, Lim JB, Hitchcock-Bernhardt KM, Stanton SE, Salazar LG, Gooley TA, Disis ML. Magnitude of antigen-specific T-cell immunity the month after completing vaccination series predicts the development of long-term persistence of antitumor immune response. J Immunother Cancer 2024; 12:e010251. [PMID: 39521614 PMCID: PMC11552009 DOI: 10.1136/jitc-2024-010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND For best efficacy, vaccines must provide long-lasting immunity. To measure longevity, memory from B and T cells are surrogate endpoints for vaccine efficacy. When antibodies are insufficient for protection, the immune response must rely on T cells. The magnitude and differentiation of effective, durable immune responses depend on antigen-specific precursor frequencies. However, development of vaccines that induce durable T-cell responses for cancer treatment has remained elusive. METHODS To address long-lasting immunity, patients with HER2+ (human epidermal growth factor receptor 2) advanced stage cancer received HER2/neu targeted vaccines. Interferon-gamma (IFN-γ) enzyme-linked immunosorbent spot measuring HER2/neu IFN-γ T cells were analyzed from 86 patients from three time points: baseline, 1 month after vaccine series, and long-term follow-up at 1 year, following one in vitro stimulation. The baseline and 1-month post-vaccine series responses were correlated with immunity at long-term follow-up by logistic regression. Immunity was modeled by non-linear functions using generalized additive models. RESULTS Antigen-specific T-cell responses at baseline were associated with a 0.33-log increase in response at long-term follow-up, 95% CI (0.11, 0.54), p=0.003. 63% of patients that had HER2/neu specific T cells at baseline continued to have responses at long-term follow-up. Increased HER2/neu specific T-cell response 1 month after the vaccine series was associated with a 0.47-log increase in T-cell response at long-term follow-up, 95% CI (0.27, 0.67), p=2e-5. 74% of patients that had an increased IFN-γ HER2 response 1 month after vaccines retained immunity long-term. As the 1-month post-vaccination series precursor frequency of HER2+IFN-γ T-cell responses increased, the probability of retaining these responses long-term increased (OR=1.49 for every one natural log increase of precursor frequency, p=0.0002), reaching an OR of 20 for a precursor frequency of 1:3,000 CONCLUSIONS: Patients not destined to achieve long-term immunity can be identified immediately after completing the vaccine series. Log-fold increases in antigen-specific precursor frequencies after vaccinations correlate with increased odds of retaining long-term HER2 immune responses. Further vaccine boosting or immune checkpoint inhibitors or other immune stimulator therapy should be explored in patients that do not develop antigen-specific T-cell responses to improve overall response rates.
Collapse
Affiliation(s)
- John B Liao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - James Y Dai
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica L Reichow
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Jong-Baeck Lim
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Katie M Hitchcock-Bernhardt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | | | - Lupe G Salazar
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
- Medicine/Division of Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
- Medicine/Division of Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
32
|
Zhang Y, Meng YP, Xu XF, Shi Q. Prognostic nomograms for locally advanced cervical cancer based on the SEER database: Integrating Cox regression and competing risk analysis. Medicine (Baltimore) 2024; 103:e40408. [PMID: 39533612 PMCID: PMC11557032 DOI: 10.1097/md.0000000000040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Locally advanced cervical carcinoma (LACC) remains a significant global health challenge owing to its high recurrence rates and poor outcomes, despite current treatments. This study aimed to develop a comprehensive risk stratification model for LACC by integrating Cox regression and competing risk analyses. This was done to improve clinical decision making. We analyzed data from 3428 patients with LACC registered in the Surveillance, Epidemiology, and End Results program and diagnosed them between 2010 and 2015. Cox regression and competing risk analyses were used to identify the prognostic factors. We constructed and validated nomograms for overall survival (OS) and disease-specific survival (DSS). Multivariate Cox regression identified key prognostic factors for OS, including advanced International Federation of Gynecology and Obstetrics stage, age, marital status, ethnicity, and tumor size. Notably, International Federation of Gynecology and Obstetrics stages IIIA, IIIB, and IVA had hazard ratios of 2.227, 2.451, and 4.852, respectively, significantly increasing the mortality risk compared to stage IB2. Ethnic disparities were evident, with African Americans facing a 39.8% higher risk than Caucasians did. Competing risk analyses confirmed the significance of these factors in DSS, particularly tumor size. Our nomogram demonstrated high predictive accuracy, with area under the curve values ranging from 0.706 to 0.784 for DSS and 0.717 to 0.781 for OS. Calibration plots and decision curve analyses further validated the clinical utility of this nomogram. We present effective nomograms for LACC risk stratification that incorporate multiple prognostic factors. These models provide a refined approach for individualized patient management and have the potential to significantly enhance therapeutic strategies for LACC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Ya-Ping Meng
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiao-Feng Xu
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qin Shi
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
33
|
Ando H, Katoh Y, Kobayashi O, Ikeda Y, Yahata H, Iwata T, Satoh T, Akiyama A, Maeda D, Hori-Hirose Y, Uemura Y, Nakayama-Hosoya K, Katoh K, Nakajima T, Taguchi A, Komatsu A, Kamata S, Tomita N, Kato K, Aoki D, Igimi S, Kawana-Tachikawa A, Schust DJ, Kawana K. Low CD86 expression is a predictive biomarker for clinical response to the therapeutic human papillomavirus vaccine IGMKK16E7: results of a post hoc analysis. JNCI Cancer Spectr 2024; 8:pkae091. [PMID: 39302712 PMCID: PMC11528511 DOI: 10.1093/jncics/pkae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/02/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Although therapeutic human papillomavirus vaccines could offer a noninvasive treatment for patients with cervical intraepithelial neoplasia, none has been clinically implemented. Oral administration of the therapeutic human papillomavirus vaccine IGMKK16E7 results in the histological regression of human papillomavirus 16-positive cervical intraepithelial neoplasia 2/3 to normal (complete response). We investigated biomarkers that could predict complete response after oral administration of IGMKK16E7. METHODS Forty-two patients administered high-dose oral IGMKK16E7 in a phase I/II trial were included. Cervix-exfoliated cells were collected before vaccine administration. Gene expression of CD4, CD8, FOXP3, programmed cell death 1 protein, CTLA4, CD103, CD28, CD80, CD86, and programmed cell death 1 ligand 1 in the cells was measured by quantitative reverse transcriptase-polymerase chain reaction. Receiver operating characteristic curve analysis and Mann-Whitney tests were used to explore potential biomarkers. Pearson correlation coefficient analysis was used to correlate gene expression profiles with clinical outcome. RESULTS The only predictive biomarker of vaccine response for which receiver operating characteristic curve analysis showed significant diagnostic performance with histological complete response was CD86 (area under the curve = 0.71, 95% confidence interval = 0.53 to 0.88, P = .020). Patients with complete response had significantly lower CD86 expression (CD86-low) than patients with no complete response (P = .035). The complete response rates for CD86-low and CD86-high patients were 50% and 19%, respectively, and CD86-low patients had a significantly higher complete response rate (P = .047). Compared with all patients, the CD86-low group had a 1.5-fold increase in the complete response rate. Gene expression of CD86 and CTLA4 showed the strongest positive correlation with clinical outcomes in the incomplete response group (P < .001). CONCLUSION Low expression of CD86 in exfoliated cervical cells can be used as a pretreatment biomarker to predict histological complete response after IGMKK16E7 administration.
Collapse
Affiliation(s)
- Hanano Ando
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Yuki Katoh
- Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Osamu Kobayashi
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Yuji Ikeda
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toyomi Satoh
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Azusa Akiyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Yumiko Hori-Hirose
- Department of Central Laboratory and Surgical Pathology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yukari Uemura
- Department of Data Science, Center for Clinical Science, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Kanoko Katoh
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Takahiro Nakajima
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Ayumi Taguchi
- World Premier International Immunology Frontier Research Center, Laboratory of Human Single Cell Immunology, Osaka, Japan
| | - Atsushi Komatsu
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Saki Kamata
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Naoko Tomita
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Shizunobu Igimi
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Danny J Schust
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, USA
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Chi WY, Hu Y, Huang HC, Kuo HH, Lin SH, Kuo CTJ, Tao J, Fan D, Huang YM, Wu AA, Hung CF, Wu TC. Molecular targets and strategies in the development of nucleic acid cancer vaccines: from shared to personalized antigens. J Biomed Sci 2024; 31:94. [PMID: 39379923 PMCID: PMC11463125 DOI: 10.1186/s12929-024-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.
Collapse
Affiliation(s)
- Wei-Yu Chi
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Hu
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui-Hsuan Kuo
- Pharmacology PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Tien Jimmy Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Julia Tao
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Darrell Fan
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Yi-Min Huang
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Annie A Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Zhao Z, Ruan J, Fang M, Liu J, Liao G. Efficacy and safety of chemoradiotherapy plus immune checkpoint inhibitors for the treatment of locally advanced cervical cancer: a systematic review and meta-analysis. Front Immunol 2024; 15:1459693. [PMID: 39351236 PMCID: PMC11439685 DOI: 10.3389/fimmu.2024.1459693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Background Radiotherapy plus concurrent chemotherapy is a standard method for treating locally advanced cervical cancer (LACC). Immune checkpoint inhibitors (ICIs) are widely applied in the treatment of recurrent cervical cancer, metastatic cervical cancer or LACC. The efficacy and safety of radiotherapy plus immunotherapy for LACC require further investigation. The objective of this review and meta-analysis was to analyze the efficacy and safety of concurrent chemoradiotherapy (CCRT) combined with ICIs for treating LACC on the basis of the results of randomized controlled trials (RCTs). Methods We comprehensively searched electronic databases to identify RCTs that focused on CCRT plus ICIs for LACC treatment. The outcomes included the objective response rate (ORR) and progression-free survival (PFS), overall survival (OS) and adverse events (AEs). A standard method for systematic review and meta-analysis was used. Review Manager 5.4 was used for data combination and analyses. Results Three RCTs involving 1882 participants with LACC were identified and included in the systematic review and meta-analysis. CCRT plus ICIs improved the rates of PFS (hazard ratio [HR]: 0.76, 95% confidence interval [CI]: CI: 0.64, 0.91, P = 0.002) and OS (HR: 0.7695% CI (95% CI 0.58-0.99, P = 0.04) in patients with LACC. Compared with the control group, the CCRT plus immunotherapy group had an increased ORR (OR: 1.37, 95% CI: 1.02,1.85, P=0.04). The two methods had similar rates (HR=1.99, 95% CI: 0.99, 1.43; P=0.07) of treatment-related grade 3 or higher AEs. The CCRT plus immunotherapy group had a higher rate than did the control group (HR: 2.68, 95% CI: 1.38, 5.21; P=0.004) in terms of any grade immunotherapy-related AEs. Conclusions CCRT plus ICIs is efficacious and safe for the management of LACC. The addition of ICIs to CCRT improved the rates of PFS and OS in patients with LACC. The adverse effects of immunotherapy-related AEs should be strictly examined and managed in a timely manner.
Collapse
Affiliation(s)
| | | | | | | | - Guixiang Liao
- Department of Radiation Oncology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
36
|
Okpalanwaka IF, Anazodo FI, Chike-Aliozor ZL, Ekweozor C, Ochie KM, Oboh OF, Okonkwo FC, Njoku MF. Bridging the Gap: Immune Checkpoint Inhibitor as an Option in the Management of Advanced and Recurrent Cervical Cancer in Sub-Saharan Africa. Cureus 2024; 16:e69136. [PMID: 39398762 PMCID: PMC11467442 DOI: 10.7759/cureus.69136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Cervical cancer remains a leading cause of cancer-related mortality in women in low and middle-income countries despite efforts to improve prevention and standard-of-care interventions. Sub-Saharan Africa (SSA) leads the numbers for global cervical cancer incidence and mortality, with the majority of the incidence diagnosed in the late stage of the malignancy. Although the global cervical cancer death rate has been on the decline for the last two decades owing to advancements in screening and treatment options, the mortality rate in SSA has not declined very much. Chemotherapy has been the treatment of choice for cervical cancer in SSA without meeting the expected survival outcomes in these patients, with the majority having advanced diseases at diagnosis. Immune checkpoint inhibitors have recently shown clinical promise in improving the survival of patients with advanced cervical cancer and have been integrated into the treatment guidelines in most high-income countries, which have helped further reduce the mortality rate of cervical cancer. However, many SSA countries are yet to fully benefit from using immune checkpoint inhibitors in cervical cancer. In this review, we discuss the challenges hindering the effective use of immune checkpoint inhibitors for advanced cervical cancer in Africa and possible solutions.
Collapse
Affiliation(s)
- Izuchukwu F Okpalanwaka
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, USA
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, NGA
| | - Francis I Anazodo
- Department of Biochemistry and Molecular Biology, Augusta University Medical College of Georgia, Augusta, USA
| | - Zimuzor L Chike-Aliozor
- Department of Global Health and Health Security, Taipei Medical University, Taipei, TWN
- Department of Clinical Pharmacy and Pharmacy Management, University of Nigeria, Nsukka, NGA
| | - Chika Ekweozor
- Department of Clinical Pharmacy and Pharmacy Management, University of Nigeria, Nsukka, NGA
| | - Kossy M Ochie
- Department of Clinical Pharmacy and Pharmacy Management, Nnamdi Azikiwe University, Awka, NGA
| | - Onyeka F Oboh
- Department of Public Health, School of Nursing and Healthcare Leadership, University of Bradford, Bradford, GBR
| | | | | |
Collapse
|
37
|
Lim MC, Choi YJ, Hur SY, Kim YM, No JH, Kim BG, Cho CH, Kim SH, Jeong DH, Lee JK, Kim JH, Choi YJ, Woo JW, Sung YC, Park JS. GX-188E DNA vaccine plus pembrolizumab in HPV 16- and/or 18-positive recurrent or advance cervical cancer: a phase 2 trial. EClinicalMedicine 2024; 74:102716. [PMID: 39823099 PMCID: PMC11736335 DOI: 10.1016/j.eclinm.2024.102716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 01/19/2025] Open
Abstract
Background In an interim analysis of this phase 2 trial, adding the GX-188E vaccine to pembrolizumab resulted in manageable toxicity with antitumor activities in patients with recurrent or advanced cervical cancer. Here, we report the final safety and efficacy results after a long-term follow-up at the study's completion. Methods This open-label, single-arm, phase II trial was conducted in nine hospitals in South Korea (ClinicalTrials.gov identifier, NCT03444376). Eligible patients were aged ≥18 years with recurrent or advanced inoperable cervical cancer, Eastern Cooperative Oncology Group Performance status of 0 or 1, and positivity for HPV 16/18, who failed the available standard-of-care therapy. Patients received intramuscular 2 mg GX-188E at weeks 1, 2, 4, 7, 13, 19, and 46 and intravenous 200 mg pembrolizumab every 3 weeks for up to 2 years or until disease progression. The primary endpoint was the objective response rate (ORR) within 24 weeks. Findings Between June 19, 2018, and December 24, 2021, 65 patients were enrolled and received at least one dose of the study treatment. Sixty patients received combination treatment with GX-188E and pembrolizumab and underwent efficacy analysis. After a median follow-up of 14.72 months, the confirmed ORR was 35.0% (95% CI, 23.1-48.4). Five patients (8.3%) had a complete response, and 16 (26.7%) had a partial response. In addition, patients with PD-L1-positive and PD-L1-negative tumors had an ORR of 38.9% (95% CI, 23.1-56.5) and 29.2% (95% CI, 12.6-51.1), respectively. The median duration of response of all the patients was 12.3 months (95% CI, 5.3-not reached [NR]). For those with PD-L1-positive tumors, it was 12.3 months (95% CI, 3.5-NR), and for those with PD-L1-negative tumors, it was NR (95% CI, 2.4-NR). The median progression-free survival of the 60 patients was 4.4 months (95% CI, 2.1-8.3), and the median overall survival was 23.8 months (95% CI, 14.0-NR). 22 (33.8%) of 65 patients had treatment-related adverse events (TRAEs) of any grade and four (6.2%) had grade 3-4 TRAEs. No treatment-related deaths occurred. Interpretation The GX-188E vaccine combined with pembrolizumab in recurrent or advanced HPV-positive cervical cancer was safe and showed a promising overall survival and clinical response rate. This combination therapy might provide a new potential treatment option for patients with recurrent or advanced cervical cancer. Funding National Cancer Center Onco-Innovation Unit, Korea.
Collapse
Affiliation(s)
- Myong Cheol Lim
- National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Youn Jin Choi
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo-Young Hur
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Jae Hong No
- Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Chi Heum Cho
- Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, South Korea
| | - Sung Hoon Kim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dae Hoon Jeong
- Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Jae-Kwan Lee
- Korea University Guro Hospital, Seoul, Republic of Korea
| | - Ji Hyun Kim
- National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | | | | | - Young Chul Sung
- Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jong Sup Park
- Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
38
|
Brandenburg A, Heine A, Brossart P. Next-generation cancer vaccines and emerging immunotherapy combinations. Trends Cancer 2024; 10:749-769. [PMID: 39048489 DOI: 10.1016/j.trecan.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Therapeutic cancer vaccines have been a subject of research for several decades as potential new weapons to tackle malignancies. Their goal is to induce a long-lasting and efficient antitumour-directed immune response, capable of mediating tumour regression, preventing tumour progression, and eradicating minimal residual disease, while avoiding major adverse effects. Development of new vaccine technologies and antigen prediction methods has led to significant improvements in cancer vaccine efficacy. However, for their successful clinical application, certain obstacles still need to be overcome, especially tumour-mediated immunosuppression and escape mechanisms. In this review, we introduce therapeutic cancer vaccines and subsequently discuss combination approaches of next-generation cancer vaccines and existing immunotherapies, particularly immune checkpoint inhibitors (ICIs) and adoptive cell transfer/cell-based immunotherapies.
Collapse
Affiliation(s)
- Anne Brandenburg
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Annkristin Heine
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Peter Brossart
- Medical Clinic III of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
39
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
40
|
Wang J, Wang Q, Ma L, Lv K, Han L, Chen Y, Zhou R, Zhou H, Chen H, Wang Y, Zhang T, Yi D, Liu Q, Zhang Y, Li X, Cheng T, Zhang J, Huang C, Dong Y, Zhang W, Cen S. Development of an mRNA-based therapeutic vaccine mHTV-03E2 for high-risk HPV-related malignancies. Mol Ther 2024; 32:2340-2356. [PMID: 38715363 PMCID: PMC11286823 DOI: 10.1016/j.ymthe.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/16/2024] [Accepted: 04/30/2024] [Indexed: 07/06/2024] Open
Abstract
Human papillomavirus (HPV) 16 and 18 infections are related to many human cancers. Despite several preventive vaccines for high-risk (hr) HPVs, there is still an urgent need to develop therapeutic HPV vaccines for targeting pre-existing hrHPV infections and lesions. In this study, we developed a lipid nanoparticle (LNP)-formulated mRNA-based HPV therapeutic vaccine (mHTV)-03E2, simultaneously targeting the E2/E6/E7 of both HPV16 and HPV18. mHTV-03E2 dramatically induced antigen-specific cellular immune responses, leading to significant CD8+ T cell infiltration and cytotoxicity in TC-1 tumors derived from primary lung epithelial cells of C57BL/6 mice expressing HPV E6/E7 antigens, mediated significant tumor regression, and prolonged animal survival, in a dose-dependent manner. We further demonstrated significant T cell immunity against HPV16/18 E6/E7 antigens for up to 4 months post-vaccination in immunological and distant tumor rechallenging experiments, suggesting robust memory T cell immunity against relapse. Finally, mHTV-03E2 synergized with immune checkpoint blockade to inhibit tumor growth and extend animal survival, indicating the potential in combination therapy. We conclude that mHTV-03E2 is an excellent candidate therapeutic mRNA vaccine for treating malignancies caused by HPV16 or HPV18 infections.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Qixin Wang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Lu Han
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Yunfeng Chen
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Haokun Zhou
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Hua Chen
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | - Yi Wang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | | | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Tingting Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Jinming Zhang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China
| | | | - Yijie Dong
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China.
| | - Weiguo Zhang
- RinuaGene Biotechnology Co., Ltd., Suzhou 215127, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China.
| |
Collapse
|
41
|
Balhara N, Yadav R, Ranga S, Ahuja P, Tanwar M. Understanding the HPV associated cancers: A comprehensive review. Mol Biol Rep 2024; 51:743. [PMID: 38874682 DOI: 10.1007/s11033-024-09680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Human papillomavirus (HPV), a common cause of sexually transmitted diseases, may cause warts and lead to various types of cancers, which makes it important to understand the risk factors associated with it. HPV is the leading risk factor and plays a crucial role in the progression of cervical cancer. Viral oncoproteins E6 and E7 play a pivotal role in this process. Beyond cervical cancer, HPV-associated cancers of the mouth and throat are also increasing. HPV can also contribute to other malignancies like penile, vulvar, and vaginal cancers. Emerging evidence links HPV to these cancers. Research on the oncogenic effect of HPV is still ongoing and explorations of screening techniques, vaccination, immunotherapy and targeted therapeutics are all in progress. The present review offers valuable insight into the current understanding of the role of HPV in cancer and its potential implications for treatment and prevention in the future.
Collapse
Affiliation(s)
- Nikita Balhara
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
42
|
Muralidharan A, Boukany PE. Electrotransfer for nucleic acid and protein delivery. Trends Biotechnol 2024; 42:780-798. [PMID: 38102019 DOI: 10.1016/j.tibtech.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Electrotransfer of nucleic acids and proteins has become crucial in biotechnology for gene augmentation and genome editing. This review explores the applications of electrotransfer in both ex vivo and in vivo scenarios, emphasizing biomedical uses. We provide insights into completed clinical trials and successful instances of nucleic acid and protein electrotransfer into therapeutically relevant cells such as immune cells and stem and progenitor cells. In addition, we delve into emerging areas of electrotransfer where nanotechnology and deep learning techniques overcome the limitations of traditional electroporation.
Collapse
Affiliation(s)
- Aswin Muralidharan
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
43
|
Wang J, Ma L, Chen Y, Zhou R, Wang Q, Zhang T, Yi D, Liu Q, Zhang Y, Zhang W, Dong Y, Cen S. Immunogenicity and effectiveness of an mRNA therapeutic vaccine for HPV-related malignancies. Life Sci Alliance 2024; 7:e202302448. [PMID: 38514186 PMCID: PMC10958088 DOI: 10.26508/lsa.202302448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Human papillomavirus (HPV) infections account for several human cancers. There is an urgent need to develop therapeutic vaccines for targeting preexisting high-risk HPV (such as HPV 16 and 18) infections and lesions, which are insensitive to preventative vaccines. In this study, we developed a lipid nanoparticle-formulated mRNA-based HPV therapeutic vaccine (mHTV), mHTV-02, targeting the E6/E7 of HPV16 and HPV-18. mHTV-02 dramatically induced antigen-specific cellular immune response and robust memory T-cell immunity in mice, besides significant CD8+ T-cell infiltration and cytotoxicity in TC-1 tumors expressing HPV E6/E7, resulting in tumor regression and prolonged survival in mice. Moreover, evaluation of routes of administration found that intramuscular or intratumoral injection of mHTV-02 displayed significant therapeutic effects. In contrast, intravenous delivery of the vaccine barely showed any benefit in reducing tumor size or improving animal survival. These data together support mHTV-02 as a candidate therapeutic mRNA vaccine via specific administration routes for treating malignancies caused by HPV16 or HPV18 infections.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yunfeng Chen
- RinuaGene Biotechnology Co., Ltd., Suzhou, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Qixin Wang
- RinuaGene Biotechnology Co., Ltd., Suzhou, China
| | | | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Weiguo Zhang
- RinuaGene Biotechnology Co., Ltd., Suzhou, China
| | - Yijie Dong
- RinuaGene Biotechnology Co., Ltd., Suzhou, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
44
|
Balan L, Cimpean AM, Nandarge PS, Sorop B, Balan C, Balica MA, Bratosin F, Brasoveanu S, Boruga M, Pirtea L. Clinical Outcomes and Molecular Predictors of Pembrolizumab (Keytruda) as a PD-1 Immune Checkpoint Inhibitor in Advanced and Metastatic Cervical Cancer: A Systematic Review and Meta-Analysis. Biomedicines 2024; 12:1109. [PMID: 38791070 PMCID: PMC11117617 DOI: 10.3390/biomedicines12051109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This systematic review evaluates the clinical outcomes and molecular predictors of response to pembrolizumab in patients with advanced and metastatic cervical cancer. We adhered to the PRISMA guidelines for systematic reviews, conducting a database search in PubMed, Scopus, and Embase. The eligibility criteria centered on clinical outcomes, including the overall survival (OS), progression-free survival (PFS), and immune-related biomarkers post-pembrolizumab therapy. We included both prospective and retrospective studies that detailed clinical outcomes and molecular characteristics predictive of therapeutic response. Our search yielded six studies involving 846 patients treated with pembrolizumab from 2017 to 2022. The meta-analysis of these studies showed that pembrolizumab, used as monotherapy or in combination with chemotherapy, extended the OS by a weighted median of 10.35 months and the PFS by 8.50 months. The treatment demonstrated a pooled objective response rate (ORR) of 22.39%, although the I2 test result of 67.49% showed a high heterogeneity among the studies. Notably, patients with high PD-L1 expression (CPS ≥ 10) experienced improved outcomes in terms of the PFS and OS. The most common complications were fatigue, diarrhea, and immune-related adverse events. Pembrolizumab significantly enhances clinical outcomes in metastatic cervical cancer, particularly among patients with high PD-L1 expression. The drug maintains a good safety profile, reinforcing its treatment potential for patients with advanced and metastatic cervical cancer. Future studies should explore long-term effects and strategies to integrate pembrolizumab optimally into current treatment regimens, aiming to maximize patient benefits and effectively manage side effects.
Collapse
Affiliation(s)
- Lavinia Balan
- Department of Obstetrics and Gynecology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.B.); (B.S.); (S.B.); (L.P.)
- Doctoral School, Department of General Medicine, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (C.B.); (M.A.B.); (F.B.)
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Center of Expertise for Rare Vascular Disease in Children, Louis Turcanu Children Hospital, 300011 Timisoara, Romania
| | - Prashant Sunil Nandarge
- Department of General Medicine, D.Y. Patil Medical College Kolhapur, Kolhapur 416005, India;
| | - Bogdan Sorop
- Department of Obstetrics and Gynecology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.B.); (B.S.); (S.B.); (L.P.)
| | - Catalin Balan
- Doctoral School, Department of General Medicine, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (C.B.); (M.A.B.); (F.B.)
- Department of Cellular and Molecular Biology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Madalina Alexandra Balica
- Doctoral School, Department of General Medicine, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (C.B.); (M.A.B.); (F.B.)
- Department of Infectious Disease, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Felix Bratosin
- Doctoral School, Department of General Medicine, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (C.B.); (M.A.B.); (F.B.)
- Department of Infectious Disease, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Simona Brasoveanu
- Department of Obstetrics and Gynecology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.B.); (B.S.); (S.B.); (L.P.)
- Doctoral School, Department of General Medicine, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (C.B.); (M.A.B.); (F.B.)
| | - Madalina Boruga
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacology, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Laurentiu Pirtea
- Department of Obstetrics and Gynecology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (L.B.); (B.S.); (S.B.); (L.P.)
| |
Collapse
|
45
|
Mozafari N, Jahanbekam S, Ashrafi H, Shahbazi MA, Azadi A. Recent Biomaterial-Assisted Approaches for Immunotherapeutic Inhibition of Cancer Recurrence. ACS Biomater Sci Eng 2024; 10:1207-1234. [PMID: 38416058 DOI: 10.1021/acsbiomaterials.3c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Biomaterials possess distinctive properties, notably their ability to encapsulate active biological products while providing biocompatible support. The immune system plays a vital role in preventing cancer recurrence, and there is considerable demand for an effective strategy to prevent cancer recurrence, necessitating effective strategies to address this concern. This review elucidates crucial cellular signaling pathways in cancer recurrence. Furthermore, it underscores the potential of biomaterial-based tools in averting or inhibiting cancer recurrence by modulating the immune system. Diverse biomaterials, including hydrogels, particles, films, microneedles, etc., exhibit promising capabilities in mitigating cancer recurrence. These materials are compelling candidates for cancer immunotherapy, offering in situ immunostimulatory activity through transdermal, implantable, and injectable devices. They function by reshaping the tumor microenvironment and impeding tumor growth by reducing immunosuppression. Biomaterials facilitate alterations in biodistribution, release kinetics, and colocalization of immunostimulatory agents, enhancing the safety and efficacy of therapy. Additionally, how the method addresses the limitations of other therapeutic approaches is discussed.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Sheida Jahanbekam
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| |
Collapse
|
46
|
Yu J, Kim RD. Progress in the treatment of anal cancer: an overview of the latest investigational drugs. Expert Opin Investig Drugs 2024; 33:145-157. [PMID: 38275174 DOI: 10.1080/13543784.2024.2311191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Anal cancer, a rare malignancy accounting for 2.5-3.0% of gastrointestinal cancers, primarily manifests as squamous cell carcinoma associated with HPV. Recent years have witnessed significant advancements in managing squamous cell carcinoma of the anus (SCCA), particularly with the introduction of immune checkpoint inhibitors (ICIs) and randomized data on front-line chemotherapy. AREAS COVERED This review discusses the current standard treatments for both early and advanced SCCA, based on published data. The authors then describe the new approaches, focusing on ICI combinations, targeted agents, T-cell adoptive therapy, and HPV-therapeutic vaccines. EXPERT OPINION The current standard treatment for SCCA includes front-line carboplatin and paclitaxel, with pembrolizumab and nivolumab as later-line options. While modified DCF has shown promise in single-arm studies, its role as a front-line therapy requires confirmation through randomized data. We eagerly anticipate the results of phase 3 trials investigating the front-line chemo-immunotherapy for metastatic SCCA and ICI consolidation following chemoradiation for early-stage SCCA. Novel approaches like T-cell adoptive therapy, HPV-therapeutic vaccines, and bifunctional antibodies combined with HPV vaccines are in early-stage trials for HPV-mediated tumors, including HPV-positive SCCA. These approaches targeting HPV epitopes may eventually gain tumor-agnostic approval, although their role in SCCA may take time to establish.
Collapse
Affiliation(s)
- James Yu
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Richard D Kim
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute University of South Florida College of Medicine, Tampa, FL, U.S.A
| |
Collapse
|
47
|
Fantini M, Tsang KY, Arlen PM. Generation of the therapeutic monoclonal antibody NEO-201, derived from a cancer vaccine, which targets human malignancies and immune suppressor cells. Expert Rev Vaccines 2024; 23:812-829. [PMID: 39186325 DOI: 10.1080/14760584.2024.2397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Cancer vaccines stimulate the activation of specific humoral and cellular adaptive responses against cancer cells.Antibodies generated post vaccination can be isolated and further selected to develop highly specific and potent monoclonal antibodies (mAbs) against tumor-associated antigens. AREAS COVERED This review describes different types of cancer vaccines, the process of the generation of the mAb NEO-201 from the Hollinshead cancer vaccine platform, the characterization of the antigen recognized by NEO-201, the ability of NEO-201 to bind and mediate the killing of cancer cells and immunosuppressive cells (gMDSCs and Tregs) through ADCC and CDC, NEO-201 preclinical and clinical toxicity and efficacy. EXPERT OPINION To overcome the problem of poor clinical efficacy of cancer vaccines, due to the activity of immunosuppressive cells, cancer vaccines could be combined with other immunotherapeutics able to deplete immunosuppressive cells. Results from clinical trials, employing NEO-201 alone or in combination with pembrolizumab, showed that durable stabilization of disease after treatment was due to the ability of NEO-201 to target and reduce the percentage of circulating Tregs and gMDSCs.These findings provide compelling support to combine NEO-201 with cancer vaccines to reintegrate their ability to elicit a robust and durable immune adaptive response against cancer.
Collapse
|
48
|
Bello Roufai D. [Place of innovative therapies in the management of cervical cancer]. Bull Cancer 2024; 111:51-61. [PMID: 38087730 DOI: 10.1016/j.bulcan.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 01/22/2024]
Abstract
Despite optimized screening and prevention strategies, cervical cancer remains a major public health problem, even in developed countries. In France, the incidence is estimated at 3159 cases per year in 2023. While the management of early-stage cases is now highly standardized, few therapeutic advances were made in the treatment of metastatic stages before 2021, before the therapeutic arsenal that we know today took off. The aim of this review is to summarize these advances.
Collapse
Affiliation(s)
- Diana Bello Roufai
- Département d'oncologie médicale, Institut Curie, 35, rue Dailly, 92210 Saint-Cloud, France.
| |
Collapse
|
49
|
D'Oria O, Bogani G, Cuccu I, D'Auge TG, Di Donato V, Caserta D, Giannini A. Pharmacotherapy for the treatment of recurrent cervical cancer: an update of the literature. Expert Opin Pharmacother 2024; 25:55-65. [PMID: 38159033 DOI: 10.1080/14656566.2023.2298329] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Cervical cancer is the fourth most common cause of cancer-related death worldwide. High-risk locally advanced or recurrent/metastatic cervical cancers have a poor prognosis with routine treatments. The objective of this study is to analyze the data available in the literature on therapies and molecules currently in use to improve the prognosis of recurrent cervical cancer. AREAS COVERED An extensive literature search was conducted by authors to identify relevant trials on various databases. Articles in English published until September 2023 that investigate different pharmacotherapy strategies for the treatment of recurrent cervical cancer, were included. Results of various pharmacological regimens including different combinations of chemotherapy, immune checkpoint inhibitors, DNA damage repair inhibitors and antibody-drug conjugates were analyzed. EXPERT OPINION In recent years, there have been significant improvements in the outcomes of recurrent/metastatic cervical cancer. However, these improvements do not address the unmet need in terms of oncological outcomes. The introduction of immunotherapy and targeted therapies showed advantages in cervical cancer patients. New therapies and combination strategies must be implemented. Centralization of care and enrollment in clinical trials are of paramount importance. Primary and secondary prevention remains the fundamental goal to reduce the burden of cervical cancer.
Collapse
Affiliation(s)
- Ottavia D'Oria
- Department of Medical and Surgical Sciences and Translational Medicine, Course in "Translational Medicine and Oncology", Sapienza University, Rome, Italy
- Obstetrics and Gynecological Unit, Department of Woman's and Child's Health, San Camillo-Forlanini Hospital, Rome, Italy
| | - Giorgio Bogani
- Gynecologic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Ilaria Cuccu
- Department of Gynecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Tullio Golia D'Auge
- Department of Gynecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Violante Di Donato
- Department of Gynecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Donatella Caserta
- Gynecology Division, Department of Medical and Surgical Sciences and Translational Medicine, Sant'Andrea University Hospital Sapienza University of Rome, Rome, Italy
| | - Andrea Giannini
- Department of Medical and Surgical Sciences and Translational Medicine, Course in "Translational Medicine and Oncology", Sapienza University, Rome, Italy
- Department of Gynecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
50
|
Duan Z, Yang D, Yuan P, Dai X, Chen G, Wu D. Advances, opportunities and challenges in developing therapeutic cancer vaccines. Crit Rev Oncol Hematol 2024; 193:104198. [PMID: 37949152 DOI: 10.1016/j.critrevonc.2023.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Therapeutic cancer vaccines have shown promising efficacy in helping immunotherapy for cancer patients, but the systematic characterization of the clinical application and the method for improving efficacy is lacking. Here, we mainly summarize the classification of therapeutic cancer vaccines, including protein vaccines, nucleic acid vaccines, cellular vaccines and anti-idiotypic antibody vaccines, and subdivide the above vaccines according to different types and delivery forms. Additionally, we outline the clinical efficacy and safety of vaccines, as well as the combination strategies of therapeutic cancer vaccines with other therapies. This review will provide a detailed overview and rationale for the future clinical application and development of therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|