1
|
Newsom OJ, Sullivan LB. Defined media reveals the essential role of lipid scavenging to support cancer cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637975. [PMID: 40027810 PMCID: PMC11870423 DOI: 10.1101/2025.02.12.637975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Fetal bovine serum (FBS) is a nearly ubiquitous, yet undefined additive in mammalian cell culture media whose functional contributions to promoting cell proliferation remain poorly understood. Efforts to replace serum supplementation in culture media have been hindered by an incomplete understanding of the environmental requirements fulfilled by FBS in culture. Here, we use a combination of live-cell imaging and liquid chromatography-mass spectrometry to elucidate the role of serum in supporting proliferation. We show that serum provides consumed factors that enable proliferation and demonstrate that the serum metal and lipid components are crucial to sustaining proliferation in culture. Importantly, despite access to a wide range of lipid classes, albumin-bound lipids are the primary species consumed during cancer cell proliferation. Furthermore, we find that combinations of the additive ITS, containing necessary metals, and albumin-associated lipid classes are sufficient to replace FBS in culture media. We show that serum-free media enables sensitive quantification of lipid consumption dynamics during cell proliferation, which indicate that fatty acids (FA) are consumed through a mass-action mechanism, with minimal competition from other lipid classes. Finally, we find that pharmacologic disruption of FA activation and incorporation into the cellular lipidome reduces uptake from the environment and impairs cell proliferation. This work therefore identifies metabolic contributions of serum in cell culture settings and provides a framework for building cell culture systems that sustain cell proliferation without the variable and undefined contributions of FBS.
Collapse
Affiliation(s)
- Oliver J. Newsom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lucas B. Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
2
|
Märkl B, Reitsam NG, Grochowski P, Waidhauser J, Grosser B. The SARIFA biomarker in the context of basic research of lipid-driven cancers. NPJ Precis Oncol 2024; 8:165. [PMID: 39085485 PMCID: PMC11291993 DOI: 10.1038/s41698-024-00662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
SARIFA was very recently introduced as a histomorphological biomarker with strong prognostic power for colorectal, gastric, prostate, and pancreatic cancer. It is characterized by the direct contact between tumor cells and adipocytes due to a lack of stromal reaction. This can be easily evaluated on routinely available H&E-slides with high interobserver agreement. SARIFA also reflects a specific tumor biology driven by metabolic reprogramming. Tumor cells in SARIFA-positive tumors benefit from direct interaction with adipocytes as an external source of lipids. Numerous studies have shown that lipid metabolism is crucial in carcinogenesis and cancer progression. We found that the interaction between tumor cells and adipocytes was not triggered by obesity, as previously assumed. Instead, we believe that this is due to an immunological mechanism. Knowledge about lipid metabolism in cancer from basic experiments can be transferred to develop strategies targeting this reprogramed metabolism.
Collapse
Affiliation(s)
- Bruno Märkl
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany.
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany.
- WERA Comprehensive Cancer Center, Augsburg, Germany.
| | - Nic G Reitsam
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| | - Przemyslaw Grochowski
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| | - Johanna Waidhauser
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
- Hematology and Oncology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
| | - Bianca Grosser
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| |
Collapse
|
3
|
Denisov S, Blinchevsky B, Friedman J, Gerbelli B, Ajeer A, Adams L, Greenwood C, Rogers K, Mourokh L, Lazarev P. Vitacrystallography: Structural Biomarkers of Breast Cancer Obtained by X-ray Scattering. Cancers (Basel) 2024; 16:2499. [PMID: 39061139 PMCID: PMC11275015 DOI: 10.3390/cancers16142499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
With breast cancer being one of the most widespread causes of death for women, there is an unmet need for its early detection. For this purpose, we propose a non-invasive approach based on X-ray scattering. We measured samples from 107 unique patients provided by the Breast Cancer Now Tissue Biobank, with the total dataset containing 2958 entries. Two different sample-to-detector distances, 2 and 16 cm, were used to access various structural biomarkers at distinct ranges of momentum transfer values. The biomarkers related to lipid metabolism are consistent with those of previous studies. Machine learning analysis based on the Random Forest Classifier demonstrates excellent performance metrics for cancer/non-cancer binary decisions. The best sensitivity and specificity values are 80% and 92%, respectively, for the sample-to-detector distance of 2 cm and 86% and 83% for the sample-to-detector distance of 16 cm.
Collapse
Affiliation(s)
- Sergey Denisov
- Matur UK Ltd., 5 New Street Square, London EC4A 3TW, UK; (S.D.); (B.B.); (P.L.)
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, Bât. 349, 91405 Orsay, France
| | - Benjamin Blinchevsky
- Matur UK Ltd., 5 New Street Square, London EC4A 3TW, UK; (S.D.); (B.B.); (P.L.)
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
| | - Jonathan Friedman
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
- Physics Department, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Barbara Gerbelli
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK; (B.G.); (A.A.); (L.A.)
| | - Ash Ajeer
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK; (B.G.); (A.A.); (L.A.)
| | - Lois Adams
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK; (B.G.); (A.A.); (L.A.)
| | - Charlene Greenwood
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK; (B.G.); (A.A.); (L.A.)
| | - Keith Rogers
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
- Shrivenham Campus, Cranfield University, Swindon SN6 8LA, UK
| | - Lev Mourokh
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
- Physics Department, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Pavel Lazarev
- Matur UK Ltd., 5 New Street Square, London EC4A 3TW, UK; (S.D.); (B.B.); (P.L.)
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
| |
Collapse
|
4
|
Lee J, Mani A, Shin MJ, Krauss RM. Leveraging altered lipid metabolism in treating B cell malignancies. Prog Lipid Res 2024; 95:101288. [PMID: 38964473 PMCID: PMC11347096 DOI: 10.1016/j.plipres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA.
| | - Arya Mani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Min-Jeong Shin
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
5
|
Szász I, Koroknai V, Várvölgyi T, Pál L, Szűcs S, Pikó P, Emri G, Janka E, Szabó IL, Ádány R, Balázs M. Identification of Plasma Lipid Alterations Associated with Melanoma Metastasis. Int J Mol Sci 2024; 25:4251. [PMID: 38673837 PMCID: PMC11050015 DOI: 10.3390/ijms25084251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to apply a state-of-the-art quantitative lipidomic profiling platform to uncover lipid alterations predictive of melanoma progression. Our study included 151 melanoma patients; of these, 83 were without metastasis and 68 with metastases. Plasma samples were analyzed using a targeted Lipidyzer™ platform, covering 13 lipid classes and over 1100 lipid species. Following quality control filters, 802 lipid species were included in the subsequent analyses. Total plasma lipid contents were significantly reduced in patients with metastasis. Specifically, levels of two out of the thirteen lipid classes (free fatty acids (FFAs) and lactosylceramides (LCERs)) were significantly decreased in patients with metastasis. Three lipids (CE(12:0), FFA(24:1), and TAG47:2-FA16:1) were identified as more effective predictors of melanoma metastasis than the well-known markers LDH and S100B. Furthermore, the predictive value substantially improved upon combining the lipid markers. We observed an increase in the cumulative levels of five lysophosphatidylcholines (LPC(16:0); LPC(18:0); LPC(18:1); LPC(18:2); LPC(20:4)), each individually associated with an elevated risk of lymph node metastasis but not cutaneous or distant metastasis. Additionally, seventeen lipid molecules were linked to patient survival, four of which (CE(12:0), CE(14:0), CE(15:0), SM(14:0)) overlapped with the lipid panel predicting metastasis. This study represents the first comprehensive investigation of the plasma lipidome of melanoma patients to date. Our findings suggest that plasma lipid profiles may serve as important biomarkers for predicting clinical outcomes of melanoma patients, including the presence of metastasis, and may also serve as indicators of patient survival.
Collapse
Affiliation(s)
- István Szász
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
| | - Viktória Koroknai
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Tünde Várvölgyi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - László Pál
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Sándor Szűcs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Péter Pikó
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Imre Lőrinc Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Róza Ádány
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Margit Balázs
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| |
Collapse
|
6
|
Korucu AN, Inandiklioglu N. Is STARD3 A New Biomarker for Breast Cancer? Eur J Breast Health 2024; 20:89-93. [PMID: 38571685 PMCID: PMC10985577 DOI: 10.4274/ejbh.galenos.2024.2024-1-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024]
Abstract
Despite advances in diagnosis and treatment, breast cancer is still one of the three most common cancers in the world and a significant cause of morbidity and mortality. Lipids play a role in many basic physiological pathways in cells, from regulating cell homeostasis to energy expenditure. As in many types of cancer, changes in lipid metabolism and their relationship have been reported in breast cancer. The STARD3 gene encodes a member of the subfamily of lipid trafficking proteins. It is a sterol-binding protein that mediates the transport of cholesterol from the endoplasmic reticulum to endosomes. It has been shown that STARD3 is correlated with human epidermal growth factor receptor 2 (HER2) amplification since it has the same localization as HER2 in the chromosome. In this review, we aimed to emphasize that investigating lipid metabolism together with the STARD3 biomarker has great potential not only for subtype-specific strategies but also for patient-specific strategies.
Collapse
Affiliation(s)
| | - Nihal Inandiklioglu
- Department of Medical Biology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| |
Collapse
|
7
|
Liu YC, Gong ZC, Li CQ, Teng P, Chen YY, Huang ZH. Global research trends and prospects of cellular metabolism in colorectal cancer. World J Gastrointest Oncol 2024; 16:527-542. [PMID: 38425409 PMCID: PMC10900149 DOI: 10.4251/wjgo.v16.i2.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND An increasing number of studies have focused on the role of cellular metabolism in the development of colorectal cancer (CRC). However, no work is currently available to synthesize the field through bibliometrics. AIM To analyze the development in the field of "glucose metabolism" (GM), "amino acid metabolism" (AM), "lipid metabolism" (LM), and "nucleotide metabolism" (NM) in CRC by visualization. METHODS Articles within the abovementioned areas of GM, AM, LM and NM in CRC, which were published from January 1, 1991, to December 31, 2022, are retrieved from the Web of Science Core Collection and analyzed by CiteSpace 6.2.R4 and VOSviewer 1.6.19. RESULTS The field of LM in CRC presented the largest number of annual publications and the fastest increase in the last decade compared with the other three fields. Meanwhile, China and the United States were two of the most prominent contributors in these four areas. In addition, Gang Wang, Wei Jia, Maria Notarnicola, and Cornelia Ulrich ranked first in publication numbers, while Jing-Yuan Fang, Senji Hirasawa, Wei Jia, and Charles Fuchs were the most cited authors on average in these four fields, respectively. "Gut microbiota" and "epithelial-mesenchymal transition" emerged as the newest burst words in GM, "gut microbiota" was the latest outburst word in AM, "metastasis", "tumor microenvironment", "fatty acid metabolism", and "metabolic reprogramming" were the up-to-date outbreaking words in LM, while "epithelial-mesenchymal transition" and "apoptosis" were the most recently occurring words in NM. CONCLUSION Research in "cellular metabolism in CRC" is all the rage at the moment, and researchers are particularly interested in exploring the mechanism to explain the metabolic alterations in CRC. Targeting metabolic vulnerability appears to be a promising direction in CRC therapy.
Collapse
Affiliation(s)
- Yan-Chen Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Zhi-Cheng Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Chao-Qun Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Peng Teng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yan-Yan Chen
- Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Zhao-Hui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| |
Collapse
|
8
|
Bezawork-Geleta A, Dimou J, Watt MJ. Lipid droplets and ferroptosis as new players in brain cancer glioblastoma progression and therapeutic resistance. Front Oncol 2022; 12:1085034. [PMID: 36591531 PMCID: PMC9797845 DOI: 10.3389/fonc.2022.1085034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
A primary brain tumor glioblastoma is the most lethal of all cancers and remains an extremely challenging disease. Apparent oncogenic signaling in glioblastoma is genetically complex and raised at any stage of the disease's progression. Many clinical trials have shown that anticancer drugs for any specific oncogene aberrantly expressed in glioblastoma show very limited activity. Recent discoveries have highlighted that alterations in tumor metabolism also contribute to disease progression and resistance to current therapeutics for glioblastoma, implicating an alternative avenue to improve outcomes in glioblastoma patients. The roles of glucose, glutamine and tryptophan metabolism in glioblastoma pathogenesis have previously been described. This article provides an overview of the metabolic network and regulatory changes associated with lipid droplets that suppress ferroptosis. Ferroptosis is a newly discovered type of nonapoptotic programmed cell death induced by excessive lipid peroxidation. Although few studies have focused on potential correlations between tumor progression and lipid droplet abundance, there has recently been increasing interest in identifying key players in lipid droplet biology that suppress ferroptosis and whether these dependencies can be effectively exploited in cancer treatment. This article discusses how lipid droplet metabolism, including lipid synthesis, storage, and use modulates ferroptosis sensitivity or tolerance in different cancer models, focusing on glioblastoma.
Collapse
Affiliation(s)
- Ayenachew Bezawork-Geleta
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - James Dimou
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Varela-López A, Vera-Ramírez L, Giampieri F, Navarro-Hortal MD, Forbes-Hernández TY, Battino M, Quiles JL. The central role of mitochondria in the relationship between dietary lipids and cancer progression. Semin Cancer Biol 2021; 73:86-100. [DOI: 10.1016/j.semcancer.2021.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/20/2022]
|
10
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Glucose Favors Lipid Anabolic Metabolism in the Invasive Breast Cancer Cell Line MDA-MB-231. BIOLOGY 2020; 9:biology9010016. [PMID: 31936882 PMCID: PMC7168317 DOI: 10.3390/biology9010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Metabolic reprogramming in tumor cells is considered one of the hallmarks of cancer. Many studies have been carried out in order to elucidate the effects of tumor cell metabolism on invasion and tumor progression. However, little is known about the immediate substrate preference in tumor cells. In this work, we wanted to study this short-time preference using the highly invasive, hormone independent breast cancer cell line MDA-MB-231. By means of Seahorse and uptake experiments, our results point to a preference for glucose. However, although both glucose and glutamine are required for tumor cell proliferation, MDA-MB-231 cells can survive two days in the absence of glucose, but not in the absence of glutamine. On the other hand, the presence of glucose increased palmitate uptake in this cell line, which accumulates in the cytosol instead of going to the plasma membrane. In order to exert this effect, glucose needs to be converted to glycerol-3 phosphate, leading to palmitate metabolism through lipid synthesis, most likely to the synthesis of triacylglycerides. The effect of glucose on the palmitate uptake was also found in other triple-negative, invasive breast cancer cell lines, but not in the non-invasive ones. The results presented in this work suggest an important and specific role of glucose in lipid biosynthesis in triple-negative breast cancer.
Collapse
Affiliation(s)
- Mª Carmen Ocaña
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Ana R. Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
- Correspondence: ; Tel.: +34-952137132
| |
Collapse
|
12
|
Taïb B, Aboussalah AM, Moniruzzaman M, Chen S, Haughey NJ, Kim SF, Ahima RS. Lipid accumulation and oxidation in glioblastoma multiforme. Sci Rep 2019; 9:19593. [PMID: 31863022 PMCID: PMC6925201 DOI: 10.1038/s41598-019-55985-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal primary malignant brain tumor in adults. Despite the multimodal standard treatments for GBM, the median survival is still about one year. Analysis of brain tissues from GBM patients shows that lipid droplets are highly enriched in tumor tissues while undetectable in normal brain tissues, yet the identity and functions of lipid species in GBM are not well understood. The aims of the present work are to determine how GBM utilizes fatty acids, and assess their roles in GBM proliferation. Treatment of U138 GBM cells with a monounsaturated fatty acid, oleic acid, induces accumulation of perilipin 2-coated lipid droplets containing triglycerides enriched in C18:1 fatty acid, and increases fatty acid oxidation. Interestingly, oleic acid also increases glucose utilization and proliferation of GBM cells. In contrast, pharmacologic inhibition of monoacylglycerol lipase attenuates GBM proliferation. Our findings demonstrate that monounsaturated fatty acids promote GBM proliferation via triglyceride metabolism, suggesting a novel lipid droplet-mediated pathway which may be targeted for GBM treatment.
Collapse
Affiliation(s)
- Bouchra Taïb
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amine M Aboussalah
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
| | | | - Suming Chen
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
13
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Highly Glycolytic Immortalized Human Dermal Microvascular Endothelial Cells are Able to Grow in Glucose-Starved Conditions. Biomolecules 2019; 9:biom9080332. [PMID: 31374952 PMCID: PMC6723428 DOI: 10.3390/biom9080332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells form the inner lining of blood vessels, in a process known as angiogenesis. Excessive angiogenesis is a hallmark of several diseases, including cancer. The number of studies in endothelial cell metabolism has increased in recent years, and new metabolic targets for pharmacological treatment of pathological angiogenesis are being proposed. In this work, we wanted to address experimental evidence of substrate (namely glucose, glutamine and palmitate) dependence in immortalized dermal microvascular endothelial cells in comparison to primary endothelial cells. In addition, due to the lack of information about lactate metabolism in this specific type of endothelial cells, we also checked their capability of utilizing extracellular lactate. For fulfilling these aims, proliferation, migration, Seahorse, substrate uptake/utilization, and mRNA/protein expression experiments were performed. Our results show a high glycolytic capacity of immortalized dermal microvascular endothelial cells, but an early independence of glucose for cell growth, whereas a total dependence of glutamine to proliferate was found. Additionally, in contrast with reported data in other endothelial cell lines, these cells lack monocarboxylate transporter 1 for extracellular lactate incorporation. Therefore, our results point to the change of certain metabolic features depending on the endothelial cell line.
Collapse
Affiliation(s)
- Mª Carmen Ocaña
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Beatriz Martínez-Poveda
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Ana R Quesada
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain.
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain.
| |
Collapse
|
14
|
Sakayama K, Masuno H, Miyazaki T, Okumura H, Shibata T, Okuda H. Existence of lipoprotein lipase in human sarcomas and carcinomas. Jpn J Cancer Res 1994; 85:515-21. [PMID: 7912239 PMCID: PMC5919489 DOI: 10.1111/j.1349-7006.1994.tb02389.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aqueous extracts of acetone/ether powders of surgically obtained specimens of human tumors hydrolyzed 3H-labeled triolein in a dose-dependent manner. The lipolytic activity in these extracts was inhibited by anti-lipoprotein lipase (LPL) IgG dose-dependently, 25 micrograms of anti-LPL IgG causing 95% inhibition of the activity. Thus, LPL accounts for most of the lipolytic activity in extracts of acetone/ether powders of the tumors. All sarcomas and carcinomas examined contained LPL activity. Western blotting showed that they gave a band corresponding to that of human adipose tissue LPL (M(r) = 57,000). Immunocytochemical studies showed that LPL was present in cultured human osteosarcoma cells and distributed throughout the cells. We determined the proliferating cell nuclear antigen (PCNA)-labeling index as an indicator of the proliferative activity of tumor cells and measured LPL activity in extracts of tumors in areas corresponding to those used for determining the PCNA-labeling index. In malignant fibrous histiocytomas, the PCNA-labeling index in area a, which corresponds to the subcapsular region, was higher than that in area b, which corresponds to the central region. The LPL activity in area a was 10 times that in area b. In rectal cancer, the index in area c, which corresponds to the subserosal region, was higher than that in area d, which corresponds to the submucosal region. The LPL activity in area c was 1.9 times that in area d. These findings indicate heterogeneity in the distributions of LPL activity within tumors and higher levels of LPL activity in tumors that are proliferating actively.
Collapse
Affiliation(s)
- K Sakayama
- Department of Orthopaedic Surgery, School of Medicine, Ehime University
| | | | | | | | | | | |
Collapse
|
15
|
Petzinger E. Transport of organic anions in the liver. An update on bile acid, fatty acid, monocarboxylate, anionic amino acid, cholephilic organic anion, and anionic drug transport. Rev Physiol Biochem Pharmacol 1994; 123:47-211. [PMID: 8209137 DOI: 10.1007/bfb0030903] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E Petzinger
- Institute of Pharmacology and Toxicology, University Giessen, Germany
| |
Collapse
|
16
|
Biade S, Mazière JC, Mora L, Santus R, Morlière P, Mazière C, Salmon S, Gatt S, Dubertret L. Photosensitization by Photofrin II delivered to WI26VA4 SV40-transformed human fibroblasts by low density lipoproteins: inhibition of lipid synthesis and fatty acid uptake. Photochem Photobiol 1992; 55:55-61. [PMID: 1318550 DOI: 10.1111/j.1751-1097.1992.tb04209.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Irradiation with 365 nm light of Wi26VA4 SV40-transformed human fibroblasts cultured for 24 h in the presence of low density lipoproteins loaded with the anticancer porphyrin mixture Photofrin II resulted in a near complete inhibition of [14C]oleic acid incorporation into triacylglycerols, cholesteryl esters and phospholipids. More than 80% reduction of the fatty acid incorporation in all lipid classes was observed following an irradiation dose of 1 J/cm2. The activities of the respective acyltransferases, measured in vitro on cell homogenates, were also markedly diminished, but to a lesser extent than lipid synthesis from oleic acid. Moreover, oleic acid uptake by cells was strongly and rapidly reduced. It is suggested that the rapid inhibition of membrane phospholipid synthesis upon cell photosensitization, due to both a direct inactivation of acyltransferases and to a reduction of fatty acid utilization, could play an important role in the photocytotoxic effect of Photofrin II.
Collapse
Affiliation(s)
- S Biade
- Laboratoire de Physico-Chimie de l'Adaptation Biologique INSERM U312, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Scott CC, Heckman CA, Snyder F. Regulation of ether lipids and their precursors in relation to glycolysis in cultured neoplastic cells. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 575:215-24. [PMID: 508783 DOI: 10.1016/0005-2760(79)90023-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumors typically show high rates of glycolysis and elevated levels of ether lipids, particularly the alkyldiacylglycerols; thus, we investigated the relationship between ether lipid accumulation and glucose metabolism in a neoplastic cell line (B2-1). The B2-1 cells grown in 5.5 mM galactose in the absence of glucose produced very low levels of alkyldiacylglycerols, triacylglycerols, lactic acid, and dihydroxyacetone-P. Increasing concentrations of glucose caused a progressive increase in lactic acid, dihydroxyacetone-P, and up to a ten-fold increase in alkyldiacylglycerols and triacylglycerols. Glucose supplements also caused an increased incorporation of [9,10-3H]palmitic acid into alkyldiacylglycerols and triacylglycerols. These metabolic changes appeared to be independent of altered growth rates of the cells. The addition of hexadecanol along with glucose to the cultures resulted in a shorter lag and a more rapid rate of accumulation of alkyldiacylglycerols; hexadecanol supplements alone had no effect. The extent of uptake and oxidation of hexadecanol was similar in both the glucose and galactose-grown cells. These results indicate that the levels of alkyldiacylglycerols in neoplastic cells can be regulated by the extent their precursors are formed from glucose.
Collapse
|
18
|
Burns CP, Wei SL, Spector AA. The utilization of short and medium chain length fatty acids by L1210 murine leukemia cells. Eur J Cancer 1979; 15:609-13. [PMID: 436917 DOI: 10.1016/0014-2964(79)90099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Welch CL, Wood R. Lipids of cultured hepatoma cells: VIII. Utilization of D-[1-14C] glucose for lipid biosynthesis. Lipids 1977; 12:245-53. [PMID: 191718 DOI: 10.1007/bf02533341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Minimal deviation hepatoma 7288C cells (HTC) were incubated in serum-supplemented and serum-free Swim's 77 medium in the presence of D-[1-14C] glucose for 1, 2, 4, 8, 12 and 24 hr. Glucose oxidation to CO2, incorporation into total cell mass, and incorporation into cell and medium lipids were determined. The percentage distribution of total cell lipid radioactivity in individual neutral and polar lipid classes was followed as a function of time. Degradation studies of individual lipid classes were performed to ascertain the percentage of radioactivity in acyl and glycerol moieties. The percentage of D-[1-14C] glucose oxidized to 14CO2, incorporated into cell matter and cell lipids was elevated in cells incubated in serum-free medium as opposed to serum-supplemented medium. The percentage distribution of total cell lipid radioactivity into individual neutral lipid classes from both serum-free and serum-supplemented cultures was as follows: sterols greater than triglycerides greater than free fatty acids greater than sterol esters. The percentage distribution of total cell lipid radioactivity into individual polar lipid classes of serum-supplemented cultures was as follows: phosphatidylcholine greater than phosphatidylinositol greater than sphingomyelin greater than phosphatidylethanolamine greater than phosphatidylserine. The distribution of glucose radiolabel into individual polar lipid classes of serum-free HTC cells was different from their serum-supplemented counterparts: sphingomyelin greater than phosphatidylcholine greater than phosphatidylinositol greater than phosphatidylethanolamine greater than phosphatidylserine. Glycerol from glyceride classes contained a higher percentage of radioactivity than the acyl moieties, with this percentage significantly elevated in serum-free cultures. The data indicate that, although glucose is a substrate for HTC cell lipids, other precursors present in the culture system also contribute to the lipid constituency of this hepatoma cell line.
Collapse
|
20
|
McGee R, Brenneman DE, Spector AA. Regulation of fatty acid biosynthesis in Ehrlich cells by ascites tumor plasma lipoproteins. Lipids 1977; 12:66-74. [PMID: 189155 DOI: 10.1007/bf02532975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fatty acid biosynthesis in Ehrlich cells in vitro was reduced when very low density lipoproteins (VLDL) isolated from the ascites tumor plasma were added to the incubation medium. The degree of inhibition was dependent on the VLDL concentration. At the VLDL concentrations usually present in the ascites plasma, there was a 30% decrease in biosynthesis as measured by (3)H(2)O incorporation into fatty acids. Analysis of the labeled fatty acids by gas liquid chromatography indicated that this decrease was due to a reduction in fatty acid de novo biosynthesis and that chain elongation actually was increased when VLDL were present. Although ascites plasma low- and high density lipoproteins also produced a concentration-dependent inhibition of fatty acid biosynthesis, their effects were much smaller than those of the VLDL. Studies employing VLDL and radioactive free fatty acids indicated that the cells took up utlilzed fatty acids derived from these lipoproteins. When VLDL were present, labeled free fatty acid incorporation into cell phospholipids, cholesteryl esters, and CO(2) decreased, whereas its incorporation into the cell free fatty acid pool increased. By contrast, the cells incorporated only very small amounts of fatty acid from either low- or high density lipoproteins. This suggests that the VLDL exert their inhibitory effect on fatty acid synthesis by supplying exogenous fatty acids to the cells.
Collapse
|
21
|
Brenneman DE, Spector AA. Utilization of ascites plasma very low density lipoprotein triglycerides by Ehrlich cells. J Lipid Res 1974. [DOI: 10.1016/s0022-2275(20)36777-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
|
23
|
Wiegand RD, Wood R. Lipids of cultured hepatoma cells. 3. Triglyceride and phosphoglyceride biosynthesis in minimal deviation hepatoma 7288C. Lipids 1974; 9:141-8. [PMID: 4363719 DOI: 10.1007/bf02532685] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Homcy CJ, Margolis S. Fatty acid oxidation and esterification in isolated rat hepatocytes: regulation by dibutyryl adenosine 3′,5′-cyclic monophosphate. J Lipid Res 1973. [DOI: 10.1016/s0022-2275(20)36850-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
|
26
|
Krebs HA. Some aspects of the regulation of fuel supply in omnivorous animals. ADVANCES IN ENZYME REGULATION 1972; 10:397-420. [PMID: 4569539 DOI: 10.1016/0065-2571(72)90025-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
MACKENZIE COSMOG, MACKENZIE JULIAB, REISS OSCARK, WISNESKI JUDITHA. Identification of albumin-bound fatty acids as the major factor in serum-induced lipid accumulation by cultured cells. J Lipid Res 1970. [DOI: 10.1016/s0022-2275(20)42942-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
28
|
Spector AA. Free fatty acid utilization by mammalian cell suspension comparison between individual fatty acids and fatty acid mixtures. BIOCHIMICA ET BIOPHYSICA ACTA 1970; 218:36-43. [PMID: 5473494 DOI: 10.1016/0005-2760(70)90090-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
KUHL WAYNEE, SPECTOR ARTHURA. Uptake of long-chain fatty acid methyl esters by mammalian cells. J Lipid Res 1970. [DOI: 10.1016/s0022-2275(20)42955-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Spector AA. Influence of pH of the medium on free fatty acid utilization by isolated mammalian cells. J Lipid Res 1969. [DOI: 10.1016/s0022-2275(20)42670-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Spector AA. Lipids, hormones, and atherogenesis. The transport and utilization of free fatty acid. Ann N Y Acad Sci 1968; 149:768-83. [PMID: 5253792 DOI: 10.1111/j.1749-6632.1968.tb53834.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Figard PH, Levine AS. Palmitate and glucose metabolism in tumors induced by Rous sarcoma virus. BIOCHIMICA ET BIOPHYSICA ACTA 1967; 144:532-40. [PMID: 4294901 DOI: 10.1016/0005-2760(67)90042-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Spector AA. Effect of carnitine on free fatty acid utilization in Ehrlich ascites tumor cells. Arch Biochem Biophys 1967; 122:55-61. [PMID: 5624535 DOI: 10.1016/0003-9861(67)90123-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
|
35
|
|