1
|
Tang H, Liao C, Wang L, Fang W, Tang N, Wan L, Ren Z. Swertianolin regulates immunosuppression of myeloid suppressor cells in septic mice by inhibiting NF-κB and P38 signaling. Transpl Immunol 2025; 90:102217. [PMID: 40107628 DOI: 10.1016/j.trim.2025.102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Swertianolin is one of the main components of Gentianaceae Swertia plants, a traditional Chinese medicine used for the treatment of infection, fever, viral hepatitis, and pneumonia. An expansion of myeloid-derived suppressor cells (MDSCs) contributes to sepsis induced immunosuppression. We investigated the mechanism by which Swertianolin regulates MDSCs in a mouse model of sepsis. METHODS Severe sepsis was induced in mice using caecal ligation and puncture. These mice received an intraperitoneal injection of Swertianolin. MDSCs were isolated and analyzed by flow cytometry; serum concentrations of immunosuppressive factors were detected by ELISA; and mitogen-activated protein kinase and nuclear factor-κB (NFκB) were detected by Western blots. RESULTS We found that Swertianolin reduced the number of MDSCs in the marrow and the spleen while increased the number of CD4+ T cells in the spleen of mice with sepsis in comparison to controls (p < 0.05). Swertianolin reduced lung damage and improved the survival rate in mice with secondary infection of Legionella pneumophila (p < 0.05). Swertianolin inhibited the phosphorylation of p38 and nuclear translocation of p65 in MDSCs (p < 0.05), leading to decreased production of IL-10 and nitric oxide (both p < 0.05). CONCLUSION Swertianolin may improve immunosuppressive function of MDSCs and increased T cell activity by inhibiting p38 phosphorylation and NF-κB activation.
Collapse
Affiliation(s)
- Haoran Tang
- Department of Gastroenterological Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen Liao
- Department of Gastroenterological Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingling Wang
- Department of Medical Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Wei Fang
- Department of Medical Intensive Care Unit, CiHui Hospital, Guangzhou, China
| | - Ning Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Linjun Wan
- Department of Critical Care Medicine, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Zongfang Ren
- Department of Critical Care Medicine, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Yang Y, Wang H, Xue Q, Peng W, Zhou Q. New advances of natural products in non-small cell lung cancer: From mechanisms to therapies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119636. [PMID: 40120701 DOI: 10.1016/j.jep.2025.119636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With the rise of immunotherapy, the treatment approach for non-small cell lung cancer (NSCLC) has undergone revolutionary changes. However, the prognosis for NSCLC patients has not been significantly improved due to the development of acquired drug resistance. Therefore, there is an urgent need to develop new and more effective drugs for treating NSCLC or improving tumor treatment resistance. Traditional Chinese medicine (TCM) has been gradually incorporated into the combined treatment of NSCLC. Its active components (also known as natural products) exhibit novel structures, multi-target effects, diverse pathways, minimal toxicity, and varied biological activities, which play a therapeutic role in various diseases. Thus, natural products hold great potential for future clinical applications. AIM OF THE STUDY Screening main traditional plants widely used in NSCLC and their derived natural products, as well as exploring the mechanisms by which these natural products act on NSCLC-particularly focusing on their applications-can provide valuable insights for the development of therapeutic drugs targeting NSCLC. METHODS A comprehensive, computerized literature search was conducted in PubMed, Embase, Web of Science, Cochrane Library, CNKI Scholar, the American Chemical Abstracts, and Wanfang Database up to June 2024, using the following keywords: "traditional Chinese medicine", "herbal medicine", "medicinal plants", and "herbal", paired with terms such as "non-small cell lung cancer", "therapy", "natural products", and "active ingredient". RESULTS Summarizing current research findings, we discovered eleven medicinal plants containing a total of fourteen natural products. Natural products have a significant impact on tumor progression in NSCLC, including apotosis, autophagy, pyrotosis, cell-cycle arrest and metasis. Moreover, natural products can modulate the activities of various immune cells and reshape the immune microenvironment. Combined with conventional cancer treatments, natural products demonstrate promising therapeutic effects and effectively reverse drug resistance. Furthermore,the use of nano-drug delivery systems to address limitations associated with natural products. CONCLUSIONS This review summarizes eleven medicinal plants containing a total of fourteen natural products that can enhance NSCLC treatment and indicates their action mechanisms. Furthermore, we also discuss limitations of natural products and explore the use of nano-drug delivery systems to address limitations associated with natural products.
Collapse
Affiliation(s)
- Yuening Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Haolei Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qianqian Xue
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
3
|
Li S, Zhang J, Wei W, Zhang Z, Huang W, Xia L. The important role of myeloid-derived suppressor cells: From hepatitis to liver cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189329. [PMID: 40262654 DOI: 10.1016/j.bbcan.2025.189329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Liver homeostasis is coordinated by crosstalk between resident and infiltrating inflammatory cells. Liver disease creates a dynamic inflammatory microenvironment characterized by aberrant metabolism and continuous hepatic regeneration, making it an important risk factor for hepatocellular carcinoma (HCC) as well as liver failure. Recent studies have revealed a critical heterogeneous population of myeloid-derived suppressor cells (MDSCs), which influence liver disease progression and malignancy by dynamically regulating the immune microenvironment. MDSCs play an important role in preventing excessive immune responses in the liver. However, MDSCs are also associated with the promotion of liver injury and liver cancer progression. The plasticity of MDSCs in liver disease is a unique challenge for therapeutic intervention strategies and requires a deeper understanding of the underlying mechanisms. Here, we review the role of MDSCs in the establishment and progression of liver disease and highlight the evidence for MDSCs as a priority target for current and future therapeutic strategies. We explore the fate of MDSCs from hepatitis to liver cancer, providing recent insights into potential targets for clinical intervention.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wang Wei
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhicheng Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
4
|
Li Q, Sheng M, Chen Y, Yi Q, Yang Z, Chen T. Comprehensive immunogenomic landscape analysis unveils CD33 + myeloid cell-driven immunomodulatory signatures in melanoma development. Pathol Res Pract 2025; 270:155981. [PMID: 40300524 DOI: 10.1016/j.prp.2025.155981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Understanding the causal relationships between immune cell populations and cancer development remains a critical challenge in tumor immunology. METHODS We employed Mendelian Randomization analysis leveraging genome-wide association studies of 612 immune cell traits and 91 cancer types to systematically evaluate causal associations. Single-cell RNA sequencing and computational deconvolution analyses were performed to characterize myeloid cell subpopulations in melanoma samples. FINDINGS Our analysis revealed significant relationships between specific immune cell subsets and cancer risk, particularly highlighting the role of CD33 + myeloid cells in melanoma pathogenesis. Single-cell RNA sequencing identified distinct CD33high myeloid subpopulations characterized by elevated expression of complement cascade components and chemokine signaling pathways. Through computational deconvolution of The Cancer Genome Atlas melanoma cohort, we demonstrated that elevated CD33high monocyte abundance correlates with increased immune dysfunction scores, reduced CD8 + T cell infiltration, and poor survival outcomes. INTERPRETATION Here we delineate the multifaceted mechanisms through which CD33 + myeloid cell populations orchestrate perturbations in the tumor-immune microenvironmental landscape, manifesting in compromised immunosurveillance and enhanced tumor progression. Our findings illuminate novel therapeutic opportunities through targeted modulation of myeloid cell function, while providing a systematic framework for understanding the complex interplay between immune cell populations and oncogenic processes.
Collapse
Affiliation(s)
- Qinke Li
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400010, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Min Sheng
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yiqian Chen
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400010, China; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing 400010, China
| | - Qiang Yi
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400010, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhu Yang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Tong Chen
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400010, China; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing 400010, China.
| |
Collapse
|
5
|
PK L, Pawar RS, Katare YK, Sudheesh MS. Cannabinoids as Multitarget Drugs for the Treatment of Autoimmunity in Glaucoma. ACS Pharmacol Transl Sci 2025; 8:932-950. [PMID: 40242585 PMCID: PMC11997897 DOI: 10.1021/acsptsci.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Diseases of multifactorial origin like neurodegenerative and autoimmune diseases require a multitargeted approach. The discovery of the role of autoimmunity in glaucoma and retinal ganglionic cell (RGC) death has led to a paradigm shift in our understanding of the etiopathology of glaucoma. Glaucoma can cause irreversible vision loss that affects up to an estimated 3% of the population over 40 years of age. The current pharmacotherapy primarily aims to manage only intraocular pressure (IOP), a modifiable risk factor in the glaucomatous neurodegeneration of RGCs. However, neurodegeneration continues to happen in normotensive patients (where the IOP is below a reference value), and the silent nature of the disease can cause significant visual impairment and take a massive toll on the healthcare system. Cannabinoids, although known to reduce IOP since the 1970s, have received renewed interest due to their neuroprotective, anti-inflammatory, and immunosuppressive effects on autoimmunity. Additionally, the role of the gut-retina axis and abnormal Wnt signaling in glaucoma makes cannabinoids even more relevant because of their action on multiple targets, all converging in the pathogenesis of glaucomatous neurodegeneration. Cannabinoids also cause epigenetic changes in immune cells associated with autoimmunity. In this Review, we are proposing the use of cannabinoids as a multitargeted approach for treating autoimmunity associated with glaucomatous neurodegeneration, especially for the silent nature of glaucomatous neurodegeneration in normotensive patients.
Collapse
Affiliation(s)
- Lakshmi PK
- Dept.
of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Sciences
Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi − 682041, India
| | | | - Yogesh Kumar Katare
- Truba
Institute of Pharmacy, Karond-Gandhi Nagar, By Pass Road, Bhopal 462038, India
| | - MS Sudheesh
- Dept.
of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences
Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi − 682041, India
| |
Collapse
|
6
|
Zhu Y, Cao S. Unraveling the Complexities of Myeloid-Derived Suppressor Cells in Inflammatory Bowel Disease. Int J Mol Sci 2025; 26:3291. [PMID: 40244120 PMCID: PMC11989781 DOI: 10.3390/ijms26073291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) regulate immune responses in many pathological conditions, one of which is inflammatory bowel disease (IBD), an incurable chronic disorder of the digestive tract and beyond. The pathophysiology of IBD remains unclear, likely involving aberrant innate and adaptive immunity. Studies have reported altered population of MDSCs in patients with IBD. However, their distribution varies among patients and different preclinical models of IBD. The expansion and activation of MDSCs are likely driven by various stimuli during intestinal inflammation, but the in-depth mechanisms remain poorly understood. The role of MDSCs in the pathogenesis of IBD appears to be paradoxical. In addition to intestinal inflammation, suppressive MDSCs may promote colitis-to-colon cancer transition. In this Review, we summarize recent progresses on the features, activation, and roles of MDSCs in the development of IBD and IBD-associated colon cancer.
Collapse
Affiliation(s)
| | - Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
7
|
Ibrahim A, Mohamady Farouk Abdalsalam N, Liang Z, Kashaf Tariq H, Li R, O Afolabi L, Rabiu L, Chen X, Xu S, Xu Z, Wan X, Yan D. MDSC checkpoint blockade therapy: a new breakthrough point overcoming immunosuppression in cancer immunotherapy. Cancer Gene Ther 2025; 32:371-392. [PMID: 40140724 PMCID: PMC11976280 DOI: 10.1038/s41417-025-00886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Despite the success of cancer immunotherapy in treating hematologic malignancies, their efficacy in solid tumors remains limited due to the immunosuppressive tumor microenvironment (TME), which is mainly formed by myeloid-derived suppressor cells (MDSCs). MDSCs not only exert potent immunosuppressive effects that hinder the success of immune checkpoint inhibitors (ICIs) and adaptive cellular therapies, but they also promote tumor advancement through non-immunological pathways, including promoting angiogenesis, driving epithelial-mesenchymal transition (EMT), and contributing to the establishment of pre-metastatic environments. While targeting MDSCs alone or in combination with conventional therapies has shown limited success, emerging evidence suggests that MDSC checkpoint blockade in combination with other immunotherapies holds great promise in overcoming both immunological and non-immunological barriers. In this review, we discussed the dual roles of MDSCs, with a particular emphasis on their underexplored checkpoints blockade strategies. We discussed the rationale behind combination strategies, their potential advantages in overcoming MDSC-mediated immunosuppression, and the challenges associated with their development. Additionally, we highlight future research directions aimed at optimizing combination immunotherapies to enhance cancer therapeutic effectiveness, particularly in solid tumor therapies where MDSCs are highly prevalent.
Collapse
Affiliation(s)
- Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Zihao Liang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Hafiza Kashaf Tariq
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Rong Li
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, South Bend, IN, 46617, USA
| | - Lawan Rabiu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Xuechen Chen
- College of Pharmacy, Jinan University, 511436, Guangzhou, China.
| | - Shu Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, 518106, Shenzhen, China
| | - Zhiming Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, 518106, Shenzhen, China.
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| |
Collapse
|
8
|
Belényesi SK, Patmore S, O'Driscoll L. Extracellular vesicles and the tumour microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189275. [PMID: 39900204 DOI: 10.1016/j.bbcan.2025.189275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/18/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Extracellular vesicles (EVs), tiny packages of information released by cells, are well established as being involved in unwanted cell-to-cell communication in cancer. EVs from cancer cells have been associated with the spread of drug resistance, immune suppression, and metastasis. Additional to cancer cells, the tumour microenvironment (TME) involves many cell types -including immune cells, fibroblasts, and endothelial cells, each of which has a potential role in how tumours grow, spread, and respond (or otherwise) to therapy. This review collates and distils research developments regarding the role of EVs in multi-way communication between cells in the TME. Further research including tailored clinical studies are now warranted to determine how best to prevent this extensive adverse communication occurring and/or how best to exploit it for biomarker discovery and as a therapeutic approach, in the interest of patients and also for economic benefit.
Collapse
Affiliation(s)
- Szilárd-Krisztián Belényesi
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Sean Patmore
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
9
|
Yang S, Fang Y, Ma Y, Wang F, Wang Y, Jia J, Yang Y, Sun W, Zhou Q, Li Z. Angiogenesis and targeted therapy in the tumour microenvironment: From basic to clinical practice. Clin Transl Med 2025; 15:e70313. [PMID: 40268524 PMCID: PMC12017902 DOI: 10.1002/ctm2.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Angiogenesis, as a core marker of cancer survival and growth, is integral to the processes of tumour growth, invasion and metastasis. In recent years, targeted angiogenesis treatment strategies have gradually become an important direction in cancer treatment. Single-cell sequencing technology can provide new insights into targeted angiogenesis by providing a deeper understanding of the heterogeneity of tumour endothelial cells and exploring the interactions between endothelial cells and surrounding cells in the tumour microenvironment. Here, we systematically review the research progress in endothelial cell pathophysiology and its endothelial‒mesenchymal transition and illustrate the heterogeneity of endothelial cells from a single-cell perspective. Finally, we examine the contributions of different cell types within the tumour microenvironment in relation to tumour angiogenesis, as well as the latest progress and strategies in targeted angiogenesis therapy, hoping to provide useful insights into the clinical application of antiangiogenic treatment. Furthermore, a summary of the present progress in the development of potential angiogenesis inhibitors and the ongoing clinical trials for combination therapies is provided. KEY POINTS: Angiogenesis plays a key role in tumour progression, invasion and metastasis, so strategies targeting angiogenesis are gradually becoming an important direction in cancer therapy. Interactions between endothelial cells and stromal cells and immune cells in the tumour microenvironment are significant in angiogenesis. The application of antiangiogenic immunotherapy and nanotechnology in antiangiogenic therapy provides a vital strategy for prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Shuaixi Yang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yingshuai Fang
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Yangcheng Ma
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Fuqi Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuhang Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiachi Jia
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Yabing Yang
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Weipeng Sun
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quanbo Zhou
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhen Li
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
10
|
Kuang X, Wu L, Deng Y, Huang H, Yu Y, Lu J, Qiu F. Mechanistic insights into HNRNPA2B1: A comprehensive pan-cancer analysis and functional characterization in lung cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167669. [PMID: 39826851 DOI: 10.1016/j.bbadis.2025.167669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1), a member of the A/B subfamily of hnRNPs, plays a critical role in tumorigenesis, yet its expression patterns, molecular mechanisms, and prognostic significance remain inadequately characterized. In this study, we performed a comprehensive pan-cancer analysis utilizing multiple public databases, revealing that HNRNPA2B1 is consistently overexpressed in most tumor types and correlates with poor prognosis across several malignancies. Pathway enrichment analysis highlighted its involvement in RNA alternative splicing, transport, and stability, processes that contribute to tumor progression. Epigenetic analyses identified gene amplification and alternative splicing as potential mechanisms driving HNRNPA2B1 overexpression. Furthermore, elevated HNRNPA2B1 levels conferred resistance to multiple chemotherapeutics, including Dasatinib. Functional studies demonstrated that HNRNPA2B1 enhances lung cancer cell proliferation and migration by upregulating TARDBP and cell cycle-related genes, with m6A modification serving as a critical regulatory mechanism. Collectively, these findings establish HNRNPA2B1 as an oncogenic factor across multiple cancer types, underscoring its value as a prognostic marker and a promising therapeutic target, particularly in lung cancer, offering new insights for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xinjie Kuang
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Linghao Wu
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Yufan Deng
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Hongmei Huang
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China; Affiliated Brain Hospital, Guangzhou Medical University, Mingxin Road, Liwan District, Guangzhou 510370, PR China
| | - Yonghui Yu
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Jiachun Lu
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Fuman Qiu
- The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China.
| |
Collapse
|
11
|
Chu J. Study of an N6-methyladenosine- and ferroptosis-related prognostic model and the mechanisms underlying the molecular network in neuroblastoma based on multiple datasets. Discov Oncol 2025; 16:200. [PMID: 39964621 PMCID: PMC11836251 DOI: 10.1007/s12672-025-01975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
Recent research highlights the pivotal role of N6-methyladenosine (m6A) modification and ferroptosis in the evolution of various cancers. This study aimed to establish a prognostic framework centered on genes associated with m6A and ferroptosis to enhance the accuracy of prognosis predictions for neuroblastoma (NB) patients, thereby improving targeted therapeutic strategies. Patient data, including expression profiles and clinical information from NB cases, were acquired from The Cancer Genome Atlas. Genes related to m6A modification and ferroptosis were identified, and those significant for prognosis were pinpointed using a combination of Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) regression. For further validation, the study utilized external datasets GSE62564 and GSE85047. A prognostic index was computed for each NB patient, followed by analyses of immune cell infiltration and potential drug responsiveness based on the prognostic model. Additionally, enrichment analysis was conducted on the prognostic scores. These scores showed a strong association with the tumor immune environment and the efficacy of prevalent cancer therapies. Moreover, the model's prognostic score emerged as an independent predictive marker for NB. This research succeeded in creating and confirming a prognostic model rooted in m6A and ferroptosis-linked genes, promising to enrich the prognostic understanding and treatment approaches for NB.
Collapse
Affiliation(s)
- Jing Chu
- Department of Pathology, Anhui Provincial Children's Hospital, 39 Wangjiang East Road, Hefei, 230051, Anhui, China.
| |
Collapse
|
12
|
Wang Y, Zhang C, Zeng H, Wang L, Wang Z, Han Z. Pre-injection of exosomes can significantly suppress ovarian cancer growth by activating the immune system in mice. Cancer Immunol Immunother 2025; 74:103. [PMID: 39904884 PMCID: PMC11794933 DOI: 10.1007/s00262-025-03951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
As a type of "cold tumor" with limited immune cell infiltration, ovarian cancer has historically shown limited efficacy in immunotherapy. In this study, we report that exosomes from ovarian cancer can specifically target omentum which is the predilection site for ovarian cancer to metastasize and combat subsequently implanted tumor. Furthermore, we found a substantial increase in the proportion of CD3 + T cells, particularly CD8 + T cells, within the omental tissue where exosomes homed. This increase was accompanied by a significant enhancement in granzyme B levels within CD8 + T cells. Additionally, there was a notable elevation in the concentration of interferon-gamma (IFN-γ) in peripheral blood. In vitro results indicated that exosomes could be internalized by dendritic cells (DCs), promote DC differentiation, and subsequently induce the production of granzyme B and IFN-γ in T cells. Surprisingly, we also observed high expression of programmed death ligand 1 (PD-L1) in the omentum. Therefore, we discovered whether combining PD-L1 blockade led to further tumor regression. However, although the combination group showed complete tumor regression, this difference did not reach statistical significance. But in general, we emphasize that in the case of pre-injection, exosomes have great potential to combat the famous "cold tumor", ovarian cancer, via targeting omentum and activating anti-tumor immunity, offering a novel avenue for overcoming ovarian cancer.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Zeng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zanhong Wang
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
13
|
Kishta MS, Khamis A, Am H, Elshaar AH, Gül D. Exploring the tumor-suppressive role of miRNA-200c in head and neck squamous cell carcinoma: Potential and mechanisms of exosome-mediated delivery for therapeutic applications. Transl Oncol 2025; 51:102216. [PMID: 39615277 DOI: 10.1016/j.tranon.2024.102216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a challenging malignancy due to its high rates of recurrence, metastasis, and resistance to conventional therapies. microRNA-200c (miRNA-200c) has emerged as a critical tumor suppressor in HNSCC, with the potential to inhibit epithelial-mesenchymal transition (EMT), which is considered as a key process in cancer metastasis and progression. Interestingly, there are also controversial findings in HNSCC characterizing miRNA-200c as oncogenic factor. This review article provides a comprehensive overview of the current understanding of miRNA-200c's general role in cancer, and particularly in HNSCC, highlighting its mechanisms of action, including the regulation of EMT and other oncogenic pathways. Additionally, the review explores the innovative approach of exosome-mediated delivery of miRNA-200c as a therapeutic strategy. Exosomes, as natural nanocarriers, offer a promising vehicle for the targeted delivery of miRNA-200c to tumor cells, potentially overcoming the limitations of traditional delivery methods and enhancing therapeutic efficacy. The review also discusses the challenges and future directions in the clinical application of miRNA-200c, particularly focusing on its potential to improve outcomes for HNSCC patients. This article seeks to provide valuable insights for researchers and clinicians working towards innovative treatments for this aggressive cancer type.
Collapse
Affiliation(s)
- Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, 12622 Cairo, Egypt.
| | - Aya Khamis
- Maxillofacial and Oral Surgery, University Medical Center, 55131 Mainz, Germany; Oral Pathology Department, Faculty of Dentistry, Alexandria University, 5372066 Alexandria, Egypt
| | - Hafez Am
- Medical Biochemistry Department Faculty of medicine KafrElSheikh University, Kafr El-Sheikh, Egypt
| | | | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
14
|
Li X, Peng L, Yang X, Luo J, Wang J, Mou K, Zhou H, Luo Y, Xiang L. N6-methyladenosine RNA methylation, a new hallmark of metabolic reprogramming in the immune microenvironment. Front Immunol 2024; 15:1464042. [PMID: 39759516 PMCID: PMC11695279 DOI: 10.3389/fimmu.2024.1464042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
N6-methyladenosine is one of the most common and reversible post-transcriptional modifications in eukaryotes, and it is involved in alternative splicing and RNA transcription, degradation, and translation. It is well known that cancer cells acquire energy through metabolic reprogramming to exhibit various biological behaviors. Moreover, numerous studies have demonstrated that m6A induces cancer metabolic reprogramming by regulating the expression of core metabolic genes or by activating metabolic signaling pathways. Meanwhile, m6A modifications and related regulators are key targets in the regulation of immune effects. We further summarize how m6A modifications contribute to tumor metabolism, and how these events affect the tumor immune microenvironment, with a specific focus on different cell types. Finally, we focus on the specific applications of this field to tumor immunotherapy. We review the potential role of m6A in metabolic reprogramming of tumor immune microenvironment and its regulatory mechanism, with the aim of providing new targets for tumor metabolic regulation and immunotherapy.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xuelian Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Fang J, Rao X, Wang C, Wang Y, Wu C, Zhou R. Role of exosomes in modulating non-small cell lung cancer radiosensitivity. Front Pharmacol 2024; 15:1471476. [PMID: 39737074 PMCID: PMC11683128 DOI: 10.3389/fphar.2024.1471476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes a significant proportion of lung cancer cases, and despite advancements in treatment modalities, radiotherapy resistance remains a substantial hurdle in effective cancer management. Exosomes, which are small vesicles secreted by cells, have emerged as pivotal players in intercellular communication and influence various biological processes, including cancer progression and the response to therapy. This review discusses the intricate role of exosomes in the modulation of NSCLC radiosensitivity. The paper focuses on NSCLC and highlights how tumor-derived exosomes contribute to radioresistance by enhancing DNA repair, modulating immune responses, and altering the tumor microenvironment. We further explore the potential of mesenchymal stem cell-derived exosomes to overcome radiotherapy resistance and their potential as biomarkers for predicting therapeutic outcomes. Understanding the mechanisms by which exosomes affect radiotherapy can provide new avenues for enhancing treatment efficacy and improving the survival rates of patients with NSCLC.
Collapse
Affiliation(s)
- Jincheng Fang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Changjian Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangchenxi Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| |
Collapse
|
16
|
Chen Y, Mao K, Han D, Ma R, Sun T, Zhang H, Han B. Nanomedicine based on chemotherapy-induced immunogenic death combined with immunotherapy to enhance antitumor immunity. Front Pharmacol 2024; 15:1511423. [PMID: 39697556 PMCID: PMC11652165 DOI: 10.3389/fphar.2024.1511423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Chemo-immunotherapy based on inducing tumor immunogenic cell death (ICD)with chemotherapy drugs has filled the gaps between traditional chemotherapy and immunotherapy. It is verified that paclitaxel (PTX) can induce breast tumor ICD. From this basis, a kind of nanoparticle that can efficiently deliver different drug components simultaneously is constructed. The purpose of this study is for the sake of exploring the scheme of chemotherapy-induced ICD combined with other immunotherapy to enhance tumor immunogenicity and inhibit the growth, metastasis, and recurrence of breast tumors, so as to provide a research basis for solving the tough problem of breast cancer treatment. Methods Nanomedicine loaded with PTX, small interference RNA that suppresses CD47 expression (CD47siRNA, siCD47), and immunomodulator R848 were prepared by the double emulsification method. The hydrodynamic diameter and zeta potential of NP/PTX/siCD47/R848 were characterized. Established the tumor-bearing mice model of mouse breast cancer cell line (4T1) in situ and observed the effect of intravenous injection of NP/PTX/siCD47/R848 on the growth of 4T1 tumor in situ. Flow cytometry was used to detect the effect of drugs on tumor immune cells. Results NP/PTX/siCD47/R848 nano-drug with tumor therapeutic potential were successfully prepared by double emulsification method, with particle size of 121.5 ± 4.5 nm and surface potential of 36.1 ± 2.5 mV. The calreticulin on the surface of cell membrane and extracellular ATP or HMGB1 of 4T1 cells increased through treatment with NPs. NP/PTX-treated tumor cells could cause activation of BMDCs and BMDMs. After intravenous injection, NP/PTX could quickly reach the tumor site and accumulate for 24 h. The weight and volume of tumor in situ in the breast cancer model mice injected with nanomedicine through the tail vein were significantly lower than those in the PBS group. The ratio of CD8+/CD4+ T cells in the tumor microenvironment and the percentage of dendritic cells in peripheral blood increased significantly in breast cancer model mice injected with nano-drugs through the tail vein. Discussion Briefly, the chemotherapeutic drug paclitaxel can induce breast cancer to induce ICD. The nanomedicine which can deliver PTX, CD47siRNA, and R848 at the same time was prepared by double emulsification. NP/PTX/siCD47/R848 nano-drug can be enriched in the tumor site. The experiment of 4T1 cell tumor-bearing mice shows that the nano-drug can enhance tumor immunogenicity and inhibit breast tumor growth, which provides a new scheme for breast cancer treatment. (Graphical abstract).
Collapse
Affiliation(s)
- Yichang Chen
- Department of Breast Surgery, General Surgery Center of The First Hospital, Jilin University, Changchun, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Institute of Immunology, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Dongxiao Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Institute of Immunology, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Ruolin Ma
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Institute of Immunology, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Haipeng Zhang
- Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Bing Han
- Department of Breast Surgery, General Surgery Center of The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
17
|
Yumoto S, Horiguchi H, Kadomatsu T, Horino T, Sato M, Terada K, Miyata K, Moroishi T, Baba H, Oike Y. Host ANGPTL2 establishes an immunosuppressive tumor microenvironment and resistance to immune checkpoint therapy. Cancer Sci 2024; 115:3846-3858. [PMID: 39321028 PMCID: PMC11611770 DOI: 10.1111/cas.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic; however, mechanisms underlying resistance to ICI therapy, including impaired T cell infiltration, low immunogenicity, and tumor "immunophenotypes" governed by the host, remain unclear. We previously reported that in some cancer contexts, tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) has tumor-promoting functions. Here, we asked whether ANGPTL2 deficiency could enhance antitumor ICI activity in two inflammatory contexts: a murine syngeneic model of colorectal cancer and a mouse model of high-fat diet (HFD)-induced obesity. Systemic ANGPTL2 deficiency potentiated ICI efficacy in the syngeneic model, supporting an immunosuppressive role for host ANGPTL2. Relevant to the mechanism, we found that ANGPTL2 induces pro-inflammatory cytokine production in adipose tissues, driving generation of myeloid-derived suppressor cells (MDSCs) in bone marrow and contributing to an immunosuppressive tumor microenvironment and resistance to ICI therapy. Moreover, HFD-induced obese mice showed impaired responsiveness to ICI treatment, suggesting that obesity-induced chronic inflammation facilitated by high ANGPTL2 expression blocks ICI antitumor effects. Our findings overall provide novel insight into protumor ANGPTL2 functions and illustrate the essential role of the host system in ICI responsiveness.
Collapse
Affiliation(s)
- Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Taichi Horino
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
18
|
Li SR, Wu ZZ, Yu HJ, Sun ZJ. Targeting erythroid progenitor cells for cancer immunotherapy. Int J Cancer 2024; 155:1928-1938. [PMID: 39039820 DOI: 10.1002/ijc.35102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Immunotherapy, especially immune checkpoint blockade therapy, represents a major milestone in the history of cancer therapy. However, the current response rate to immunotherapy among cancer patients must be improved; thus, new strategies for sensitizing patients to immunotherapy are urgently needed. Erythroid progenitor cells (EPCs), a population of immature erythroid cells, exert potent immunosuppressive functions. As a newly recognized immunosuppressive population, EPCs have not yet been effectively targeted. In this review, we summarize the immunoregulatory mechanisms of EPCs, especially for CD45+ EPCs. Moreover, in view of the regulatory effects of EPCs on the tumor microenvironment, we propose the concept of EPC-immunity, present existing strategies for targeting EPCs, and discuss the challenges encountered in both basic research and clinical applications. In particular, the impact of existing cancer treatments on EPCs is discussed, laying the foundation for combination therapies. The aim of this review is to provide new avenues for improving the efficacy of cancer immunotherapy by targeting EPCs.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhi-Zhong Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Provincial Clinical Research Center for Cancer, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
19
|
Zhou L, Zhu Y, Guo F, Long H, Yin M. Pan-cancer analysis of oncogenic role of CEP55 and experiment validation in clear cell renal cell carcinoma. Sci Rep 2024; 14:28279. [PMID: 39550427 PMCID: PMC11569145 DOI: 10.1038/s41598-024-80057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Immunotherapy has emerged as a vital component in the contemporary landscape of cancer treatment. Recent studies have indicated that CEP55 plays an oncogenic role; however, its specific mechanisms in promoting tumor proliferation and its potential value in prognosis and immunotherapy prediction across various cancers remain to be elucidated. CEP55 was significantly overexpressed in 22 cancer types compared with their adjacent normal tissues. Elevated CEP55 expression was positively correlated with younger onset age, worse tumor stage, lower response rate to the first treatment, lower tumor-free survival rate, and poorer overall survival (OS) and disease-free survival (DFS) prognosis in most cancers. Moreover, CEP55 expression was positively correlated with its binding and related genes, such as KIF11 (R = 0.83, P < 0.001), CDK1 (R = 0.77, P < 0.001) and CCNA2 (R = 0.76, P < 0.001), and the classic proliferation markers, including MKI67 and PCNA. Enrichment analyses indicated that CEP55 was predominantly associated with cell division, cell cycle activities and proliferation. Immune cell infiltration analysis by TIMER2.0 revealed that CEP55 expression was positively correlated with many kinds of infiltrating cells, such as Th2 cells and some CD4+ T cell subsets. The CEP55 expression was positively associated with increased MSI and TMB in various cancers. Our analyzation indicated that the CEP55 expression level in patients with complete remission (CR) or partial remission (PR) to anti-PDL1 therapy was significantly higher than patients with stable disease (SD) or progressive disease (PD) based on IMvigor210 cohort. We also used Gene Set Cancer Analysis (GSCA) to predict a serious of small molecule CEP55 targeted drugs, such as AZ628, SB52334, SB590885, A-770,041, AZD7762, Elesclomol, panobinostat, BRD-A94377914, and LRRK2-IN-1. Furthermore, the patients with high level of CEP55-posivie tumor epithelial cells had inferior overall survival in ccRCC according to single-cell analysis. Finally, our wet lab experiments verified that the CEP55-positive rate in ccRCC tissues (19/30, 63.3%) was significantly higher than that in renal adjacent tissues (10/30, 33.3%). The clinicopathologic analysis revealed that CEP55 protein level was significantly associated with tumor size (P = 0.044), histology grade (P < 0.001) and stage (P = 0.034). Our study indicated that CEP55 overexpression in most caner types was associated with poor prognosis. Notably, CEP55 was closely relevant to immune cell infiltration and impacted the response to immunotherapy and small molecule drugs against cancers.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yimeng Zhu
- Department of Nephrology, Zhejiang University Medical College Affiliated Sir Run Run Shaw Hospital, Shaoxing, Zhejiang, China
| | - Fei Guo
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, China
| | - Huimin Long
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| | - Min Yin
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
20
|
Shen Y, Zhong B, Zheng W, Wang D, Chen L, Song H, Pan X, Mo S, Jin B, Cui H, Zhan H, Luo F, Liu J. Rg3-lipo biomimetic delivery of paclitaxel enhances targeting of tumors and myeloid-derived suppressor cells. J Clin Invest 2024; 134:e178617. [PMID: 39545407 PMCID: PMC11563678 DOI: 10.1172/jci178617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/25/2024] [Indexed: 11/17/2024] Open
Abstract
Liposomal drug delivery systems have revolutionized traditional cytotoxic drugs. However, the relative instability and toxicity of the existing liposomal drug delivery systems compromised their efficacy. Herein, we present Rg3-lipo, an innovative drug delivery system using a glycosyl moiety-enriched ginsenoside (Rg3). This system is distinguished by its glycosyl moieties exposed on the liposomal surface. These moieties imitate human cell membranes to stabilize and evade phagocytic clearance. The Rg3-lipo system loaded with paclitaxel (PTX-Rg3-lipo) demonstrated favorable bioavailability and safety in Sprague-Dawley rats, beagle dogs, and cynomolgus monkeys. With its glycosyl moieties recognizing tumor cells via the glucose transporter Glut1, PTX-Rg3-lipo inhibited gastric, breast, and esophageal cancers in human cancer cell lines, tumor-bearing mice, and patient-derived xenograft models. These glycosyl moieties selectively targeted myeloid-derived suppressor cells (MDSCs) through the glucose transporter Glut3 to attenuate their immunosuppressive effect. The mechanism study revealed that Rg3-lipo suppressed glycolysis and downregulated the transcription factors c-Maf and Mafb overcoming the MDSC-mediated immunosuppressive microenvironment and enhancing PTX-Rg3-lipo's antitumor effect. Taken together, we supply substantial evidence for its advantageous bioavailability and safety in multiple animal models, including nonhuman primates, and Rg3-lipo's dual targeting of cancer cells and MDSCs. Further investigation regarding Rg3-lipo's druggability will be conducted in clinical trials.
Collapse
Affiliation(s)
- Yuru Shen
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Zhong
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Biotherapy Research Center, Fudan University, Shanghai, China
| | - Wanwei Zheng
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Wang
- Xiamen Ginposome Pharmaceutical Co. Ltd., Xiamen, China
| | - Lin Chen
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huan Song
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanxuan Pan
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaocong Mo
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bryan Jin
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoshu Cui
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huaxing Zhan
- Xiamen Ginposome Pharmaceutical Co. Ltd., Xiamen, China
| | - Feifei Luo
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Zhang S, Huang Q, Ji T, Li Q, Hu C. Copper homeostasis and copper-induced cell death in tumor immunity: implications for therapeutic strategies in cancer immunotherapy. Biomark Res 2024; 12:130. [PMID: 39482784 PMCID: PMC11529036 DOI: 10.1186/s40364-024-00677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Copper is an important trace element for maintaining key biological functions such as cellular respiration, nerve conduction, and antioxidant defense. Maintaining copper homeostasis is critical for human health, and its imbalance has been linked to various diseases, especially cancer. Cuproptosis, a novel mechanism of copper-induced cell death, provides new therapeutic opportunities for metal ion regulation to interact with cell fate. This review provides insights into the complex mechanisms of copper metabolism, the molecular basis of cuproptosis, and its association with cancer development. We assess the role of cuproptosis-related genes (CRGs) associated with tumorigenesis, their importance as prognostic indicators and therapeutic targets, and the impact of copper homeostasis on the tumor microenvironment (TME) and immune response. Ultimately, this review highlights the complex interplay between copper, cuproptosis, and cancer immunotherapy.
Collapse
Affiliation(s)
- Suhang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China
| | - Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tuo Ji
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| |
Collapse
|
22
|
Zhang L, Mao Z, Yin K, Wang S. Review of METTL3 in colorectal cancer: From mechanisms to the therapeutic potential. Int J Biol Macromol 2024; 277:134212. [PMID: 39069066 DOI: 10.1016/j.ijbiomac.2024.134212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
N6-methyladenosine (m6A), the most abundant modification in mRNAs, affects the fate of the modified RNAs at the post-transcriptional level and participants in various biological and pathological processes. Increasing evidence shows that m6A modification plays a role in the progression of many malignancies, including colorectal cancer (CRC). As the only catalytic subunit in methyltransferase complex, methyltransferase-like 3 (METTL3) is essential to the performance of m6A modification. It has been found that METTL3 is associated with the prognosis of CRC and significantly influences various aspects of CRC, such as cell proliferation, invasion, migration, metastasis, metabolism, tumor microcirculation, tumor microenvironment, and drug resistance. The relationship between METTL3 and gut-microbiota is also involved into the progression of CRC. Furthermore, METTL3 might be a viable target for CRC treatment to prolong survival. In this review, we comprehensively summarize the function of METTL3 in CRC and the underlying molecular mechanisms. We aim to deepen understanding and offer new ideas for diagnostic biomarkers and therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Lexuan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
23
|
Cao C, Fu G, Xu R, Li N. Coupling of Alzheimer's Disease Genetic Risk Factors with Viral Susceptibility and Inflammation. Aging Dis 2024; 15:2028-2050. [PMID: 37962454 PMCID: PMC11346407 DOI: 10.14336/ad.2023.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by persistent cognitive decline. Amyloid plaque deposition and neurofibrillary tangles are the main pathological features of AD brain, though mechanisms leading to the formation of lesions remain to be understood. Genetic efforts through genome-wide association studies (GWAS) have identified dozens of risk genes influencing the pathogenesis and progression of AD, some of which have been revealed in close association with increased viral susceptibilities and abnormal inflammatory responses in AD patients. In the present study, we try to present a list of AD candidate genes that have been shown to affect viral infection and inflammatory responses. Understanding of how AD susceptibility genes interact with the viral life cycle and potential inflammatory pathways would provide possible therapeutic targets for both AD and infectious diseases.
Collapse
Affiliation(s)
| | | | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
24
|
Deng Y, Shi M, Yi L, Naveed Khan M, Xia Z, Li X. Eliminating a barrier: Aiming at VISTA, reversing MDSC-mediated T cell suppression in the tumor microenvironment. Heliyon 2024; 10:e37060. [PMID: 39286218 PMCID: PMC11402941 DOI: 10.1016/j.heliyon.2024.e37060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment by producing remarkable clinical outcomes for patients with various cancer types. However, only a subset of patients benefits from immunotherapeutic interventions due to the primary and acquired resistance to ICIs. Myeloid-derived suppressor cells (MDSCs) play a crucial role in creating an immunosuppressive tumor microenvironment (TME) and contribute to resistance to immunotherapy. V-domain Ig suppressor of T cell activation (VISTA), a negative immune checkpoint protein highly expressed on MDSCs, presents a promising target for overcoming resistance to current ICIs. This article provides an overview of the evidence supporting VISTA's role in regulating MDSCs in shaping the TME, thus offering insights into how to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Yayuan Deng
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Yi
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Western(Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, No. 28 Gaoxin Avenue, High-tech Zone, Chongqing, 401329, China
| |
Collapse
|
25
|
Xin Z, Qin L, Tang Y, Guo S, Li F, Fang Y, Li G, Yao Y, Zheng B, Zhang B, Wu D, Xiao J, Ni C, Wei Q, Zhang T. Immune mediated support of metastasis: Implication for bone invasion. Cancer Commun (Lond) 2024; 44:967-991. [PMID: 39003618 PMCID: PMC11492328 DOI: 10.1002/cac2.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Bone is a common organ affected by metastasis in various advanced cancers, including lung, breast, prostate, colorectal, and melanoma. Once a patient is diagnosed with bone metastasis, the patient's quality of life and overall survival are significantly reduced owing to a wide range of morbidities and the increasing difficulty of treatment. Many studies have shown that bone metastasis is closely related to bone microenvironment, especially bone immune microenvironment. However, the effects of various immune cells in the bone microenvironment on bone metastasis remain unclear. Here, we described the changes in various immune cells during bone metastasis and discussed their related mechanisms. Osteoblasts, adipocytes, and other non-immune cells closely related to bone metastasis were also included. This review also summarized the existing treatment methods and potential therapeutic targets, and provided insights for future studies of cancer bone metastasis.
Collapse
Affiliation(s)
- Zengfeng Xin
- Department of Orthopedic SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Luying Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yang Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Siyu Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Fangfang Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yuan Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Gege Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yihan Yao
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Binbin Zheng
- Department of Respiratory MedicineNingbo Hangzhou Bay HospitalNingboZhejiangP. R. China
| | - Bicheng Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jie Xiao
- Department of Orthopedic SurgerySecond Affiliated Hospital (Jiande Branch)Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Breast SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qichun Wei
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Ting Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
26
|
Wang ZB, Zhang X, Fang C, Liu XT, Liao QJ, Wu N, Wang J. Immunotherapy and the ovarian cancer microenvironment: Exploring potential strategies for enhanced treatment efficacy. Immunology 2024; 173:14-32. [PMID: 38618976 DOI: 10.1111/imm.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Despite progress in cancer immunotherapy, ovarian cancer (OC) prognosis continues to be disappointing. Recent studies have shed light on how not just tumour cells, but also the complex tumour microenvironment, contribute to this unfavourable outcome of OC immunotherapy. The complexities of the immune microenvironment categorize OC as a 'cold tumour'. Nonetheless, understanding the precise mechanisms through which the microenvironment influences the effectiveness of OC immunotherapy remains an ongoing scientific endeavour. This review primarily aims to dissect the inherent characteristics and behaviours of diverse cells within the immune microenvironment, along with an exploration into its reprogramming and metabolic changes. It is expected that these insights will elucidate the operational dynamics of the immune microenvironment in OC and lay a theoretical groundwork for improving the efficacy of immunotherapy in OC management.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Chao Fang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xiao-Ting Liu
- The Second People's Hospital of Hunan Province, Changsha, China
| | - Qian-Jin Liao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Nayiyuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| |
Collapse
|
27
|
Marima R, Basera A, Miya T, Damane BP, Kandhavelu J, Mirza S, Penny C, Dlamini Z. Exosomal long non-coding RNAs in cancer: Interplay, modulation, and therapeutic avenues. Noncoding RNA Res 2024; 9:887-900. [PMID: 38616862 PMCID: PMC11015109 DOI: 10.1016/j.ncrna.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
In the intricate field of cancer biology, researchers are increasingly intrigued by the emerging role of exosomal long non-coding RNAs (lncRNAs) due to their multifaceted interactions, complex modulation mechanisms, and potential therapeutic applications. These exosomal lncRNAs, carried within extracellular vesicles, play a vital partin tumorigenesis and disease progression by facilitating communication networks between tumor cells and their local microenvironment, making them an ideal candidates for use in a liquid biopsy approach. However, exosomal lncRNAs remain an understudied area, especially in cancer biology. Therefore this review aims to comprehensively explore the dynamic interplay between exosomal lncRNAs and various cellular components, including interactions with tumor-stroma, immune modulation, and drug resistance mechanisms. Understanding the regulatory functions of exosomal lncRNAs in these processes can potentially unveil novel diagnostic markers and therapeutic targets for cancer. Additionally, the emergence of RNA-based therapeutics presents exciting opportunities for targeting exosomal lncRNAs, offering innovative strategies to combat cancer progression and improve treatment outcomes. Thus, this review provides insights into the current understanding of exosomal lncRNAs in cancer biology, highlighting their crucial roles, regulatory mechanisms, and the evolving landscape of therapeutic interventions. Furthermore, we have also discussed the advantage of exosomes as therapeutic carriers of lncRNAs for the development of personalized targeted therapy for cancer patients.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | - Thabiso Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sheefa Mirza
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| |
Collapse
|
28
|
Hu T, Sun W, Jin Y, Dong Y, Liu W, Sun Z, Xiang Y, Chen Y. The combination of apatinib and antigen-specific DC-induced T cells exert antitumor effects by potently improving the immune microenvironment of osteosarcoma. Heliyon 2024; 10:e36016. [PMID: 39224314 PMCID: PMC11367533 DOI: 10.1016/j.heliyon.2024.e36016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Osteosarcoma (OS) is the most common primary bone sarcoma with a high propensity for local invasion and metastasis. Although the antitumor effect of apatinib has been well confirmed in advanced OS, the synergistic effect of apatinib and immunotherapies has not yet been elucidated. Methods In this study, we established tumour-bearing mice and observed tumour size with low and high doses of apatinib treatments. The expression of 17 cytokines, including vascular endothelial growth factor (VEGF), was detected by protein microarray analysis. Moreover, we designed apatinib and antigen-specific dendritic cell (DC)-T combination treatment for tumour-bearing mice. Tumour growth was detected by statistical analysis of tumour size and microvessel density (MVD) counting, the protein expression of VEGF by western blotting, the cytokines interleukin 6 (IL-6), IL-17 and interferon-gamma (IFN-γ) by enzyme-linked immunosorbent assay (ELISA), and the numbers of myeloid-derived suppressor cells (MDSCs) and tumour-infiltration macrophages (TAMs) by flow cytometry. Results The results showed that apatinib efficiently suppressed tumour growth, and high-dose apatinib achieved a stronger effect. The same was true for DC-T immunotherapy. However, their combination treatment revealed a better oncolytic effect. Meanwhile, apatinib or DC-T treatment inhibited the expression of VEGF and the proangiogenic mediators IL-6 and IL-17 but increased IFN-γ production. Combination therapy further reduced/increased these effects. In addition, the combination treatment reduced MDSC but enhanced TAM-M1 ratios in the OS microenvironment. These findings indicated that apatinib and antigen-specific DC-T combination therapy was more efficient in oncolysis by regulating pro-/anti-angiogenic inducers and improving the immune state in the OS microenvironment. Conclusion This study proved that it was feasible to employ immunotherapy with therapeutic agents in OS treatment, which may provide a new approach in addition to the combination of surgery with chemotherapy in tumour treatment.
Collapse
Affiliation(s)
- Tu Hu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongjia Jin
- Shanghai Electric Power Hospital, Shanghai, China
| | - Yan Dong
- Shanghai Electric Power Hospital, Shanghai, China
| | - Wanlin Liu
- Shanghai Electric Power Hospital, Shanghai, China
| | - Zhengwang Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Xiang
- Shanghai Electric Power Hospital, Shanghai, China
| | - Yong Chen
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
29
|
Liu X, Ren B, Ren J, Gu M, You L, Zhao Y. The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal 2024; 22:380. [PMID: 39069612 DOI: 10.1186/s12964-024-01760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
Amino acid metabolism plays a pivotal role in tumor microenvironment, influencing various aspects of cancer progression. The metabolic reprogramming of amino acids in tumor cells is intricately linked to protein synthesis, nucleotide synthesis, modulation of signaling pathways, regulation of tumor cell metabolism, maintenance of oxidative stress homeostasis, and epigenetic modifications. Furthermore, the dysregulation of amino acid metabolism also impacts tumor microenvironment and tumor immunity. Amino acids can act as signaling molecules that modulate immune cell function and immune tolerance within the tumor microenvironment, reshaping the anti-tumor immune response and promoting immune evasion by cancer cells. Moreover, amino acid metabolism can influence the behavior of stromal cells, such as cancer-associated fibroblasts, regulate ECM remodeling and promote angiogenesis, thereby facilitating tumor growth and metastasis. Understanding the intricate interplay between amino acid metabolism and the tumor microenvironment is of crucial significance. Expanding our knowledge of the multifaceted roles of amino acid metabolism in tumor microenvironment holds significant promise for the development of more effective cancer therapies aimed at disrupting the metabolic dependencies of cancer cells and modulating the tumor microenvironment to enhance anti-tumor immune responses and inhibit tumor progression.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| |
Collapse
|
30
|
Nie SC, Jing YH, Lu L, Ren SS, Ji G, Xu HC. Mechanisms of myeloid-derived suppressor cell-mediated immunosuppression in colorectal cancer and related therapies. World J Gastrointest Oncol 2024; 16:1690-1704. [PMID: 38764816 PMCID: PMC11099432 DOI: 10.4251/wjgo.v16.i5.1690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 05/09/2024] Open
Abstract
Severe immunosuppression is a hallmark of colorectal cancer (CRC). Myeloid-derived suppressor cells (MDSCs), one of the most abundant components of the tumor stroma, play an important role in the invasion, metastasis, and immune escape of CRC. MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells, including T and natural killer cells, as well as by inducing the proliferation of immunosuppressive cells, such as regulatory T cells and tumor-associated macrophages, which, in turn, promote the growth of cancer cells. Thus, MDSCs are key contributors to the emergence of an immunosuppressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity. In this narrative review, we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment, the current therapeutic approaches and technologies targeting MDSCs, and the therapeutic potential of modulating MDSCs in CRC treatment. This study provides ideas and methods to enhance survival rates in patients with CRC.
Collapse
Affiliation(s)
- Shu-Chang Nie
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Hua Jing
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Si-Si Ren
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai 200032, China
| | - Han-Chen Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai 200032, China
| |
Collapse
|
31
|
Gu X, Zhang L, Sun M, Zhou Y, Ji J, Xu Y, You J, Deng Z. Dexamethasone promotes renal fibrosis by upregulating ILT4 expression in myeloid-derived suppressor cells. J Cell Mol Med 2024; 28:e18310. [PMID: 38676361 PMCID: PMC11053352 DOI: 10.1111/jcmm.18310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Studies have shown that adoptive transfer of myeloid-derived suppressor cells (MDSCs) can alleviate various inflammatory diseases, including glomerulonephritis, but the long-term effects of the transferred MDSCs are still unclear. In addition, although glucocorticoids exert immunosuppressive effects on inflammatory diseases by inducing the expansion of MDSCs, the impact of glucocorticoids on the immunosuppressive function of MDSCs and their molecular mechanisms are unclear. In this study, we found that adoptive transfer of MDSCs to doxorubicin-induced focal segmental glomerulosclerosis (FSGS) mice for eight consecutive weeks led to an increase in serum creatinine and proteinuria and aggravation of renal interstitial fibrosis. Similarly, 8 weeks of high-dose dexamethasone administration exacerbated renal interstitial injury and interstitial fibrosis in doxorubicin-induced mice, manifested as an increase in serum creatinine and proteinuria, collagen deposition and α-SMA expression. On this basis, we found that dexamethasone could enhance MDSC expression and secretion of the fibrosis-related cytokines TGF-β and IL-10. Mechanistically, we revealed that dexamethasone promotes the expression of immunoglobulin-like transcription factor 4 (ILT4), which enhances the T-cell inhibitory function of MDSCs and promotes the activation of STAT6, thereby strengthening the expression and secretion of TGF-β and IL-10. Knocking down ILT4 alleviated renal fibrosis caused by adoptive transfer of MDSCs. Therefore, our findings demonstrate that the role and mechanism of dexamethasone mediate the expression and secretion of TGF-β and IL-10 in MDSCs by promoting the expression of ILT4, thereby leading to renal fibrosis.
Collapse
Affiliation(s)
- Xiaowen Gu
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Lianmei Zhang
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Min Sun
- Department of Science and EducationHuai'an Municipal Center for Disease Control and PreventionHuai'anChina
| | - Ying Zhou
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Jinling Ji
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - YunFang Xu
- Clinical LaboratoryHuai'an No 4 People's HospitalHuai'anChina
| | - Jianguo You
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Zhikui Deng
- Department of Blood TransfusionThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| |
Collapse
|
32
|
Bergerud KMB, Berkseth M, Pardoll DM, Ganguly S, Kleinberg LR, Lawrence J, Odde DJ, Largaespada DA, Terezakis SA, Sloan L. Radiation Therapy and Myeloid-Derived Suppressor Cells: Breaking Down Their Cancerous Partnership. Int J Radiat Oncol Biol Phys 2024; 119:42-55. [PMID: 38042450 PMCID: PMC11082936 DOI: 10.1016/j.ijrobp.2023.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Radiation therapy (RT) has been a primary treatment modality in cancer for decades. Increasing evidence suggests that RT can induce an immunosuppressive shift via upregulation of cells such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). MDSCs inhibit antitumor immunity through potent immunosuppressive mechanisms and have the potential to be crucial tools for cancer prognosis and treatment. MDSCs interact with many different pathways, desensitizing tumor tissue and interacting with tumor cells to promote therapeutic resistance. Vascular damage induced by RT triggers an inflammatory signaling cascade and potentiates hypoxia in the tumor microenvironment (TME). RT can also drastically modify cytokine and chemokine signaling in the TME to promote the accumulation of MDSCs. RT activation of the cGAS-STING cytosolic DNA sensing pathway recruits MDSCs through a CCR2-mediated mechanism, inhibiting the production of type 1 interferons and hampering antitumor activity and immune surveillance in the TME. The upregulation of hypoxia-inducible factor-1 and vascular endothelial growth factor mobilizes MDSCs to the TME. After recruitment, MDSCs promote immunosuppression by releasing reactive oxygen species and upregulating nitric oxide production through inducible nitric oxide synthase expression to inhibit cytotoxic activity. Overexpression of arginase-1 on subsets of MDSCs degrades L-arginine and downregulates CD3ζ, inhibiting T-cell receptor reactivity. This review explains how radiation promotes tumor resistance through activation of immunosuppressive MDSCs in the TME and discusses current research targeting MDSCs, which could serve as a promising clinical treatment strategy in the future.
Collapse
Affiliation(s)
| | - Matthew Berkseth
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sudipto Ganguly
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - David A Largaespada
- Departments of Pediatrics and Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | | | - Lindsey Sloan
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
33
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
34
|
Wang Y, Li Y, Jing Y, Yang Y, Wang H, Ismtula D, Guo C. Tubulin alpha-1b chain was identified as a prognosis and immune biomarker in pan-cancer combing with experimental validation in breast cancer. Sci Rep 2024; 14:8201. [PMID: 38589634 PMCID: PMC11001892 DOI: 10.1038/s41598-024-58982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
The α-tubulin subtype, Tubulin α-1b chain (TUBA1B), has been shown to influence immune cell infiltration, cancer growth, and survival across various malignancies. However, a comprehensive study has not yet been undertaken examining the immunological and predictive effects of TUBA1B in a pan-carcinoma context. Using data from TCGA, GEO, and other databases, we analyzed TUBA1B expression across various carcinoma types using transcriptional profiling, prognostic implications, genetic and epigenetic alterations, methylation patterns, and immunological significance. To validate our findings, we conducted Western blot analysis to assess TUBA1B protein levels in matched breast cancer tissue samples and performed CCK-8 proliferation assay, flow cytometry, transwell invasion, and migration assays to comprehensively examine the functional impact of TUBA1B on breast cancer cells. Our pan-cancer analysis found TUBA1B upregulation across most tumor types, with varying expression patterns in distinct immune and molecular subtypes. High TUBA1B expression was an independent risk factor and associated with poor prognoses in several cancers, including BRCA, KICH, LGG, LUAD, and MESO. TUBA1B also demonstrates moderate to high diagnostic accuracy in most tumor types. Increased m6A methylation levels were observed in the TUBA1B gene, while its promoter region displayed low methylation levels. TUBA1B's expression impacted some cancers by elevating tumor mutation burden, microsatellite instability, neoantigen formation, immune cell infiltration, and the modulation of immune checkpoints. Functional enrichment analysis highlights TUBA1B's involvement in important cellular processes such as the cell cycle, p53 signaling, cell senescence, programmed cell death, and the regulation of immune-related pathways. Moreover, our study reveals higher TUBA1B protein expression in breast cancer tissues compared to adjacent tissues. In vitro experiments confirm that TUBA1B deletion reduces breast cancer cell proliferation, invasion, and migration while increasing apoptosis. In conclusion, our study suggests that TUBA1B could potentially serve as a diagnostic marker for predicting cancer immunological profiles and survival outcomes and shed light on the expression and role of TUBA1B in breast cancer, providing a solid foundation for considering it as a promising therapeutic target for breast cancer patient treatment.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yongxiang Li
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yubo Jing
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yuqi Yang
- The First Clinical Medical College of Xinjiang Medical University, Urumqi, 830054, China
| | - Haiyan Wang
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Dilimulati Ismtula
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Chenming Guo
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
35
|
Yang S, Jia J, Wang F, Wang Y, Fang Y, Yang Y, Zhou Q, Yuan W, Bian Z. Targeting neutrophils: Mechanism and advances in cancer therapy. Clin Transl Med 2024; 14:e1599. [PMID: 38450975 PMCID: PMC10918741 DOI: 10.1002/ctm2.1599] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Cancer is a thorny problem which cannot be conquered by mankind at present and recent researchers have put their focus on tumor microenviroment. Neutrophils, the prominent leukocytes in peripheral blood that accumulate in tumours, serves as frontline cells in response to tumour progression owing to the rapid development of micro biotechnology. Hence, targeted therapy with these neutrophils has made targeting treatment a promising field in cancer therapy. MAIN BODY We broadly summarise some studies on the phenotypes and functions of tumour-associated neutrophils as well as the unique web-like products of neutrophils that play a role in cancer progression-neutrophil extracellular traps-and the interactions between neutrophils and the tumour microenvironment. Moreover, several targeted neutrophils therapeutic studies have made some progress and provided potential strategies for the treatment of cancer. CONCLUSION This review aims to offer a holistic perspective on therapeutic interventions targeting neutrophils to further inspire more researches on cancer therapies.
Collapse
Affiliation(s)
- Shuaixi Yang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Jiachi Jia
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Fuqi Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Yuhang Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Yingshuai Fang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Yabing Yang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Quanbo Zhou
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Weitang Yuan
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Zhilei Bian
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| |
Collapse
|
36
|
Zhu D, Zeng S, Su C, Li J, Xuan Y, Lin Y, Xu E, Fan Q. The interaction between DNA methylation and tumor immune microenvironment: from the laboratory to clinical applications. Clin Epigenetics 2024; 16:24. [PMID: 38331927 PMCID: PMC10854038 DOI: 10.1186/s13148-024-01633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
DNA methylation is a pivotal epigenetic modification that affects gene expression. Tumor immune microenvironment (TIME) comprises diverse immune cells and stromal components, creating a complex landscape that can either promote or inhibit tumor progression. In the TIME, DNA methylation has been shown to play a critical role in influencing immune cell function and tumor immune evasion. DNA methylation regulates immune cell differentiation, immune responses, and TIME composition Targeting DNA methylation in TIME offers various potential avenues for enhancing immune cytotoxicity and reducing immunosuppression. Recent studies have demonstrated that modification of DNA methylation patterns can promote immune cell infiltration and function. However, challenges persist in understanding the precise mechanisms underlying DNA methylation in the TIME, developing selective epigenetic therapies, and effectively integrating these therapies with other antitumor strategies. In conclusion, DNA methylation of both tumor cells and immune cells interacts with the TIME, and thus affects clinical efficacy. The regulation of DNA methylation within the TIME holds significant promise for the advancement of tumor immunotherapy. Addressing these challenges is crucial for harnessing the full potential of epigenetic interventions to enhance antitumor immune responses and improve patient outcomes.
Collapse
Affiliation(s)
- Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, No. 1023 Shatai North Road, Guangzhou, 510515, China
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, No.111 Liuhua Road, Guangzhou, 510010, China
| | - Siying Zeng
- School of Traditional Chinese Medicine, Southern Medical University, No. 1023 Shatai North Road, Guangzhou, 510515, China
| | - Chao Su
- School of Traditional Chinese Medicine, Southern Medical University, No. 1023 Shatai North Road, Guangzhou, 510515, China
| | - Jingjun Li
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yiwen Xuan
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, No.111 Liuhua Road, Guangzhou, 510010, China
| | - Yongkai Lin
- Department of Endocrinology, The First Affiliated Hospital, Traditional Chinese Medicine University of Guangzhou, Guangzhou, 510405, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, No.111 Liuhua Road, Guangzhou, 510010, China.
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, No. 1023 Shatai North Road, Guangzhou, 510515, China.
| |
Collapse
|
37
|
Ding G, Yu H, Jin J, Qiao X, Ma J, Zhang T, Cheng X. Reciprocal relationship between cancer stem cells and myeloid-derived suppressor cells: implications for tumor progression and therapeutic strategies. Future Oncol 2024; 20:215-228. [PMID: 38390682 DOI: 10.2217/fon-2023-0907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Recently, there has been an increased focus on cancer stem cells (CSCs) due to their resilience, making them difficult to eradicate. This resilience often leads to tumor recurrence and metastasis. CSCs adeptly manipulate their surroundings to create an environment conducive to their survival. In this environment, myeloid-derived suppressor cells (MDSCs) play a crucial role in promoting epithelial-mesenchymal transition and bolstering CSCs' stemness. In response, CSCs attract MDSCs, enhancing their infiltration, expansion and immunosuppressive capabilities. This interaction between CSCs and MDSCs increases the difficulty of antitumor therapy. In this paper, we discuss the interplay between CSCs and MDSCs based on current research and highlight recent therapeutic strategies targeting either CSCs or MDSCs that show promise in achieving effective antitumor outcomes.
Collapse
Affiliation(s)
- Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hua Yu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jason Jin
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xi Qiao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Tong Zhang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| |
Collapse
|
38
|
Sheng Y, Lei K, Sun C, Liu J, Tu Z, Zhu X, Huang K. Aberrant RBMX expression is relevant for cancer prognosis and immunotherapy response. Aging (Albany NY) 2024; 16:226-245. [PMID: 38214653 PMCID: PMC10817375 DOI: 10.18632/aging.205363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/03/2023] [Indexed: 01/13/2024]
Abstract
Cancer accounts for the highest rates of morbidity and mortality worldwide. RNA binding motif protein X-linked (RBMX) is a nuclear RNA-binding protein, associated with certain types of cancer by participating in the integration of sister chromatids and a combination of ribonucleoprotein complexes. However, the specific role of RBMX in cancer immunity remains unknown. This study presents the aberrant expression levels, single-cell distributions, effective prognostic roles, immune cell infiltration associations, and immunotherapy responses of RBMX as a biomarker in various types of cancer. Moreover, it validates the aberrant expression of RBMX in clinical cancer samples. Furthermore, we also evaluated the relationships between RBMX expression and myeloid-derived suppressor cells in clinical samples by immunofluorescent staining. The results showed that knockdown of RBMX can impair the proliferation, migration, and invasion of liver cancer cells. Finally, we indicated that RBMX may play an immunoregulatory role in cancer progression, affecting the therapeutic effects of immune checkpoint inhibitors in patients with cancer.
Collapse
Affiliation(s)
- Yilei Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- The HuanKui Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Kunjian Lei
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Chengpeng Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- The HuanKui Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Jia Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA
| | - Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
39
|
Elsafy S, Metselaar J, Lammers T. Nanomedicine - Immune System Interactions: Limitations and Opportunities for the Treatment of Cancer. Handb Exp Pharmacol 2024; 284:231-265. [PMID: 37578622 DOI: 10.1007/164_2023_685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nanoparticles interact with immune cells in many different ways. These interactions are crucially important for determining nanoparticles' ability to be used for cancer therapy. Traditionally, strategies such as PEGylation have been employed to reduce (the kinetics of) nanoparticle uptake by immune cells, to endow them with long circulation properties, and to enable them to exploit the Enhanced Permeability and Retention (EPR) effect to accumulate in tumors. More recently, with immunotherapy becoming an increasingly important cornerstone in the clinical management of cancer, ever more research efforts in academia and industry are focusing on specifically targeting immune cells with nanoparticles. In this chapter, we describe the barriers and opportunities of immune cell targeting with nanoparticles, and we discuss how nanoparticle-based drug delivery to specific immune cell populations in tumors as well as in secondary myeloid and lymphoid organs (such as bone marrow, lymph nodes, and spleen) can be leveraged to boost the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Sara Elsafy
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), Center for Biohybrid Medical Systems (CBMS), University Hospital RWTH Aachen, Aachen, Germany
| | - Josbert Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), Center for Biohybrid Medical Systems (CBMS), University Hospital RWTH Aachen, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), Center for Biohybrid Medical Systems (CBMS), University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
40
|
Cristi F, Walters M, Narayan N, Agopsowicz K, Hitt MM, Shmulevitz M. Improved oncolytic activity of a reovirus mutant that displays enhanced virus spread due to reduced cell attachment. Mol Ther Oncolytics 2023; 31:100743. [PMID: 38033400 PMCID: PMC10685048 DOI: 10.1016/j.omto.2023.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Wild-type reovirus serotype 3 Dearing (T3wt), a non-pathogenic intestinal virus, has shown promise as a cancer therapy in clinical trials, but it would benefit from an increased potency. Given that T3wt is naturally adapted to the intestinal environment (rather than tumors), we genetically modified reovirus to improve its infectivity in cancer cells. Various reovirus mutants were created, and their oncolytic potency was evaluated in vitro using plaque size as a measure of virus fitness in cancer cells. Notably, Super Virus 5 (SV5), carrying five oncolytic mutations, displayed the largest plaques in breast cancer cells among the mutants tested, indicating the potential for enhancing oncolytic potency through the combination of mutations. Furthermore, in a HER2+ murine breast cancer model, mice treated with SV5 exhibited superior tumor reduction and increased survival compared with those treated with PBS or T3wt. Intriguingly, SV5 did not replicate faster than T3wt in cultured cells but demonstrated a farther spread relative to T3wt, attributed to its reduced attachment to cancer cells. These findings highlight the significance of increased virus spread as a crucial mechanism for improving oncolytic virus activity. Thus, genetic modifications of reovirus hold the potential for augmenting its efficacy in cancer therapy.
Collapse
Affiliation(s)
- Francisca Cristi
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Maiah Walters
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Nashae Narayan
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Kate Agopsowicz
- Department of Oncology, University of Alberta, Edmonton AB T6G 1Z2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Mary M. Hitt
- Department of Oncology, University of Alberta, Edmonton AB T6G 1Z2, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Maya Shmulevitz
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB T6G 2E1, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton AB T6G 2E1, Canada
| |
Collapse
|
41
|
Arab I, Park J, Shin JJ, Shin HS, Suk K, Lee WH. Macrophage lncRNAs in cancer development: Long-awaited therapeutic targets. Biochem Pharmacol 2023; 218:115890. [PMID: 37884197 DOI: 10.1016/j.bcp.2023.115890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
In the tumor microenvironment, the interplay among macrophages, cancer cells, and endothelial cells is multifaceted. Tumor-associated macrophages (TAMs), which often exhibit an M2 phenotype, contribute to tumor growth and angiogenesis, while cancer cells and endothelial cells reciprocally influence macrophage behavior. This complex interrelationship highlights the importance of targeting these interactions for the development of novel cancer therapies aimed at disrupting tumor progression and angiogenesis. Accumulating evidence underscores the indispensable involvement of lncRNAs in shaping macrophage functionality and contributing to the development of cancer. Animal studies have further validated the therapeutic potential of manipulating macrophage lncRNA activity to ameliorate disease severity and reduce morbidity rates. This review provides a survey of our current understanding of macrophage-associated lncRNAs, with a specific emphasis on their molecular targets and their regulatory impact on cancer progression. These lncRNAs predominantly govern macrophage polarization, favoring the dominance of M2 macrophages or TAMs. Exosomes or extracellular vesicles mediate lncRNA transfer between macrophages and cancer cells, affecting cellular functions of each other. Moreover, this review presents therapeutic strategies targeting cancer-associated lncRNAs. The insights and findings presented in this review pertaining to macrophage lncRNAs can offer valuable information for the development of treatments against cancer.
Collapse
Affiliation(s)
- Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
42
|
Zhang J, Wu G, Peng R, Cao J, Tu D, Zhou J, Su B, Jin S, Jiang G, Zhang C, Bai D. A Novel Scoring Model of Deubiquitination Patterns Predicts Prognosis and Immunotherapeutic Response in Hepatocellular Carcinoma. Transl Oncol 2023; 38:101789. [PMID: 37734237 PMCID: PMC10518587 DOI: 10.1016/j.tranon.2023.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Aberrant expression of deubiquitinases (DUBs) is significantly associated with tumorigenesis. However, the precise impact of deubiquitination on the tumour microenvironment (TME) and immunotherapy in hepatocellular carcinoma (HCC) remains unclear. In this study, we comprehensively characterized the transcriptional and genetic alterations of 26 overall survival (OS)-related DUBs in HCC. The consensus clustering algorithm was used to identify patients with distinct deubiquitination patterns. We then established a DUBscore model using the principal component analysis (PCA) algorithm to quantify the deubiquitination patterns of individual HCC patients. Finally, we performed weighted gene coexpression network analysis (WGCNA) to identify the key DUBs. Consequently, three distinct deubiquitination patterns were identified, each showing significant differences in the characteristics of the TME, immune response, and clinical prognosis. Further analysis revealed that the DUBscore was an independent prognostic factor and could predict the response to immunotherapy for patients with HCC. Ultimately, BRCC3 was identified as a key DUB based on the DUBscore, which was significantly overexpressed in tumour tissues, as confirmed by qRT‒PCR and immunohistochemistry (IHC). We analysed the distribution and expression of BRCC3 in various types of immune cells using single-cell RNA sequencing (scRNA-seq). In conclusion, our study revealed the crucial role of deubiquitination patterns in shaping TME complexity and diversity. A more personalized and effective antitumour immunotherapy strategy can be developed by utilizing the DUBscore model to identify deubiquitination patterns in individual HCC patients. Our findings also highlight that BRCC3 may serve as a potential therapeutic target in HCC and a predictive marker for immunotherapeutic response.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China; Dalian Medical University, Dalian 116000, China
| | - Gefeng Wu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China; Dalian Medical University, Dalian 116000, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China.
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China.
| |
Collapse
|
43
|
Tian X, Wang T, Shen H, Wang S. Tumor microenvironment, histone modifications, and myeloid-derived suppressor cells. Cytokine Growth Factor Rev 2023; 74:108-121. [PMID: 37598011 DOI: 10.1016/j.cytogfr.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are important components of the tumor microenvironment (TME), which drive the tumor immune escape by inducing immunosuppression. The expansion and function of MDSCs are tightly associated with signaling pathways induced by molecules from tumor cells, stromal cells, and activated immune cells in the TME. Although these pathways have been well-characterized, the understanding of the epigenetic regulators involved is incomplete. Since histone modifications are the most studied epigenetic changes in MDSCs, we summarize current knowledge on the role of histone modifications in MDSCs within this review. We first discuss the influence of the TME on histone modifications in MDSCs, with an emphasis on histone modifications and modifiers that direct MDSC differentiation and function. Furthermore, we highlight current epigenetic interventions that can reverse MDSC-induced immunosuppression by modulating histone modifications and discuss future research directions to fully appreciate the role of histone modifications in MDSCs.
Collapse
Affiliation(s)
- Xinyu Tian
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ting Wang
- Department of Laboratory Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
44
|
Dou X, Xi J, Zheng G, Ren G, Tian Y, Dan H, Xie Z, Niu L, Duan L, Li R, Wu H, Feng F, Zheng J. A nomogram was developed using clinicopathological features to predict postoperative liver metastasis in patients with colorectal cancer. J Cancer Res Clin Oncol 2023; 149:14045-14056. [PMID: 37548773 DOI: 10.1007/s00432-023-05168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE The objective of this study is to examine the risk factors that contribute to the development of liver metastasis (LM) in patients who have suffered radical resection for colorectal cancer (CRC), and to establish a nomogram model that can be used to predict the occurrence of the LM. METHODS The present study enrolled 1377 patients diagnosed with CRC between January 2010 and July 2021. The datasets were allocated to training (n = 965) and validation (n = 412) sets in a randomly stratified manner. The study utilized univariate and multivariate logistic regression analyses to establish a nomogram for predicting LM in patients with CRC. RESULTS Multivariate analysis revealed that T stage, N stage, number of harvested lymph nodes (LNH), mismatch repair (MMR) status, neutrophil count, monocyte count, postoperative carcinoembryonic antigen (CEA) levels, postoperative cancer antigen 125 (CA125) levels, and postoperative carbohydrate antigen 19-9 (CA19-9) levels were independent predictive factors for LM after radical resection. These factors were then utilized to construct a comprehensive nomogram for predicting LM. The nomogram demonstrated great discrimination, with an area under the curve (AUC) of 0.782 for the training set and 0.768 for the validation set. Additionally, the nomogram exhibited excellent calibration and significant clinical benefit as confirmed by the calibration curves and the decision curve analysis, respectively. CONCLUSION This nomogram has the potential to support clinicians in identifying high-risk patients who may develop LM post-surgery. Clinicians can devise personalized treatment and follow-up plans, ultimately leading to an improved prognosis for patients.
Collapse
Affiliation(s)
- Xinyu Dou
- Xi'an Medical University, Xi'an, China
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaona Xi
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gaozan Zheng
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guangming Ren
- Xi'an Medical University, Xi'an, China
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ye Tian
- Xi'an Medical University, Xi'an, China
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hanjun Dan
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenyu Xie
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liaoran Niu
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lili Duan
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ruikai Li
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongze Wu
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fan Feng
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
45
|
Li X, Chen G, Wang F, Guo X, Zhang R, Liu P, Dong L, Yu W, Wang H, Wang H, Yu J. Oncogenic PIK3CA recruits myeloid-derived suppressor cells to shape the immunosuppressive tumour microenvironment in luminal breast cancer through the 5-lipoxygenase-dependent arachidonic acid pathway. Clin Transl Med 2023; 13:e1483. [PMID: 37965796 PMCID: PMC10646754 DOI: 10.1002/ctm2.1483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Oncogenic PIK3CA mutations (PIK3CAmut ) frequently occur in a higher proportion in luminal breast cancer (LBC), especially in refractory advanced cases, and are associated with changes in tumour cellular metabolism. Nevertheless, its effect on the progression of the immune microenvironment (TIME) within tumours and vital molecular events remains veiled. METHODS Multiplex immunohistochemistry (mIHC) and single-cell mass cytometry (CyTOF) was used to describe the landscape of TIME in PIK3CAmut LBC. The PIK3CA mutant cell lines were established using CRISPER/Cas9 system. The gene expression levels, protein secretion and activity of signaling pathways were measured by real-time RT-PCR, ELISA, immunofluorescence staining or western blotting. GSEA analysis, transwell chemotaxis assay, live cell imaging, flow cytometry metabolite analysis targeting arachidonic acid, Dual-luciferase reporter assay, and Chromatin immunoprecipitation assay were used to investigate the underlying function and mechanism of the PI3K/5-LOX/LTB4 axis. RESULTS PIK3CAmut LBC cells can induce an immunosuppressive TIME by recruiting myeloid-derived suppressor cells (MDSCs) and excluding cytotoxic T cells via the arachidonic acid (AA) metabolism pathway. Mechanistically, PIK3CAmut activates the transcription of 5-lipoxygenase (5-LOX) in a STAT3-dependent manner, which in turn directly results in high LTB4 production, binding to BLT2 on MDSCs and promoting their infiltration. Since a suppressive TIME is a critical barrier for the success of cancer immunotherapy, the strategies that can convert "cold" tumours into "hot" tumours were compared. Targeted therapy against the PI3K/5-LOX/LTB4 axis synergizing with immune checkpoint blockade (ICB) therapy achieved dramatic shrinkage in vivo. CONCLUSIONS The results emphasize that PIK3CAmut can induce immune evasion by recruiting MDSCs through the 5-LOX-dependent AA pathway, and combination targeted therapy with ICB may provide a promising treatment option for refractory advanced LBC patients.
Collapse
Affiliation(s)
- Xingchen Li
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center of Cancer, Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
- Department of Thyroid and Neck, Affiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouChina
| | - Guidong Chen
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center of Cancer, Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Fanchen Wang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center of Cancer, Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Xiaojing Guo
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center of Cancer, Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center of Cancer, Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Li Dong
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center of Cancer, Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Wenwen Yu
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Department of Immunology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for Cancer, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Huan Wang
- College of Life SciencesNankai UniversityTianjinChina
| | - Hailong Wang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for Caner, Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center of Cancer, Tianjin's Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Immunology and BiotherapyTianjinChina
- Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| |
Collapse
|
46
|
Jing F, Li X, Jiang H, Sun J, Guo Q. Combating drug resistance in hepatocellular carcinoma: No awareness today, no action tomorrow. Biomed Pharmacother 2023; 167:115561. [PMID: 37757493 DOI: 10.1016/j.biopha.2023.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the sixth most common cancer worldwide, is associated with a high degree of malignancy and poor prognosis. Patients with early HCC may benefit from surgical resection to remove tumor tissue and a margin of healthy tissue surrounding it. Unfortunately, most patients with HCC are diagnosed at an advanced or distant stage, at which point resection is not feasible. Systemic therapy is now routinely prescribed to patients with advanced HCC; however, drug resistance has become a major obstacle to the treatment of HCC and exploring purported mechanisms promoting drug resistance remains a challenge. Here, we focus on the determinants of drug resistance from the perspective of non-coding RNAs (ncRNAs), liver cancer stem cells (LCSCs), autophagy, epithelial-mesenchymal transition (EMT), exosomes, ferroptosis, and the tumor microenvironment (TME), with the aim to provide new insights into HCC treatment.
Collapse
Affiliation(s)
- Fanbo Jing
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Li
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Jiang
- Qingdao Haici Hospital, Qingdao 266000, China
| | - Jialin Sun
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
47
|
Wang R, Chen M, Fu M, Zhao W, Zhou J, Gong M, Wu Q, Wang H. A research on the influence of G-CSF mobilization on donor's peripheral blood MDSCs and its relationship with patient prognosis. Int Immunopharmacol 2023; 124:110998. [PMID: 37832238 DOI: 10.1016/j.intimp.2023.110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To discuss the effects of mobilization of healthy donors with granulocyte colony-stimulating factor (G-CSF) on the absolute values and functions of myeloid-derived suppressor cells (MDSCs) and subpopulations of M-MDSCs and P-MDSCs in their peripheral blood. In addition, this study also aims to investigate the impacts of the adoptively transferred MDSCs from the grafts to the patients on their prognosis and immune reconstitution. METHODS The selection of 72 donors and 72 patients were conducted for allogeneic hematopoietic stem cell transplantation (allo-HSCT) from August 2022 to December 2022 at Lu Daopei Hospital in Beijing, China. Statistical calculations were performed by Wilcoxon signed-rank test, Kruskal Wallis test, χ2 test, Kaplan Meier test, and log-rank test to analyze the data. RESULTS & CONCLUSION G-CSF induced significant amplification of MDSCs in the peripheral blood of donors in percentage and absolute values. Whether the level of P-MDSCs in patients conducted for the adoptive transfer of P - MDSCs is higher than 3.7× 107/kg or lower than 1.4× 107/kg leads to a poor prognosis of the patients. Ensuring a balanced state of MDSCs is crucial for effective immunotherapy. Transferring a high level of MDSCs from the graft to the patient's body is advantageous for the development of MDSCs while simultaneously inhibiting the proliferation of lymphocyte subgroups.
Collapse
Affiliation(s)
- Rong Wang
- Department of Microbiology and Immunology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China
| | - Man Chen
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Minjing Fu
- Beijing Lu Daopei Hospital, Beijing 100010, China
| | - Wei Zhao
- Beijing Lu Daopei Hospital, Beijing 100010, China
| | - Jing Zhou
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Meiwei Gong
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Qingqing Wu
- Department of Microbiology and Immunology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China; Center for Clinical Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Hui Wang
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China.
| |
Collapse
|
48
|
Li F, Song B, Zhou WF, Chu LJ. Toll-Like Receptors 7/8: A Paradigm for the Manipulation of Immunologic Reactions for Immunotherapy. Viral Immunol 2023; 36:564-578. [PMID: 37751284 DOI: 10.1089/vim.2023.0077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The innate immune system recognizes conserved features of viral and microbial pathogens through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are one type of PRR used by the innate immune system to mediate the secretion of proinflammatory cytokines and promote innate and adaptive immune responses. TLR family members TLR7 and TLR8 (referred to as TLR7/8 from herein) are endosomal transmembrane receptors that recognize purine-rich single-stranded RNA (ssRNA) and bacterial DNA, eliciting an immunologic reaction to pathogens. TLR7/8 were discovered to mediate the secretion of proinflammatory cytokines by activating immune cells. In addition, accumulating evidence has indicated that TLR7/8 may be closely related to numerous immune-mediated disorders, specifically several types of cancer, autoimmune disease, and viral disease. TLR7/8 agonists and antagonists, which are used as drugs or adjuvants, have been identified in preclinical studies and clinical trials as promising immune stimulators for the immunotherapy of these immune-mediated disorders. These results provided reasoning to further explore immunotherapy for the treatment of immune-mediated disorders. Nevertheless, numerous needs remain unmet, and the therapeutic effects of TLR7/8 agonists and antagonists are poor and exert strong immune-related toxicities. The present review aimed to provide an overview of the TLR family members, particularly TLR7/8, and address the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders. The aim of the work is to discuss the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders.
Collapse
Affiliation(s)
- Fang Li
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Biao Song
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei-Feng Zhou
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Li-Jin Chu
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| |
Collapse
|
49
|
Afkhami H, Mahmoudvand G, Fakouri A, Shadab A, Mahjoor M, Komeili Movahhed T. New insights in application of mesenchymal stem cells therapy in tumor microenvironment: pros and cons. Front Cell Dev Biol 2023; 11:1255697. [PMID: 37849741 PMCID: PMC10577325 DOI: 10.3389/fcell.2023.1255697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) are widely accepted as a useful tool for cell-based therapy of various diseases including malignancies. The therapeutic effects of MSCs are mainly attributed to their immunomodulatory and immunosuppressive properties. Despite the promising outcomes of MSCs in cancer therapy, a growing body of evidence implies that MSCs also show tumorigenic properties in the tumor microenvironment (TME), which might lead to tumor induction and progression. Owing to the broad-spectrum applications of MSCs, this challenge needs to be tackled so that they can be safely utilized in clinical practice. Herein, we review the diverse activities of MSCs in TME and highlight the potential methods to convert their protumorigenic characteristics into onco-suppressive effects.
Collapse
Affiliation(s)
- Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
50
|
Zheng Y, Sun L, Guo J, Ma J. The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: molecular mechanisms and therapeutic controversy. Cancer Commun (Lond) 2023; 43:1071-1096. [PMID: 37718480 PMCID: PMC10565387 DOI: 10.1002/cac2.12487] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
The advent of immunotherapy has significantly reshaped the landscape of cancer treatment, greatly enhancing therapeutic outcomes for multiple types of cancer. However, only a small subset of individuals respond to it, underscoring the urgent need for new methods to improve its response rate. Ferroptosis, a recently discovered form of programmed cell death, has emerged as a promising approach for anti-tumor therapy, with targeting ferroptosis to kill tumors seen as a potentially effective strategy. Numerous studies suggest that inducing ferroptosis can synergistically enhance the effects of immunotherapy, paving the way for a promising combined treatment method in the future. Nevertheless, recent research has raised concerns about the potential negative impacts on anti-tumor immunity as a consequence of inducing ferroptosis, leading to conflicting views within the scientific community about the interplay between ferroptosis and anti-tumor immunity, thereby underscoring the necessity of a comprehensive review of the existing literature on this relationship. Previous reviews on ferroptosis have touched on related content, many focusing primarily on the promoting role of ferroptosis on anti-tumor immunity while overlooking recent evidence on the inhibitory effects of ferroptosis on immunity. Others have concentrated solely on discussing related content either from the perspective of cancer cells and ferroptosis or from immune cells and ferroptosis. Given that both cancer cells and immune cells exist in the tumor microenvironment, a one-sided discussion cannot comprehensively summarize this topic. Therefore, from the perspectives of both tumor cells and tumor-infiltrating immune cells, we systematically summarize the current conflicting views on the interplay between ferroptosis and anti-tumor immunity, intending to provide potential explanations and identify the work needed to establish a translational basis for combined ferroptosis-targeted therapy and immunotherapy in treating tumors.
Collapse
Affiliation(s)
- Yichen Zheng
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Lingqi Sun
- Department of NeurologyAir Force Hospital of the Western Theater of the Chinese People's Liberation ArmyChengduSichuanP. R. China
| | - Jiamin Guo
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ji Ma
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|