1
|
Ren W, Chen T, Wang Y, Zhang T, Zhang H, Wang Z, Li R, Ma C, Ren Y. TIGAR attenuates intervertebral disc degeneration via autophagy-mediated Keap1 degradation and Nrf2 nuclear translocation to suppress nucleus pulposus pyroptosis. Cell Signal 2025; 132:111856. [PMID: 40345508 DOI: 10.1016/j.cellsig.2025.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Pyroptosis plays a pivotal role in intervertebral disc degeneration (IVDD) driven by oxidative-inflammatory cascades, inducing nucleus pulposus (NP) cell lysis through gasdermin-mediated pore formation and subsequent release of proinflammatory cytokines, including IL-1β and IL-18. TP53-induced glycolysis and apoptosis regulator (TIGAR) alleviates oxidative stress by scavenging reactive oxygen species (ROS); however, its involvement in the autophagy-pyroptosis axis mediating IVDD remains unclear. In this study, we aimed to investigate how TIGAR delays IVDD progression via the autophagy-pyroptosis axis. First, we discovered from the NP tissues collected from patients undergoing lumbar spine surgeries and mice with needle puncture-induced models that the expression of TIGAR was reduced in severely degenerated tissues. In the IL-1β-induced human NP cell, TIGAR knockdown exacerbated the degradation of the extracellular matrix and pyroptosis, whereas TIGAR overexpression reversed this phenomenon. Ultrastructural analysis via transmission electron microscopy (TEM) and autophagic flux quantification revealed TIGAR-mediated autophagy in NP cells under inflammatory conditions. Co-immunoprecipitation assays validated the formation of a Keap1-p62-ubiquitin ternary complex, which directed Keap1 toward lysosome-dependent degradation and enhanced Nrf2 nuclear translocation. Therapeutic intradiscal delivery of AAV-TIGAR attenuated IVDD progression in mouse models, evidenced by preserved disc height index and reduced histopathological scores. Collectively, this work identified TIGAR as a redox-sensitive molecular switch that mitigated oxidative stress and inflammasome-driven pyroptosis through Keap1 autophagic clearance, offering a novel therapeutic paradigm for precision-targeted IVDD intervention.
Collapse
Affiliation(s)
- Wei Ren
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Chen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianyou Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Helong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengbo Wang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruya Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Ma
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yongxin Ren
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Kim DH, Lee H, Kim MY, Hwangbo H, Ji SY, Bang E, Hong SH, Kim GY, Leem SH, Ryu D, Cheong J, Choi YH. Particulate matter 2.5 stimulates pyroptosis and necroptosis via the p38 MAPK/Akt/NF-κB signaling pathway in human corneal epithelial cells. Toxicology 2025; 515:154138. [PMID: 40199452 DOI: 10.1016/j.tox.2025.154138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Particulate matter 2.5 (PM2.5) exposure poses significant health risks, particularly to the eyes. This study aimed to investigate the cytotoxic effects of PM2.5 on human corneal epithelial cells (HCECs) and to elucidate the mechanisms involved in pyroptosis and necroptosis. HCECs were exposed to PM2.5, and cytotoxicity, reactive oxygen species (ROS) levels, and the expression of pyroptosis- and necroptosis-related proteins were assessed. The roles of nuclear factor-kappa B (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signaling pathways were also investigated. Exposure to PM2.5 caused a dose-dependent decrease in cell viability, accompanied by significant NLRP3 inflammasome activation, leading to pyroptosis and the release of pro-inflammatory cytokines. Enhanced ROS generation and mitochondrial dysfunction have also been observed, along with indicators of necroptosis, such as increased levels of mixed-lineage kinase domain-like proteins. Importantly, activation of the NF-κB signaling pathway was crucial for these responses. The suppression of p38 mitogen-activated protein kinase (MAPK) and activation of protein kinase B (Akt) using pharmacological modulators SB203580 and SC79, respectively, significantly reduced PM2.5-mediated cellular damage. These findings indicate that p38 MAPK inhibition and Akt activation are key regulatory mechanisms that help attenuate the deleterious effects of PM2.5 on HCECs. In conclusion, our findings offer new insights into the mechanisms by which PM2.5 induces pyroptosis and necroptosis in HCECs, especially by activating the NLRP3 inflammasome and NF-κB signaling pathways. The critical regulatory roles of p38 MAPK and Akt underscore their potential as therapeutic targets to alleviate PM-induced ocular damage.
Collapse
Affiliation(s)
- Da Hye Kim
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Integrated Biological Science, The Graduate School of Pusan National University, Busan 46241, Republic of Korea.
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.
| | - Min Yeong Kim
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Seon Yeong Ji
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Su Hyun Hong
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Gi Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Sciences, Dong-A University, Busan 49315, Republic of Korea; Department of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - JaeHun Cheong
- Department of Integrated Biological Science, The Graduate School of Pusan National University, Busan 46241, Republic of Korea; Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| |
Collapse
|
3
|
Dorich S, Auger A, Wang L, Burch J, Pellerin C, Chan S, Raymond M, Zhang L, Chefson A, Germain MA, Jananji S, Dumais V, Gaudreault S, Caron A, Dumas-Bérubé É, A Crackower M. Discovery of novel NLRP3 inhibitors enabled by a high-throughput screen. Bioorg Med Chem Lett 2025; 122:130184. [PMID: 40089037 DOI: 10.1016/j.bmcl.2025.130184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
NLRP3 is a key regulator of the innate immune system involved in sensing a variety of pathogen and danger signals. Priming and activation of NLRP3 leads to the release and maturation of pro-inflammatory cytokines, as well as gasdermin D-mediated cell death. Inhibition of dysregulated NLRP3 activity has been associated with promising therapeutic opportunities for a variety of systemic and neurological diseases including atherosclerosis and Parkinson's disease. Herein, we discuss how a high-throughput screen (HTS) allowed us to discover new chemical scaffolds that specifically bind to NLRP3 and inhibit its function in a selective manner. We also describe how an enantiomer of HTS hit 5, compound 11, demonstrated in vivo inhibition of NLRP3.
Collapse
Affiliation(s)
- Stéphane Dorich
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada.
| | - Anick Auger
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Li Wang
- Ventus Therapeutics U.S., Inc., 100 Beaver St., Suite 201, Waltham, MA 02453, USA
| | - Jason Burch
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Charles Pellerin
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Silas Chan
- Ventus Therapeutics U.S., Inc., 100 Beaver St., Suite 201, Waltham, MA 02453, USA
| | - Marianne Raymond
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Lingling Zhang
- Ventus Therapeutics U.S., Inc., 100 Beaver St., Suite 201, Waltham, MA 02453, USA
| | - Amandine Chefson
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Marie-Anne Germain
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Silvana Jananji
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Valérie Dumais
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Samuel Gaudreault
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Alexandre Caron
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Émilie Dumas-Bérubé
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Michael A Crackower
- Ventus Therapeutics U.S., Inc., 100 Beaver St., Suite 201, Waltham, MA 02453, USA
| |
Collapse
|
4
|
Lemche E, Hortobágyi T, Kiecker C, Turkheimer F. Neuropathological links between T2DM and LOAD: systematic review and meta-analysis. Physiol Rev 2025; 105:1429-1486. [PMID: 40062731 DOI: 10.1152/physrev.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 04/16/2025] Open
Abstract
Recent decades have described parallel neuropathological mechanisms increasing the risk for developing late-onset Alzheimer's dementia (LOAD) in type 2 diabetes mellitus (T2DM); however, still little is known of the role of diabetic encephalopathy and brain atrophy in LOAD. The aim of this systematic review is to provide a comprehensive view on diabetic encephalopathy/cerebral atrophy, taking into account neuroimaging data, neuropathology, metabolic and endocrine mechanisms, amyloid formation, brain perfusion impairments, neuroimmunology, and inflammasome activation. Key switches were identified, to further meta-analyze genomic candidate loci and epigenetic modifications. For the qualitative meta-analysis of genomic bases extracted, human linkage studies were examined; for epigenetic mechanisms, data from both human and animal studies are described. For the systematic review of pathophysiological mechanisms, 1,259 publications were evaluated and 93 gene loci extracted for candidate risk linkages. Sixty-six publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight the insulin signaling system, vascular markers, inflammation and inflammasome pathways, amylin interactions, and glycosylation mechanisms. The protocol was registered with PROSPERO (ID: CRD42023440535).
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Gong HB, Yan CY, Ye HE, Tan SY, Chen SS, Ye JW, Sun WY, Tan HL, Luo X, Niu J, Li K, Wang JH, Kurihara H, Li YF, He RR. Screening novel anti-inflammatory peptides inhibiting the NLRP3 inflammasome from UHPLC-MS/MS-characterized peptide profiles of cocoa tea protein hydrolysates. Food Res Int 2025; 212:116519. [PMID: 40382080 DOI: 10.1016/j.foodres.2025.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025]
Abstract
Cocoa tea (Camellia ptilophylla) is a popular beverage enjoyed worldwide, yet its protein-rich residues are often underutilized during processing. In this study, proteins from cocoa tea were extracted and hydrolyzed with alkaline protease to produce cocoa tea protein hydrolysates (CTPH). The results showed that CTPH exhibited promising anti-inflammatory activity. To uncover bioactive peptides, the hydrolysates were analyzed using UHPLC-MS/MS, and potential peptides were screened through molecular docking targeting the NLRP3 inflammasome. In an in vitro model of NLRP3 inflammasome activation, two active peptides, LLR and LIGF, were found to significantly reduce IL-1β production in PMA-differentiated THP-1 macrophages following treatment with nigericin or ATP. These peptides interact with the NACHT domain of NLRP3 via hydrogen bonding and hydrophobic interactions. Their binding to NLRP3 was further confirmed by CETSA assay. These findings suggest that cocoa tea-derived peptides could offer therapeutic potential for managing inflammation.
Collapse
Affiliation(s)
- Hai-Biao Gong
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Chang-Yu Yan
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Hui-Er Ye
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Shuo-Yan Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Shi-Sheng Chen
- Guangzhou Springsnow Biotechnology Co., Ltd, Guangzhou 510670, China
| | - Jian-Wen Ye
- Guangzhou Springsnow Biotechnology Co., Ltd, Guangzhou 510670, China
| | - Wan-Yang Sun
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Hong-Li Tan
- Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Xiang Luo
- Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jie Niu
- Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Kun Li
- Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Jing-Hao Wang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hiroshi Kurihara
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Yi-Fang Li
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Rong-Rong He
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China / College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs/Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
6
|
Gounder SK, Chuturgoon AA, Ghazi T. Exploring the cardiotoxic potential of fumonisin B1 through inflammatory pathways and epigenetic modifications: A mini review. Toxicon 2025; 261:108374. [PMID: 40286825 DOI: 10.1016/j.toxicon.2025.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
This review is centered around the cardiotoxic effects of fumonisin B1 (FB1), particularly its impact on sphingolipid metabolism, inflammation, and epigenetics. FB1 is a mycotoxin produced by Fusarium fungi, which mainly contaminates cereal grains and poses an adverse health risk to both humans and animals; however, its disease-causing capabilities remain to be uncovered, specifically its ability to exacerbate and cause cardiovascular disease. It disrupts sphingolipid metabolism by inhibiting ceramide synthase, leading to cellular dysfunction and contributes to conditions such as hypertension and eventual heart failure. FB1 is responsible for an altered inflammatory response, whereby it increases pro-inflammatory cytokines such as IL-6 and IL-1β, which contribute to cardiovascular diseases. Moreover, FB1 induces significant epigenetic changes, including DNA hypermethylation, histone modifications such as increased H3K9me2 and H3K9me3, inhibition of histone acetyltransferase activity, and changes in microRNA expression profiles. These epigenetic alterations can silence or activate inflammatory genes, exacerbating disease progression. This review thus highlights the need for further research to elucidate the connections between FB1, inflammation, epigenetic modifications, and cardiotoxicity, which could lead to better strategies for managing FB1-related adverse health risks.
Collapse
Affiliation(s)
- Selwyn Kyle Gounder
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
7
|
Xu G, Sun X, An J, Sun F, Zhang C, Williams JP. Ozone protects from myocardial ischemia-reperfusion injury via inhibition of the NLRP3 inflammasome. Eur J Pharmacol 2025; 997:177631. [PMID: 40246138 DOI: 10.1016/j.ejphar.2025.177631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Ischemic heart disease (IHD) is a leading cause of morbidity and mortality worldwide. Myocardial ischemia/reperfusion injury (MIRI) is the primary cause of myocardial injury triggered by post-myocardial infarction reperfusion therapy. Its pathogenesis involves Ca2+ overload, the production of large amounts of oxygen-free radicals, inflammation, and cell necrosis. Growing evidence suggests that the NLRP3 inflammasome significantly contributes to the sterile inflammatory response and pyroptosis in MIRI, linking damage sensing to the initiation and amplification of the inflammatory response. Reportedly, ozone exerts anti-inflammatory and anti-infection effects by activating the antioxidant system. Additional evidence suggests that ozone inhibits NLRP3 inflammasome expression to relieve ischemic injury. In this study, we aimed to explore whether pretreating the myocardium with ozone protects it from MIRI by inhibiting the NLRP3 inflammasome. Rats were subjected to rectal infusion of ozone for 5 consecutive days, followed by ligation of the left anterior descending coronary artery for 30 min and reperfusion for 120 min to induce MIRI. Experimental results were obtained using echocardiography, triphenyltetrazolium chloride and hematoxylin and eosin staining, western blotting, and enzyme-linked immunosorbent assay. The results showed that ozone significantly improved the diastolic function of the heart, reduced the area of myocardial infarction, and decreased the expression levels of NLRP3, pro-caspase-1, ASC, and the secretion of caspase-1, interleukin (IL)-1β, and IL-18. In summary, these findings reveal that ozone pretreatment can alleviate the damage that occurs during MIRI by inhibiting the NLRP3 Inflammasome.
Collapse
Affiliation(s)
- Guohao Xu
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, 261000, China; Institute for Lnnovation Diagnosis & Treatment in Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China; Pain and Sleep Medicine Center, Rapid Anti-depression Center, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, China
| | - Xiaotong Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Jianxiong An
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, 261000, China; Institute for Lnnovation Diagnosis & Treatment in Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China; Pain and Sleep Medicine Center, Rapid Anti-depression Center, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, China; Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Brain Disease Institute & Department of Anesthesiology for the Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, China.
| | - Fan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Chengming Zhang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, 261000, China.
| | - John P Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Park SK, Son JY, Kim YM, Ju JS, Ahn DK. BTX-A inhibited trigeminal neuralgia by blocking the NLRP3 pathway in rats. Brain Res Bull 2025; 225:111344. [PMID: 40220966 DOI: 10.1016/j.brainresbull.2025.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Few studies have examined the mechanisms underlying the development of trigeminal neuralgia involving the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3). The purpose of this experiment was to investigate the role of NLRP3 in the antinociceptive effects of botulinum toxin type A (BTX-A) in trigeminal neuralgia. We used a trigeminal neuralgia animal model induced by injecting 1-acyl-2-lyso-sn-glycero-3-phosphate (LPA) into the trigeminal nerve root of rats. Rats treated with LPA showed a significant increase in the expression of NLRP3 in the trigeminal ganglion 9 days after LPA injection. Furthermore, the levels of interleukin (IL)-1β, IL-18, and tumor necrosis factor (TNF)-α increased on postoperative day 9. Subcutaneous administration of BTX-A (3 U/kg) in the vibrissa pad resulted in a significant attenuation of mechanical allodynia, and the antiallodynic effects lasted for 7 days. The upregulated NLRP3 expression in the trigeminal ganglion was suppressed 2 days after the injection of BTX-A. Moreover, the BTX-A injection significantly reduced the concentrations of IL-1β, IL-18, and TNF-α in the trigeminal ganglion. Intraganglionic injection of an NLRP3 inhibitor blocked mechanical allodynia and attenuated the upregulated cytokine concentrations in the LPA-treated rats. These results indicate that BTX-A induces its antinociceptive effects in the LPA-induced trigeminal neuralgia animal model by attenuating the NLRP3-cytokine pathway in the trigeminal ganglion.
Collapse
Affiliation(s)
- Se-Kyung Park
- Department of Oral Physiology, School of Dentistry and Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Jo-Young Son
- Department of Oral Physiology, School of Dentistry and Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Yu-Mi Kim
- Department of Oral Physiology, School of Dentistry and Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Sook Ju
- Department of Oral Physiology, School of Dentistry and Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry and Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
9
|
Datta S, Rahman MA, Koka S, Boini KM. Mitigation of nicotine-induced podocyte injury through inhibition of thioredoxin interacting protein. Biomed Pharmacother 2025; 187:118110. [PMID: 40311224 DOI: 10.1016/j.biopha.2025.118110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Nicotine has been reported to initiate NLRP3 inflammasome formation and activation in different pathological conditions. The current study assessed whether thioredoxin-interacting protein (TXNIP) mediates nicotine-induced NLRP3 inflammasome activation and consequent podocyte injury. Co-immunoprecipitation analysis demonstrated that nicotine-induced TXNIP/NLRP3 interaction in podocytes relative to control groups. However, pre-treatment with TXNIP inhibitors, verapamil (Vera) or SRI-37330 (SRI) attenuates nicotine-induced TXNIP/NLRP3 interaction. Confocal microscopic analysis showed that nicotine treatment significantly increased the colocalization of Nlrp3 with Asc, Nlrp3 with caspase-1 and Nlrp3 with TXNIP in podocytes compared to control cells. Pretreatment with TXNIP inhibitor Vera or SRI abolished nicotine-induced Nlrp3/Asc, Nlrp3/caspase-1 or Nlrp3/TXNIP colocalization. Correspondingly, nicotine treatment significantly increased the caspase-1 activity and IL-1β production compared to control cells. However, prior treatment with TXNIP inhibiting Vera or SRI significantly attenuated the nicotine-induced caspase-1 activity and IL-1β production. Further immunofluorescence analysis showed that nicotine treatment significantly decreased podocin and nephrin expression compared to control cells. However, pretreatment with TXNIP inhibiting Vera or SRI attenuated the nicotine-induced podocin and nephrin reduction. In addition, confocal, flow cytometry and biochemical analysis showed that nicotine treatment significantly increased desmin expression, apoptosis and cell permeability compared to control cells. However, prior treatment with TXNIP inhibiting Vera or SRI significantly attenuated the nicotine-induced desmin expression, apoptosis and cell permeability. Taken together, our results demonstrate that TXNIP/NLRP3 interaction constitutes a potentially key signalling mechanism driving nicotine-induced NLRP3 inflammasome formation, activation and subsequent podocyte damage.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX, United States
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.
| |
Collapse
|
10
|
He A, Wang J, Feng Y, Liao Z, Zheng Q, Zhang W, Chen H. Terminalia chebula Retz. extract relieves gout arthritis by inhibiting xanthine oxidase, the uric acid transporter, and NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119848. [PMID: 40268110 DOI: 10.1016/j.jep.2025.119848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gout is a metabolic disorder accompanied by high serum uric acid levels and joint inflammation due to disturbances in purine metabolism in the body. The dried fruit of Terminalia chebula Retz. is recorded in the "Four Medical Tantras" for the treatment of gout and the core anti-gout component of the Tibetan clinical prescription, such as TongFengTangSan. However, the anti-gout efficacy has not been reported yet. AIM OF STUDY To evaluate the anti-gout effect and mechanisms of Terminalia chebula Retz. in gout model rats. MATERIALS AND METHODS First, the components of the Terminalia chebula Retz. extract were detected and characterized using ultra performance liquid chromatography with quadrupole time-of-flight mass spectrometry technology. A gout model was established using the continuous intragastric administration of 200 mg/kg of potassium oxonate and 300 mg/kg of hypoxanthine for 44 days, and 8 mg monosodium urate suspension was injected once in the joint cavity on the 42nd day. One hour after modeling, Terminalia chebula Retz. extract was administered by gavage at low, medium, and high doses. The corresponding biochemical indicators at the protein and gene levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. RESULTS A total of 149 compounds, comprising 23 phenolic acids, 104 tannins, 5 flavonoids, 14 terpenoids, and three other compounds, were identified in Terminalia chebula Retz. extract using the ultra performance liquid chromatography with quadrupole time-of-flight mass spectrometry method. The in vivo pharmacodynamics experiments showed that Terminalia chebula Retz. extract significantly reduced the serum uric acid level, the ankle swelling level, and the level of inflammatory factors in the gout rats. Terminalia chebula Retz. extract also decreased the serum xanthine oxidase, alanine aminotransferase, aspartate aminotransferase and diamine oxidase activity of the gout rats. The western blot and PCR experiments showed that treatment with Terminalia chebula Retz. extract down-regulated the mRNA and protein levels of urate transporter 1 and glucose transporter 9 in the kidney tissues. An immunofluorescence experiment revealed that Terminalia chebula Retz. extract strengthened the intestinal barrier by the up-regulation on the protein expression of occludin and zonula occludens-1 in the ileum. In addition, Terminalia chebula Retz. extract was found to alleviate inflammation by inactivating the renal NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome and the synovial membranes of joints. Terminalia chebula Retz. treatment down-regulated the protein or mRNA levels of NLRP3 inflammasome family members, including toll-like receptor 4, toll-like receptor 2, NLRP3, nuclear factor kappa-B, apoptosis-associated speck-like protein containing a CARD and interleukin-1β. CONCLUSION This study demonstrated that Terminalia chebula Retz. extract alleviated gout symptoms through the dual effects of lowering UA and relieving inflammation through inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Aocheng He
- National Engineering Research Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 56 Yangming Road, Nanchang, 330006, China
| | - Jialiang Wang
- National Engineering Research Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 56 Yangming Road, Nanchang, 330006, China
| | - Yulin Feng
- National Engineering Research Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 56 Yangming Road, Nanchang, 330006, China
| | - Zhenggen Liao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, 330004, China; Traditional Chinese Medicine Pharmaceutical Technology Collaborative Innovation Institute, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, 330004, China; Traditional Chinese Medicine Pharmaceutical Technology Collaborative Innovation Institute, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Wugang Zhang
- National Engineering Research Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, No. 56 Yangming Road, Nanchang, 330006, China.
| | - Haifang Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, 330004, China; Traditional Chinese Medicine Pharmaceutical Technology Collaborative Innovation Institute, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
11
|
Padhy DS, Vesmaker K, Banerjee S. Neuroprotective potential of tranilast in streptozotocin-induced sporadic Alzheimer's disease model targeting TXNIP-NLRP3 inflammasome pathway. Int Immunopharmacol 2025; 156:114691. [PMID: 40273674 DOI: 10.1016/j.intimp.2025.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Sporadic Alzheimer's disease (sAD) is a progressive neurodegenerative disorder characterised by oxidative stress, neuroinflammation, mitochondrial dysfunction and cerebral insulin resistance. Even though approximately 95 % of AD cases are reported as sporadic, the exact pathogenesis remains sparse. Tranilast, an analogue of tryptophan metabolite, was initially endowed as an anti-allergic agent and used in multiple inflammatory ailments. Still, the molecular mechanisms targeting sAD are yet to be investigated. In the present study, we investigated the neuroprotective potential of tranilast by performing biochemical, molecular and histopathological assessments using both in vivo and in vitro experimental sAD models. Streptozotocin (STZ; 3 mg/kg) was bilaterally injected on day 1 and 3 through the intracerebroventricular (ICV) route to Sprague Dawley rats for the in vivo model induction. Spontaneous alternation test, novel object recognition test, and passive avoidance test were performed to assess the altered behavioural patterns in animals. Furthermore, human neuroblastoma cells (SHSY5Y) were exposed to STZ (1 mM) and tranilast for 24 h to validate the in vivo results. Three weeks of tranilast (30 and 100 mg/kg, p.o.) treatment improved neurobehavioural anomalies in ICV-STZ-treated rats by halting neuroinflammation and NLRP3 inflammasome activation caused by enhanced reactive oxygen species (ROS) and thioredoxin interaction protein (TXNIP) overexpression. The phosphorylated tau (p-tau S416) level was also increased in the ICV-STZ rat's hippocampus and reversed upon tranilast treatment. A high dose of tranilast (100 mg/kg) treatment sensitised hippocampal insulin signalling in ICV-STZ-treated rats. Furthermore, in cell culture studies, 24-h tranilast (30 and 100 μM) treatment reduced the mitochondrial ROS production and attenuated inflammasome activation in STZ-treated SHSY5Y cells. In summary, the findings of the study proclaim the neuroprotective potential of tranilast in STZ induced model of sAD by modulating the TXNIP-NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Dibya Sundar Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Kolkata, West Bengal, India
| | - Kushal Vesmaker
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Kolkata, West Bengal, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Kolkata, West Bengal, India.
| |
Collapse
|
12
|
Bai H, Du S, Qiu D, Li S, Gao R, Zhang Z. GPX4 Inhibition Contributes to NLRP3-Mediated Pyroptosis and Cognitive Impairment in Ketamine-Exposed Neonatal Rats. Mol Neurobiol 2025:10.1007/s12035-025-05042-w. [PMID: 40404947 DOI: 10.1007/s12035-025-05042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/05/2025] [Indexed: 05/24/2025]
Abstract
Increasing evidence reveals that multiple or prolonged exposure to ketamine causes hippocampal damage and cognitive dysfunction. However, the critical mechanisms underlying ketamine-induced neurotoxicity in the developing brain remain elusive. The present study was designed to investigate the role of GPX4 in ketamine-induced pyroptosis and cognitive dysfunction in the developing rat hippocampus. To achieve this goal, we conducted Western blotting, ELISA tests, histopathological analysis, Morris water maze tests, cell viability assays, and biochemical analyses on PC12 cells, HAPI cells, and 7-day-old rats. Additionally, N-acetylcysteine (NAC) and RSL3 were administered prior to continuous ketamine exposure. Our findings indicate that GPX4 inhibition by RSL3 enhances lipid peroxidation and mitochondrial damage, activates NLRP3/caspase-1 axis-dependent pyroptosis, and exacerbates hippocampal damage and cognitive dysfunction following ketamine exposure, while NAC effectively mitigates the effects of RSL3. Collectively, our in vivo and in vitro results support the notion that GPX4 may serve as a negative regulator of pyroptosis in ketamine-induced hippocampal damage and cognitive dysfunction. Our study proposes a novel strategy for treating ketamine-induced neurotoxicity through upregulating GPX4 expression.
Collapse
Affiliation(s)
- Hui Bai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shan Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Di Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruifeng Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| | - Zhiheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
13
|
Li Y, Tang T, Sun Y, Chen G, Yuan X, Cai D. The role of TLR-4 in chemoresistance of cancer. Discov Oncol 2025; 16:865. [PMID: 40404908 DOI: 10.1007/s12672-025-02509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/25/2025] [Indexed: 05/24/2025] Open
Abstract
Chemotherapy, which aims to eradicate tumor cells and enhance patient survival, is a prevalent approach for tumor treatment. Nevertheless, recurrence and drug resistance resulting from consecutive chemotherapy regimens have emerged as significant factors contributing to the high fatality rates among cancer patients. Numerous studies have revealed that chemicals discharged by injured and deceased cells can trigger the host repair program mediated by toll-like receptor-4 (TLR-4), enhancing tumor resistance. TLR-4 is not only expressed in immune cells but also in various malignant tumor cells, especially inflammation-associated tumor cells, and plays a crucial role in tumor formation, development, and chemoresistance. Endogenous ligands are released upon the killing of tumor cells by chemotherapy drugs, binding to and activating TLR-4, subsequently activating downstream NF-κB and other essential molecules, leading to the release of multiple factors associated with tumor proliferation and invasion, creating a microenvironment conducive to local recurrence and metastasis, and promoting tumor progression and drug resistance. This review assessed studies on the resistance of several tumor cells to commonly utilized anticancer treatments induced by TLR-4 to better comprehend the phenomena and mechanism of TLR-4-dependent resistance, as well as to put forward suggestions and insights for overcoming tumor resistance.
Collapse
Affiliation(s)
- Yuhua Li
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, People's Republic of China
- Department of Pharmacy, The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, People's Republic of China
| | - Tianle Tang
- Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Gui'e Chen
- Department of Pharmacy, The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, People's Republic of China
| | - Xinrong Yuan
- Department of Gynecology and Obstetrics, The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, People's Republic of China.
| | - De Cai
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Ren H, Shi LF, Wang Y, Pan XY, Li S, Ma YH, Fan JH, Chen X, Yang ZY, Fan S, Zhang Y, Han S, He WR, Wan B, Qiu HJ, Zhang GP. The S273R protein of African swine fever virus antagonizes the canonical NF- κB signaling pathway by I κB α. J Virol 2025; 99:e0222524. [PMID: 40162787 PMCID: PMC12090767 DOI: 10.1128/jvi.02225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus, which is the causative agent of African swine fever (ASF), a devastating disease of suids epidemic in many countries. The virus has developed multiple strategies to evade surveillance from the host immune system. Inflammatory responses, especially the NF-κB signaling pathway, play central roles in ASFV pathogenesis and immunoevasion. In this study, we identified the ASFV S273R protein (pS273R) as an antagonist of the canonical NF-κB signaling pathway independently of its protease activity. The ectopically expressed pS273R markedly inhibited the tumor necrosis factor-alpha or interleukin-1 beta-triggered NF-κB signaling pathway in HEK293T and PK-15 cells. Silencing pS273R by RNA interference led to elevated expression levels of proinflammatory cytokines in the ASFV-infected primary porcine alveolar macrophages. Mechanistically, pS273R functioned independently of its protease activity. pS273R was associated with the NF-κB complex and interrupted the translocation of IκBα into the proteasome, resulting in the increased stability of IκBα and subsequently impaired nuclear translocation of p65. Furthermore, the core domain (amino acids 83-273) of pS273R was essential for the pS273R-mediated inhibition of the NF-κB signaling pathway. These findings demonstrate the immunosuppressive role of pS273R and provide novel insights into ASFV biological characteristics.IMPORTANCEAfrican swine fever (ASF) is a hemorrhagic disease of suids caused by African swine fever virus (ASFV), with morbidity and mortality rates of up to 100%. The disease has led to significant economic losses to the global swine industry. In this study, we identify the ASFV S273R protein (pS273R) as an antagonist of the canonical NF-κB signaling pathway. Our findings demonstrate the immunosuppressive role of pS273R, which will contribute to a better understanding of the pathogenesis of ASFV and may contribute to the development of antiviral therapies against ASF.
Collapse
Affiliation(s)
- Haojie Ren
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lan-Fang Shi
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiao-Ya Pan
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yu-He Ma
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jun-Hao Fan
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xing Chen
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhong-Yuan Yang
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shuai Fan
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuhang Zhang
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shichong Han
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wen-Rui He
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, Henan, China
| | - Bo Wan
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Gai-Ping Zhang
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Wu Y, Ma Q, Meng X, Sun Q, Wang Z, Zhang W. MicroRNA-9-3p inhibits endothelial pyroptosis in atherosclerosis by targeting the PTEN/AKT axis. Int J Biol Macromol 2025; 315:144289. [PMID: 40393590 DOI: 10.1016/j.ijbiomac.2025.144289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Inflammation and pyroptosis are key characteristic features of Atherosclerosis (AS), a complex, multifaceted chronic vascular disease. Although microRNAs (miRNAs) have been substantially implicated, as pivotal post-transcriptional regulators, in molecular mechanisms underlying atherosclerotic development, the precise role of miR-9-3p in atherosclerotic progression remains unclear. Herein, we aimed to elucidate the regulatory function of miR-9-3p in Endothelial Cell pyroptosis and AS via integrated bioinformatics analysis, as well as in vitro and in vivo assays. We focused on identifying signaling pathways miR-9-3p modulated and assessing its potential to mitigate atherosclerotic plaque formation. According to the results, miR-9-3p promoted AKT phosphorylation by directly targeting the 3'-Untranslated Region (3'-UTR) of PTEN mRNA, suppressing EC pyroptosis. Notably, the AKT signaling pathway, which was significantly enriched in our analyses, functions upstream of the NLRP3 inflammasome, a principal mediator of pyroptosis. We also identified the SP1 Transcription Factor (TF) binding sites within the promoter region of MIR9-1HG, implying a regulatory mechanism in which SP1 modulates miR-9-3p expression and function. Given the reversibility of epigenetic modifications, the potential of restoring miR-9-3p expression presents a novel therapeutic strategy for AS. Overall, in addition to advancing the understanding of atherosclerotic treatment mechanisms, this study positions miR-9-3p as a potential therapeutic target.
Collapse
Affiliation(s)
- Yan Wu
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Ultrasound Molecular Imaging Joint laboratory of Heilongjiang Province (International Cooperation), Harbin, Heilongjiang 150086, China
| | - Qi Ma
- Department of Ultrasound, Harbin Red Cross Central Hospital, Harbin, China
| | - Xiangrong Meng
- Department of Laboratory Diagnosis, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qi Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Heilong Jiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Zhuozhong Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, 150086, China
| | - Wenjing Zhang
- Department of Laboratory Diagnosis, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
16
|
Zhang J, Liang R, Ding X, Chen B, Tan Q, Wang M, Hu Y, Liu Q, Chen W, Zhou M. Dinitroaniline herbicide exposure, mitochondrial DNA copy number, and 10-year risk of atherosclerotic cardiovascular disease: A community-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126113. [PMID: 40138839 DOI: 10.1016/j.envpol.2025.126113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Dinitroaniline herbicides are widely used to control weed resistance, but their effects on atherosclerotic cardiovascular disease (ASCVD) are unknown. Serum trifluralin and pendimethalin, mitochondrial DNA copy number (mtDNAcn), and predictors of 10-year ASCVD risk were measured in participants from the Wuhan-Zhuhai cohort. Linear mixed model, restricted cubic spline (RCS) model, Bayesian kernel machine regression (BKMR) model, and weighted quantile sum (WQS) regression model were used for association analyses. Mediation models were used to estimate the potential role of mtDNAcn in the above associations. Cross-sectionally, each 1-unit increase in ln-transformed serum trifluralin and pendimethalin levels were associated with an increase in 10-year ASCVD risk of 0.272 % and 0.178 %, respectively (all P < 0.05). The BKMR and WQS models showed that trifluralin and pendimethalin co-exposure was associated with the increased 10-year ASCVD risk, with trifluralin being the primary contributor. Longitudinally, each 1-unit increase in ln-transformed serum trifluralin and pendimethalin levels were associated with the annual increase in 10-year ASCVD risk of 0.192 % and 0.156 %, respectively (all P < 0.05). Mediation analysis showed that mtDNAcn mediated 3.8 % of the trifluralin-associated increase in 10-year ASCVD risk. In conclusion, trifluralin and pendimethalin were cross-sectionally and longitudinally associated with the increased 10-year ASCVD risk, and mtDNAcn partially mediated the association.
Collapse
Affiliation(s)
- Jiake Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuejie Ding
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingdong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiyou Tan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengyi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxiang Hu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Ali A, Noblett J, Usman N, Wray S, Blake H, Gutierrez del Arroyo A, Abbott TE, Begum S, Dias P, Weber V, Papoutsos C, Ackland G, Black R, Khan A, Stretch B, Wikner M, Wong R, Warrington A, Bruce-Hickman K, Verma P, Rodriguez Sierra EP, Coulter C, Al-Maiyah F, Barrett A, Martin T, Das A, Costa AV, Palfreeman C, George D, Raja J, Stephenson L, Kwok S, Quereshi N, Chapman A, Tsun J, Patel A, Smith C, Arumugaum A, Hoe M, Thompson C, Singh A, Sritharan P, Valori L, Collins E, Kennedy N, Longbottom R, Meroz MR, Tanqueray T, Canclini L, Noakes I, Frowd R, Sharp T, Leary R, Nicklin A, Sousi E, Mazzoli I, Berger P, De Freixo L, Vishwanathan A, Eiben P, Hoodless S, Carey A, Pinder A, Wilson M, Waspe J, Bramley P, Wilson V, David AL, Weist S, Newth O, Folorunsho M, Ali J, Achempong Y, Bourke M, Brunnen D, Kim J, Mak K, Odor P, Sarmiento L, Ciechanowicz S, Borg LX, Tripurneni V, Phull M. Interleukin-1 receptor antagonist polymorphisms in women receiving epidural analgesia who develop maternal intrapartum fever: a prospective, multicentre Mendelian randomised study. Br J Anaesth 2025:S0007-0912(25)00226-0. [PMID: 40368685 DOI: 10.1016/j.bja.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Genetically predicted higher levels of the anti-inflammatory cytokine interleukin-1 receptor antagonist (IL1-Ra) might reduce the risk of developing epidural-related maternal fever, a phenomenon that occurs exclusively in women having epidural analgesia in labour. We hypothesised that in women having epidural analgesia, the absence of specific alleles that lower circulating levels of IL1-Ra would be associated with the development of epidural-related maternal fever, administration of intrapartum antibiotics, or both. METHODS We prospectively enrolled women ≥18 yr of age receiving epidural analgesia during labour, excluding those with pre-existing fever, antibiotic therapy, or immunodeficiency. Allele scores were constructed from genotyping the C-allele frequency at variants rs6743376 and rs1542176; more copies of each allele independently raise IL-1Ra. The composite primary outcome was maternal intrapartum fever (>38°C) or administration of intrapartum antibiotics after epidural placement. The exposure of interest was the IL1-Ra allele score, comparing 0 (lowest genetically predicted IL-1Ra levels) with ≥1 allele scores. Maternal fever and antibiotic administration were compared in women with 0 or ≥1 allele scores. RESULTS Of 624 women genotyped, 155 (24.8%) developed maternal fever or received antibiotics. Fever or antibiotic administration occurred in 19/74 (25.7%) labouring women with an IL-1Ra allele score of 0, compared with 136/550 (24.7%) women with IL-1Ra allele scores ≥1 (odds ratio 1.05, 95% confidence interval 0.60-1.83; P=0.89). CONCLUSIONS In women who receive epidural analgesia during labour, genetically predicted (higher) interleukin-1 receptor antagonist levels do not alter the incidence of maternal intrapartum fever or use of intrapartum antibiotics. CLINICAL TRIAL REGISTRATION ISRCTN99641204.
Collapse
|
18
|
Singh N, Sharma P, Pal MK, Kahera R, Badoni H, Pant K, Sharma N, Bhist B. Computational drug discovery of phytochemical alkaloids targeting the NACHT/PYD domain in the NLRP3 inflammasome. Sci Rep 2025; 15:16677. [PMID: 40368915 PMCID: PMC12078577 DOI: 10.1038/s41598-024-79054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/06/2024] [Indexed: 05/16/2025] Open
Abstract
The NLRP3 inflammasome plays a pivotal role in the innate immune system, orchestrating the activation of caspase-1 and the release of proinflammatory cytokines IL-1β and IL-18 in reaction to microbial infections and cellular damage. Despite its crucial function in defending against pathogens, the dysregulated activation of the NLRP3 inflammasome has been associated with various inflammatory disorders. In the current investigation, promising plant-derived alkaloids compounds have been discovered as targeted inhibitors against multiprotein NLRP3 using an in-silico drug development approach. The repurposing of natural compounds as anti-inflammatory agents remains a relevant approach for identifying promising early interventions to prevent and manage inflammatory diseases. In this molecular docking study targeting Chain A of the NLRP3 inflammasome protein, eight plant-derived alkaloids renowned for their anti-inflammatory properties were chosen. Docking analysis of the selected alkaloids showed the lowest/best binding energies of less than - 10 Kcal/mol against NLRP3 Chain A, based on this docking result, which is regarded as an exceptional binding score. Notably, Oxyacanthine, Magnoflorine, Corynoline, and Berbamine demonstrated the most favourable binding energies, displaying unique interactions within the binding pocket of the NACHT/PYD domain of NLRP3 Chain A among all compounds investigated. These findings highlight the potential of these alkaloids as promising therapeutic candidates specifically targeting this trans-activating NACHT/PYD domain of NLRP3 Chain A in the context of anti-inflammatory interventions. Protein-protein interactions (PPIs) play an important role in elucidating protein function and drug interactions. To identify bioactive compounds with anti-inflammatory potential, a functional protein network was constructed from publicly available PPI data. As a result, the findings of this in-silico study may cause researchers to emphasize more on alkaloids when considering natural plant products for the treatment of various illnesses that target the inflammatory intermediates. This computational approach predicted ligands that may modulate inflammatory proteins and support host immunity. However, further in vitro and in vivo studies are still needed to validate these in-silico findings before clinical use. In summary, analysing PPI networks can aid discovery of therapeutic candidates, but experimental validation remains essential.
Collapse
Affiliation(s)
- Nilay Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | - Promila Sharma
- Department of Microbiology, Graphic Era (Deemed to be University), 566/6 Bell Road, Clement Town, Dehradun, Uttarakhand, India.
| | - Manoj K Pal
- Department of Microbiology, Graphic Era (Deemed to be University), 566/6 Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | - Ragini Kahera
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | - Himani Badoni
- School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, Prem Nagar, 248007, Chandanwari, Dehradun, Uttarakhand, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | - Neetu Sharma
- Department of Chemistry, Graphic Era (Deemed to be University, 566/6 Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | - Bhawana Bhist
- Department of Chemistry, Graphic Era (Deemed to be University, 566/6 Bell Road, Clement Town, Dehradun, Uttarakhand, India
| |
Collapse
|
19
|
Hu HJ, Fu YY, Du SL, Zhang YH, Zhang ZQ, Han GZ. Role of macrophage ATP metabolism disorder in SiO 2‑induced pulmonary fibrosis: a review. Purinergic Signal 2025:10.1007/s11302-025-10093-8. [PMID: 40358809 DOI: 10.1007/s11302-025-10093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Silicosis, a chronic lung disease, results from prolonged inhalation of silica dust (SiO2) in occupational environments, and its pathogenesis remains incompletely elucidated. Studies have shown that alveolar macrophages (AMs) play a pivotal role in its development. These AMs phagocytose the inhaled SiO2, which leads to morphological, structural, and functional abnormalities that result in lung fibrosis. During this process, adenosine triphosphate (ATP) not only provides energy for the physiological and pathological activities but also acts as a key intracellular and extracellular signaling molecule and regulates cytokine synthesis and secretion. This complex process has not been systematically summarized. In this study, first, the current data on ATP metabolism in the development of SiO2-induced pulmonary fibrosis are introduced. ATP metabolism disorder, caused by impaired production, utilization, or distribution of ATP, disrupts macrophage energy homeostasis. Then, how ATP metabolism disorder affects macrophage morphology and function and the inflammatory and fibrotic processes of the lungs by activating the P2X7 receptor-mediated ATP signaling pathway are discussed. Finally, current therapeutic strategies targeting ATP metabolism disorder and ATP signaling pathways in silicosis are summarized. In conclusion, SiO2-induced ATP metabolism disorder indirectly accelerates the progression of silicosis fibrosis.
Collapse
Affiliation(s)
- Hui-Jie Hu
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Yuan-Yuan Fu
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Shu-Ling Du
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Yu-Han Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, China.
| | - Gui-Zhi Han
- School of Public Health, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
20
|
Wang J, Li LL, Zhao ZA, Niu CY, Zhao ZG. NLRP3 Inflammasome-mediated pyroptosis in acute lung injury: Roles of main lung cell types and therapeutic perspectives. Int Immunopharmacol 2025; 154:114560. [PMID: 40184810 DOI: 10.1016/j.intimp.2025.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
The NLRP3 inflammasome plays a pivotal role in the pathogenesis of acute lung injury (ALI) by regulating pyroptosis, a highly inflammatory form of programmed cell death. NLRP3-mediated pyroptosis leads to alveolar epithelial cell injury, increased pulmonary microvascular endothelial permeability, excessive alveolar macrophage activation, and neutrophil dysfunction, collectively driving ALI progression. In addition to the classical NLRP3-dependent pathway, the non-canonical pyroptosis pathway (caspase-4/5/11) also contributes to ALI by inducing pyroptotic cell death in AECs and ECs, further amplifying NLRP3 activation through damage-associated molecular patterns (DAMP) release. Moreover, neutrophils (NE) pyroptosis exhibits dual roles in ALI, as it enhances pathogen clearance but also exacerbates excessive inflammation and tissue damage, highlighting the complexity of its regulation. Targeting the NLRP3 inflammasome and pyroptotic pathways has emerged as a promising therapeutic strategy for ALI. Various NLRP3 inhibitors (e.g., MCC950, CY-09, OLT1177) and pyroptosis inhibitors have demonstrated significant anti-inflammatory and tissue-protective effects in preclinical models. However, the clinical translation of NLRP3-targeted therapies remains challenging due to off-target effects, potential immunosuppression, lack of patient stratification strategies, and compensatory activation of alternative inflammasomes (e.g., AIM2, NLRC4). Future studies should focus on optimizing the selectivity of NLRP3 inhibitors, developing personalized therapeutic approaches, and exploring combination strategies to enhance their clinical applicability in ALI.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Lu-Lu Li
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Chun-Yu Niu
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| |
Collapse
|
21
|
Huang YJ, Wang LC, Wang CP, Yu KH, Kuo CF. Non-inflammatory macrophages phagocytose and hydrolyse monosodium urate crystals in different stages of gout. Scand J Rheumatol 2025:1-10. [PMID: 40338022 DOI: 10.1080/03009742.2025.2491176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/07/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE Macrophages play a crucial role in gouty arthritis; however, the relationship between non-inflammatory macrophages (M0) and different stages of gout remains unclear. This study aimed to investigate the phagocytosis, hydrolysis, and subsequent cytokine secretion of monosodium urate (MSU) by non-inflammatory macrophages in patients in different stages of gout. METHOD Non-inflammatory macrophages were derived from monocytes through stimulation with macrophage colony-stimulating factor (M-CSF) for a duration of 10 days. The study included patients with asymptomatic hyperuricaemia, intercritical gout, tophaceous gout, and a normal control group. The phagocytic and hydrolytic capabilities of non-inflammatory macrophages were measured using flow cytometry based on the increase in side-scatter area. In addition, to evaluate the relationship between the hydrolysis capability of non-inflammatory macrophages and subsequent inflammation, we cultured them with lipopolysaccharide (LPS) and/or MSU. RESULTS We discovered that M0 macrophages were capable of phagocytosing and hydrolysing MSU crystals in various stages of gout, including the control group. Patients with asymptomatic hyperuricaemia exhibited the most pronounced phagocytic and hydrolytic capabilities, surpassing even those of the normal control group. The presence of MSU alone did not induce the secretion of pro-inflammatory cytokines. However, in experiments where M0 macrophages were stimulated with LPS and/or MSU, the phagocytic and hydrolytic abilities of M0 macrophages were correlated with inflammatory cytokine elevation. CONCLUSION The efficient phagocytosis and hydrolysis of MSU crystals by M0 macrophages suggest their role in maintaining the non-inflammatory stage of gout. Our findings suggest that non-inflammatory macrophages play a role in gout.
Collapse
Affiliation(s)
- Y-J Huang
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - L-C Wang
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - C-P Wang
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - K-H Yu
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - C-F Kuo
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
22
|
Su K, Tang M, Wu J, Ye N, Jiang X, Zhao M, Zhang R, Cai X, Zhang X, Li N, Peng J, Lin L, Wu W, Ye H. Mechanisms and therapeutic strategies for NLRP3 degradation via post-translational modifications in ubiquitin-proteasome and autophagy lysosomal pathway. Eur J Med Chem 2025; 289:117476. [PMID: 40056798 DOI: 10.1016/j.ejmech.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The NLRP3 inflammasome is crucial for immune responses. However, its overactivation can lead to severe inflammatory diseases, underscoring its importance as a target for therapeutic intervention. Although numerous inhibitors targeting NLRP3 exist, regulating its degradation offers an alternative and promising strategy to suppress its activation. The degradation of NLRP3 is primarily mediated by the proteasomal and autophagic pathways. The review not only elaborates on the traditional concepts of ubiquitination and NLRP3 degradation but also investigates the important roles of indirect regulatory modifications, such as phosphorylation, acetylation, ubiquitin-like modifications, and palmitoylation-key post-translational modifications (PTMs) that influence NLRP3 degradation. Additionally, we also discuss the potential targets that may affect NLRP3 degradation during the proteasomal and autophagic pathways. By unraveling these complex regulatory mechanisms, the review aims to enhance the understanding of NLRP3 regulation and its implications for developing therapeutic strategies to combat inflammatory diseases.
Collapse
Affiliation(s)
- Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Neng Ye
- Scaled Manufacturing Center of Biological Products, Management Office of National Facility for Translational Medicine, West China Hospital, Sichuan University Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
23
|
Ding X, Li Y, Yu D, Huang Q, Wang S, Bai J, Pan Y, Adam Mahamat D, Yang L, Wu K. The predictive value of neutrophil, C-reactive protein, fibrinogen, and chloride for acute complicated appendicitis in children: a multicenter retrospective study. Pediatr Surg Int 2025; 41:129. [PMID: 40319423 DOI: 10.1007/s00383-025-06032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVES This study aimed to develop a diagnostic model utilizing clinical and laboratory data to identify complicated appendicitis in pediatric patients, improving acute appendicitis management. METHODS Retrospective analysis of pediatric acute appendicitis cases (2018-2023) at two hospitals collected medical history, clinical criteria, and blood samples. Patients were divided into complicated and uncomplicated appendicitis groups for comparison. Significant variables were identified using the Least Absolute Shrinkage and Selection Operator (LASSO), and incorporated into a logistic regression model to construct a nomogram. The effectiveness of the model was assessed based on sensitivity, specificity, accuracy, and comparison with existing scoring systems. RESULTS Among 323 patients, four variables (neutrophil (NEU), C-reactive protein (CRP), fibrinogen (Fg), and chlorine (Cl)) were identified as significant. The recommended cutoff value of nomogram was 0.730, exceeding that of Alvarado and PAS, with higher sensitivity (81.7%), specificity (82.6%), and accuracy (82.0%), as well as better performance in both internal and external validations. Furthermore, it demonstrated excellent calibration and clinical utility. CONCLUSIONS NEU, CRP, Fg, and Cl are effective markers for diagnosing complicated appendicitis in children. The nomogram model can be considered to be incorporated into the diagnosis process of appendicitis as an auxiliary means of surgical intervention decision-making in complex appendicitis cases.
Collapse
Affiliation(s)
- Xiaoting Ding
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yongteng Li
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Daiyue Yu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Qiwei Huang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - ShaoMei Wang
- Department of Pediatric Surgery, Nanhai Maternity & Child Healthcare Hospital of Foshan, Foshan, 528403, Guangdong, China
| | - Jian Bai
- Department of Pediatric Surgery, Nanhai Maternity & Child Healthcare Hospital of Foshan, Foshan, 528403, Guangdong, China
| | - Yongbin Pan
- Department of Pediatric Surgery, Nanhai Maternity & Child Healthcare Hospital of Foshan, Foshan, 528403, Guangdong, China
| | - Djibril Adam Mahamat
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Liucheng Yang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Kai Wu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
24
|
Li X, Zhou W, Zhou L, Li Y, Wu X, Chen J. Neutrophil-derived exosomal S100A8 aggravates lung injury in sepsis by inducing pyroptosis. Mol Immunol 2025; 181:29-39. [PMID: 40056630 DOI: 10.1016/j.molimm.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Acute lung injury (ALI) is a common and life-threatening complication in patients with sepsis, with pro-inflammatory cell pyroptosis playing a crucial role in the associated organ damage. In this study, we aimed to identify potential therapeutic targets. Utilizing the GEO database (GSE232753), we analyzed the differentially expressed genes in the peripheral blood of healthy individuals and sepsis patients, identifying the significantly upregulated gene S100A8. Subsequently, we constructed a septic ALI model using lipopolysaccharide (LPS). Notably, S100A8 was highly expressed not only in serum and bronchoalveolar lavage fluid (BALF) but also in neutrophil exosomes. We then co-incubated BEAS-2B cells with neutrophil exosomes that were either treated or untreated with LPS. Cell proliferation activity was assessed using the CCK-8 assay, cell death was evaluated through propidium iodide (PI) staining, and the changes in pyroptosis indicators were detected via Western blot and ELISA. To further validate that LPS-induced neutrophil exosomes promote BEAS-2B cell pyroptosis through the delivery of S100A8, we conducted additional experiments involving the addition of S100A8 protein alone or S100A8 antibody in conjunction with neutrophil exosome treatment, followed by relevant assessments. Moreover, in vivo validation was also performed. Mechanistically, we revealed that S100A8 induces pyroptosis in BEAS-2B cells through the TLR4 signaling pathway. In conclusion, our findings provide new promising targets for the treatment of septic ALI.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Emergency Intensive Care Medicine & Emergency Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital Affiliated Nanjing University Medical College, Yancheng, Jiangsu 224000, China
| | - Wei Zhou
- Department of Emergency Intensive Care Medicine & Emergency Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital Affiliated Nanjing University Medical College, Yancheng, Jiangsu 224000, China
| | - Liangliang Zhou
- Department of Emergency Intensive Care Medicine & Emergency Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital Affiliated Nanjing University Medical College, Yancheng, Jiangsu 224000, China
| | - Yingbin Li
- Department of Emergency Intensive Care Medicine & Emergency Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital Affiliated Nanjing University Medical College, Yancheng, Jiangsu 224000, China
| | - Xufeng Wu
- Department of Emergency Intensive Care Medicine & Emergency Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital Affiliated Nanjing University Medical College, Yancheng, Jiangsu 224000, China
| | - Jianjun Chen
- Department of Emergency Intensive Care Medicine & Emergency Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital Affiliated Nanjing University Medical College, Yancheng, Jiangsu 224000, China.
| |
Collapse
|
25
|
Agrawal S, Narang S, Shahi Y, Mukherjee S. Inhibitors of inflammasome (NLRP3) signaling pathway as promising therapeutic candidates for oral cancer. Biochim Biophys Acta Gen Subj 2025; 1869:130800. [PMID: 40180112 DOI: 10.1016/j.bbagen.2025.130800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/18/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Inflammasomes are complex protein assemblies responsible for regulating the development and release of proinflammatory cytokines like interleukin-1beta (IL-1β) and interleukin-18 (IL-18) against the intracellular triggers. Among these, the Nod-like receptor protein 3 (NLRP3) inflammasome stands out as the most extensively studied and well-characterized member, implicated in numerous pathological conditions. A systematic literature search was conducted on the PubMed such as PubMed, Scopus, Google Scholar database to identify peer-reviewed publications pertaining to the role of NLRP3 in oral cancer pathogenesis and its inhibitors for targeted therapy. Recent research highlights the emerging significance of the NLRP3 inflammasome in tumorigenesis, garnering attention as a potential target for anticancer therapies. This review delves into the involvement of NLRP3 in cancer development and progression, providing an in-depth overview of its activation (and inhibition) and its impact on oral cancer pathogenesis. The manuscript provides a detailed review of the natural and synthetic compounds inhibiting the NLRP3 signaling pathway, which might act as therapeutic lead molecules in oral cancer. This holds promise to overcome targeted and effective treatment options the development of novel drugs targeting the NLRP3 inflammasome-mediated mechanisms in oral cancer.
Collapse
Affiliation(s)
- Shreya Agrawal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Shatakshi Narang
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Yadvendra Shahi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India; Ram Manohar Lohia Institute of Medical Sciences (RMLIMS), Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India.
| |
Collapse
|
26
|
Wu C, Chen D, Stout MB, Wu M, Wang S. Hallmarks of ovarian aging. Trends Endocrinol Metab 2025; 36:418-439. [PMID: 40000274 DOI: 10.1016/j.tem.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Ovarian aging is considered to be the pacemaker of female aging, and is linked to various comorbidities such as osteoporosis, cardiovascular diseases, and cognitive decline. Many efforts have been made to determine the mechanisms underlying ovarian aging, but their potential to act as hallmarks to predict and intervene in this process currently remains unclear. In this review we propose nine hallmarks as common features of ovarian aging: genomic instability, telomere attrition, epigenetic alterations, impaired autophagy, cellular senescence, deregulated nutrient-sensing, mitochondrial dysfunction, oxidative stress, and chronic inflammation. Understanding the interaction between these hallmarks poses a significant challenge but may also pave the way to the identification of pharmaceutical targets that can attenuate ovarian aging.
Collapse
Affiliation(s)
- Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China.
| |
Collapse
|
27
|
Alenezi FO, Nader MA, El-Kashef DH, Abdelmageed ME. Dapansutrile mitigates concanavalin A- induced autoimmune hepatitis: Involvement of NLRP3/IL-1β and JNK/ p38 MAPK pathways. Biomed Pharmacother 2025; 186:118026. [PMID: 40164046 DOI: 10.1016/j.biopha.2025.118026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
AIM Dapansutrile (Dapan) is a newly developed anti-inflammatory molecule that supresses the production of NLRP3 inflammasome-dependent IL-1β. Its hepatoprotective effects against autoimmune hepatitis (AIH) have not yet been explored. Hence, this study was conducted to examine the possible protective effects of Dapan against concanavalin A (Con A)-induced hepatitis in mice. MAIN METHODS Mice were randomly divided into five groups (n = 6): control, Con A (15 mg/kg), Dapan (60 mg/kg), Dapan (6 mg/kg) + Con A, and Dapan (60 mg/kg) + Con A. Mice were euthanised at the end of the study, and blood and hepatic tissues were collected. KEY FINDINGS Hepatic function testing using lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase levels, in addition to hepatic tissue histological examination, revealed that intraperitoneal administration of Dapan noticeably ameliorated Con A-induced hepatic enzyme impairment and histopathological disruption. Moreover, Dapan-treated mice had significantly lower malondialdehyde hepatic content and elevated reduced glutathione, superoxide dismutase, and total antioxidant capacity levels than non-treated mice in a dose-dependent manner. The Dapan-treated groups showed significantly lower levels of the inflammatory mediators, NLRP3, TNF-α, IL-6, and IL-1β, in addition to the immunomodulators CD8, CD4, INF-γ, and NFκB and inhibition of JNK and p38 MAPK levels compared to the Con A-treated group. SIGNIFICANCE Our results showed that intraperitoneal administration of Dapan could be a therapeutic opportunity to inhibit the development of AIH via inhibition of inflammatory pathways.
Collapse
Affiliation(s)
- Fahad O Alenezi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Forensic Toxicology Services Center, Ministry of health, Qassim, Saudi Arabia
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
28
|
El-Waseif AG, Elshal M, El-Kashef DH, Abu-Elsaad NM. Paricalcitol, an active vitamin D analog, mitigates dexamethasone-induced hepatic injury: Role of autophagy, pyroptosis, and PERK/Nrf2/HO-1 signaling pathway. Toxicol Appl Pharmacol 2025; 498:117307. [PMID: 40118256 DOI: 10.1016/j.taap.2025.117307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Drug-induced toxicity is considered a crucial clinical affair, as some adverse effects could be severe or life threatening. Drugs may have adverse effects by altering biological pathways that aren't always involved in the drug's reaction. From this perspective, the purpose of the current study was to assess the impacts of paricalcitol, a synthetic, active, and selective vitamin D receptor activator, on dexamethasone-induced liver injury, and discover the probable implicated signaling pathways as well. Male Wistar rats were treated with paricalcitol at a dose of 0.2 μg/kg, daily, i.p for 12 days and injected with 8 mg/kg dexamethasone i.p daily over the last 6 days. Administration of paricalcitol improved liver function markers, lipid profile, reduced histopathologic changes in hepatic sections, and restored normal oxidative status. Moreover, paricalcitol markedly decreased hepatic collagen deposition as confirmed by Masson's trichrome staining. Paricalcitol effectively inhibited endoplasmic reticulum stress through decreasing expression of tissue PERK and Chop, increasing hepatic Nrf2, and HO-1 activity. Besides, paricalcitol decreased levels of NLRP3 and IL-1β as well as decreased expression of active caspase-1 p20, GSDMD-N-terminal indicating suppression of NLRP3/caspase-1/GSDMD pyroptosis pathway. Paricalcitol can protect against dexamethasone-induced liver injury showing a promising therapeutic value in drug-induced liver injuries.
Collapse
Affiliation(s)
- Aamal G El-Waseif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt..
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nashwa M Abu-Elsaad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
29
|
Zou Y, Zhang B, Jiang K, Zhou X, Tang Q, Chen S, Wu Q, Zhao X, Zhang X. GPR40 inhibits microglia-mediated neuroinflammation via the NLRP3/IL-1β/glutaminase pathway after subarachnoid hemorrhage. Biochem Pharmacol 2025; 238:116971. [PMID: 40318813 DOI: 10.1016/j.bcp.2025.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/12/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Subarachnoid hemorrhage is one type of strokes with high mortality and disability and there exists several mechanisms in SAH pathology. G-protein-coupled receptor 40 (GPR40) is proven to exert anti-inflammatory effects in several central nervous system (CNS) diseases. However, the precise role of GPR40 in SAH pathogenesis remains largely unknown. In this study, both in vivo and in vitro SAH models were used to investigate the mechanism of GPR40 attenuating neuroinflammation after SAH onset. We found that GPR40 expression in microglia decreased, which promoted IL-1β secretion and aggravated neuronal death after SAH onset. The GPR40 agonist GW9508 attenuated neuronal damage and ameliorated neurological deficits in SAH-model mice. Mechanistically, GPR40 in microglia inhibited pyroptosis, and cytokine production via inhibiting NLRP3/caspase-1/IL-1β pathway. Then the level of IL-1β secreted by microglia and transported to neurons via exosome were decreased, which down-regulated glutaminase, counteracted glutamate accumulation, and facilitated neuronal survival. These results revealed that GPR40 is a novel regulator that inhibits microglia-mediated neuroinflammation and is a potential therapeutic target in SAH therapy.
Collapse
Affiliation(s)
- Yan Zou
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing'tao Zhang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kun Jiang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
| | - Xiao'ming Zhou
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi'kai Tang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shu'juan Chen
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Wu
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xudong Zhao
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, China; Wuxi Neurosurgical Institute, Wuxi, China.
| | - Xin Zhang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
30
|
Wang C, Ji X, Wang X, Song Y, Pan C, Qian M, Jin Y. The endoplasmic reticulum-mitochondrial crosstalk involved in nanoplastics and di(2-ethylhexyl) phthalate co-exposure induced the damage to mouse mammary epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126014. [PMID: 40057162 DOI: 10.1016/j.envpol.2025.126014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
With the extensive use of plastic products, significant amounts of microplastics, nanoplastic particles (NPs), and plasticizers such as Di(2-ethylhexyl) phthalate (DEHP) are continuously released into the environment. However, the toxic effects of NPs alone or in combination with DEHP on mammary glands remain unreported. This study investigates the impacts of NPs and DEHP on the structure and function of mouse mammary epithelial cells and elucidates the underlying molecular mechanisms. We found that co-exposure to NPs and DEHP induced severe pyroptosis, inflammation and oxidative stress in HC11 cells. Co-exposure also caused mitochondrial damage, as evidenced by changes in mitochondrial membrane potential, increase in mitochondrial ROS and inhibition of ATP production. Moreover, NPs and DEHP co-exposure increased the transcriptional levels of endoplasmic reticulum (ER) stress-related genes, activated the inflammation-related NLRP3 signaling pathway, and damaged the cell membrane integrity. Notably, Co-exposure enhanced the ER-mitochondria crosstalk in HC11 cells, as evidenced by the upregulated transcriptional levels of ER Ca2+ channel proteins (Ip3r1, Grp75 and Vdac1), increased mitochondrial Ca2+ levels, and expanded mitochondrial-ER contact areas. In summary, this study revealed that NPs and DEHP co-exposure had the potential to induce pyroptosis and inflammation by enhancing the ER-mitochondria crosstalk, ultimately resulting in injury to mammary glands. These findings would provide some new insights into the molecular mechanisms underlying the toxic effects of NPs and DEHP to mammary glands.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiang Ji
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaoya Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yunmeng Song
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunqiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
31
|
Cahill S, Humphries F. Inflammasomopathies: mechanisms and disease signatures. Trends Immunol 2025; 46:372-385. [PMID: 40263090 DOI: 10.1016/j.it.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
Inflammasomes form in response to infection, cellular stress, or damage. Gain-of-function (GOF) mutations in inflammasome receptors have been identified as the underlying cause of severe inflammatory diseases, termed 'inflammasomopathies'. Recently, molecular interrogation of these diseases revealed several distinctions at the level of the tissue affected, the inflammatory mediators that drive disease progression, and the contribution of programmed cell death. In this review we discuss key emerging differences across inflammasomopathies and the distinct inflammatory patterns seen in patients. We discuss how programmed cell death influences the progression of inflammasomopathies and the role of plasma membrane rupture. Understanding the molecular disease signatures across inflammasomopathies provides crucial insights into identifying and treating the underlying disease and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Sara Cahill
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
32
|
Paik S, Kim JK, Shin HJ, Park EJ, Kim IS, Jo EK. Updated insights into the molecular networks for NLRP3 inflammasome activation. Cell Mol Immunol 2025:10.1038/s41423-025-01284-9. [PMID: 40307577 DOI: 10.1038/s41423-025-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Over the past decade, significant advances have been made in our understanding of how NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes are activated. These findings provide detailed insights into the transcriptional and posttranslational regulatory processes, the structural-functional relationship of the activation processes, and the spatiotemporal dynamics of NLRP3 activation. Notably, the multifaceted mechanisms underlying the licensing of NLRP3 inflammasome activation constitute a focal point of intense research. Extensive research has revealed the interactions of NLRP3 and its inflammasome components with partner molecules in terms of positive and negative regulation. In this Review, we provide the current understanding of the complex molecular networks that play pivotal roles in regulating NLRP3 inflammasome priming, licensing and assembly. In addition, we highlight the intricate and interconnected mechanisms involved in the activation of the NLRP3 inflammasome and the associated regulatory pathways. Furthermore, we discuss recent advances in the development of therapeutic strategies targeting the NLRP3 inflammasome to identify potential therapeutics for NLRP3-associated inflammatory diseases. As research continues to uncover the intricacies of the molecular networks governing NLRP3 activation, novel approaches for therapeutic interventions against NLRP3-related pathologies are emerging.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Biochemistry and Cell Biology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea.
| |
Collapse
|
33
|
Shi R, Zhuang X, Liu T, Yao SN, Xue FS. The Role of NLRP3 Inflammasome in Oral Squamous Cell Carcinoma. J Inflamm Res 2025; 18:5601-5609. [PMID: 40303006 PMCID: PMC12039833 DOI: 10.2147/jir.s512770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the head and neck. More and more evidence emphasizes the importance of inflammation in the progression of OSCC. The main signaling pathway of acute and chronic inflammation consists of the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Objective This review focuses on the role of NLRP3 immune kinase body and giving a contribution to the development of new treatment strategies against OSCC. Conclusion The NLRP3 inflammasome plays a vital role in the pathogenesis and development of OSCC and may serve as a promising therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Rui Shi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University 266600, Qingdao, 266555, People’s Republic of China
- School of Stomatology of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Xuan Zhuang
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Tong Liu
- The Affiliated Tai’an City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Song-nan Yao
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Feng-shan Xue
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| |
Collapse
|
34
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Yamaguchi SI, Takemura M, Miwa K, Morimoto N, Nakayama M. Siglec-14-Mediated Inflammatory Responses to Carbon Nanomaterials. ACS APPLIED BIO MATERIALS 2025; 8:2927-2937. [PMID: 40099920 DOI: 10.1021/acsabm.4c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Carbon nanomaterials (CNM), including carbon nanotubes (CNT) and graphene nanoplatelets (GNP), are expected to have diverse industrial applications due to their unique physical properties. However, concerns have been raised regarding their toxicity in humans. In this context, risk assessment must include an understanding of the molecular mechanisms underlying human recognition of CNM. We have recently identified human sialic acid-binding immunoglobulin-like lectin (Siglec)-14 as a CNT-recognizing receptor. Since no rodent orthologs for Siglec-14 exist, previous rodent toxicological studies may underestimate CNM toxicity in humans. Therefore, in this study, we investigate Siglec-14 responses to various CNM. Siglec-14 recognizes various types of CNM via its extracellular aromatic cluster with a similar affinity, regardless of size and shape. Ultrathin single-walled CNT (SWCNT) and spherical carbon black nanoparticles (CBNP) activated macrophage Siglec-14 signaling, leading to IL-8 production. Notably, GNP as well as long needle-like MWCNT not only activate this inflammatory signal but also cause phagosomal damage, leading to the release of IL-1β, the most prominent pro-inflammatory cytokine. In mice transduced with Siglec-14, intratracheal injection of GNP or long needle-like MWCNT caused lung inflammation, whereas injection of SWCNT or CBNP did not. Taken together, these results suggest that CNM-induced inflammation requires two processes: macrophage receptor ligation and phagosomal damage. This indicates that CNM may be safe unless they cause damage to the macrophage phagosome.
Collapse
Affiliation(s)
- Shin-Ichiro Yamaguchi
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Miki Takemura
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Karen Miwa
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Nobuyuki Morimoto
- Faculty of Materials for Energy, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Masafumi Nakayama
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
- Research Center for Animal Life Science, Shiga University of Medical Sciences, Otsu 525-0072, Japan
| |
Collapse
|
36
|
Liu J, Yan Z, Zhong T, Qu J, Lei D, Lai J, Zhang C, Lai Z, Ai W, Liu X. Identification of a NEK7-related pyroptosis gene signature against pancreatic cancer and evaluation of its potential in tumor microenvironment remodeling via regulating inflammasome complex. Funct Integr Genomics 2025; 25:92. [PMID: 40257657 PMCID: PMC12011910 DOI: 10.1007/s10142-025-01597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
The treatment options for pancreatic ductal adenocarcinoma (PDAC) remain limited. It is therefore important to explore new therapeutic targets and strategies for better treatment and prognosis for patients with PDAC. NIMA-related kinase 7 (NEK7) is a serine/threonine kinase involved in PDAC development. Moreover, NEK7 was reported to regulate NLRP3 inflammasome and cell pyroptosis. To evaluate the role of NEK7 in PDAC, we performed RNA sequencing analysis in PDAC cells, and a series of bioinformatics analyses were employed to determine the biological function of NEK7 in PDAC. We identified a NEK7-Specific Pyroptosis Gene Set (NEK7-SPGS) by high-throughput transcriptome sequencing combining Gene Set Enrichment Analysis (GSEA). We reveal that NEK7-SPGS is highly associated with T helper cell infiltration and inflammatory response of PDAC. We therefore proposed that NEK7-SPGS might have potential for tumor microenvironment remodeling via T cells induced inflammatory response. Using dataset from TCGA database, we established a NEK7-SPGS-related prognostic signature for patients with PDAC. Subsequently, sensitivity estimation of chemotherapeutic drugs revealed a series of chemotherapy agents according to the NEK7-SPGS-related prognostic signature, including gemcitabine and paclitaxel, drugs that have been used as conventional agents for PDAC therapy. Meanwhile, we showed that the expression of SCAMP1, which is a member of NEK7-SPGS, was involved in the progression of PDAC in vivo and in vitro. We proposed a NEK7-specific pyroptosis gene signature and evaluated its potential in PDAC tumor microenvironment. The NEK7-SPGS-related prognostic signature could act as a prognostic biomarker and serve as therapeutic guidance in clinical application.
Collapse
Affiliation(s)
- Jia Liu
- Physical Examination Center, The Second Hospital of Hebei Medical University, 309 Zhonghua North St, Shijiazhuang, Hebei, 050000, China
| | - Zilong Yan
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518000, China
| | - Tongning Zhong
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518000, China
| | - Jianhua Qu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518000, China
| | - Defeng Lei
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518000, China
| | - Jinglin Lai
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518000, China
| | - Citing Zhang
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, China
| | - Xueqing Liu
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
37
|
Luo Y, Li J, Fu Q, Zhang P, Song X, Liu M, Mo R, Fu J, Tang S, Wu J, Yang X, Liu X, Wang T, Ni G. Caerin 1.1 and 1.9 peptides induce acute caspase 3/GSDME-mediated pyroptosis in epithelial cancer cells. Sci Rep 2025; 15:13377. [PMID: 40251208 PMCID: PMC12008296 DOI: 10.1038/s41598-025-96438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/28/2025] [Indexed: 04/20/2025] Open
Abstract
Caerin peptides exhibit a dual role in cancer treatment by directly killing cancer cells and modulating the tumour microenvironment to enhance anti-tumour immunity. This study investigates the mechanisms underlying caerin 1.1/1.9-induced acute cell death in epithelial cancer cells and explores their therapeutic potential. HeLa, A549, and Huh-7 cancer cell lines were treated with caerin 1.1/1.9 peptides. Morphological observations, flow cytometry, lactate dehydrogenase (LDH) release, and IL-18 secretion assays revealed the occurrence of pyroptosis following treatment. Specifically, a 1-h treatment with caerin 1.1/1.9 induced pyroptosis in HeLa, A549, and Huh-7 cells, characterised by cell swelling, membrane bubbling, and the release of IL-18 and LDH. Western blotting confirmed the upregulation of pyroptosis markers, including caspase-3, cleaved caspase-3, and GSDME-N fragments. These findings highlight the significant role of caerin peptides in inducing acute pyroptosis, a form of programmed cell death that enhances the immunogenicity of dying cancer cells, thus potentially improving the effectiveness of immunotherapies. This research underscores the therapeutic potential of caerin 1.1/1.9 peptides in cancer treatment, providing a foundation for developing new anti-cancer strategies that leverage both direct cytotoxic effects and immune modulation to achieve more effective and sustained anti-tumour responses.
Collapse
Affiliation(s)
- Yuandong Luo
- Medical College of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Junjie Li
- Zhongao Biomedical Technology (Guangdong) Co. Ltd, Zhongshan, 528400, Guangdong, China
| | - Quanlan Fu
- Medical College of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Pingping Zhang
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Xinyi Song
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Mengqi Liu
- Medical College of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Rongmi Mo
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Jiawei Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Shuxian Tang
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Jialing Wu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Xiaodan Yang
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Xiaosong Liu
- Medical College of Guizhou University, Guiyang, 550025, Guizhou, China.
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| | - Guoying Ni
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| |
Collapse
|
38
|
Yang C, Wang L, Liu Y, Zhang Y, Jin C, Cheng J, Shang L, Fang L, Wu S, Chen C, Wang J. Thermal Proteome Profiling Reveals Meltome Upon NLRP3 Inflammasome Activation. Mol Cell Proteomics 2025; 24:100972. [PMID: 40250624 DOI: 10.1016/j.mcpro.2025.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3) involves in inflammasome complex assembly and innate immunity. Activation of the NLRP3 inflammasome induces conformational alterations in protein complexes, influencing their interactions with other molecules, which in turn affects protein thermal stability. To investigate the proteome-wide thermal stability alterations induced by NLRP3 inflammasome activation, we conducted a comprehensive analysis of meltome dynamics using thermal proteome profiling. Our analysis identified 337 proteins exhibiting alterations in thermal stability upon NLRP3 inflammasome activation. Subsequently, we validated three proteins by the cellular thermal shift assay. Notably, our findings reveal that the majority of these proteins tend to cluster into distinct macromolecular complexes. Furthermore, we identified FAM120A as a novel NLRP3 binding partner, with its suppression enhancing caspase-1 activation and IL-1β release in response to NLRP3 agonist. Collectively, these data provide a comprehensive framework for understanding the mechanisms of NLRP3 inflammasome activation and underscore the utility of thermal proteome profiling in exploring proteome-wide thermal stability changes during signaling transduction.
Collapse
Affiliation(s)
- Chen Yang
- College of Life Sciences, Hebei University, Baoding, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ling Wang
- College of Life Sciences, Hebei University, Baoding, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yuchen Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yuehui Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Chaozhi Jin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jiale Cheng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Limin Shang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Longlong Fang
- College of Life Sciences, Hebei University, Baoding, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Shanshan Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Chuan Chen
- College of Life Sciences, Hebei University, Baoding, China
| | - Jian Wang
- College of Life Sciences, Hebei University, Baoding, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| |
Collapse
|
39
|
Chen Y, Chen S, Liu Z, Wang Y, An N, Chen Y, Peng Y, Liu Z, Liu Q, Hu X. Red blood cells undergo lytic programmed cell death involving NLRP3. Cell 2025:S0092-8674(25)00389-7. [PMID: 40252640 DOI: 10.1016/j.cell.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/27/2024] [Accepted: 03/24/2025] [Indexed: 04/21/2025]
Abstract
The canonical complement-mediated lysis of mature red blood cells (RBCs) leads to severe pathogenesis. However, inhibition strategies targeting complement are not always as efficient as expected, indicating that unknown mechanisms are awaiting elucidation. In this study, we investigate the intracellular events in mature RBCs following complement activation. The collected evidence demonstrates that complement-induced hemolysis is a caspase-8-dependent programmed RBC death. Furthermore, short NLRP3 (miniNLRP3) fragments in RBCs are identified to engage in the assembly of NLRP3-apoptosis-associated speck-like protein containing a CARD (ASC)-caspase-8 complex. Activated caspase-8 directly induces the proteolysis of β-spectrin, thereby disrupting the skeletal network of the RBC membrane, a process we refer to as spectosis. Spectosis signaling is also activated in autoimmune hemolytic anemia or paroxysmal nocturnal hemoglobinuria, and the inhibition of spectosis significantly reduced complement-induced hemolysis. These findings reveal a programmed death cascade in mature RBCs, which may have important implications for the treatment of hemolytic disorders.
Collapse
Affiliation(s)
- Yaozhen Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhixin Liu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yafen Wang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ning An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yutong Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yihao Peng
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen 518115, Guangdong, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen 518115, Guangdong, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China.
| | - Xingbin Hu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
40
|
Ma C, Zhang L, Huang Q, Deng Q, Huang F, Xu J. Canolol Alleviates Ethanol-Induced Gastric Ulcer by Inhibiting p38 MAPK/NF-κB/NLRP3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9103-9111. [PMID: 40179001 DOI: 10.1021/acs.jafc.5c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Gastric ulcer (GU) is among the most prevalent digestive disorders globally. This study investigates the protective effects of canolol, a natural phenolic compound derived from crude rapeseed oil, on ethanol-induced GU in rats. Our results demonstrated that canolol pretreatment notably reduced gastric mucosal damage, as evidenced by lower ulcer indices and improved histopathological scores. Ethanol exposure severely disrupted the gastric mucosal defense systems, characterized by reduced gastric wall mucus secretion, lower NP-SH levels, suppressed heat shock protein 70 expression, and decreased gastric mucosal blood flow; however, these effects were counteracted by canolol pretreatment. Canolol also alleviated ethanol-induced inflammation by reducing the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), enhancing the level of the anti-inflammatory cytokine (IL-10), and normalizing myeloperoxidase activity in the gastric mucosa. Additionally, canolol enhanced antioxidant defenses by increasing the activities of antioxidant enzymes (SOD, CAT, and GPx) and the GSH level, thereby mitigating ethanol-induced oxidative stress in the stomach. Moreover, canolol suppressed ethanol-induced apoptosis in the gastric mucosa, evidenced by a decrease in TUNEL-positive areas and downregulation of the expression of apoptotic markers BAX and caspase-3. Mechanistically, canolol substantially reduced the activities of p38 MAPK and NF-κB, consequently preventing NLRP3 activation. These findings indicate that canolol has potential benefits in preventing the onset and progression of ethanol-induced GU by inhibiting the p38 MAPK/NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Congcong Ma
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Li Zhang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard, Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, No. 11, Lingjiaohu Road, Wuhan 430015, China
| | - Qingde Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
41
|
Li Y, Xu Y, Jin C, Qiu J, Jiao X, Pan Z, Guo Y. Salmonella-NLRP3 Inflammasome Crosstalk: Host Defense Activation Versus Bacterial Immune Evasion Strategies. J Inflamm Res 2025; 18:5133-5148. [PMID: 40255664 PMCID: PMC12009050 DOI: 10.2147/jir.s519902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025] Open
Abstract
The innate immune system plays a crucial role in defending against Salmonella infection. Inflammasomes are macromolecular complexes that assemble in response to the recognition of pathogen- or danger-associated molecular patterns. These complexes serve as signaling platforms for the activation of inflammatory Caspases, which subsequently triggers the maturation and secretion of the pro-inflammatory cytokines IL-1β and IL-18. This process also initiates pyroptosis, a highly inflammatory form of programmed cell death characterized by lytic cell lysis. Salmonella are intracellular pathogens that proliferate within epithelial cells and macrophages, posing a significant public health risk in both developed and developing countries. During Salmonella infection, the canonical NLRP3 and NLRC4 inflammasome, as well as non-canonical inflammasome, are activated. Unlike NLRC4 and non-canonical inflammasomes, which play crucial roles during intestinal infection phases, the role of NLRP3 inflammasome in resisting Salmonella infection demonstrates a higher degree of complexity and uncertainty. Nonetheless, the activation of NLRP3 inflammasome, along with the downstream innate and adaptive responses, form a robust host immune barrier against potential pathogens. Therefore, successful pathogens must evolve multiple mechanisms to circumvent or counteract these immune barriers. Here we review and discuss the mechanisms of NLRP3 inflammasome activation triggered by intracellular Salmonella, as well as the multiple strategies employed by Salmonella to avoid or delay NLRP3 inflammasome activation. A deeper understanding of how NLRP3 inflammasomes recognize Salmonella and how pathogens evade NLRP3 activation has the potential to facilitate the development of novel prevention and control measures for Salmonella infection.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Ying Xu
- The Department of Economics and Management, Jiangsu College of Tourism, Jiangsu, People’s Republic of China
| | - Cheng Jin
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Jiayi Qiu
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Xinan Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Zhiming Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yaxin Guo
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
42
|
Khanna S, Kumar S, Sharma P, Daksh R, Nandakumar K, Shenoy RR. Flavonoids regulating NLRP3 inflammasome: a promising approach in alleviating diabetic peripheral neuropathy. Inflammopharmacology 2025:10.1007/s10787-025-01729-7. [PMID: 40205269 DOI: 10.1007/s10787-025-01729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
A common and serious side effect of diabetes is diabetic peripheral neuropathy (DPN), which is characterised by gradual nerve damage brought on by oxidative stress, chronic inflammation, and prolonged hyperglycemia. Studies identify NLRP3 inflammasome as a key mediator in the pathogenesis of DPN, connecting neuroinflammation and neuronal damage to metabolic failure. Because of their strong anti-inflammatory and antioxidant qualities, flavonoids, a broad class of naturally occurring polyphenols, have drawn interest as potential treatments for DPN. The various ways that flavonoids affect the NLRP3 inflammasome and their potential as a treatment for DPN are examined in this review. It has been demonstrated that flavonoids prevent NLRP3 activation, which lowers the release of pro-inflammatory cytokines including IL-1β and IL-18 and causes neuroinflammation. Flavonoids work mechanistically by reducing oxidative stress, altering important signalling pathways, and blocking the activities of NF-κB and caspase-1, which are both essential for the activation of the NLRP3 inflammasome. Preclinical research has shown that flavonoids have strong neuroprotective benefits, and few clinical evidence also points to the potential of flavonoids to improve nerve function and lessen neuropathic pain in diabetic patients. The current review emphasises how flavonoids may be used as a treatment strategy to target inflammation in DPN caused by the NLRP3 inflammasome. By targeting important inflammatory pathways, flavonoids provide a new way to slow the progression of this debilitating illness. Further investigation into the mechanisms, clinical translation, and novel drug delivery techniques could enhance the therapeutic efficacy of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Saumya Khanna
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Pratyasha Sharma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rekha Raghuveer Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
43
|
Issa F, Abdulla M, Retnowati FD, Al-Khawaga H, Alhiraky H, Al-Harbi KM, Al-Haidose A, Maayah ZH, Abdallah AM. Cardio-Rheumatic Diseases: Inflammasomes Behaving Badly. Int J Mol Sci 2025; 26:3520. [PMID: 40331999 PMCID: PMC12026794 DOI: 10.3390/ijms26083520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Cardio-rheumatology is an evolving and interdisciplinary field lying at the intersection of rheumatology and cardiovascular medicine that recognizes that individuals with autoimmune and inflammatory rheumatic complications have a much higher likelihood of developing cardiovascular diseases (CVDs). Inflammasomes are multiprotein complexes stimulated by the immune system after the detection of pathogens or cellular injury. Inflammasomes undergo a two-stage activation process initiated by nuclear factor (NF)-κB, subsequently playing a crucial role in innate immunity through activation of caspase 1 and the consequent release of proinflammatory cytokines such as IL-18 and IL-1β. However, a loss of control of inflammasome activation can cause inflammatory diseases in humans. Recent studies have focused on the role of inflammasomes in inflammatory cascades implicated in the pathogenesis of several diseases. Here, we review inflammasome activation, its mechanism of action, and its role in CVD. In particular, we describe the role of inflammasomes in rheumatic heart disease, Kawasaki disease, familial Mediterranean fever, ankylosing spondylitis, and rheumatoid arthritis as exemplars to illustrate pathobiological mechanisms and the potential for targeting inflammasomes for therapeutic benefit.
Collapse
Affiliation(s)
- Farah Issa
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Marah Abdulla
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Faizah D. Retnowati
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Huda Al-Khawaga
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Hanin Alhiraky
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Khalid M. Al-Harbi
- Department of Pediatric, College of Medicine, Taibah University, Madinah 41477, Saudi Arabia;
| | - Amal Al-Haidose
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| | - Zaid H. Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, Doha 2713, Qatar;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha 2713, Qatar; (F.I.); (M.A.); (F.D.R.); (H.A.-K.); (H.A.); (A.A.-H.)
| |
Collapse
|
44
|
Wang L, Li HD, Sun X, Ni JH, Feng GZ, Shen XY, Weng HB, Fang H. The Protective Effects of Vanillic Acid on LPS-induced Acute Lung Injury by Inhibiting STIM1-mediated NLRP3 Inflammasome Activation. Inflammation 2025:10.1007/s10753-025-02293-6. [PMID: 40195181 DOI: 10.1007/s10753-025-02293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025]
Abstract
Acute lung injury (ALI), which can progress to acute respiratory distress syndrome (ARDS), has inflammation as a crucial factor, especially the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome involvement. Stromal interaction molecule 1 (STIM1) can block NLRP3 activation, but the mechanism is unclear. Vanillic acid, possessing anti-inflammatory properties, has a role in acute lung injury (ALI) whose specific mechanism remains unclear. This study aimed to investigate the effectiveness of vanillic acid in ALI induced by lipopolysaccharides (LPS) and to elucidate the potential mechanisms. In vitro and in vivo experiments were conducted using cells and a mouse model to find out the impact and underlying mechanisms. We found that vanillic acid demonstrated significant inhibition of IL-1β and IL-18 release triggered by LPS and nigericin in J774A.1 cells. The in vivo findings indicated that vanillic acid not only mitigated acute lung injury but also suppressed NLRP3 inflammasome activation in mice. Mechanistically, vanillic acid inhibited the LPS-induced increase in STIM1 expression through the lysosomal degradation pathway. The reduced STIM1 expression diminished intracellular Ca2+ levels, thereby suppressing inflammasome activation and impeding the cleavage and maturation of Caspase-1 and GSDMD, and eventually attenuating cell pyroptosis. Vanillic acid exerts its inhibitory effects on NLRP3 inflammasome activation by promoting STIM1 degradation, thereby ameliorates ALI through impeding NLRP3-GSDMD mediated pyroptosis. The STIM1-NLRP3 signaling axis represents a promising avenue for potential therapeutic interventions in ALI.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Hai-Dong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
- Research and Translational Laboratory of Acute Injury and Secondary Infection, Minhang Hospital, Fudan University, Shanghai, China
| | - Xia Sun
- Department of Anesthesiology, Shanghai Geriatic Medical Center, Shanghai, 201104, China
| | - Jia-Hui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Gui-Ze Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Hong-Bo Weng
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai, 201203, China.
| | - Hao Fang
- Department of Anesthesiology, Shanghai Geriatic Medical Center, Shanghai, 201104, China.
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
45
|
Yang C, Fu C, Wang M, Zheng J, Gao Y, Zhu H, Li H, Li D, Guo L, Yu B, Dai Q. Recombinant Antithrombin Alleviated Pulmonary Injury and Inflammation in LPS-Induced ARDS by Inhibiting IL17a/NF-κB Signaling. Immunotargets Ther 2025; 14:433-449. [PMID: 40226836 PMCID: PMC11988198 DOI: 10.2147/itt.s502925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Background Recombinant antithrombin (rAT) has been shown to protect lungs from ARDS and modulate immune responses, but its anti-inflammatory mechanisms remain unclear. This study aimed to explore the immunomodulatory effects and mechanisms of rAT in LPS-induced ARDS mice. Methods ARDS mouse model was established by intraperitoneally administration of 20 mg/kg LPS. After 3 hours of LPS administration, rAT or PBS was injected intravenously. Lung injury, alveolar permeability, serum inflammatory cytokines, immune cell infiltration in lung tissue, and the proportion of Th17 were assessed 36 hours after rAT administration. The functional roles of the differential expressed genes (DEGs), obtained from LPS-induced ARDS mice treated with or without rAT, were analyzed by GO, KEGG and GSEA enrichment analysis. The activation of NF-κB and NLRP3 inflammasome was evaluated by Western blot and immunofluorescence staining. Results We found that rAT alleviated lung injury, reduced pulmonary permeability, decreased serum inflammatory cytokines, and suppressed immune cell infiltration and NLRP3 inflammasome activation. Moreover, rAT decreased the proportion of Th17 cells in lung tissues and peripheral blood, downregulated IL17a expression, and inhibited NF-κB signaling pathway in lung tissues. Additionally, the administration of IL-17A diminished the efficacy of rAT in mitigating lung injury, suppressing the immune response, and inhibiting the activation of the NF-κB signaling pathway in LPS-induced ARDS mice. Conclusion The findings of this study suggest that rAT alleviates lung injury and suppresses inflammatory responses by inhibiting the IL17a/NF-κB signaling axis, suggesting that rAT may serve as a potential therapeutic agent for mitigating pulmonary inflammation and improving the prognosis of ARDS induced by sepsis. Furthermore, this study provides important research data and theoretical basis for the clinical translation and application of rAT.
Collapse
Affiliation(s)
- Chen Yang
- Department of Anesthesia, the Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Cong Fu
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Mengxue Wang
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Junbo Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Yang Gao
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Huiting Zhu
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Haoxuan Li
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Dongxu Li
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Lichen Guo
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Bing Yu
- Department of Cell Biology, Navy Medical University, Shanghai, People’s Republic of China
| | - Qingqing Dai
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
46
|
Su H, Yue H, Liu F, Sun Y, Liang S, Zheng X, Zhang Y, Zhang J, Wu J, Han L. Sweroside ameliorates IMQ-induced psoriasiform inflammation by inhibiting NLRP3/Caspase-1 mediated IL-1β elevation. Int Immunopharmacol 2025; 151:114333. [PMID: 40010158 DOI: 10.1016/j.intimp.2025.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Psoriasis is a chronic autoimmune skin disorder with no cure, posing challenges in long-term therapy and economic burden. Sweroside (SOS), an iridoid compound from Gentiana, shows promise for treatment due to its anti-inflammatory properties. In this study, SOS significantly reduced erythema, thickening, and scaling in IMQ-induced psoriasiform mice, lowered serum TNF-α and IL-1β levels, and suppressed inflammatory marker expression. Molecular docking revealed strong binding to IL-1β and NLRP3 proteins. Western blot and RT-PCR confirmed that SOS inhibited NLRP3, Cleaved-Caspase-1, ASC, and IL-1β expression. SOS's inhibition of IL-1β production is mediated through the NLRP3/Caspase-1 pathway. Additionally, SOS regulates IL-1β signal transduction and precursor production, exhibiting anti-inflammatory effects linked to NF-κB signaling inhibition in HaCaT cells. Thus, SOS has potential as a psoriasis treatment.
Collapse
Affiliation(s)
- Haojie Su
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyu Yue
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fanlu Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Sun
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shulin Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuwei Zheng
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - YaTing Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junhong Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Han
- Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China; State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
47
|
Hushmandi K, Reiter RJ, Farahani N, Cho WC, Alimohammadi M, Khoshnazar SM. Pyroptosis; igniting neuropsychiatric disorders from mild depression to aging-related neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111325. [PMID: 40081561 DOI: 10.1016/j.pnpbp.2025.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Neuropsychiatric disorders significantly impact global health and socioeconomic well-being, highlighting the urgent need for effective treatments. Chronic inflammation, often driven by the innate immune system, is a key feature of many neuropsychiatric conditions. NOD-like receptors (NLRs), which are intracellular sensors, detect danger signals and trigger inflammation. Among these, NLR protein (NLRP) inflammasomes play a crucial role by releasing pro-inflammatory cytokines and inducing a particular cell death process known as pyroptosis. Pyroptosis is defined as a proinflammatory form of programmed cell death executed by cysteine-aspartic proteases, also known as caspases. Currently, the role of pyroptotic flux has emerged as a critical factor in innate immunity and the pathogenesis of multiple diseases. Emerging evidence suggests that the induction of pyroptosis, primarily due to NLRP inflammasome activation, is involved in the pathophysiology of various neuropsychiatric disorders, including depression, stress-related issues, schizophrenia, autism spectrum disorders, and neurodegenerative diseases. Within this framework, the current review explores the complex relationship between pyroptosis and neuropsychiatric diseases, aiming to identify potential therapeutic targets for these challenging conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
48
|
Montazeri-Khosh Z, Ebrahimpour A, Keshavarz M, Sheybani-Arani M, Samiei A. Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: a promising approach for traumatic brain injury. Immunopharmacol Immunotoxicol 2025; 47:159-175. [PMID: 39762721 DOI: 10.1080/08923973.2024.2444956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI. METHODS A comprehensive analysis of literature detailing NLRP3 inflammasome activation pathways and therapeutic interventions was conducted. Empirical evidence supporting the concurrent administration of MCC950 and Rapamycin was reviewed to assess the efficacy of dual-action strategies compared to single-agent treatments. RESULTS Findings highlight potassium efflux and calcium signaling as novel targets for intervention, with cathepsin B inhibitors showing promise in mitigating neuroinflammation. Dual therapies, particularly MCC950 and Rapamycin, demonstrate enhanced efficacy in reducing neuroinflammation. Autophagy promotion, alongside NLRP3 inhibition, emerges as a complementary therapeutic avenue to reverse neuroinflammatory damage. CONCLUSION Combination therapies targeting the NLRP3 inflammasome and related pathways offer significant potential to enhance recovery in TBI patients. This review presents compelling evidence for the development of such strategies, marking a new frontier in neuroinflammatory research and therapeutic innovation.
Collapse
Affiliation(s)
- Zana Montazeri-Khosh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Ebrahimpour
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mina Keshavarz
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Afshin Samiei
- Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
49
|
Davoodi Karsalari P, Asna Ashari K, Rezaei N. NLRP3 inflammasome: significance and potential therapeutic targets to advance solid organ transplantation. Expert Opin Ther Targets 2025; 29:281-301. [PMID: 40317257 DOI: 10.1080/14728222.2025.2500425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, integral to innate immunity, has become a pivotal figure in the inflammatory cascade. AREAS COVERED This article provides an overview of the NLRP3 inflammasome, reviewing its complicated structure, as well as the diverse signals that trigger its assembly. Furthermore, we explored the intricate relationship between the NLRP3 inflammasome and acute and chronic rejection in solid organ transplantation. Solid organ transplantation stands as a crucial medical intervention, yet its efficacy is challenged by immune-mediated complications, including acute rejection, ischemia-reperfusion injury, and chronic allograft rejection. We also investigated the encouraging potential of immunosuppressive therapies targeting NLRP3 signaling to alleviate inflammatory responses linked to transplantation. EXPERT OPINION In recent years, the NLRP3 inflammasome has garnered considerable attention owing to its critical functions spanning diverse fields. This study highlights the critical function of the NLRP3 inflammasome and presents insights, offering fresh perspectives on how its modulation might help to improve the outcomes among patients who undergo solid organ transplantations.
Collapse
Affiliation(s)
- Pershia Davoodi Karsalari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kosar Asna Ashari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Wang X, Wu S, Jiang Y, Yuan Z, Liu J, Jing S, Liu J, Sun J, Wang C, Wang D, Li H. Anwulignan alleviates IRI by the activation of Nrf2/HO-1 signaling pathway and inhibiting NLRP3-caspase-1-GSDMD-mediated pyroptosis in rats. Tissue Cell 2025; 93:102775. [PMID: 39923645 DOI: 10.1016/j.tice.2025.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Ischemia/reperfusion injury (IRI) is caused by the reduced blood flow and oxygen level due to the renal artery blockage. The effect of Schisandrae Sphenantherae Fructusandra fruit anwulignan (AN) on the renal IRI injury in rats was investigated. Four rat (Male SD) groups were set, including sham, IRI, sham+AN and IRI+AN groups. This experiment confirmed that AN could reduce renal IRI injury by detecting some biomarkers such as Cre, BUN, LDH, HIF-1α, KIM-1, NGAL, and AIM, which showed decreased levels. AN could increase GSH, CAT, T-AOC, and SOD levels, and decrease MDA and ROS levels in rat kidney tissue, demonstrating that AN can improve oxidative stress damage. In addition, AN diminished the total quantity of TNF-α, IL-1β, IL-6, IL-8, and IL-18 in the renal tissue of rats. In rats with renal IRI, the contents of p-Nrf2 and HO-1 proteins engaged in the Nrf2/HO-1 antioxidant controlled system were increased, and the expression level of Keap1 was diminished. NLRP3, ASC, Caspase-1, GSDMD, GSDMD-N, IL-18, and IL-1β protein levels in kidney tissues decreased significantly in AN group. The results indicate that AN can alleviate renal IRI by reducing the oxidative stress damage via activating the Nrf2/HO-1 signaling pathway and inhibiting NLRP3-Caspase-1-GSDMD-mediated pyroptosis in rats.
Collapse
Affiliation(s)
- Xin Wang
- College of Pharmacy, Beihua University, Jilin, China
| | - Shihui Wu
- College of Pharmacy, Beihua University, Jilin, China
| | - Yuxin Jiang
- College of Pharmacy, Beihua University, Jilin, China
| | - Zihao Yuan
- College of Pharmacy, Beihua University, Jilin, China
| | - Jian Liu
- Jilin Hospital of Integrated Traditional Chinese and Western Medicine, Jilin, China
| | - Shu Jing
- Affiliated Hospital of Beihua University, Jilin, China
| | - Jiale Liu
- Jilin City Central Hospital, Jilin, China
| | - Jinghui Sun
- College of Pharmacy, Beihua University, Jilin, China
| | - Chunmei Wang
- College of Pharmacy, Beihua University, Jilin, China
| | - Dan Wang
- College of Basic Medicine, Beihua University, Jilin, China
| | - He Li
- College of Pharmacy, Beihua University, Jilin, China.
| |
Collapse
|