1
|
Tai Y, Kong L, Wang Y, Zhao D, Chen X, Wu Q, Hao J, Wang X, Liu X, Chen D, Li J, Hu Y, Zhang W, Yun CH, Zhan Q. Identification and characterization of Bufalin as a novel EGFR degrader. Cancer Lett 2025; 623:217715. [PMID: 40220852 DOI: 10.1016/j.canlet.2025.217715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/17/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) stands out as a common cancer type worldwide, characterized by its notably high rates of occurrence and mortality. The epidermal growth factor receptor (EGFR) is one of the main targets for cancer treatment as it is one of the genes whose expression is often altered by overexpression, amplification, and mutation in a variety of solid tumors. Substantial efforts have been made to develop EGFR-targeted therapeutic agents, including monoclonal antibodies and tyrosine kinase inhibitors (TKIs). However, these agents exhibited limited efficacy due to the emergence of acquired resistance. Therefore, novel treatment strategies targeting EGFR are urgently needed. Recent studies have identified a few natural compounds that can efficiently inhibit EGFR, indicating that natural products may be potential sources for the development of new EGFR inhibitors. Here, using the Drug Affinity Responsive Target Stability (DARTS) assay combined with liquid chromatography/tandem mass spectrometry analysis, co-crystal method, we discovered that Bufalin directly interacts with EGFR and causes EGFR endocytosis and degradation in the lysosome. Moreover, Bufalin exhibits superior anti-tumor activity compared with another EGFR TKIs. Our study identified Bufalin as the first natural small-molecule EGFR degrader, which suppresses EGFR signaling by inducing the degradation of EGFR via the endosome-lysosome pathway.
Collapse
Affiliation(s)
- Yidi Tai
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lulu Kong
- Department of Biophysics, Department of Integration of Chinese and Western Medicine, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongyu Zhao
- Soochow University Cancer Institute, Suzhou, 215000, China
| | - Xu Chen
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingnan Wu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jia Hao
- Department of Biophysics, Department of Integration of Chinese and Western Medicine, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xingyang Liu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongshao Chen
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jinting Li
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yuying Hu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.
| | - Cai-Hong Yun
- Department of Biophysics, Department of Integration of Chinese and Western Medicine, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Soochow University Cancer Institute, Suzhou, 215000, China.
| |
Collapse
|
2
|
Wang S, Xia Y, Qian Y, Pan W, Huang P, Jin N, Li X, Xu C, Liu D, Zhao G, Fang Y, Nicot C, Gao Q. PARP inhibition elicits NK cell-associated immune evasion via potentiating HLA-G expression in tumor. Drug Resist Updat 2025; 81:101247. [PMID: 40328191 DOI: 10.1016/j.drup.2025.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025]
Abstract
Resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) poses a significant challenge to enhancing the efficacy of cancer treatments. Beyond the cellular mechanisms intrinsic to tumor cells, the modulation of the tumor immune microenvironment is crucial in dictating the responsiveness to pharmacological interventions. Thus, there is a pressing need to elucidate the intricate interplay between PARPi and antitumor immune responses and to develop an optimized combinatorial therapeutic approach. In this study, using matched tumor samples before and after neoadjuvant monotherapy with the PARPi niraparib in a prospective clinical trial (NCT04507841), we observed a significant increase in natural killer (NK) cell infiltration post-treatment. However, this was not accompanied by the expected enhancement in their cytotoxic functions. This observation underscores the necessity to optimize the antitumor potential of NK cells by enhancing their cytotoxic capabilities. Upon exposure to niraparib, tumor cells, particularly those with wild-type EGFR, exhibited a pronounced upregulation of human leukocyte antigen G (HLA-G), an immune checkpoint impeding NK cell functions. Niraparib promotes EGFR internalization, which in turn diminishes AKT/mTOR signaling, leading to the increased transcriptional activity of the transcription factor EB (TFEB) and subsequent enhancement of HLA-G expression. The combination of niraparib with HLA-G blockade not only augmented NK cell-mediated tumor lysis in vitro but also synergistically inhibited tumor growth in humanized patient-derived xenograft models. Collectively, our results shed light on a previously unrecognized immune evasion mechanism and offer a compelling argument for the integration of HLA-G blockade with PARPi in cancer therapy.
Collapse
Affiliation(s)
- Siyuan Wang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yiyu Qian
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Pan
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pu Huang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Li
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Xu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangnian Zhao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Fang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Christophe Nicot
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China; Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Xu Y, Hu H, Ran Y, Zhao W, Guo AD, Nie HJ, Zhai L, Yin GL, Cheng J, Tao S, Yang B, Tan M, Chen XH. Visible-Light-Controlled Lysine-Selective Crosslinking Decodes Protein Complexes and Dynamic Interactomes in Live Cells. Angew Chem Int Ed Engl 2025:e202507254. [PMID: 40464585 DOI: 10.1002/anie.202507254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/30/2025] [Accepted: 06/04/2025] [Indexed: 06/19/2025]
Abstract
Crosslinking strategies have emerged as an attractive technology for deciphering protein complexes and protein-protein interactions (PPIs). However, commonly used crosslinking strategies present significant challenges for the precise analysis of protein complexes and dynamic PPIs in native biological environments. Here, we report the development of the first visible-light-inducible lysine-specific homobifunctional photo-crosslinkers and introduce Visible-light-controlled Lysine-selective crosslinking (VL-XL) strategy for in-depth analysis of protein complexes and profiling dynamic interactomes in live cells. By synergistically integrating the advantages of temporal control, high biocompatibility, and lysine selectivity, the VL-XL strategy not only provides an effective solution for protein complexes studies-achieving residue-specific crosslinked peptides, delivering high-confidence data and streamlined mass spectrometry (MS) data analysis-but also reveals dynamic interactomes in various scenarios. The VL-XL strategy successfully profiles the time-resolved, epidermal growth factor (EGF)-stimulated epidermal growth factor receptor (EGFR) interactome, providing valuable insights into regulatory mechanisms of EGFR signaling. More importantly, the VL-XL strategy effectively unveils molecular glue degrader-induced E3 ligase interactome, leading to discovery of neo-substrates such as Sestrin-2 (SESN2) and opening an innovative avenue for identifying novel targets for degradation. Overall, the VL-XL strategy provides a robust chemical tool, inspiring innovative solutions to address unresolved questions in multiple fields.
Collapse
Affiliation(s)
- Yali Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Ran
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Wensi Zhao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, and Cancer Center, School of Medicine, Tongji University, Shanghai, 200434, China
| | - An-Di Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui-Jun Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linhui Zhai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, and Cancer Center, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Guang-Liang Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jintao Cheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shengna Tao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bing Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, and Cancer Center, School of Medicine, Tongji University, Shanghai, 200434, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
4
|
Prikryl D, Zhang Y, Melikyan GB. Attenuation of IFITM proteins' antiviral activity through sequestration into intraluminal vesicles of late endosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.27.656272. [PMID: 40501618 PMCID: PMC12154975 DOI: 10.1101/2025.05.27.656272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2025]
Abstract
Interferon-induced transmembrane proteins (IFITMs) inhibit the entry of diverse enveloped viruses. The spectrum of antiviral activity of IFITMs is largely determined by their subcellular localization. IFITM1 localizes to and primarily blocks viral fusion at the plasma membrane, while IFITM3 prevents viral fusion in late endosomes by accumulating in these compartments. We have previously reported that cyclosporine A (CsA) treatment relieves the fusion block for the Influenza A virus, likely by relocating IFITM1 and IFITM3 from the plasma membrane and endosomes, respectively, to the Golgi area. Here, we report the existence of at least two distinct pools of IFITMs in CsA treated cells. While immunostaining of CsA treated cells using mild permeabilization agents, such as digitonin, suggests preferential IFITM localization at the Golgi apparatus, a harsher permeabilization protocol reveals a large, previously unidentified pool of IFITMs in late endosomes. Notably, IFITM redistribution was not associated with its degradation. A disproportionate loss of antibody access to the cytoplasmic N-terminus compared to the extracellular C-terminus of IFITMs after CsA treatment is consistent with sequestration of the N-terminal domain inside intraluminal vesicles of late endosomes. Accordingly, super-resolution microscopy reveals that CsA induces IFITM3 redistribution from the periphery to the interior of late endosomes. Together, our results imply that IFITMs relocate to intraluminal vesicles of late endosomes in the presence of CsA, thereby enabling viral fusion with the limiting membrane of these compartments. Our findings highlight the critical role of IFITM trafficking in antiviral defense and suggest a novel mechanism through which CsA modulates the cell's susceptibility to viral infections.
Collapse
|
5
|
Tian L, Wang Z, Chen S, Guo K, Hao Y, Ma L, Ma K, Chen J, Liu X, Li L, Fu X, Zhang C. Ellagic Acid-Loaded sEVs Encapsulated in GelMA Hydrogel Accelerate Diabetic Wound Healing by Activating EGFR on Skin Repair Cells. Cell Prolif 2025:e70064. [PMID: 40384373 DOI: 10.1111/cpr.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
Delayed diabetic wound healing is partially attributed to the functional disorder of skin repair cells caused by high glucose (HG). Small extracellular vehicles (sEVs) loaded with small-molecule drugs represent a highly promising therapeutic strategy. This study aims to evaluate the therapeutic efficacy of ellagic acid-encapsulated small extracellular vesicles (EA-sEVs) in diabetic wound regeneration and to unravel related mechanisms. Cytotoxicity tests of ellagic acid (EA) as liposomal small molecules (LSMs) were performed with the CCK8 assay. EA was incorporated into sEVs obtained from chorionic plate-mesenchymal stem cells (CP-MSCs) to construct EA-engineered sEVs. The protective effects of EA-sEVs on human dermal fibroblasts (HDFs) and human epidermal keratinocytes (HEKs) induced by high glucose (HG) were assessed through the evaluation of their proliferative, migrative and differentiative capabilities. Furthermore, to illustrate the underlying mechanism, the specific biological targets of EA were predicted and confirmed. Finally, EA-sEVs were encapsulated in GelMA hydrogel for investigating the pro-healing effects on diabetic wounds. EA was harmless to cell viability, increasing the possibility and safety of drug development. EA-engineered sEVs were fabricated by loading EA in sEVs. In vitro, EA-sEVs promoted the proliferation, migration, and transdifferentiation of HG-HDFs and the proliferation and migration of HG-HEKs. Mechanism analysis elucidated that epidermal growth factor receptor (EGFR) was the specific biological target of EA. EA interacting with EGFR was responsible for the functional improvement of HG-HDFs and HG-HEKs. In vivo, EA-sEVs encapsulated in GelMA promoted the healing of diabetic wounds by improving re-epithelialisation, collagen formation and the expression of EGFR. Gel-EA-sEVs promoted diabetic wound healing by improving biological functions of HDFs and HEKs. EGFR was first identified as the specific biological target of EA and was responsible for the functional improvement of HG-HDFs and HG-HEKs by Gel-EA-sEVs. Hence, Gel-EA-sEVs can serve as a new promising active dressing for diabetic wound treatment.
Collapse
Affiliation(s)
- Lige Tian
- College of Graduate, Tianjin Medical University, Tianjin, China
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
| | - Zihao Wang
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Shengqiu Chen
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, China
| | - Kailu Guo
- College of Graduate, Tianjin Medical University, Tianjin, China
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
| | - Yaying Hao
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Liqian Ma
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Kui Ma
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Junli Chen
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Xi Liu
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Linlin Li
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Fu
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Cuiping Zhang
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| |
Collapse
|
6
|
Chen C, Xu L, Chen L, Zhai Z, Cheng M, Luo S, Wang H. DNAJC5 facilitates the proliferation and migration of lung adenocarcinoma cells by augmenting EGFR trafficking. Commun Biol 2025; 8:757. [PMID: 40374748 PMCID: PMC12081771 DOI: 10.1038/s42003-025-08191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly prevalent and lethal malignant tumor, with the aberrantly activated EGFR signaling pathway playing a crucial role in its development. However, resistance to tyrosine-kinase inhibitors (TKIs) targeting EGFR significantly limits the efficacy of LUAD clinical therapy. Therefore, it is imperative to identify novel therapeutic targets and elucidate the regulatory mechanisms of EGFR for improving LUAD treatment outcomes. In this study, we discover that DNAJC5 functions as an oncogene in LUAD. We observe elevated protein levels of DNAJC5 in tissues from LUAD patients, which are strongly associated with poor prognosis among these individuals. Furthermore, overexpression of DNAJC5 promotes proliferation and migration of LUAD cells both in vitro and in vivo. Mechanistic investigations reveal that DNAJC5 interacts with the intracellular domain of EGFR and enhances its endocytosis and recycle, thereby augmenting EGFR activity and downstream signaling pathways. Additionally, we find that DNAJC5 binds to AP2A1 protein-a key player in EGFR endocytosis-and strengthens its interaction with EGFR. Knockdown experiments targeting AP2A1 attenuate the ability of DNAJC5 to promote proliferation and migration of LUAD cells. Collectively, our findings unveil a functional role for DNAJC5 in regulating EGFR trafficking and driving LUAD progression.
Collapse
Affiliation(s)
- Can Chen
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Linlin Xu
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Limin Chen
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenyu Zhai
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Minzhang Cheng
- Jiangxi Institute of Respiratory Disease, the Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Hailong Wang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Sun L, Chen W, Yuan W, Huang Q, Yang H, Zhang W, Tang J, Hu P. Ginkgetin inhibits the proliferation and migration of lung cancer cells via FAK/STAT3/AKT pathway. Mol Biol Rep 2025; 52:458. [PMID: 40366441 DOI: 10.1007/s11033-025-10540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE Lung cancer has become a primary illness that severely endangers human life and health due to its extremely high morbidity and mortality rates. Ginkgetin has been proven to have toxic effects on various tumor cells. Nevertheless, the mechanism of Ginkgetin on lung cancer is uncertain. In the present study, the effect and possible mechanism of Ginkgetin on lung cancer were explored. METHODS The cell counting kit-8 assay and colony formation assay were performed to detect the effect of Ginkgetin on cell proliferation. The wound healing assay was performed to detect the effect of Ginkgetin on cell migration. Additionally, western blot and immunofluorescence assay were performed to detect the expression of proteins. RESULTS Our results demonstrated that Ginkgetin effectively inhibited the proliferation and migration of A549 and H1299 cells. Mechanistically, Ginkgetin downregulated the phosphorylated expression of focal adhesion kinase (FAK), signal transducer and activator of transcription 3 (STAT3), and protein kinase B (AKT) and blocked the FAK/STAT3/AKT phosphorylation induced by epidermal growth factor (EGF). Furthermore, Ginkgetin suppressed the proliferation and migration of A549 and H1299 cells induced by EGF. Notably, Ginkgetin decreased the Cyclin A2 and Cyclin D1 expression. CONCLUSION Collectively, these findings concluded that Ginkgetin may suppress the proliferation and migration of lung cancer cells via the FAK/STAT3/AKT pathway, suggesting that Ginkgetin has potential applications in lung cancer treatment.
Collapse
Affiliation(s)
- Longhua Sun
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, 330200, P.R. China
| | - Wen Chen
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Wenxin Yuan
- Department of Ultrasonography, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Qianwen Huang
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Hong Yang
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Wei Zhang
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Jianjun Tang
- The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, 330200, P.R. China
| | - Ping Hu
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P.R. China.
- Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, P.R. China.
| |
Collapse
|
8
|
Villa S, Jafri Q, Lazzari-Dean JR, Sangha M, Olsson N, Lefebvre AEYT, Fitzgerald ME, Jackson K, Chen Z, Feng BY, Nile AH, Stokoe D, Bersuker K. BiDAC-dependent degradation of plasma membrane proteins by the endolysosomal system. Nat Commun 2025; 16:4345. [PMID: 40346034 PMCID: PMC12064649 DOI: 10.1038/s41467-025-59627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
The discovery of bifunctional degradation activating compounds (BiDACs) has led to the development of a new class of drugs that promote the clearance of their protein targets. BiDAC-induced ubiquitination is generally believed to direct cytosolic and nuclear proteins to proteolytic destruction by proteasomes. However, pathways that govern the degradation of other classes of BiDAC targets, such as integral membrane and intraorganellar proteins, have not been investigated in depth. In this study we use morphological profiling and CRISPR/Cas9 genetic screens to investigate the mechanisms by which BiDACs induce the degradation of plasma membrane receptor tyrosine kinases (RTKs) EGFR and Her2. We find that BiDAC-dependent ubiquitination triggers the trafficking of RTKs from the plasma membrane to lysosomes for degradation. Notably, functional proteasomes are required for endocytosis of RTKs upstream of the lysosome. Additionally, our screen uncovers a non-canonical function of the lysosome-associated arginine/lysine transporter PQLC2 in EGFR degradation. Our data show that BiDACs can target proteins to proteolytic machinery other than the proteasome and motivate further investigation of mechanisms that govern the degradation of diverse classes of BiDAC targets.
Collapse
Affiliation(s)
- Sammy Villa
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Qumber Jafri
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Manjot Sangha
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Niclas Olsson
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | - Zhenghao Chen
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Brian Y Feng
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Aaron H Nile
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - David Stokoe
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | |
Collapse
|
9
|
Ding GG, Wen JL, Gong R, Yang JJ, Cen WJ, Deng L, Wang F, Sun LY. City scale related to epidermal growth factor receptor mutations status in Chinese non-small cell lung cancer. Discov Oncol 2025; 16:714. [PMID: 40346282 PMCID: PMC12064491 DOI: 10.1007/s12672-025-02558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
PURPOSE This study aimed to explore the relationship between city scale and epidermal growth factor receptor (EGFR) mutation status in Chinese patients with non-small cell lung cancer (NSCLC). METHODS A retrospective study enrolled NSCLC patients who underwent tissue EGFR mutation testing at Sun Yat-sen University Cancer Center from 2012 to 2017. City scale was categorized according to classifications made by the State Council of China in 2014. Multivariable logistic regression was utilized to determine independent predictors of EGFR mutation status in NSCLC patients. RESULTS A total of 4637 NSCLC patients were enrolled in this study. EGFR mutation related to gender, smoking statue, histological type, and city scale. Higher rate of EGFR mutations among patients of super large-sized and very large-sized cities compared to other cities. There was an inverse relationship between city scale and smoking status among patients. Multivariate analysis showed that city scale was not an independent predictor of EGFR mutation. CONCLUSIONS Although there is a correlation between the size of a city and the rates of EGFR mutations in Chinese NSCLC patients, city scale does not independently predict these mutation rates. Instead, the variations in EGFR mutation rates could be indirectly related to different levels of urbanization, which may influence smoking behaviors among the populations.
Collapse
Affiliation(s)
- Guang-Gui Ding
- Department of Thoracic Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, Guangdong, China
| | - Jie-Lun Wen
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Rui Gong
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiao-Jiao Yang
- Department of Oncology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Wen-Jian Cen
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ling Deng
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fang Wang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Li-Yue Sun
- Department of Health Management Centre, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Wang S, Liu JX, Sun C, Li YG, Jiang HX, Jiang SL, Liang J, Wang WF, Kuang HX, Xia YG. Auricularia auricula polysaccharides alleviate experimental silicosis by targeting EGFR through the "gut-lung axis". Int J Biol Macromol 2025; 309:142541. [PMID: 40147652 DOI: 10.1016/j.ijbiomac.2025.142541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Silicosis is a major public health problem and remains a challenge for clinicians. There is an urgent need to find new drugs to minimize disease progression and deterioration. Auricularia auricula-juade is a traditional folk medicine that is used for nourishing lung functions. The aim of this study is to investigate the pharmacological action and potential mechanism of polysaccharides in Auricularia auricula for silicosis treatment. The results indicated that the Auricularia auricula polysaccharide (AAP) effectively improved silicosis induced by silica (SiO2) in mice. The preliminary screening of differentially expressed proteins (DEPs) in the lung and intestinal tissues after AAP intervention was performed using tandem mass tag (TMT) quantitative proteomics. A common differential protein of the intestine and lungs, i.e., epidermal growth factor receptor (EGFR), was focused on using a combination of current proteomics data and a network disease database. After further validation, the use of an intestinal-lung co-culture model confirmed that AAP had the ability to attenuate the secretion of EGFR ligands (i.e., TGF-α, EGF and AREG) and modulate signaling between the intestine and lungs. This effectively inhibited the EGFR/JNK signaling pathway in lung tissues, thereby achieving therapeutic efficacy against silicosis. This study provides a solid experimental foundation of the use of AAP for silicosis treatment.
Collapse
Affiliation(s)
- Shu Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Jun-Xi Liu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Chao Sun
- Heilongjiang Chamgree Pharmaceutical Co, Ltd., Qing an 152400, China
| | - Ya-Ge Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Hong-Xiang Jiang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China.
| | - Wen-Fei Wang
- Bio-pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China.
| |
Collapse
|
11
|
Alenezi SK. CAR T cells in lung cancer: Targeting tumor-associated antigens to revolutionize immunotherapy. Pathol Res Pract 2025; 269:155947. [PMID: 40168775 DOI: 10.1016/j.prp.2025.155947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Tumor-targeted T cells engineered for targeting and killing tumor cells have revolutionized cancer treatment, specifically in hematologic malignancies, through chimeric antigen receptor (CAR) T cell therapy. However, the migration of this success to lung cancer is challenging due to the tumor microenvironment (TME), antigen heterogeneity, and limitations of T cell infiltration. This review aims to evaluate current strategies addressing these barriers, focusing on the optimization of tumor-associated antigen (TAA) targeting, such as epidermal growth factor receptor (EGFR), mucin-1 (MUC1), and mesothelin (MSLN), which are frequently overexpressed in lung cancer and offer promising targets for CAR T-cell therapy. In this review, we discuss recent progress in CAR T cell engineering, applying enhanced costimulatory molecules, cytokine-secreting CAR T cells, and engineered modifications to improve T cell resilience in immunosuppressive environments. Additionally, this review also evaluates combination therapies of immune checkpoint inhibitors and recently published clinical trials on lung cancer with CAR T cells. We offer insights into the way to optimize CAR T cell therapy for lung cancer by analyzing antigen selection, immune evasion, and the strategies to enhance T cell persistence and tumor infiltration.
Collapse
Affiliation(s)
- Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia.
| |
Collapse
|
12
|
Luo W, Xu M, Wong N, Ng CSH. Alternative Splicing in Lung Adenocarcinoma: From Bench to Bedside. Cancers (Basel) 2025; 17:1329. [PMID: 40282505 PMCID: PMC12025742 DOI: 10.3390/cancers17081329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly heterogeneous tumor and the most prevalent pathological type of lung cancer. The alternative splicing (AS) of mRNA enables the generation of multiple protein products from a single gene. This is a tightly regulated process that significantly contributes to the proteome diversity in eukaryotes. Recent multi-omics studies have delineated the splicing profiles that underline LUAD tumorigenesis from initiation to metastasis. Such progress holds robust promise to facilitate the development of screening strategies and individualized therapies. Perturbed AS fosters the emergence of novel neoantigen resources and disturbances in the immune microenvironment, which allow new investigations into modulatory targets for LUAD immunotherapy. This review presents an update on the landscape of dysregulated splicing events in LUAD and the associated mechanisms and theranostic perspectives with unique insights into AS-based immunotherapy, such as Chimeric Antigen Receptor T cell therapy. These AS variants can be used in conjunction with current therapeutic modules in LUAD, allowing bench to bedside translation to combat this highly malignant cancer.
Collapse
Affiliation(s)
| | | | - Nathalie Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.L.); (M.X.)
| | - Calvin Sze-Hang Ng
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.L.); (M.X.)
| |
Collapse
|
13
|
Sung Y, Choi Y, Kim ES, Ryu JH, Kwon IC. Receptor-ligand interactions for optimized endocytosis in targeted therapies. J Control Release 2025; 380:524-538. [PMID: 39875075 DOI: 10.1016/j.jconrel.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Receptor-mediated endocytosis plays a crucial role in the success of numerous therapies and remains central to advancing drug development. This process begins with ligand binding to specific receptors, triggering the internalization and intracellular trafficking of receptor-ligand complexes. These complexes are subsequently directed into distinct routes, either toward lysosomal degradation or recycling to the cell surface, with implications for therapeutic outcomes. This review examines receptor-ligand interactions as key modulators of endocytosis, emphasizing their role in shaping therapeutic design and efficacy. Advances in selecting receptor-ligand pairs and engineering ligands with optimized properties have enabled precise control over internalization, endosomal sorting, and trafficking, providing tailored solutions for diverse therapeutic applications. Leveraging these insights, strategies such as RNA-based therapies, antibody-drug conjugates (ADCs), and targeted protein degradation (TPD) platforms have been refined to selectively avoid or promote lysosomal degradation, thereby enhancing therapeutic efficacy. By bridging fundamental mechanisms of receptor-mediated endocytosis with innovative therapeutic approaches, this review offers a framework for advancing precision medicine.
Collapse
Affiliation(s)
- Yejin Sung
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngjin Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 20841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Topalan E, Büyükgüngör A, Çiğdem M, Güra S, Sever B, Otsuka M, Fujita M, Demirci H, Ciftci H. A Structural Insight Into Two Important ErbB Receptors (EGFR and HER2) and Their Relevance to Non-Small Cell Lung Cancer. Arch Pharm (Weinheim) 2025; 358:e2400992. [PMID: 40194950 PMCID: PMC11975551 DOI: 10.1002/ardp.202400992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
The epidermal growth factor receptor (EGFR) family, comprising receptor tyrosine kinases (RTK) such as EGFR and HER2, plays a critical role in various signaling pathways related to cell proliferation, differentiation, and growth. EGFR overactivation due to aberrant signaling can lead to various cancers, including non-small cell lung cancer (NSCLC). To develop treatment for EGFR-related NSCLC, several tyrosine kinase inhibitors (TKIs) were designed: gefitinib, erlotinib, as first-generation; neratinib, dacomitinib as second-generation; osimertinib, lazertinib as third-generation, as examples. However, due to the acquired resistance by the mutations such as EGFRT790M and EGFRC797S together with the exon 20 insertion mutations, these drugs do not provide promising results for NSCLC patients. The development of fourth-generation inhibitors like EAI045 and further innovative drugs to overcome this resistance problem is a must to cure EGFR-related NSCLC. Among these, pyrazoline-thiazole scaffolds are found effective as EGFR-HER2 inhibitors against NSCLC, making them promising drug candidates. Although structures obtained so far for the EGFR family provide meaningful insights into the mechanisms, the quality and the quantity of the EGFR family structures are insufficient to elucidate the complete structures and functions to overcome NSCLC. This review evaluates the structures of EGFR-HER2 and investigates their relation to NSCLC.
Collapse
Affiliation(s)
- Edanur Topalan
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
| | - Ahmet Büyükgüngör
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityIstanbulTürkiye
| | - Melih Çiğdem
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Sinan Güra
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
- Graduate School of Biology & HealthUniversité Paris SaclayOrsayFrance
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu UniversityEskisehirTürkiye
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Drug DiscoveryScience Farm Ltd.KumamotoJapan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Hasan Demirci
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Drug DiscoveryScience Farm Ltd.KumamotoJapan
- Department of Molecular Biology and GeneticsMehmet Akif Ersoy UniversityBurdurTürkiye
- Department of Bioengineering SciencesIzmir Katip Celebi UniversityIzmirTürkiye
| |
Collapse
|
15
|
Galvão GF, Petrilli R, Arfelli VC, Carvalho AN, Martins YA, Rosales RRC, Archangelo LF, daSilva LLP, Lopez RFV. Iontophoresis-driven alterations in nanoparticle uptake pathway and intracellular trafficking in carcinoma skin cancer cells. Colloids Surf B Biointerfaces 2025; 248:114459. [PMID: 39709939 DOI: 10.1016/j.colsurfb.2024.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Effective treatment of squamous cell carcinoma (SCC) poses challenges due to intrinsic drug resistance and limited drug penetration into tumor cells. Nanoparticle-based drug delivery systems have emerged as a promising approach to enhance therapeutic efficacy; however, they often face hurdles such as inadequate cellular uptake and rapid lysosomal degradation. This study explores the potential of iontophoresis to augment the efficacy of liposome and immunoliposome-based drug delivery systems for SCC treatment. The study assessed iontophoresis effects on SCC cell line (A431) viability, nanoparticle uptake dynamics, and intracellular distribution patterns. Specific inhibitors were employed to delineate cellular internalization pathways, while fluorescence microscopy and immunohistochemistry examined changes in EGFR expression and lysosomal activity. Results demonstrated that iontophoresis significantly increased cellular uptake of liposomes and immunoliposomes, achieving approximately 50 % uptake compared to 10 % with passive treatment. This enhancement correlated with modifications in endocytic pathways, favoring macropinocytosis and caveolin-mediated endocytosis for liposomes, and macropinocytosis and clathrin-mediated pathways for immunoliposomes. Moreover, iontophoresis induced alterations in EGFR distribution and triggered syncytium-like cellular clustering. It also attenuated lysosomal activity, thereby reducing nanoparticle degradation and prolonging intracellular retention of therapeutic agents. These findings underscore the role of iontophoresis in modulating nanoparticle internalization pathways, offering insights that could advance targeted drug delivery strategies and mitigate therapeutic resistance in SCC and other malignancies.
Collapse
Affiliation(s)
- Gabriela Fávero Galvão
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil
| | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil; Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Redenção, CE, Brazil; Federal University of Ceara, Faculty of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza, Ceará, Brazil
| | - Vanessa Cristina Arfelli
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Andréia Nogueira Carvalho
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Yugo Araújo Martins
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil
| | - Roberta Ribeiro Costa Rosales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leticia Fröhlich Archangelo
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Lamberti Pinto daSilva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil.
| |
Collapse
|
16
|
Sadri S, Aghajani A, Soleimani H, Ghorbani Kalkhajeh S, Nazari H, Brouki Milan P, Peyravian N, Pezeshkian Z, Malekzadeh Kebria M, Shirazi F, Shams E, Naderi Noukabadi F, Nazemalhosseini-Mojarad E, Salehi Z. Exploring the Role of the TGF-β Signaling Pathway in Colorectal Precancerous Polyps Biochemical Genetics. Biochem Genet 2025; 63:1116-1148. [PMID: 39636332 DOI: 10.1007/s10528-024-10988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Colorectal cancer (CRC) is an important public health issue and is the third most common cancer, accounting for approximately 10% of all cancer cases worldwide. CRC results from the accumulation of multiple genetic and epigenetic alterations in the normal epithelial cells of the colon and rectum, leading to the development of colorectal polyps and invasive carcinomas. The transforming growth factor-beta (TGF-β) pathway is regulated in many diseases, such as cancer. This factor can show tumor suppressant function in the early stages in healthy and cancer cells. It can be regulated and affected by different factors, including noncoding RNAs, which are the remarkable regulators for this pathway. The most prominent functions of this factor are cell cycle arrest and apoptosis in cancer cells. However, activating at the final stages of the cell cycle can cause tumor metastasis. Thus, the dual function of TGF-β and the pleiotropic nature of this signaling make it a crucial challenge for cancer treatment. Accurately studying the TGF-β signaling pathway is critical to determine its role. One of the roles of TGF-β signaling is its significant effect on colorectal polyp malignancy and cancer. In this article, we review the published scientific papers regarding the TGF-β signaling pathway, its related genes, and their contribution to precancerous conditions and colorectal cancer progression. The complex interaction of the TGF-β signaling pathway with noncoding RNAs, such as lncRNA TUG1 and miR-21, significantly influences colorectal polyp and cancer progression. Identifying dysregulated TGF-β-related noncoding RNAs offers promising therapeutic avenues for colorectal cancer. Comprehending TGF-β's connection to other molecular mechanisms is crucial for advancing effective therapeutic strategies.
Collapse
Affiliation(s)
- Shadi Sadri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Ali Aghajani
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hiva Soleimani
- Department of General Biology, Faculty of Fundamental Science, Islamic Azad University of Shahr-E Qods, Tehran, 37515-374, Iran
| | - Sourena Ghorbani Kalkhajeh
- Department of Radiologic Technology, School of Allied Medical Sciences, Ahvaz Jundi-Shapour University of Medical Sciences, Ahvaz, Iran
| | - Haniyeh Nazari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, 19395-1495, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Pezeshkian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Malekzadeh Kebria
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Shirazi
- Division of Genetics, Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, 817467344, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Fatemeh Naderi Noukabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, 14114, Iran.
| |
Collapse
|
17
|
Denk D, Ramakrishnan M, Conche C, Pallangyo C, Pesic M, Ceteci F, Kennel KB, Kirisözü AC, Engel E, Mohs K, Ritter B, Pardo AM, Özkurt E, Hildebrand F, Waisman A, Arkan MC, Greten FR. IL-17RA signaling provides dual tumor-suppressor function during late-stage colorectal carcinogenesis. Immunity 2025; 58:701-715.e8. [PMID: 40023157 DOI: 10.1016/j.immuni.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/13/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Expression of interleukin (IL)-17 family cytokines is associated with tumor-promoting inflammation. We found that low expression of IL17RA associated with worse prognosis in late-stage colorectal cancer (CRC) patients. Deletion of Il17ra in intestinal epithelial cells (IECs) in a murine model of CRC enhanced epithelial-to-mesenchymal transition (EMT) via increased expression of the epidermal growth factor receptor and subsequent activation of the kinase Src. Yet, these mice were protected from metastatic disease; Il17ra deletion impaired intestinal barrier function and enhanced systemic fungal invasion and associated immunity. However, in macrophages, IL-17RA was required for spleen tyrosine kinase (Syk) activation upon fungal-induced dectin-1 engagement, and Il17ra ablation impaired IL-18 release and protective CD8+ T cell-mediated anti-tumor immunity. Combining recombinant IL-17 and heat-killed Candida albicans rendered colorectal tumors sensitive to α-PD-1 treatment in a model of microsatellite stable (MSS) CRC. Thus, IL-17RA engages two distinct tumor-suppressive mechanisms in CRC, linking EMT and fungal-induced anti-tumor immunity during tumor progression.
Collapse
Affiliation(s)
- Dominic Denk
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany; Goethe University Frankfurt, University Hospital, Medical Clinic 1, 60590 Frankfurt/Main, Germany
| | - Mallika Ramakrishnan
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Claire Conche
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Charles Pallangyo
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Marina Pesic
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Fatih Ceteci
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Kilian B Kennel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Asude C Kirisözü
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Esther Engel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Kathleen Mohs
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Birgit Ritter
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Angeles Macias Pardo
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany
| | - Ezgi Özkurt
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Decoding Biodiversity, Earlham Institute, Norwich NR4 7UZ, Norfolk, UK
| | - Falk Hildebrand
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Decoding Biodiversity, Earlham Institute, Norwich NR4 7UZ, Norfolk, UK
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Melek C Arkan
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt/Main, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt/Main, Germany.
| |
Collapse
|
18
|
Keum S, Lee YJ, Kim JW, Rhee S. Dual-specificity phosphatase 23 functions as a promising prognostic biomarker in non-small cell lung cancer. Genes Genomics 2025; 47:321-329. [PMID: 39693003 DOI: 10.1007/s13258-024-01604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The mechanical remodeling of tumor microenvironment is critical for non-small cell lung cancer (NSCLC) progression. Dual-specificity phosphatase 23 (DUSP23) has been previously identified as a mechano-responsive gene, but its role in NSCLC progression remains unknown. OBJECTIVE We aim to elucidate the clinical significance of DUSP23 in NSCLC progression. METHODS We analyzed the expression of DUSP23 in cancer using polyacrylamide hydrogels designed to mimic the stiffness of normal (soft; ~0.5 kPa) and cancerous (stiff; ~40 kPa) tissues. The prognostic significance of DUSP23 expression in patients was examined using public databases. Additionally, we conducted various cell-based assays and transcriptomic analyses in DUSP23-silenced NSCLC cell lines. A risk score prognosis model was constructed using univariate Cox regression and Kaplan-Meier analysis. RESULTS Our findings show that DUSP23 is upregulated in stiff matrices and is highly associated with poor prognosis in patients with solid cancers such as NSCLC and breast cancer. Silencing of DUSP23 resulted in decreased cell proliferation and invasion. Transcriptomic profiling revealed that 182 genes were downregulated, and 230 genes upregulated following DUSP23-depletion. Notably, 182 downregulated genes were enriched in cancer-related pathways, including cell cycle progression and cytoskeleton organization. Through KEGG pathway analysis, we identified 11 cancer-related genes and developed a prognostic risk model. In this model, the high-risk group of NSCLC patients exhibited significantly shorter overall survival compared to low-risk group, based on public datasets. CONCLUSION Our study demonstrates the clinical significance of DUSP23 as a prognostic marker in NSCLC and highlights its potential role of DUSP23 in promoting NSCLC progression.
Collapse
Affiliation(s)
- Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoon Ji Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
19
|
Hong Z, Huang X, Xia L, Liang T, Bai X. Reciprocal regulation of MMP-28 and EGFR is required for sustaining proliferative signaling in PDAC. J Exp Clin Cancer Res 2025; 44:68. [PMID: 39994761 PMCID: PMC11849219 DOI: 10.1186/s13046-025-03323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUD Sustaining proliferation signaling is the top hallmarks of cancer, driving continuous tumor growth and resistance to drug treatments. Blocking proliferation signaling has shown limited benefit in clinical treatment of pancreatic ductal adenocarcinoma, highlighting the urgent need to deeply understand proliferation signaling and develop new therapeutic strategies. METHODS By leveraging clinical data and data from the TCGA and GDSC datasets, we investigated the association between MMP-28 expression and the sensitivity to EGFR inhibitors as well as the prognosis of PDAC. Transcriptomic and biological experiments explore the regulatory role of MMP-28 on the EGFR signaling pathway. Additionally, in vitro and in vivo studies are employed to evaluate MMP-28 as a biomarker for sensitivity to EGFR inhibitors. RESULTS We found that MMP-28, a metalloproteinase, was significantly associated with the sensitivity to EGFR inhibitors. Furthermore, MMP-28 could promote PDAC growth and metastasis. Mechanistically, MMP-28 facilitated the maturation and release of the TGF-α precursor, thus promoting EGFR activation. In return, EGFR upregulated MMP-28 through AP-1-mediated transcription, forming a positive feedback loop that provided sustaining proliferation signaling for PDAC. Subsequently, MMP-28 was identified to predict the response to EGFR inhibitors and recognize responsive patients. CONCLUSIONS Our findings revealed the role of MMP-28 and EGFR in generation of sustaining proliferation signaling and provided a new therapy strategy for PDAC.
Collapse
Affiliation(s)
- Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang University Cancer Center, Hangzhou, 310063, China.
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, 310003, China.
| | - Linghao Xia
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Zhejiang Province, Hangzhou, 31003, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, China.
- Zhejiang University Cancer Center, Hangzhou, 310063, China.
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, 310003, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Zhejiang Province, Hangzhou, 31003, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, China.
- Zhejiang University Cancer Center, Hangzhou, 310063, China.
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, 310003, China.
| |
Collapse
|
20
|
Harumoto T, Kawai R, Motosawa K, Iwano J, Koda Y, Hirata Y, Uehara K. Effect of pH-Responsive Ligands on mRNA Knockdown in EGFR-Targeting Ligand-Conjugated siRNAs. ACS Chem Biol 2025; 20:297-308. [PMID: 39898496 DOI: 10.1021/acschembio.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Ligand-conjugated small interfering RNAs (siRNAs) have emerged as a powerful approach to developing nucleic acid-based medicines. To achieve efficient mRNA knockdown, it is important to select targeting receptors with high expression and ligands that exhibit rapid internalization. However, the key characteristics of ligand-receptor sets involved in the postinternalization process remain largely unclear. In this study, we investigated the effect of ligand-receptor binding dissociation under low pH conditions, known as a postendocytic environment. Specifically, we chemically synthesized several modified epidermal growth factor (EGF) ligands that showed a variety of binding activities to the EGF receptor (EGFR) at low pH. Among these modified ligands, the siRNA conjugate with chemically synthesized EGF H10Y/H16Y, which is a less pH-responsive variant, exhibited reduced internalization and mRNA knockdown activity at high concentrations in EGFR-expressing cells. Additionally, we explored the use of antibody-related molecules (anti-EGFR IgG and Fab) as targeting moieties for siRNA conjugates. The anti-EGFR Fab-siRNA, which showed dissociation of EGF under low pH conditions, demonstrated stronger internalization and mRNA knockdown activity compared to the anti-EGFR IgG-siRNA, which strongly binds EGF at low pH. These data emphasize the importance of intracellular ligand-receptor dissociation and provide insights for future advancements in the field.
Collapse
Affiliation(s)
- Toshimasa Harumoto
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryohei Kawai
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Keiichi Motosawa
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Junko Iwano
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yasuo Koda
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yuuki Hirata
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Keiji Uehara
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
21
|
Floyd BM, Schmidt EL, Till NA, Yang JL, Liao P, George BM, Flynn RA, Bertozzi CR. Mapping the nanoscale organization of the human cell surface proteome reveals new functional associations and surface antigen clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637979. [PMID: 40027624 PMCID: PMC11870420 DOI: 10.1101/2025.02.12.637979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The cell surface is a dynamic interface that controls cell-cell communication and signal transduction relevant to organ development, homeostasis and repair, immune reactivity, and pathologies driven by aberrant cell surface phenotypes. The spatial organization of cell surface proteins is central to these processes. High-resolution fluorescence microscopy and proximity labeling have advanced studies of surface protein associations, but the spatial organization of the complete surface proteome remains uncharted. In this study, we systematically mapped the surface proteome of human T-lymphocytes and B-lymphoblasts using proximity labeling of 85 antigens, identified from over 100 antibodies tested for binding to surface-exposed proteins. These experiments were coupled with an optimized data-independent acquisition mass spectrometry workflow to generate a robust dataset. Unsupervised clustering of the resulting interactome revealed functional modules, including well-characterized complexes such as the T-cell receptor and HLA class I/II, alongside novel clusters. Notably, we identified mitochondrial proteins localized to the surface, including the transcription factor TFAM, suggesting previously unappreciated roles for mitochondrial proteins at the plasma membrane. A high-accuracy machine learning classifier predicted over 6,000 surface protein associations, highlighting functional associations such as IL10RB's role as a negative regulator of type I interferon signaling. Spatial modeling of the surface proteome provided insights into protein dispersion patterns, distinguishing widely distributed proteins, such as CD45, from localized antigens, such as CD226 pointing to active mechanisms of regulating surface organization. This work provides a comprehensive map of the human surfaceome and a resource for exploring the spatial and functional dynamics of the cell membrane proteome.
Collapse
Affiliation(s)
- Brendan M Floyd
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
- Lead contact
| | - Elizabeth L Schmidt
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Nicholas A Till
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jonathan L Yang
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Pinyu Liao
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Benson M George
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Carolyn R Bertozzi
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
- Lead contact
| |
Collapse
|
22
|
Flores Banda JS, Gangane S, Raza F, Massarelli E. Current Development of Therapeutic Vaccines in Lung Cancer. Vaccines (Basel) 2025; 13:185. [PMID: 40006732 PMCID: PMC11860707 DOI: 10.3390/vaccines13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer vaccines have a potential to change the current landscape of immunotherapy research and development. They target and neutralize specific tumor cells by utilizing the body's own immune system which offers a promising modality in treating various cancers including lung cancer. Historically, prior vaccination approaches specifically towards lung cancer have posed several challenges but also potential with early phase I/II trials showing improved overall survival. With better understanding of the body's immune system as well as advancements in vaccine development, the use of vaccines to target lung cancer cells in both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) has shown promise but also challenges in the setting of advanced stage cancers, tumor resistance mechanisms, immune evasion, and tumor heterogeneity. The proposed solution is to enroll patients in the early stages of the disease, rather than waiting until progression occurs. Additionally, future efforts will focus on the targeted identification of specific and novel tumor neo-antigens. This review offers discussion and analysis of both completed and ongoing trials utilizing different strategies for vaccine development in relation to treating lung cancer as well as current challenges faced.
Collapse
Affiliation(s)
| | | | | | - Erminia Massarelli
- Department of Medicine, University of Texas at Tyler School of Medicine, 11937 US Hwy 271, Tyler, TX 75799, USA; (J.S.F.B.); (S.G.); (F.R.)
| |
Collapse
|
23
|
Xu L, Guo J, Xie X, Wang H, Jiang A, Huang C, Yang H, Luo S, Chen L. GTPase GPN3 facilitates cell proliferation and migration in non-small cell lung cancer by impeding clathrin-mediated endocytosis of EGFR. Cell Death Discov 2025; 11:38. [PMID: 39893205 PMCID: PMC11787391 DOI: 10.1038/s41420-025-02317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Small GTPases play a critical role as regulatory molecules in signaling transduction and various cellular processes, contributing to the development of human diseases, including cancers. GPN3, an evolutionarily conserved member of the GPN-loop GTPase subfamily classified in 2007 according to its structure, has limited knowledge regarding its cellular functions and molecular mechanisms. In this study, we demonstrate that GPN3 interacts with clathrin light chain A (CLTA), a vesicle coat protein, as well as clathrin-mediated endocytosis associated modulators AP2B1 and AP2S1. Upregulation of GPN3 leads to the inhibition of clathrin-coated pit invagination. Furthermore, we discovered that GPN3 interacts with the epidermal growth factor receptor (EGFR) and regulates the co-localization of EGFR and CLTA, as well as the localization of EGFR in early endosomes upon EGF stimulation. As a result, this leads to a decrease in endocytic levels of EGFR and an increase in the accumulation of EGFR on the cell membrane surface, thereby prolonging activation of EGFR signaling. The functional effects exerted by GPN3 are dependent on cellular levels of GTP abundance. Furthermore, our findings indicate that aberrant overexpression of GPN3 is observed in non-small cell lung cancer (NSCLC) tissues compared to adjacent normal tissues, and high expression levels of GPN3 are associated with poor prognosis for NSCLC patients. Collectively, these findings reveal that GPN3 acts as an oncogene promoting cell proliferation and migration in NSCLC through regulation of clathrin-dependent EGFR endocytosis. These results suggest that targeting GPN3 could serve as a novel prognostic biomarker and therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Linlin Xu
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiankun Guo
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xinsheng Xie
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hailong Wang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Alan Jiang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Changhua Huang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hua Yang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Limin Chen
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
24
|
Jha A, Chandra A, Farahani P, Toettcher J, Haugh JM, Waterman CM. CD44 and Ezrin restrict EGF receptor mobility to generate a novel spatial arrangement of cytoskeletal signaling modules driving bleb-based migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630838. [PMID: 39803565 PMCID: PMC11722407 DOI: 10.1101/2024.12.31.630838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb. Protein activity biosensors revealed a unique EGFR/PI3K activity gradient decreasing from rear-to-front, promoting PIP3 and Rac1-GTP accumulation at the bleb rear, with its antagonists PIP2 and RhoA-GTP concentrated at the bleb tip, opposite to the front-to-rear organization of these signaling modules in integrin-mediated mesenchymal migration. Optogenetic experiments showed that disrupting this gradient caused bleb retraction, underscoring the role of this signaling gradient in bleb stability. Mathematical modeling and experiments identified a mechanism where, as the bleb initiates, CD44 and ERM proteins restrict EGFR mobility in a membrane-apposed cortical actin meshwork in the bleb rear, establishing a rear-to-front EGFR-PI3K-Rac activity gradient. Thus, our study reveals the biophysical and molecular underpinnings of cell polarity in bleb-based migration of metastatic cells in non-adhesive confinement, and underscores how alternative spatial arrangements of migration signaling modules can mediate different migration modes according to the local microenvironment.
Collapse
Affiliation(s)
- Ankita Jha
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ankit Chandra
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, United States
| | - Payam Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Jared Toettcher
- Department of Molecular Biology, Princeton University, Princeton, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, United States
| | - Jason M. Haugh
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, United States
| | - Clare M. Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
25
|
Xu S, Nie X, Li L, Bie ZX, Li YM, Zhang P, Qi J, Peng JZ, Li XG. Outcomes of First-Line Microwave Ablation of Treatment-Naive Epidermal Growth Factor Receptor-Mutated Advanced Lung Adenocarcinoma Treated with Tyrosine Kinase Inhibitors. J Vasc Interv Radiol 2025; 36:68-77.e3. [PMID: 39428057 DOI: 10.1016/j.jvir.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
PURPOSE To investigate the outcomes of first-line image-guided microwave ablation (MWA) plus tyrosine kinase inhibitors (TKIs) in untreated epidermal growth factor receptor (EGFR)-mutant advanced lung adenocarcinoma (LUAD) and to compare with TKIs alone. MATERIALS AND METHODS This retrospective cohort study included patients between December 2015 and December 2021 and was divided into 2 groups (Group A: first-line MWA+TKIs; Group B: TKIs alone). Progression-free survival (PFS) was the primary end point, whereas overall survival (OS) was the secondary end point and were compared via the Kaplan-Meier methods. Univariate and multivariate analyses were used to investigate the predictors of PFS and OS. Propensity score matching (1:1 ratio) was applied between Group B and the subgroup of complete ablation in Group A. RESULTS A total of 117 patients were included (Group A: n = 43; Group B: n = 74). In a mean follow-up of 47.0 months (SD ± 19.4), Group A had significantly longer median PFS (19.0 vs 10.0 months; P < .001) and OS (41.0 vs 25.0 months; P = .044) than Group B. Predictors of PFS included first-line MWA (P < .001) and tumor stage (P = .020), while that of OS included first-line MWA (P = 0.039), tumor stage (P = 0.014), and usage of third-generation TKIs (P = 0.001). There were 23 pairs of patients obtained after propensity score matching (Group A1: complete ablation+TKIs; Group B1: TKIs alone). Group A1 had significantly longer median PFS (24.0 vs 10.0 months; P < .001) and OS (48.0 vs 24.0 months; P = .012) than Group B1. CONCLUSIONS First-line MWA significantly improved the outcomes of patients with untreated EGFR-mutant advanced LUAD treated with TKIs. Complete ablation predicted a better prognosis.
Collapse
Affiliation(s)
- Sheng Xu
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Nie
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi-Xin Bie
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan-Ming Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ping Zhang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Qi
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jin-Zhao Peng
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Guang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
26
|
Lynch DM, Forrester B, Webb T, Ciulli A. Unravelling the druggability and immunological roles of the SOCS-family proteins. Front Immunol 2024; 15:1449397. [PMID: 39676878 PMCID: PMC11638205 DOI: 10.3389/fimmu.2024.1449397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
The Suppressor of Cytokine Signalling (SOCS) protein family play a critical role in cytokine signalling and regulation of the JAK/STAT pathway with functional consequences to the immune response. Members of this family are implicated in multiple different signalling cascades that drive autoimmune diseases and cancer, through their binding to phosphotyrosine modified proteins as well as ubiquitination activity as part of Cullin5 RING E3 ligases. Here we review the SOCS family members CISH and SOCS1-SOCS7, with a focus on their complex role in immunity. The interactome and signalling network of this protein family is discussed, and the intricate mechanisms through which SOCS proteins alter and manage the immune system are assessed. We offer structural insights into how SOCS proteins engage their interacting partners and native substrates at the protein-protein interaction level. We describe how this knowledge has enabled drug discovery efforts on SOCS proteins to date and propose strategies for therapeutic intervention using small molecules, either via direct inhibition or leveraging their E3 ligase activity for targeted protein degradation.
Collapse
Affiliation(s)
| | | | | | - Alessio Ciulli
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
27
|
Su Q, Chen J, Liu Z, Fan Y, He S. A pH-Sensitive cRGD-PEG-siRNA Conjugated Compound Targeting Glioblastoma. Bioconjug Chem 2024; 35:1732-1743. [PMID: 39431993 PMCID: PMC11583972 DOI: 10.1021/acs.bioconjchem.4c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Glioblastoma ranks among the most prevalent primary intracranial tumors, characterized by high mortality and poor prognosis. Chemotherapy remains a key treatment strategy for gliomas, though most current drugs suffer from limited efficacy and significant toxicity. This study focuses on a cRGD-siEGFR coupling compound synthesized in a previous stage. Prior research indicated that cRGD-siEGFR molecules exhibited certain targeting and antitumor properties but faced issues of inadequate targeting, low efficacy, and high renal toxicity. To enhance antitumor efficacy and mitigate side effects, a pH-responsive, long-circulating, and highly targeted siRNA delivery system, the cRGD-PEG-siEGFR conjugate, was developed. The targeting, antitumor effects, and biological distribution of cRGD-PEG-siEGFR were examined. The results demonstrated that cRGD-PEG-siEGFR was effectively taken up by αvβ3-positive U87MG cells, specifically silenced EGFR gene expression, and exhibited antitumor effects. In normal physiological conditions, it avoided uptake by normal cells, thereby reducing side effects. Furthermore, in vivo biodistribution experiments revealed that cRGD-PEG-siEGFR, compared to cRGD-siEGFR, significantly decreased renal accumulation and exhibited prolonged circulation. Consequently, cRGD-PEG-siRNA emerges as a promising drug candidate with attributes of long circulation, high targeting, pH responsiveness, and substantial antitumor efficacy.
Collapse
Affiliation(s)
- Qing Su
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Junxiao Chen
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Ziyuan Liu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Yiqi Fan
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| |
Collapse
|
28
|
Al Mismar R, Samavarchi-Tehrani P, Seale B, Kasmaeifar V, Martin CE, Gingras AC. Extracellular proximal interaction profiling by cell surface-targeted TurboID reveals LDLR as a partner of liganded EGFR. Sci Signal 2024; 17:eadl6164. [PMID: 39499777 DOI: 10.1126/scisignal.adl6164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/25/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024]
Abstract
Plasma membrane proteins play pivotal roles in receiving and transducing signals from other cells and from the environment and are vital for cellular functionality. Enzyme-based, proximity-dependent approaches, such as biotin identification (BioID), combined with mass spectrometry have begun to illuminate the landscape of proximal protein interactions within intracellular compartments. To extend the potential of these approaches to study the extracellular environment, we developed extracellular TurboID (ecTurboID), a method designed to profile the interactions between proteins on the surfaces of living cells over short timescales using the fast-acting biotin ligase TurboID. After optimizing our experimental and data analysis strategies to capture extracellular proximity interactions, we used ecTurboID to reveal the proximal interactomes of several plasma membrane proteins, including the epidermal growth factor receptor (EGFR). We found that EGF stimulation induced an association between EGFR and the low-density lipoprotein receptor (LDLR) and changed the interactome of LDLR by increasing its proximity with proteins that regulate EGFR signaling. The identification of this interaction between two well-studied and clinically relevant receptors illustrates the utility of our modified proximity labeling methodology for identifying dynamic extracellular associations between plasma membrane proteins.
Collapse
Affiliation(s)
- Rasha Al Mismar
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Brendon Seale
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
| | - Vesal Kasmaeifar
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Claire E Martin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Szentgyörgyi V, Lueck LM, Overwijn D, Ritz D, Zoeller N, Schmidt A, Hondele M, Spang A, Bakhtiar S. Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis. J Cell Biol 2024; 223:e202401167. [PMID: 39325073 PMCID: PMC11449124 DOI: 10.1083/jcb.202401167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024] Open
Abstract
Deleterious mutations in the lipopolysaccharide responsive beige-like anchor protein (LRBA) gene cause severe childhood immune dysregulation. The complexity of the symptoms involving multiple organs and the broad range of unpredictable clinical manifestations of LRBA deficiency complicate the choice of therapeutic interventions. Although LRBA has been linked to Rab11-dependent trafficking of the immune checkpoint protein CTLA-4, its precise cellular role remains elusive. We show that LRBA, however, only slightly colocalizes with Rab11. Instead, LRBA is recruited by members of the small GTPase Arf protein family to the TGN and to Rab4+ endosomes, where it controls intracellular traffic. In patient-derived fibroblasts, loss of LRBA led to defects in the endosomal pathway promoting the accumulation of enlarged endolysosomes and lysosome secretion. Thus, LRBA appears to regulate flow through the endosomal system on Rab4+ endosomes. Our data strongly suggest functions of LRBA beyond CTLA-4 trafficking and provide a conceptual framework to develop new therapies for LRBA deficiency.
Collapse
Affiliation(s)
| | | | | | - Danilo Ritz
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nadja Zoeller
- Dermatology, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Shahrzad Bakhtiar
- Department of Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
30
|
Wang J, Liu P, Zhang R, Xing B, Chen G, Han L, Yu J. VASH2 enhances KIF3C-mediated EGFR-endosomal recycling to promote aggression and chemoresistance of lung squamous cell carcinoma by increasing tubulin detyrosination. Cell Death Dis 2024; 15:772. [PMID: 39443476 PMCID: PMC11499603 DOI: 10.1038/s41419-024-07155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Lung squamous cell carcinoma (LUSC) is associated with high mortality and has few therapeutic options. Chemotherapy remains the main treatment for LUSC patients, but multi-drug resistance has become the dominant challenge in the failure of chemotherapy in various cancers. Therefore, the effective therapeutic strategy for LUSC patients is an urgent unmet need. Here, we found vasohibin-2 (VASH2) was a prognostic biomarker for LUSC patients, and VASH2 promoted the malignant biological behaviors of LUSC cells and chemoresistance by increasing the detyrosination of α-tubulin. The high level of detyrosinated-tubulin was negatively associated with patient prognosis. Blocking the tubulin carboxypeptidase (TCP) activity of VASH2 inhibited the xenograft tumor growth and improved the treatment efficacy of paclitaxel in vivo. Results revealed that VASH2-induced increase in tubulin detyrosination boosted the binding of kinesin family member 3C (KIF3C) to microtubules and enhanced KIF3C-dependent endosomal recycling of EGFR, leading to the prolonged activation of PI3K/Akt/mTOR signaling. This study demonstrated that VASH2 was not only a prognostic biomarker but also a promising therapeutic target in LUSC, which offers a novel insight that combination of chemotherapy and EpoY, a TCP inhibitor, may be a promising treatment strategy for LUSC patients.
Collapse
Affiliation(s)
- Jing Wang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
| | - Biyuan Xing
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
| | - Guidong Chen
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300202, Tianjin, China.
| |
Collapse
|
31
|
Liu J, Wang Y, Tian M, Xia M, Zheng Y, Hao M, Qian Y, Shu H, Zhang W, Peng P, Zhao Z, Dong K, Peng W, Gao T, Li Z, Jin X, Wei M, Feng Y. O-GlcNAcylation of ATP-citrate lyase couples glucose supply to lipogenesis for rapid tumor cell proliferation. Proc Natl Acad Sci U S A 2024; 121:e2402674121. [PMID: 39388261 PMCID: PMC11494317 DOI: 10.1073/pnas.2402674121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Elevated lipid synthesis is one of the best-characterized metabolic alterations in cancer and crucial for membrane expansion. As a key rate-limiting enzyme in de novo fatty acid synthesis, ATP-citrate lyase (ACLY) is frequently up-regulated in tumors and regulated by posttranslational modifications (PTMs). Despite emerging evidence showing O-GlcNAcylation on ACLY, its biological function still remains unknown. Here, we observed a significant upregulation of ACLY O-GlcNAcylation in various types of human tumor cells and tissues and identified S979 as a major O-GlcNAcylation site. Importantly, S979 O-GlcNAcylation is required for substrate CoA binding and crucial for ACLY enzymatic activity. Moreover, it is sensitive to glucose fluctuation and decisive for fatty acid synthesis as well as tumor cell proliferation. In response to EGF stimulation, both S979 O-GlcNAcylation and previously characterized S455 phosphorylation played indispensable role in the regulation of ACLY activity and cell proliferation; however, they functioned independently from each other. In vivo, streptozocin treatment- and EGFR overexpression-induced growth of xenograft tumors was mitigated once S979 was mutated. Collectively, this work helps comprehend how cells interrogate the nutrient enrichment for proliferation and suggests that although mammalian cell proliferation is controlled by mitogen signaling, the ancient nutrition-sensing mechanism is conserved and still efficacious in the cells of multicellular organisms.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Mingjie Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Yi Zheng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic Of China
| | - Yuqiang Qian
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Hengyao Shu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Wenxia Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Pinghui Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Zhexuan Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Kejian Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Wanting Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Tian Gao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| |
Collapse
|
32
|
Yang X, Wang Y, Gong S, Xiong T, Xie L. Integrated metabolomics and network pharmacology reveal the procoagulant mechanisms of Cirsium setosum extracts. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124335. [PMID: 39395239 DOI: 10.1016/j.jchromb.2024.124335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/25/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
As a medicinal plant, Cirsium setosum has excellent procoagulant effects and has long been used as a cure for hemoptysis, epistaxis, uremia and metrorrhagia caused by blood heat. However, the key medicinal part of C. setosum, as well as the biologically active substances that play a major role, are not known. In this study, the aboveground, underground and whole grass portions of C. setosum were subjected to a coagulation comparison experiment to determine the primary active procoagulant compounds. The main active procoagulant compounds of C. setosum were then screened using a comparative metabolomics analysis between aboveground and underground. Network pharmacology analysis was used to construct the "active ingredient-disease target-pathway" network. Finally, molecular docking was used to verify the binding ability and affinity between the key active ingredients obtained from the screening and the targets. The results indicated that the aboveground part of C. setosum could significantly shorten activated partial thromboplastin time (APTT) and that this part exerts substantial procoagulant effects. The total phenol, total flavonoid and total alkaloid content of the aboveground part was measured to be higher than those of the underground part and whole grass. Furthermore, comparative metabolomics analysis as well as the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database and literature search screening yielded 10 active substances, including naringenin, guanine, 2,4-di-tert-butylphenol, calycosin-7-O-beta-D-glucoside, flavone, vitexin, and tiliroside, which may be related to the coagulation-promoting properties of C. setosum and its therapeutic effects on coagulation-related disorders. Network pharmacological analysis revealed that C. setosum may exert procoagulant effects mainly through tiliroside, calycosin-7-O-beta-D-glucoside, and flavone, which act on key target proteins, such as SRC, PRKACA, EGFR, AKT1, MAPK3, and GSK3B. In summary, C. setosum exerts its procoagulant and therapeutic effects on coagulation-related diseases through multiple compounds, targets, and pathways.
Collapse
Affiliation(s)
- Xiao Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Medical School, Zhengzhou University, Zhengzhou 450000, Henan, China.
| | - Yingjin Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Medical School, Zhengzhou University, Zhengzhou 450000, Henan, China.
| | - Shuangyi Gong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Medical School, Zhengzhou University, Zhengzhou 450000, Henan, China.
| | - Tingjian Xiong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Medical School, Zhengzhou University, Zhengzhou 450000, Henan, China.
| | - Lihang Xie
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
33
|
Hebchen DM, Schröder K. Redox Signaling in Endosomes Using the Example of EGF Receptors: A Graphical Review. Antioxidants (Basel) 2024; 13:1215. [PMID: 39456468 PMCID: PMC11504029 DOI: 10.3390/antiox13101215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Early endosomes represent first-line sorting compartments or even organelles for internalized molecules. They enable the transport of molecules or ligands to other compartments of the cell, such as lysosomes, for degradation or recycle them back to the membrane by various mechanisms. Moreover, early endosomes function as signaling and scaffolding platforms to initiate or prolong distinct signaling pathways. Accordingly, early endosomes have to be recognized as either part of a degradation or recycling pathway. The physical proximity of many ligand-binding receptors with other membrane-bound proteins or complexes such as NADPH oxidases may result in an interaction of second messengers, like reactive oxygen species (ROS) and early endosomes, that promote the correct recognition of individual early endosomes. In fact, redoxosomes comprise an endosomal subsection of signaling endosomes. One example of such potential interaction is epidermal growth factor receptor (EGFR) signaling. Here we summarize recent findings on EGFR signaling as a well-studied example for receptor trafficking and trans-activation and illustrate the interplay between cellular and endosomal ROS.
Collapse
Affiliation(s)
| | - Katrin Schröder
- Institute of Physiology, Medical Faculty, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| |
Collapse
|
34
|
Tian Q, Zhou SY, Qin YH, Wu YY, Qin C, Zhou H, Shi J, Duan SF, Feng F. Analysis of postoperative recurrence-free survival in non-small cell lung cancer patients based on consensus clustering. Clin Radiol 2024; 79:e1214-e1225. [PMID: 39039007 DOI: 10.1016/j.crad.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
AIMS This study aims to assess whether consensus clustering, based on computed tomography (CT) radiomics from both intratumoral and peritumoral regions, can effectively stratify the risk of non-small cell lung cancer (NSCLC) patients and predict their postoperative recurrence-free survival (RFS). MATERIALS AND METHODS A retrospective analysis was conducted on the data of surgical patients diagnosed with NSCLC between December 2014 and April 2020. After preprocessing CT images, radiomic features were extracted from a 9-mm region encompassing both the tumor and its peritumoral area. Consensus clustering was utilized to analyze the radiomics features and categorize patients into distinct clusters. A comparison of the differences in clinical pathological characteristics was conducted among the clusters. Kaplan-Meier survival analysis was employed to investigate differences in survival among the clusters. RESULTS A total of 266 patients were included in this study, and consensus clustering identified three clusters (Cluster 1: n=111, Cluster 2: n=61, Cluster 3: n=94). Multiple clinical risk factors, including pathological TNM staging, programmed cell death ligand 1 (PD-L1), and epidermal growth factor receptor (EGFR) expression status exhibit significant differences among the three clusters. Kaplan-Meier survival analysis demonstrated significant variations in RFS across the clusters (P<0.001). The 3-year cumulative recurrence-free survival rates were 76.5% (95% CI: 68.6-84.4) for Cluster 1, 45.9% (95% CI: 33.4-58.4) for Cluster 2, and 41.5% (95% CI: 31.6-51.5) for Cluster 3. CONCLUSIONS Consensus clustering of CT radiomics based on intratumoral and peritumoral regions can stratify the risk of postoperative recurrence in patients with NSCLC.
Collapse
Affiliation(s)
- Q Tian
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - S-Y Zhou
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - Y-H Qin
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - Y-Y Wu
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - C Qin
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - H Zhou
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - J Shi
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - S-F Duan
- GE Healthcare China, Shanghai 210000, China.
| | - F Feng
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| |
Collapse
|
35
|
Liu L, Zhao T, Zheng S, Tang D, Han H, Yang C, Zheng X, Wang J, Ma J, Wei W, Wang Z, He S, He Q. METTL3 inhibitor STM2457 impairs tumor progression and enhances sensitivity to anlotinib in OSCC. Oral Dis 2024; 30:4243-4254. [PMID: 38376115 DOI: 10.1111/odi.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVES To investigate the inhibitory effects of STM2457, which is a novel METTL3 (m6A writer) inhibitor, both as a monotherapy and in combination with anlotinib, in the treatment of oral squamous cell carcinoma (OSCC) both in vitro and in vivo. MATERIALS AND METHODS The efficacy of STM2457 or STM2457 plus anlotinib was evaluated using two OSCC cell lines by CCK8, transwell, colony formation, would-healing, sphere formation, cell cycle, apoptosis assays, and nude mice tumor xenograft techniques. The molecular mechanism study was carried out by western blotting, qRT-PCR, MeRIP-qPCR, immunofluorescence, and immunohistochemistry. RESULTS STM2457 combined with anlotinib enhanced inhibition of cellular survival/proliferation and promotion of apoptosis in vitro. Moreover, this combinatorial approach exerted a notable reduction in stemness properties and EMT (epithelial-mesenchymal transition) features of OSCC cells. Remarkably, in vivo studies validated the efficacy of the combination treatment. Mechanistically, our investigations revealed that the combined action of STM2457 and anlotinib exerted downregulatory effects on EGFR (epidermal growth factor receptor) expression in OSCC cells. CONCLUSIONS The combination of STM2457 and anlotinib targeting EGFR exerted a multiple anti-tumor effect. In near future, anlotinib combined with STM2457 may provide a novel insight for the treatment of OSCC.
Collapse
Affiliation(s)
- Lianlian Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tingting Zhao
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Siyi Zheng
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dongxiao Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hui Han
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chunlong Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xin Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Juan Wang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jieyi Ma
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Wei
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhaoyu Wang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuqi He
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
36
|
Cao P, Chen H, Zhang Y, Zhang Q, Shi M, Han H, Wang X, Jin L, Guo B, Hao R, Zhao X, Li Y, Gao C, Liu X, Wang Y, Yang A, Yang C, Si A, Li H, Song Q, He F, Zhou G. Genomic Amplification of TBC1D31 Promotes Hepatocellular Carcinoma Through Reducing the Rab22A-Mediated Endolysosomal Trafficking and Degradation of EGFR. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405459. [PMID: 39206796 PMCID: PMC11516053 DOI: 10.1002/advs.202405459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinomas (HCCs) are characterized by a vast spectrum of somatic copy number alterations (CNAs); however, their functional relevance is largely unknown. By performing a genome-wide survey on prognosis-associated focal CNAs in 814 HCC patients by an integrative computational framework based on transcriptomic data, genomic amplification is identified at 8q24.13 as a promising candidate. Further evidence is provided that the 8q24.13 amplification-driven overexpression of Rab GTPase activating protein TBC1D31 exacerbates HCC growth and metastasis both in vitro and in vivo through activating Epidermal growth factor receptor (EGFR) signaling. Mechanistically, TBC1D31 acts as a Rab GTPase activating protein to catalyze GTP hydrolysis for Rab22A and then reduces the Rab22A-mediated endolysosomal trafficking and degradation of EGFR. Notably, overexpression of TBC1D31 markedly increases the resistance of HCC cells to lenvatinib, whereas inhibition of the TBC1D31-EGFR axis can reverse this resistance phenotype. This study highlights that TBC1D31 at 8q24.13 is a new critical oncogene, uncovers a novel mechanism of EGFR activation in HCC, and proposes the potential strategies for treating HCC patients with TBC1D31 amplification or overexpression.
Collapse
Affiliation(s)
- Pengbo Cao
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Hongxia Chen
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Ying Zhang
- School of Life SciencesTsinghua UniversityBeijing100084China
| | - Qi Zhang
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
- University of South ChinaHengyang421001China
| | | | - Huihui Han
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Xiaowen Wang
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of LifeomicsBeijing102206China
| | - Liang Jin
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Bingqian Guo
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | | | - Xi Zhao
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Yuanfeng Li
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Chengming Gao
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Xinyi Liu
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Yahui Wang
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Aiqing Yang
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Chenning Yang
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Anfeng Si
- Jinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
| | - Hua Li
- Department of OncologyChengdu Military General HospitalChengdu610083China
| | - Qingfeng Song
- Affiliated Cancer Hospital of Guangxi Medical UniversityNanning530021China
| | - Fuchu He
- School of Life SciencesTsinghua UniversityBeijing100084China
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of LifeomicsBeijing102206China
| | - Gangqiao Zhou
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
- School of Life SciencesTsinghua UniversityBeijing100084China
- University of South ChinaHengyang421001China
- Guangxi Medical UniversityNanning530021China
- Hebei UniversityBaoding071000China
| |
Collapse
|
37
|
Liu C, Gao F, Yang J, Liu C, Tian Z. Wilms' Tumor 1-Associating Protein Promotes Nonsmall-Cell Lung Cancer Through the Expression of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5. Am J Clin Oncol 2024; 47:465-474. [PMID: 38898559 DOI: 10.1097/coc.0000000000001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This study aimed to analyze the functional roles and molecular mechanism of Wilms' tumor 1-associating protein (WTAP) in the tumorigenesis of nonsmall-cell lung cancer (NSCLC). METHODS Retrospective analysis was used. Tumor tissues and surrounding nontumor tissues of 150 patients with NSCLS who were surgically resected in the Fourth Hospital of Hebei Medical University from January 2016 to January 2018 were selected. The expression of WTAP in NSCLC tissues was detected by immunohistochemistry. Clinicopathologic parameters were then subjected to univariate and multivariate Cox regression analysis in purpose of uncovering the independent risk factors for overall survival time. MTS (3-[4,5-dimethylthiazol-zyl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazoliuzolium, inner salt) assay, colony formation assay, and transwell assays were performed to estimate cell proliferation, migration, and invasion. Meanwhile, the relationship between WTAP and the cell migration and invasion marker-related proteins were evaluated by Western blot analysis and RT-qPCR. WTAP expression was knocked-down in cell lines by shRNA, and RNA-Seq was performed to investigate the pathways regulated by WTAP. RESULTS In NSCLC patients, WTAP was highly expressed in tumor tissues and the higher expression was significantly associated with poor overall survival (OS) ( P <0.01). Compared with the control group in vitro, the overexpression of WTAP could significantly promote cell proliferation, migration, and invasion ( P <0.01), while knock-down WTAP significantly reduces the above effects ( P <0.01). In a mouse orthotopic implantation model, higher WTAP abundance could significantly promote tumor enlargement compared with the control group ( P <0.01). Compared with the control group, the knock-down of WTAP significantly inhibit the expression of carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in cell lines ( P <0.01). Besides, in NSCLC, knocked-down CEACAM5 significantly reduced the impact of WTAP on cell proliferation, migration, and invasion compared with the control group ( P <0.05). CONCLUSIONS This study suggests that high expression of WTAP was associated with poor clinical outcomes. CEACAM5 may play a synergistic role with WTAP to jointly promote NSCLC progression by enhancing cell proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Changjiang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Feng Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chengang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
38
|
Shi J, Fang C, Liu Q, Chen X, Chen H, Tian S, Peng Q, Yao X. Mechanistic elucidation of QiJu-DiHuang Wan in management of age-related dry eye through metabolomics and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155884. [PMID: 39053245 DOI: 10.1016/j.phymed.2024.155884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND QiJu-DiHuang Wan (QJDHW), a frequently employed Chinese herbal formula, is used to treat blurred vision. Even so, it is unclear how it works in treating age-related dry eyes. OBJECTIVE The aim of this research is to explore the potential mechanisms of QJDHW in treating dry eye using UHPLC-QE-MS, metabolomics, and network pharmacology. METHODS Six male SD rats were segregated into control and QJDHW groups. Following intervention, The primary active ingredients in QJDHW-containing serum were identified using UHPLC-QE-MS. Metabolomics and network pharmacology were utilized to investigate potential targets and pathways involved following QJDHW use. Primary lacrimal epithelial cells were used for validation. RESULTS A total of 425 active ingredients of QJDHW were identified, along with 210 active ingredients in QJDHW-containing serum. A comparison of QJDHW-containing serum and control serum samples revealed 40 metabolic differentiators. A total of 24 metabolites were found in QJDHW and QJDHW-containing serum. Network pharmacology identified 3,144 targets for dry eye disease, and 102 metabolite action targets were found for QJDHW-entering components. KEGG Enrichment Analysis revealed significance of HIF-1, apoptosis, cell cycle and PI3K-Akt, among others. HIF-1 and PI3K-Akt were chosen for verification in the oxidative damage model of lacrimal epithelial cells. CONCLUSION The main active ingredients of QJDHW and its containing serum were elucidated by UHPLC-QE-MS demonstrating that QJDHW treats age-associated dry eye by inhibiting HIF1α/NF-κB through ROS inhibition and PI3K/p-AKT activation.
Collapse
Affiliation(s)
- Jian Shi
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China; Hunan University of Chinese Medicine, Changsha 410208, China; The Key Laboratory of Chinese Medicine for the Prevention and Treatment of Eye, Ear, Nose and Throat Diseases in Hunan Provincial, Changsha 410208, China
| | - Chi Fang
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Qianhong Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China; Hunan University of Chinese Medicine, Changsha 410208, China; The Key Laboratory of Chinese Medicine for the Prevention and Treatment of Eye, Ear, Nose and Throat Diseases in Hunan Provincial, Changsha 410208, China
| | - Xiong Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China; Hunan University of Chinese Medicine, Changsha 410208, China; The Key Laboratory of Chinese Medicine for the Prevention and Treatment of Eye, Ear, Nose and Throat Diseases in Hunan Provincial, Changsha 410208, China
| | - Huimei Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China; Hunan University of Chinese Medicine, Changsha 410208, China; The Key Laboratory of Chinese Medicine for the Prevention and Treatment of Eye, Ear, Nose and Throat Diseases in Hunan Provincial, Changsha 410208, China
| | - Sainan Tian
- Hunan University of Chinese Medicine, Changsha 410208, China; The Key Laboratory of Chinese Medicine for the Prevention and Treatment of Eye, Ear, Nose and Throat Diseases in Hunan Provincial, Changsha 410208, China
| | - Qinghua Peng
- Hunan University of Chinese Medicine, Changsha 410208, China; The Key Laboratory of Chinese Medicine for the Prevention and Treatment of Eye, Ear, Nose and Throat Diseases in Hunan Provincial, Changsha 410208, China.
| | - Xiaolei Yao
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China; The Key Laboratory of Chinese Medicine for the Prevention and Treatment of Eye, Ear, Nose and Throat Diseases in Hunan Provincial, Changsha 410208, China.
| |
Collapse
|
39
|
Kociper B, Škorja Milić N, Ogrizek I, Miš K, Pirkmajer S. Inhibition of the ubiquitin-proteasome system reduces the abundance of pyruvate dehydrogenase kinase 1 in cultured myotubes. J Muscle Res Cell Motil 2024; 45:155-169. [PMID: 39080182 DOI: 10.1007/s10974-024-09679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/05/2024] [Indexed: 08/11/2024]
Abstract
Pyruvate dehydrogenase kinase (PDK), which phosphorylates the pyruvate dehydrogenase complex, regulates glucose metabolism in skeletal muscle. PDK1, an isozyme whose expression is controlled by hypoxia-inducible factor-1α (HIF-1α), is thought to play a role in muscle adaptation to hypoxia. While transcriptional upregulation of PDK1 by HIF-1α is well characterised, mechanisms controlling proteolysis of PDK1 in skeletal muscle have not been thoroughly investigated. Proteasome inhibitor MG132 paradoxically reduced the abundance of PDK1 in human cancer cells and rat L6 myotubes, suggesting that MG132 might direct PDK1 towards autophagic degradation. The objectives of our current study were to determine (1) whether MG132 suppresses PDK1 levels in primary human myotubes, (2) whether chloroquine, an inhibitor of autophagy, prevents MG132-induced suppression of PDK1 in L6 myotubes, and (3) whether PYR-41, an inhibitor of ubiquitination, suppresses PDK1 in L6 myotubes. Using qPCR and/or immunoblotting, we found that despite markedly upregulating HIF-1α protein, MG132 did not alter the PDK1 expression in cultured primary human myotubes, while it suppressed both PDK1 mRNA and protein in L6 myotubes. The PDK1 levels in L6 myotubes were suppressed also during co-treatment with chloroquine and MG132. PYR-41 markedly increased the abundance of HIF-1α in primary human and L6 myotubes, while reducing the abundance of PDK1. In L6 myotubes treated with PYR-41, chloroquine increased the abundance of the epidermal growth factor receptor, but did not prevent the suppression of PDK1. Collectively, our results suggest that cultured myotubes degrade PDK1 via a pathway that cannot be inhibited by MG132, PYR-41, and/or chloroquine.
Collapse
Affiliation(s)
- Blaž Kociper
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| | - Nives Škorja Milić
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| | - Ivana Ogrizek
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia.
| |
Collapse
|
40
|
He D, Bai R, Chen N, Cui J. Immune status and combined immunotherapy progression in Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant tumors. Chin J Cancer Res 2024; 36:421-441. [PMID: 39246706 PMCID: PMC11377883 DOI: 10.21147/j.issn.1000-9604.2024.04.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most frequently mutated oncogene, occurring in various tumor types. Despite extensive efforts over the past 40 years to develop inhibitors targeting KRAS mutations, resistance to these inhibitors has eventually emerged. A more precise understanding of KRAS mutations and the mechanism of resistance development is essential for creating novel inhibitors that target specifically KRAS mutations and can delay or overcome resistance. Immunotherapy has developed rapidly in recent years, and in-depth dissection of the tumor immune microenvironment has led researchers to shift their focus to patients with KRAS mutations, finding that immune factors play an essential role in KRAS-mutant (KRAS-Mut) tumor therapy and targeted drug resistance. Breakthroughs and transitions from targeted therapy to immunotherapy have provided new hope for treating refractory patients. Here, we reviewed KRAS mutation-targeted treatment strategies and resistance issues, focusing on our in-depth exploration of the specific immune status of patients with KRAS mutations and the impact of body immunity following KRAS inhibition. We aimed to guide innovative approaches combining RAS inhibition with immunotherapy, review advances in preclinical and clinical stages, and discuss challenges and future directions.
Collapse
Affiliation(s)
- Dongsheng He
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Rilan Bai
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Naifei Chen
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
41
|
Toh SY, Leong HS, Chong FT, Rodrigues-Junior DM, Ren MJ, Kwang XL, Lau DPX, Lee PH, Vettore AL, Teh BT, Tan DSW, Iyer NG. Therapeutic application of extracellular vesicular EGFR isoform D as a co-drug to target squamous cell cancers with tyrosine kinase inhibitors. Dev Cell 2024; 59:2189-2202.e8. [PMID: 39089249 DOI: 10.1016/j.devcel.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
Targeting wild-type epidermal growth factor receptor (EGFR) using tyrosine kinase inhibitors (TKIs) never achieved its purported success in cancers such as head and neck squamous cell carcinoma, which are largely EGFR-dependent. We had previously shown that exceptional responders to TKIs have a genetic aberration that results in overexpression of an EGFR splice variant, isoform D (IsoD). IsoD lacks an integral transmembrane and kinase domain and is secreted in extracellular vesicles (EVs) in TKI-sensitive patient-derived cultures. Remarkably, the exquisite sensitivity to TKIs could be transferred to TKI-resistant tumor cells, and IsoD protein in the EV is necessary and sufficient to transfer the phenotype in vitro and in vivo across multiple models and drugs. This drug response requires an intact endocytic mechanism, binding to full-length EGFR, and signaling through Src-phosphorylation within the endosomal compartment. We propose a therapeutic strategy using EVs containing EGFR IsoD as a co-drug to expand the use of TKI therapy to EGFR-driven cancers.
Collapse
Affiliation(s)
- Shen Yon Toh
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Fui Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Dorival Mendes Rodrigues-Junior
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Meng Jie Ren
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Xue Lin Kwang
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Dawn P X Lau
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Po-Hsien Lee
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Andre Luiz Vettore
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Daniel S W Tan
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Academic Clinical Program in Oncology, Duke-NUS Medical School, Singapore, Singapore; Department of Head and Neck Surgery, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
42
|
Budhiraja S, McManus G, Baisiwala S, Perrault EN, Cho S, Saathoff M, Chen L, Park CH, Kazi HA, Dmello C, Lin P, James CD, Sonabend AM, Heiland DH, Ahmed AU. ARF4-mediated retrograde trafficking as a driver of chemoresistance in glioblastoma. Neuro Oncol 2024; 26:1421-1437. [PMID: 38506351 PMCID: PMC11300013 DOI: 10.1093/neuonc/noae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Cellular functions hinge on the meticulous orchestration of protein transport, both spatially and temporally. Central to this process is retrograde trafficking, responsible for targeting proteins to the nucleus. Despite its link to many diseases, the implications of retrograde trafficking in glioblastoma (GBM) are still unclear. METHODS To identify genetic drivers of TMZ resistance, we conducted comprehensive CRISPR-knockout screening, revealing ADP-ribosylation factor 4 (ARF4), a regulator of retrograde trafficking, as a major contributor. RESULTS Suppressing ARF4 significantly enhanced TMZ sensitivity in GBM patient-derived xenograft (PDX) models, leading to improved survival rates (P < .01) in both primary and recurrent lines. We also observed that TMZ exposure stimulates ARF4-mediated retrograde trafficking. Proteomics analysis of GBM cells with varying levels of ARF4 unveiled the influence of this pathway on EGFR signaling, with increased nuclear trafficking of EGFR observed in cells with ARF4 overexpression and TMZ treatment. Additionally, spatially resolved RNA-sequencing of GBM patient tissues revealed substantial correlations between ARF4 and crucial nuclear EGFR (nEGFR) downstream targets, such as MYC, STAT1, and DNA-PK. Decreased activity of DNA-PK, a DNA repair protein downstream of nEGFR signaling that contributes to TMZ resistance, was observed in cells with suppressed ARF4 levels. Notably, treatment with DNA-PK inhibitor, KU-57788, in mice with a recurrent PDX line resulted in prolonged survival (P < .01), highlighting the promising therapeutic implications of targeting proteins reliant on ARF4-mediated retrograde trafficking. CONCLUSIONS Our findings demonstrate that ARF4-mediated retrograde trafficking contributes to the development of TMZ resistance, cementing this pathway as a viable strategy to overcome chemoresistance in GBM.
Collapse
Affiliation(s)
- Shreya Budhiraja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Graysen McManus
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Ella N Perrault
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sia Cho
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Miranda Saathoff
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cheol H Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hasaan A Kazi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peiyu Lin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dieter H Heiland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
43
|
Zhu L, Yang X, Wu S, Dong R, Yan Y, Lin N, Zhang B, Tan B. Hepatotoxicity of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs). Drug Metab Rev 2024; 56:302-317. [PMID: 39120430 DOI: 10.1080/03602532.2024.2388203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most frequently adverse reactions in clinical drug use, usually caused by drugs or herbal compounds. Compared with other populations, cancer patients are more prone to abnormal liver function due to primary or secondary liver malignant tumor, radiation-induced liver injury and other reasons, making potential adverse reactions from liver damage caused by anticancer drugs of particular concernduring clinical treatment process. In recent years, the application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has changed the treatment status of a series of solid malignant tumors. Unfortunately, the increasing incidence of hepatotoxicitylimits the clinical application of EGFR-TKIs. The mechanisms of liver injury caused by EGFR-TKIs were complex. Despite more than a decade of research, other than direct damage to hepatocytes caused by inhibition of cellular DNA synthesis and resulting in hepatocyte necrosis, the rest of the specific mechanisms remain unclear, and few effective solutions are available. This review focuses on the clinical feature, incidence rates and the recent advances on the discovery of mechanism of hepatotoxicity in EGFR-TKIs, as well as rechallenge and therapeutic strategies underlying hepatotoxicity of EGFR-TKIs.
Collapse
Affiliation(s)
- Lulin Zhu
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xinxin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanshan Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Dong
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Youyou Yan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
44
|
Oppenheimer KG, Hager NA, McAtee CK, Filiztekin E, Shang C, Warnick JA, Bruchez MP, Brodsky JL, Prosser DC, Kwiatkowski AV, O’Donnell AF. Optimization of the fluorogen-activating protein tag for quantitative protein trafficking and colocalization studies in S. cerevisiae. Mol Biol Cell 2024; 35:mr5. [PMID: 38809589 PMCID: PMC11244157 DOI: 10.1091/mbc.e24-04-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Spatial and temporal tracking of fluorescent proteins (FPs) in live cells permits visualization of proteome remodeling in response to extracellular cues. Historically, protein dynamics during trafficking have been visualized using constitutively active FPs fused to proteins of interest. While powerful, such FPs label all cellular pools of a protein, potentially masking the dynamics of select subpopulations. To help study protein subpopulations, bioconjugate tags, including the fluorogen activation proteins (FAPs), were developed. FAPs are comprised of two components: a single-chain antibody (SCA) fused to the protein of interest and a malachite-green (MG) derivative, which fluoresces only when bound to the SCA. Importantly, the MG derivatives can be either cell-permeant or -impermeant, thus permitting isolated detection of SCA-tagged proteins at the cell surface and facilitating quantitative endocytic measures. To expand FAP use in yeast, we optimized the SCA for yeast expression, created FAP-tagging plasmids, and generated FAP-tagged organelle markers. To demonstrate FAP efficacy, we coupled the SCA to the yeast G-protein coupled receptor Ste3. We measured Ste3 endocytic dynamics in response to pheromone and characterized cis- and trans-acting regulators of Ste3. Our work significantly expands FAP technology for varied applications in S. cerevisiae.
Collapse
Affiliation(s)
| | - Natalie A. Hager
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Elif Filiztekin
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | - Marcel P. Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Adam V. Kwiatkowski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | | |
Collapse
|
45
|
Joyce LJ, Lindsay AJ. A systematic computational analysis of the endosomal recycling pathway in glioblastoma. Biochem Biophys Rep 2024; 38:101700. [PMID: 38638676 PMCID: PMC11024495 DOI: 10.1016/j.bbrep.2024.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain cancer in adults. The standard treatment is brutal and has changed little in 20 years, and more than 85% of patients will die within two years of their diagnosis. There is thus an urgent need to identify new drug targets and develop novel therapeutic strategies to increase survival and improve quality of life. Using publicly available genomics, transcriptomics and proteomics datasets, we compared the expression of endosomal recycling pathway regulators in non-tumour brain tissue with their expression in GBM. We found that key regulators of this pathway are dysregulated in GBM and their expression levels can be linked to survival outcomes. Further analysis of the differentially expressed endosomal recycling regulators allowed us to generate an 8-gene prognostic signature that can distinguish low-risk from high-risk GBM and potentially identify tumours that may benefit from treatment with endosomal recycling inhibitors. This study presents the first systematic analysis of the endosomal recycling pathway in glioblastoma and suggests it could be a promising target for the development of novel therapies and therapeutic strategies to improve outcomes for patients.
Collapse
Affiliation(s)
- Luke J. Joyce
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J. Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
46
|
Yuan L, Meng Y, Xiang J. SNX16 is required for hepatocellular carcinoma survival via modulating the EGFR-AKT signaling pathway. Sci Rep 2024; 14:13093. [PMID: 38849490 PMCID: PMC11161632 DOI: 10.1038/s41598-024-64015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Sorting nexin 16 (SNX16), a pivotal sorting nexin, emerges in tumor progression complexity, fueling research interest. However, SNX16's biological impact and molecular underpinnings in hepatocellular carcinoma (HCC) remain elusive. This study probes SNX16's function, clinical relevance via mRNA, and protein expression in HCC. Overexpression/knockdown assays of SNX16 were employed to elucidate impacts on HCC cell invasion, proliferation, and EMT. Additionally, the study delved into SNX16's regulation of the EGFR-AKT signaling cascade mechanism. SNX16 overexpression in HCC correlates with poor patient survival; enhancing proliferation, migration, invasion, and tumorigenicity, while SNX16 knockdown suppresses these processes. SNX16 downregulation curbs phospho-EGFR, dampening AKT signaling. EGFR suppression counters SNX16-overexpression-induced HCC proliferation, motility, and invasiveness. Our findings delineate SNX16's regulatory role in HCC, implicating it as a prospective therapeutic target.
Collapse
Affiliation(s)
- Lebin Yuan
- Department of General Surgery, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Yanqiu Meng
- Oncology Department, First Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiajia Xiang
- Molecular Centre Laboratory, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
47
|
Zhang J, Ji F, Tan Y, Zhao L, Zhao Y, Liu J, Shao L, Shi J, Ye M, He X, Jin J, Zhao B, Huang J, Roessler S, Zheng X, Ji J. Oncogenic Roles of Laminin Subunit Gamma-2 in Intrahepatic Cholangiocarcinoma via Promoting EGFR Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309010. [PMID: 38526177 PMCID: PMC11151066 DOI: 10.1002/advs.202309010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal biliary epithelial cancer in the liver. Here, Laminin subunit gamma-2 (LAMC2) with important oncogenic roles in iCCA is discovered. In a total of 231 cholangiocarcinoma patients (82% of iCCA patients) across four independent cohorts, LAMC2 is significantly more abundant in iCCA tumor tissue compared to normal bile duct and non-tumor liver. Among 26.3% of iCCA patients, LAMC2 gene is amplified, contributing to its over-expression. Functionally, silencing LAMC2 significantly blocks tumor formation in orthotopic iCCA mouse models. Mechanistically, it promotes EGFR protein translation via interacting with nascent unglycosylated EGFR in the endoplasmic reticulum (ER), resulting in activated EGFR signaling. LAMC2-mediated EGFR translation also depends on its interaction with the ER chaperone BiP via their C-terminus. Together LAMC2 and BiP generate a binding "pocket" of nascent EGFR and facilitate EGFR translation. Consistently, LAMC2-high iCCA patients have poor prognosis in two iCCA cohorts. LAMC2-high iCCA cells are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs) treatment both in vitro and in vivo. Together, these data demonstrate LAMC2 as an oncogenic player in iCCA by promoting EGFR translation and an indicator to identify iCCA patients who may benefit from available EGFR-targeted TKIs therapies.
Collapse
Affiliation(s)
- Jianjuan Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Fubo Ji
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Yaqi Tan
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Lei Zhao
- Shandong Cancer Hospital and InstituteShandong Cancer Hospital of Shandong First Medical UniversityJinanShandong Province250117China
| | - Yongzhi Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Jiaxin Liu
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Liyuan Shao
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
| | - Jiong Shi
- Department of PathologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008China
| | - Meihua Ye
- Zhejiang Provincial People's HospitalHangzhouZhejiang310014China
| | - Xianglei He
- Zhejiang Provincial People's HospitalHangzhouZhejiang310014China
| | - Jianping Jin
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Stephanie Roessler
- Institute of PathologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Xin Zheng
- Taoharmony Biotech L.L.C.HangzhouZhejiang310018China
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
48
|
Fan D, Zhang H, Duan L, Long L, Xu S, Tu Y, Wang L, Zheng P, Zhu W. Design, synthesis, and evaluation of antitumor activity of Mobocertinib derivatives, a third-generation EGFR inhibitor. Bioorg Chem 2024; 147:107390. [PMID: 38691904 DOI: 10.1016/j.bioorg.2024.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Mobocertinib, as a structural analog of the third generation TKI Osimertinib, can selectively act on the EGFRex20 mutation. We have structurally modified Mobocertinib to obtain new EGFR inhibitors. In this paper, we chose Mobocertinib as a lead compound for structural modification to investigate the effect of Mobocertinib derivatives on EGFRT790M mutation. We designed and synthesized 63 Mobocertinib derivatives by structural modification using the structural similarity strategy and the bioelectronic isoarrangement principle. Then, we evaluated the in vitro antitumor activity of the 63 Mobocertinib derivatives and found that the IC50 of compound H-13 against EGFRL858R/T790M mutated H1975 cells was 3.91 μM, and in further kinase activity evaluation, the IC50 of H-13 against EGFRL858R/T790M kinase was 395.2 nM. In addition, the preferred compound H-13 was able to promote apoptosis of H1975 tumor cells and block the proliferation of H1975 cells in the G0/G1 phase; meanwhile, it was able to significantly inhibit the migratory ability of H1975 tumor cells and inhibit the growth of H1975 cells in a time-concentration-dependent manner. In the in vivo anti-tumor activity study, the preferred compound H-13 had no obvious toxicity to normal mice, and the tumor inhibition effect on H1975 cell-loaded nude mice was close to that of Mobocertinib. Finally, molecular dynamics simulations showed that the binding energy between compound H-13 and 3IKA protein was calculated to be -162.417 ± 14.559 kJ/mol. In summary, the preferred compound H-13 can be a potential third-generation EGFR inhibitor.
Collapse
Affiliation(s)
- Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang Jiangxi, 330013, China
| | - Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang Jiangxi, 330013, China
| | - Lei Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang Jiangxi, 330013, China
| | - Li Long
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang Jiangxi, 330013, China
| | - Yuanbiao Tu
- Jiangxi Univ Tradit Chinese Med, Jiangzhong Canc Res Ctr, 1688 Meiling Rd, Nanchang Jiangxi, 330004, China
| | - Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang Jiangxi, 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang Jiangxi, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang Jiangxi, 330013, China.
| |
Collapse
|
49
|
Ferrarone JR, Thomas J, Unni AM, Zheng Y, Nagiec MJ, Gardner EE, Mashadova O, Li K, Koundouros N, Montalbano A, Mustafa M, Cantley LC, Blenis J, Sanjana NE, Varmus H. Genome-wide CRISPR screens in spheroid culture reveal that the tumor suppressor LKB1 inhibits growth via the PIKFYVE lipid kinase. Proc Natl Acad Sci U S A 2024; 121:e2403685121. [PMID: 38743625 PMCID: PMC11127050 DOI: 10.1073/pnas.2403685121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.
Collapse
Affiliation(s)
- John R. Ferrarone
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY10021
| | - Jerin Thomas
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Arun M. Unni
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Yuxiang Zheng
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Michal J. Nagiec
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
- Department of Pharmacology, Weill Cornell Medicine, New York, NY10021
| | - Eric E. Gardner
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | | | - Kate Li
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Nikos Koundouros
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
- Department of Pharmacology, Weill Cornell Medicine, New York, NY10021
| | - Antonino Montalbano
- New York Genome Center, New York, NY10013
- Department of Biology, New York University, New York, NY10003
| | - Meer Mustafa
- New York Genome Center, New York, NY10013
- Department of Biology, New York University, New York, NY10003
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
- Department of Medicine, Weill Cornell Medicine, New York, NY10021
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
- Department of Pharmacology, Weill Cornell Medicine, New York, NY10021
| | - Neville E. Sanjana
- New York Genome Center, New York, NY10013
- Department of Biology, New York University, New York, NY10003
| | - Harold Varmus
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
- Department of Medicine, Weill Cornell Medicine, New York, NY10021
| |
Collapse
|
50
|
Suzuki K, Okawa Y, Akter S, Ito H, Shiba Y. Arf GTPase-Activating proteins ADAP1 and ARAP1 regulate incorporation of CD63 in multivesicular bodies. Biol Open 2024; 13:bio060338. [PMID: 38682696 PMCID: PMC11103404 DOI: 10.1242/bio.060338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
Arf GTPase-activating proteins (ArfGAPs) mediate the hydrolysis of GTP bound to ADP-ribosylation factors. ArfGAPs are critical for cargo sorting in the Golgi-to-ER traffic. However, the role of ArfGAPs in sorting into intralumenal vesicles (ILVs) in multivesicular bodies (MVBs) in post-Golgi traffic remains unclear. Exosomes are extracellular vesicles (EVs) of endosomal origin. CD63 is an EV marker. CD63 is enriched ILVs in MVBs of cells. However, the secretion of CD63 positive EVs has not been consistent with the data on CD63 localization in MVBs, and how CD63-containing EVs are formed is yet to be understood. To elucidate the mechanism of CD63 transport to ILVs, we focused on CD63 localization in MVBs and searched for the ArfGAPs involved in CD63 localization. We observed that ADAP1 and ARAP1 depletion inhibited CD63 localization to enlarged endosomes after Rab5Q79L overexpression. We tested epidermal growth factor (EGF) and CD9 localization in MVBs. We observed that ADAP1 and ARAP1 depletion inhibited CD9 localization in enlarged endosomes but not EGF. Our results indicate ADAP1 and ARAP1, regulate incorporation of CD63 and CD9, but not EGF, in overlapped and different MVBs. Our work will contribute to distinguish heterogenous ILVs and exosomes by ArfGAPs.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
| | - Yoshitaka Okawa
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
| | - Sharmin Akter
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
| | - Haruki Ito
- Biological Sciences Course, Faculty of Science and Engineering, Iwate University, 020-8551, Morioka, Japan
| | - Yoko Shiba
- Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan
- Biological Sciences Course, Faculty of Science and Engineering, Iwate University, 020-8551, Morioka, Japan
| |
Collapse
|