1
|
Xu M, Li X, Yuan C, Zhu T, Wang M, Zhu Y, Duan Y, Yao J, Luo B, Wang Z, Yin S, Zhao Y. Ursolic Acid Inhibits Glycolysis of Ovarian Cancer via KLF5/PI3K/AKT Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2211-2231. [PMID: 39614414 DOI: 10.1142/s0192415x2450085x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Glycolysis is one of the key metabolic reprogramming characteristics of ovarian cancer. Ursolic Acid (UA), as a natural compound, exerts a beneficial regulatory effect on tumor metabolism. In this study, we have confirmed through RNA-seq analysis and a series of in vitro and in vivo functional experiments that UA significantly inhibits ovarian cancer cell proliferation, promotes tumor apoptosis, and reduces glycolysis levels. Additionally, it demonstrates synergistic therapeutic effects with cisplatin in both in vitro and in vivo experiments. Furthermore, at the molecular level, we found that UA inhibits glycolysis in ovarian cancer by binding to the transcription factor KLF5 and blocking the transcriptional expression of the downstream PI3K/AKT signaling pathway, thereby exerting its therapeutic effect. In conclusion, our research indicates that UA can inhibit the proliferation, apoptosis, and glycolysis levels of ovarian cancer cells through the KLF5/PI3K/AKT signaling axis. Our findings offer a new perspective on the therapeutic application of the natural compound UA in ovarian cancer and support its potential development as a candidate for chemotherapy.
Collapse
Affiliation(s)
- Meng Xu
- Cancer Institute, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Xiaoqi Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Centre, Shanghai 200032, P. R. China
| | - Chenyue Yuan
- Cancer Institute, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Tingting Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, P. R. China
| | - Mengfei Wang
- Cancer Institute, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Ying Zhu
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Yanqiu Duan
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jialiang Yao
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Bin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Ziliang Wang
- Cancer Institute, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Sheng Yin
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yuqing Zhao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, P. R. China
| |
Collapse
|
2
|
Ren YL, Lei JT, Zhang TR, Lu P, Cui DD, Yang B, Zhao GY, Peng F, Cao ZX, Peng C, Li YZ. Isobavachalcone, a natural sirtuin 2 inhibitor, exhibits anti-triple-negative breast cancer efficacy in vitro and in vivo. Phytother Res 2024; 38:1815-1829. [PMID: 38349045 DOI: 10.1002/ptr.8143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 04/10/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 μM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/β-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.
Collapse
Affiliation(s)
- Ya-Li Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie-Ting Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting-Rui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan-Dan Cui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Yang
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pharmacy, The Seventh People's Hospital of Chengdu, Chengdu, China
- Department of Pharmacy, Panzhihua Central Hospital, Dali University, Panzhihua, China
| | - Gui-Ying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhi-Xing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Wang W, Ji W, Lyu Z, Sun W, Shao Y, Liu J, Yang Y. Construction of a prediction model for postoperative prognosis in patients with resectable cholangiocarcinoma based on silence information regulator 2 expression. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 53:98-107. [PMID: 38105682 PMCID: PMC10945490 DOI: 10.3724/zdxbyxb-2023-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/08/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES To develop a prediction model for postoperative prognosis in patients with cholangiocarcinoma (CCA) based on the expression of silence information regulator 2 (SIRT2). METHODS The differential expression of SIRT2 between CCA and normal tissues was analyzed using TCGA and GEO databases. Gene set enrichment analysis (GSEA) was used to explore potential mechanisms of SIRT2 in CCA. The expression of SIRT2 protein in CCA tissues and normal tissues (including 44 pairs of specimens) was also detected by immunohistochemistry (IHC) in 89 resectable CCA patients who underwent surgical treatment in the First Affiliated Hospital of Bengbu Medical College between January 2016 and December 2021. The relationship between SIRT2 expression and clinicopathological characteristics and prognosis of CCA patients was analyzed. A survival prediction model for patients with resectable CCA was constructed with COX regression results, the calibration curve and the time-dependent receiver operating characteristic curve (ROC) were used to evaluate the performance of the constructed model, and the predictive power between this model and the American Joint Committee on Cancer (AJCC)/TNM staging system (8th edition) was compared. RESULTS SIRT2 mRNA was overexpressed in CCA tissues as shown in TCGA and GEO databases. IHC staining showed that SIRT2 protein expression in CCA tissues was significantly higher than that in adjacent non-tumor tissues. GSEA results showed that elevated SIRT2 expression may be involved in multiple metabolism-related signaling pathway, such as fatty acid metabolism, oxidative phosphorylation and amino acid metabolism. SIRT2 expression was related to serum triglycerides level, tumor size and lymph node metastasis (all P<0.05). The survival analysis results showed that patients with higher SIRT2 expression had a significantly lower overall survival (OS) than patients with lower SIRT2 expression (P<0.05). Univariate COX regression analysis suggested that pathological differentiation, clinical stage, postoperative treatment and SIRT2 expression level were associated with the prognosis of CCA patients (all P<0.05). Multivariate regression analysis confirmed that clinical stage and SIRT2 expression level were independent predictors of OS in postoperative CCA patients (both P<0.05). A nomogram based on SIRT2 for prediction of survival in postoperative CCA patients was constructed. The C-index of the model was 0.675, and the area under the time-dependent ROC curve (AUC) for predicting survival in the first, second, and third years was 0.879, 0.778, and 0.953, respectively, which were superior to those of AJCC/TNM staging system (8th Edition). CONCLUSIONS SIRT2 is highly expressed in CCA tissues, which is associated with poor prognosis in patients with resectable CCA. The nomogram developed based on SIRT2 may have better predictive power than the AJCC/TNM staging system (8th edition) in prediction of survival of postoperative CCA patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China.
| | - Wenbin Ji
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Zhenyu Lyu
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Wanliang Sun
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Yu Shao
- National Drug Clinical Trial Center, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Jing Liu
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Yan Yang
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China.
| |
Collapse
|
4
|
Shi J, Yu L, Zhu C, Zhong H. Knockdown of SETD5 inhibited glycolysis and tumor growth in gastric cancer cells by down-regulating Akt signaling pathway. Open Life Sci 2023; 18:20220697. [PMID: 37941780 PMCID: PMC10628568 DOI: 10.1515/biol-2022-0697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/07/2023] [Accepted: 07/30/2023] [Indexed: 11/10/2023] Open
Abstract
Gastric cancer (GC) is the 5th most common cancer and the 3rd leading cause of cancer-related death worldwide. It is of great significance to study the underlying molecular mechanism of GC, and targeting glycolysis is a good strategy to treat GC. SET domain containing 5 (SETD5) contains a catalytic methyltransferase SET domain, which is known as a lysine methyltransferase that affects the progression of multiple cancers. However, its possible role in GC was still unclear. Here, we revealed that SETD5 was highly expressed in GC and was associated with a poor prognosis. Further through the in vitro experiments, we revealed that the downregulation of SETD5 inhibited the proliferation and migration of GC cells. Knockdown of SETD5 inhibited glucose consumption and glycolysis. Further studies have shown that SETD5 knockdown restrained the Akt signaling pathway. Therefore, we thought that SETD5 could act as a GC target.
Collapse
Affiliation(s)
- Jing Shi
- Department of Gastroenterology, Changzhou Tumor Hospital, No. 68 Honghe Road, Xinbei District, Changzhou, Jiangsu, 213031, China
| | - Litao Yu
- Department of Obstetrics and Gynaecology, Changzhou Maternity and Child Health Care Hospital, Changzhou, Jiangsu, 213031, China
| | - Changhong Zhu
- Department of Gastroenterology, Changzhou Tumor Hospital, No. 68 Honghe Road, Xinbei District, Changzhou, Jiangsu, 213031, China
| | - Haiyan Zhong
- Department of Gastroenterology, Changzhou Tumor Hospital, No. 68 Honghe Road, Xinbei District, Changzhou, Jiangsu, 213031, China
| |
Collapse
|
5
|
Zhong B, Liao Q, Wang X, Wang X, Zhang J. The roles of epigenetic regulation in cholangiocarcinogenesis. Biomed Pharmacother 2023; 166:115290. [PMID: 37557012 DOI: 10.1016/j.biopha.2023.115290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous malignancy of bile duct epithelial cells, is characterized by aggressiveness, difficult diagnosis, and poor prognosis due to limited understanding and lack of effective therapeutic strategies. Genetic and epigenetic alterations accumulated in CCA cells can cause the aberrant regulation of oncogenes and tumor suppressors. Epigenetic alterations with histone modification, DNA methylation, and noncoding RNA modulation are associated with the carcinogenesis of CCA. Mutation or silencing of genes by various mechanisms can be a frequent event during CCA development. Alterations in histone acetylation/deacetylation at the posttranslational level, DNA methylation at promoters, and noncoding RNA regulation contribute to the heterogeneity of CCA and drive tumor development. In this review article, we mainly focus on the roles of epigenetic regulation in cholangiocarcinogenesis. Alterations in epigenetic modification can be potential targets for the therapeutic management of CCA, and epigenetic targets may become diagnostic biomarkers of CCA.
Collapse
Affiliation(s)
- Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaonong Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
6
|
Liu Z, Yang Z, He L. Effect of miR‑29a‑3p in exosomes on glioma cells by regulating the PI3K/AKT/HIF‑1α pathway. Mol Med Rep 2023; 27:72. [PMID: 36799154 PMCID: PMC9942261 DOI: 10.3892/mmr.2023.12959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Exosomes secreted by glioma cells can carry a number of bioactive molecules. As the most abundant noncoding RNA in exosomes, microRNAs (miRNAs) are involved in signaling between tumor cells in a number of ways. In addition, hypoxia is an important feature of the microenvironment of most tumors. The present study investigated the effect of miR‑29a‑3p in glioma exosomes on the proliferation and apoptosis levels of U251 glioma cells under hypoxia. Qualitative PCR results showed that the expression level of miR‑29a‑3p in plasma exosomes of glioma patients was lower than that of normal subjects. By conducting hypoxia experiments in vitro on U251 glioma cells, it was found that the expression level of miR‑29a‑3p decreased following hypoxia, while overexpression of miR‑29a‑3p significantly decreased the proliferation of U251 glioma cells and promoted apoptosis by inhibiting the expression of the antiapoptotic marker Bcl‑2 and increasing the expression of the proapoptotic marker Bax The potential targets of miR‑29a‑3p were predicted by online tools and validated by a dual‑luciferase gene reporter assay. miR‑29a‑3p was found to target and regulate PI3K, which in turn inhibited the activity of the PI3K‑AKT pathway, thereby reducing the expression of hypoxia inducible factor (HIF)‑1α protein. Furthermore, the effects of miR‑29a‑3p on proliferation and apoptosis in glioma cells in those processes could be reversed by the PI3K‑AKT agonist Recilisib. In addition, the inhibitory effect of miR‑29a‑3p on the PI3K/AKT/HIF‑1α regulatory axis could cause a decrease in the expression levels of pyruvate dehydrogenase kinase‑1 and pyruvate dehydrogenase kinase‑2 and eventually lead to a reduction in glycolysis in U251 glioma cells. Similarly, Recilisib slowed the inhibitory effect of miR‑29a‑3p on glycolysis and glycolysis‑related molecules. The results of this study tentatively confirm that miR‑29a‑3p carried by exosomes can be used as a novel diagnostic marker and a potential inhibitory molecule for glioma cells, providing a new theoretical and experimental basis for the precise clinical treatment of glioma.
Collapse
Affiliation(s)
- Zeqiang Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, P.R. China,Correspondence to: Dr Zeqiang Liu, Department of Laboratory Medicine, Peking University Third Hospital, 49 Huayuan North Road, Beijing 100191, P.R. China, E-mail:
| | - Zheng Yang
- Department of Neurosurgery, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| | - Lu He
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
7
|
Xu L, Gao X, Xing J, Guo Z. Identification of a necroptosis-related gene signature as a novel prognostic biomarker of cholangiocarcinoma. Front Immunol 2023; 14:1118816. [PMID: 36936916 PMCID: PMC10017743 DOI: 10.3389/fimmu.2023.1118816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Background Cholangiocarcinoma (CHOL) is the most prevalent type of malignancy and the second most common form of primary liver cancer, resulting in high rates of morbidity and mortality. Necroptosis is a type of regulated cell death that appears to be involved in the regulation of several aspects of cancer biology, including tumorigenesis, metastasis, and cancer immunity. This study aimed to construct a necroptosis-related gene (NRG) signature to investigate the prognosis of CHOL patients using an integrated bioinformatics analysis. Methods CHOL patient data were acquired from the Gene Expression Omnibus (GEO) (GSE89748, GSE107943) and The Cancer Genome Atlas (TCGA) databases, with NRGs data from the necroptosis pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Univariate and multivariate regression analyses were performed to establish the NRG signatures. Kaplan-Meier (KM) curves were used to evaluate the prognosis of patients with CHOL. Functional enrichment analysis was performed to identify key NRG-associated biological signaling pathways. We also applied integrative multi-omics analysis to the high- and low-risk score groups. Spearman's rank correlation was used to clarify the relationship between the NRG signature and immune infiltration. Results 65 differentially expressed (DE) NRGs were screened, five of which were selected to establish the prognostic signature of NRGS based on multivariate Cox regression analysis. We observed that low-risk patients survived significantly longer than high-risk patients. We found that patients with high-risk scores experienced higher immune cell infiltration, drug resistance, and more somatic mutations than patients with low-risk scores. We further found that sensitivities to GW843682X, mitomycin C, rapamycin, and S-trityl-L-cysteine were significantly higher in the low-risk group than in the high-risk group. Finally, we validated the expression of five NRGs in CHOL tissues using the TCGA database, HPA database and our clinical data. Conclusion These findings demonstrate that the five-NRG prognostic signature for CHOL patients is reasonably accurate and valid, and it may prove to be of considerable value for the treatment and prognosis of CHOL patients in the future.
Collapse
Affiliation(s)
- Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xueping Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan, Chongqing, China
| | - Jiyuan Xing
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhixian Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Zhixian Guo,
| |
Collapse
|
8
|
Raggi C, Taddei ML, Rae C, Braconi C, Marra F. Metabolic reprogramming in cholangiocarcinoma. J Hepatol 2022; 77:849-864. [PMID: 35594992 DOI: 10.1016/j.jhep.2022.04.038] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer and allows tumour cells to meet the increased energy demands required for rapid proliferation, invasion, and metastasis. Indeed, many tumour cells acquire distinctive metabolic and bioenergetic features that enable them to survive in resource-limited conditions, mainly by harnessing alternative nutrients. Several recent studies have explored the metabolic plasticity of cancer cells with the aim of identifying new druggable targets, while therapeutic strategies to limit the access to nutrients have been successfully applied to the treatment of some tumours. Cholangiocarcinoma (CCA), a highly heterogeneous tumour, is the second most common form of primary liver cancer. It is characterised by resistance to chemotherapy and poor prognosis, with 5-year survival rates of below 20%. Deregulation of metabolic pathways have been described during the onset and progression of CCA. Increased aerobic glycolysis and glutamine anaplerosis provide CCA cells with the ability to generate biosynthetic intermediates. Other metabolic alterations involving carbohydrates, amino acids and lipids have been shown to sustain cancer cell growth and dissemination. In this review, we discuss the complex metabolic rewiring that occurs during CCA development and leads to unique nutrient addiction. The possible role of therapeutic interventions based on metabolic changes is also thoroughly discussed.
Collapse
Affiliation(s)
- Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Colin Rae
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, United Kingdom
| | - Chiara Braconi
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, United Kingdom; Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
9
|
You Q, Wang J, Yu Y, Li F, Meng L, Chen M, Yang Q, Xu Z, Sun J, Zhuo W, Chen Z. The histone deacetylase SIRT6 promotes glycolysis through the HIF-1α/HK2 signaling axis and induces erlotinib resistance in non-small cell lung cancer. Apoptosis 2022; 27:883-898. [PMID: 35915188 PMCID: PMC9617843 DOI: 10.1007/s10495-022-01751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 12/01/2022]
Abstract
Erlotinib is a first-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Overcoming erlotinib resistance is crucial to improve the survival of advanced non-small cell lung cancer (NSCLC) patients with sensitive EGFR mutations. It is also an important clinical problem that urgently needs a solution. In this study, we explored strategies to overcome erlotinib resistance from the perspective of energy metabolism. SIRT6 is a histone deacetylase. Here, we found that high expression of SIRT6 is associated with poor prognosis of lung adenocarcinoma, especially in EGFR-mutated NSCLC patients. The next cell experiment found that SIRT6 expression increased in erlotinib-resistant cells, and SIRT6 expression was negatively correlated with the sensitivity of NSCLC to erlotinib. Inhibition of SIRT6 promoted erlotinib-induced apoptosis in erlotinib-resistant cells, and glycolysis in drug-resistant cells was also inhibited. Functional studies have shown that SIRT6 increases glycolysis through the HIF-1α/HK2 signaling axis in drug-resistant cells and inhibits the sensitivity of NSCLC cells to erlotinib. In addition, the HIF-1α blocker PX478-2HCL attenuated the glycolysis and erlotinib resistance induced by SIRT6. More importantly, we confirmed the antitumor effect of SIRT6 inhibition combined with erlotinib in NSCLC-bearing mice. Our findings indicate that the cancer metabolic pathway regulated by SIRT6 may be a new target for attenuating NSCLC erlotinib resistance and has potential as a biomarker or therapeutic target to improve outcomes in NSCLC patients.
Collapse
Affiliation(s)
- Qiai You
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jianmin Wang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yongxin Yu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Feng Li
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lingxin Meng
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Mingjing Chen
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiao Yang
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Zihan Xu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jianguo Sun
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wenlei Zhuo
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Zhengtang Chen
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
10
|
Otsuka R, Hayano K, Matsubara H. Role of sirtuins in esophageal cancer: Current status and future prospects. World J Gastrointest Oncol 2022; 14:794-807. [PMID: 35582109 PMCID: PMC9048530 DOI: 10.4251/wjgo.v14.i4.794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer (EC) is a malignant cancer that still has a poor prognosis, although its prognosis has been improving with the development of multidisciplinary treatment modalities such as surgery, chemotherapy and radiotherapy. Therefore, identifying specific molecular markers that can be served as biomarkers for the prognosis and treatment response of EC is highly desirable to aid in the personalization and improvement of the precision of medical treatment. Sirtuins are a family of nicotinamide adenine dinucleotide (NAD+)-dependent proteins consisting of seven members (SIRT1-7). These proteins have been reported to be involved in the regulation of a variety of biological functions including apoptosis, metabolism, stress response, senescence, differentiation and cell cycle progression. Given the variety of functions of sirtuins, they are speculated to be associated in some manner with cancer progression. However, while the role of sirtuins in cancer progression has been investigated over the past few years, their precise role remains difficult to characterize, as they have both cancer-promoting and cancer-suppressing properties, depending on the type of cancer. These conflicting characteristics make research into the nature of sirtuins all the more fascinating. However, the role of sirtuins in EC remains unclear due to the limited number of reports concerning sirtuins in EC. We herein review the current findings and future prospects of sirtuins in EC.
Collapse
Affiliation(s)
- Ryota Otsuka
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
11
|
Afify SM, Hassan G, Ishii H, Monzur S, Nawara HM, Osman A, Abu Quora HA, Sheta M, Zahra MH, Seno A, Seno M. Functional and Molecular Characters of Cancer Stem Cells Through Development to Establishment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:83-101. [PMID: 36587303 DOI: 10.1007/978-3-031-12974-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) are small subpopulation sharing similar properties like normal stem such as self-renewal and differentiation potential to direct tumor growth. Last few years, scientists considered CSCs as the cause of phenotypic heterogeneity in diverse cancer types. Also, CSCs contribute to cancer metastasis and recurrence. The cellular and molecular regulators influence on the CSCs' phenotype changing their behaviors in different stages of cancer progression. CSC markers play significance roles in cancer diagnosis and characterization. We delineate the cross-talks between CSCs and the tumor microenvironment that supports their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation. An insight into the markers of CSCs specific to organs is described.
Collapse
Affiliation(s)
- Said M Afify
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Science, Division of Biochemistry, Chemistry Department, Menoufia University, Shebin El Koum, 32511, Egypt
| | - Ghmkin Hassan
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Pharmacy, Department of Microbiology and Biochemistry, Damascus University, Damascus, 10769, Syria
| | - Hiroko Ishii
- GSP Enterprise, Inc, 1-4-38 12F Minato-Machi, Naniwaku, Osaka, 556-0017, Japan
| | - Sadia Monzur
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Hend M Nawara
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Amira Osman
- Faculty of Medicine, Department of Histology, Kafr Elsheikh University, Kafr Elsheikh, 33511, Egypt
| | - Hagar A Abu Quora
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Science, Cytology, Histology and Histochemistry, Zoology Department, Menoufia University, Menoufia, 32511, Egypt
| | - Mona Sheta
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Maram H Zahra
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Masaharu Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
12
|
The effect of lipocalin-2 (LCN2) on apoptosis: a proteomics analysis study in an LCN2 deficient mouse model. BMC Genomics 2021; 22:892. [PMID: 34903175 PMCID: PMC8670060 DOI: 10.1186/s12864-021-08211-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies have shown that lipocalin-2 (LCN2) has multiple functions involved in various biological and pathological processes including energy homeostasis, cancer, inflammation, and apoptosis. We aimed to investigate the effect of LCN2 on apoptosis that influences the pathogenetic process of metabolic diseases and cancer. METHODS We performed a proteomics analysis of livers taken from LCN2-knockout mice and wild type mice by using label-free LC-MS/MS quantitative proteomics. RESULTS Proteomic analysis revealed that there were 132 significantly differentially expressed proteins (49 upregulated and 83 downregulated) among 2140 proteins in the liver of LCN2-knockout mice compared with wild type mice. Of these, seven apoptosis-associated proteins were significantly upregulated and seven apoptosis-associated proteins downregulated. CONCLUSION Proteomics demonstrated that there were seven upregulated and seven downregulated apoptosis-associated proteins in liver of LCN2-knockout mice. It is important to clarify the effect of LCN2 on apoptosis that might contribute to the pathogenesis of insulin resistance, cancer, and various nervous system diseases.
Collapse
|
13
|
MYC Rules: Leading Glutamine Metabolism toward a Distinct Cancer Cell Phenotype. Cancers (Basel) 2021; 13:cancers13174484. [PMID: 34503295 PMCID: PMC8431116 DOI: 10.3390/cancers13174484] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary In the last decade, metabolic reprogramming has emerged as a driving characteristic of cancer cells. The MYC oncogene, a transcription factor, has become of growing interest as a fundamental driver of differential cancer cell metabolism. Furthermore, the non-essential amino acid glutamine is deemed to be an important nutrient for cancer cells. In fact, glutamine can integrate into a wide variety of metabolic pathways, from energy metabolism to nucleotide synthesis. This review offers a comprehensive and specific overview of recent discoveries in the regulation of MYC oncogene activation on glutamine metabolism in cancer cells. Abstract Metabolic reprogramming and deregulated cellular energetics are hallmarks of cancer. The aberrant metabolism of cancer cells is thought to be the product of differential oncogene activation and tumor suppressor gene inactivation. MYC is one of the most important oncogenic drivers, its activation being reported in a variety of cancer types and sub-types, among which are the most prevalent and aggressive of all malignancies. This review aims to offer a comprehensive overview and highlight the importance of the c-Myc transcription factor on the regulation of metabolic pathways, in particular that of glutamine and glutaminolysis. Glutamine can be extensively metabolized into a variety of substrates and be integrated in a complex metabolic network inside the cell, from energy metabolism to nucleotide and non-essential amino acid synthesis. Together, understanding metabolic reprogramming and its underlying genetic makeup, such as MYC activation, allows for a better understanding of the cancer cell phenotype and thus of the potential vulnerabilities of cancers from a metabolic standpoint.
Collapse
|
14
|
Lou S, Huang X, Tian X, Wang Z, Lin A, Dai H, Zhou J, Ruan J, Yuan L, Wang J. Investigation of the relationship between CMYC gene polymorphisms and glioma susceptibility in Chinese children. Cancer Invest 2021; 39:819-825. [PMID: 34325590 DOI: 10.1080/07357907.2021.1955374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glioma is a common central nervous system tumors in children. CMYC has a range of functions that are disrupted in various tumor cells, and may contribute to the occurrence and development of glioma. Two CMYC single nucleotide polymorphisms (rs4645943C > T and rs2070583 A > G) were genotyped in 190 cases and 248 controls from Wenzhou and Guangzhou hospitals. After adjusting for age and sex, odds ratio and 95% confidence interval values were calculated by logistic regression to evaluate the correlation between CMYC gene polymorphisms and glioma risk; no significant associations were detected. These results require future validation in a larger sample cohort.
Collapse
Affiliation(s)
- Susu Lou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaokai Huang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaoqian Tian
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zhen Wang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ao Lin
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Hanqi Dai
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jingying Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jichen Ruan
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Juxiang Wang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
15
|
Ni Y, Yang Z, Agbana YL, Bai H, Wang L, Yang L, Yi Z, Cheng J, Zhang Q, Kuang Y, Zhu Y. Silent information regulator 2 promotes clear cell renal cell carcinoma progression through deacetylation and small ubiquitin-related modifier 1 modification of glucose 6-phosphate dehydrogenase. Cancer Sci 2021; 112:4075-4086. [PMID: 34310804 PMCID: PMC8486209 DOI: 10.1111/cas.15085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
The regulatory relationship between silent information regulator 2 (SIRT2) and glucose 6‐phosphate dehydrogenase (G6PD) in clear cell renal cell carcinoma (ccRCC) is still unclear. The present study aimed to explore the function of SIRT2 and its regulatory effect on G6PD in ccRCC. The Cancer Genome Atlas data mining of SIRT2 was first analyzed. Quantitative real‐time PCR and western blot analyses were used to assess the mRNA and protein expression levels, respectively. Cell viability, colony formation, cell cycle, cell apoptosis, and TUNEL assays and EdU staining were used to investigate the roles of SIRT2 in ccRCC proliferation and apoptosis. The coimmunoprecipitation (Co‐IP) assay was used to analyze the association between SIRT2 and G6PD in ccRCC cells. Quantitative Co‐IP assay was used to detect the levels of G6PD ubiquitination and small ubiquitin‐related modifier 1 (SUMO1). An in vivo experiment was also carried out to confirm in vitro findings. The results indicated that SIRT2 promoted ccRCC proliferation and inhibited apoptosis by regulating cell cycle and apoptosis related proteins. Silent information regulator 2 interacted with G6PD, facilitated its activity through deacetylation, and increased its stability by reducing its ubiquitination and enhancing its SUMO1 modification. Silent information regulator 2 also promoted ccRCC tumor development in vivo. Taken together, the present study indicated that SIRT2 promoted ccRCC progression by increasing G6PD activity and stability, and it could be a potential new diagnostic and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Zhe Yang
- Department of pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yannick Luther Agbana
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Honggang Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China.,Department of Clinical Laboratory, The Second Hospital of Jingzhou, Jingzhou, China
| | - Lianlin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Lijuan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Zihan Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China.,Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Jing Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
16
|
Zhang M, Acklin S, Gillenwater J, Du W, Patra M, Yu H, Xu B, Yu J, Xia F. SIRT2 promotes murine melanoma progression through natural killer cell inhibition. Sci Rep 2021; 11:12988. [PMID: 34155309 PMCID: PMC8217567 DOI: 10.1038/s41598-021-92445-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
SIRT2, an NAD+-dependent histone deacetylase, has been shown to play a pivotal role in various physiological processes, however, its role in cancer is currently controversial. In recent years, SIRT2 has been described as both a tumor suppressor and oncogene with divergent expression and function in various malignancies. Using murine allograft melanoma models, our results suggest increased systemic expression of SIRT2 promotes tumor progression. In this study, SIRT2-overexpressing mice exhibited enhanced tumor growth and larger tumor volumes compared to their wild-type littermates. Mechanistically, systemic overexpression of SIRT2 reduces the number of tumor-infiltrating natural killer (NK) cells and suppresses NK cell function and proliferation within the tumor microenvironment (TME). Furthermore, despite the enhancing effect of NK cell depletion on tumor volume and growth rate in wild-type littermate mice, this effect was diminished in SIRT2-overexpressing mice. Lastly, pharmacological inhibition of SIRT2 increases NK cell tumor infiltration and suppresses allograft melanoma tumor growth. The findings of this study identify a dynamic functional interaction between systemic SIRT2 and NK cell activity, which controls melanoma tumor progression. Given the recent renewed interest in NK-cell-mediated immunotherapy response, SIRT2 could present a new opportunity to mediate immunotherapy response and resistance.
Collapse
Affiliation(s)
- Manchao Zhang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Scarlett Acklin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - John Gillenwater
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Wuying Du
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Mousumi Patra
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Hao Yu
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Bo Xu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Fen Xia
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
17
|
Colyn L, Bárcena-Varela M, Álvarez-Sola G, Latasa MU, Uriarte I, Santamaría E, Herranz JM, Santos-Laso A, Arechederra M, Ruiz de Gauna M, Aspichueta P, Canale M, Casadei-Gardini A, Francesconi M, Carotti S, Morini S, Nelson LJ, Iraburu MJ, Chen C, Sangro B, Marin JJG, Martinez-Chantar ML, Banales JM, Arnes-Benito R, Huch M, Patino JM, Dar AA, Nosrati M, Oyarzábal J, Prósper F, Urman J, Cubero FJ, Trautwein C, Berasain C, Fernandez-Barrena MG, Avila MA. Dual Targeting of G9a and DNA Methyltransferase-1 for the Treatment of Experimental Cholangiocarcinoma. Hepatology 2021; 73:2380-2396. [PMID: 33222246 DOI: 10.1002/hep.31642] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a devastating disease often detected at advanced stages when surgery cannot be performed. Conventional and targeted systemic therapies perform poorly, and therefore effective drugs are urgently needed. Different epigenetic modifications occur in CCA and contribute to malignancy. Targeting epigenetic mechanisms may thus open therapeutic opportunities. However, modifications such as DNA and histone methylation often coexist and cooperate in carcinogenesis. We tested the therapeutic efficacy and mechanism of action of a class of dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitors. APPROACH AND RESULTS Expression of G9a, DNMT1, and their molecular adaptor, ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was determined in human CCA. We evaluated the effect of individual and combined pharmacological inhibition of G9a and DNMT1 on CCA cell growth. Our lead G9a/DNMT1 inhibitor, CM272, was tested in human CCA cells, patient-derived tumoroids and xenograft, and a mouse model of cholangiocarcinogenesis with hepatocellular deletion of c-Jun-N-terminal-kinase (Jnk)-1/2 and diethyl-nitrosamine (DEN) plus CCl4 treatment (JnkΔhepa + DEN + CCl4 mice). We found an increased and correlative expression of G9a, DNMT1, and UHRF1 in CCAs. Cotreatment with independent pharmacological inhibitors G9a and DNMT1 synergistically inhibited CCA cell growth. CM272 markedly reduced CCA cell proliferation and synergized with Cisplatin and the ERBB-targeted inhibitor, Lapatinib. CM272 inhibited CCA tumoroids and xenograft growth and significantly antagonized CCA progression in JnkΔhepa + DEN + CCl4 mice without apparent toxicity. Mechanistically, CM272 reprogrammed the tumoral metabolic transcriptome and phenotype toward a differentiated and quiescent status. CONCLUSIONS Dual targeting of G9a and DNMT1 with epigenetic small molecule inhibitors such as CM272 is a potential strategy to treat CCA and/or enhance the efficacy of other systemic therapies.
Collapse
Affiliation(s)
- Leticia Colyn
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | | | - Gloria Álvarez-Sola
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Ujue Latasa
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Santamaría
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M Herranz
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Ikerbasque, Donostia-San Sebastian, Spain
| | | | - Mikel Ruiz de Gauna
- Biocruces Health Research Institute, Department of Physiology, University of the Basque Country, Leioa, Spain
| | - Patricia Aspichueta
- Biocruces Health Research Institute, Department of Physiology, University of the Basque Country, Leioa, Spain
| | - Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Andrea Casadei-Gardini
- School of Medicine, Vita-Salute San Raffaele University and Unit of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Francesconi
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Simone Carotti
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
- Predictive Molecular Diagnostic Division, Pathology Department, Campus Bio-Medico University Hospital, Rome, Italy
| | - Sergio Morini
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Leonard J Nelson
- School of Engineering, Institute of Engineering, The University of Edimburgh, Edimburgh, United Kingdom
| | - Maria J Iraburu
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Chaobo Chen
- Department of Immunology, Ophtalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Unit, Navarra University Clinic, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Jose J G Marin
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maria L Martinez-Chantar
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CICbioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Jesus M Banales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Ikerbasque, Donostia-San Sebastian, Spain
| | - Robert Arnes-Benito
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Meritxell Huch
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - John M Patino
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Altaf A Dar
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Mehdi Nosrati
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Julen Oyarzábal
- Molecular Therapies Program, CIMA, University of Navarra, Pamplona, Spain
| | - Felipe Prósper
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Oncohematology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Jesus Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Department of Digestive Diseases, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophtalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| |
Collapse
|
18
|
Brockmueller A, Sameri S, Liskova A, Zhai K, Varghese E, Samuel SM, Büsselberg D, Kubatka P, Shakibaei M. Resveratrol's Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism. Cancers (Basel) 2021; 13:cancers13020188. [PMID: 33430318 PMCID: PMC7825813 DOI: 10.3390/cancers13020188] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prevention and treatment of cancer is an ongoing medical challenge. In the context of personalized medicine, the well-studied polyphenol resveratrol could complement classical tumor therapy. It may affect key processes such as inflammation, angiogenesis, proliferation, metastasis, glucose metabolism, and apoptosis in various cancers because resveratrol acts as a multi-targeting agent by modulating multiple signal transduction pathways. This review article focuses on resveratrol’s ability to modify tumor glucose metabolism and its associated therapeutic capacity. Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway. It also inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM. In addition, resveratrol induces apoptosis by targeting integrin, p53, LDH, and FAK. In conclusion, resveratrol has many potentials to intervene in tumor processes if bioavailability can be increased and this natural compound can be used selectively. Abstract Tumor cells develop several metabolic reprogramming strategies, such as increased glucose uptake and utilization via aerobic glycolysis and fermentation of glucose to lactate; these lead to a low pH environment in which the cancer cells thrive and evade apoptosis. These characteristics of tumor cells are known as the Warburg effect. Adaptive metabolic alterations in cancer cells can be attributed to mutations in key metabolic enzymes and transcription factors. The features of the Warburg phenotype may serve as promising markers for the early detection and treatment of tumors. Besides, the glycolytic process of tumors is reversible and could represent a therapeutic target. So-called mono-target therapies are often unsafe and ineffective, and have a high prevalence of recurrence. Their success is hindered by the ability of tumor cells to simultaneously develop multiple chemoresistance pathways. Therefore, agents that modify several cellular targets, such as energy restriction to target tumor cells specifically, have therapeutic potential. Resveratrol, a natural active polyphenol found in grapes and red wine and used in many traditional medicines, is known for its ability to target multiple components of signaling pathways in tumors, leading to the suppression of cell proliferation, activation of apoptosis, and regression in tumor growth. Here, we describe current knowledge on the various mechanisms by which resveratrol modulates glucose metabolism, its potential as an imitator of caloric restriction, and its therapeutic capacity in tumors.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Saba Sameri
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, 6517838678 Hamadan, Iran;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
- Correspondence: ; Tel.: +49-892-1807-2624; Fax: +49-892-1807-2625
| |
Collapse
|
19
|
Cichorek M, Ronowska A, Dzierzbicka K, Gensicka-Kowalewska M, Deptula M, Pelikant-Malecka I. Chloroacridine derivatives as potential anticancer agents which may act as tricarboxylic acid cycle enzyme inhibitors. Biomed Pharmacother 2020; 130:110515. [PMID: 34321163 DOI: 10.1016/j.biopha.2020.110515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE This paper concerns the cytotoxicity of 9-chloro-1-nitroacridine (1a) and 9-chloro-4-methyl-1-nitroacridine (1b) against two biologically different melanoma forms: melanotic and amelanotic. Melanomas are tumors characterized by high heterogeneity and poor susceptibility to chemotherapies. Among new analogs synthesized by us, compound 1b exhibited the highest anticancer potency. Because of that, in this study, we analyzed the mechanism of action for 1a and its 4-methylated derivative, 1b, against a pair of biological melanoma forms, with regard to proliferation, cell death mechanism and energetic state. METHODS Cytotoxicity was evaluated by XTT assay. Cell death was estimated by plasma membrane structure changes (phosphatidylserine externalization), caspase activation, and ROS presence. The energetic state of cells was estimated based on NAD and ATP levels, and the activity of tricarboxylic acid cycle enzymes (pyruvate dehydrogenase complex, aconitase, isocitrate dehydrogenase). RESULTS The chloroacridines affect biological forms of melanoma in different ways. Amelanotic (Ab) melanoma (with inhibited melanogenesis and higher malignancy) was particularly sensitive to the action of the chloroacridines. The Ab melanoma cells died through apoptosis and through death without caspase activation. Diminished activity of TAC enzymes was noticed among Ab melanoma cells together with ATP/NAD depletion, especially in the case of 1b. CONCLUSION Our data show that the biological forms of the tumors responded to 1a and its 4-methylated analog in different ways. 1a and 1b could be inducers of regulated melanoma cell death, especially the amelanotic form. Although the mechanism of the cell death is not fully understood, 1b may act by interfering with the TAC enzymes and blocking specific pathways leading to tumor growth. This could encourage further investigation of its anticancer activity, especially against the amelanotic form of melanoma.
Collapse
Affiliation(s)
- Miroslawa Cichorek
- Department of Embryology, Medical University of Gdansk, Debinki 1 St. PL, 80-210, Gdansk, Poland.
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdansk, Debinki 7 St. PL, 80-211, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Gdansk University of Technology, Narutowicza St. 11/12. PL, 80-233, Gdansk, Poland
| | - Monika Gensicka-Kowalewska
- Department of Organic Chemistry, Gdansk University of Technology, Narutowicza St. 11/12. PL, 80-233, Gdansk, Poland
| | - Milena Deptula
- Department of Embryology, Medical University of Gdansk, Debinki 1 St. PL, 80-210, Gdansk, Poland
| | - Iwona Pelikant-Malecka
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St. PL, 80-210, Gdansk, Poland; Department of Medical Laboratory Diagnostics, Central Bank of Frozen Tissues and Genetic Specimens, Medical University of Gdansk, Biobanking and Biomolecular Resources Research Infrastructure Poland, Debinki 7 St. PL, 80-211, Gdansk, Poland
| |
Collapse
|
20
|
Abstract
In this research paper we filter and verify miRNAs which may target silent information regulator homolog 2 (SIRT2) gene and then describe the mechanism whereby miRNA-212 might regulate lipogenic genes in mammary epithelial cell lines via targeting SIRT2. Bioinformatics analysis revealed that the bovine SIRT2 gene is regulated by three miRNAs: miR-212, miR-375 and miR-655. The three miRNAs were verified and screened by qRT-PCR, western blot, and luciferase multiplex verification techniques and only miR-212 was shown to have a targeting relationship with SIRT2. The results of co-transfecting miR-212 and silencing RNA (siRNA) showed that by targeting SIRT2, miR-212 can regulate the expression of fatty acid synthetase (FASN) and sterol regulatory element binding factor 1 (SREBP1) but not peroxisome proliferator-activated receptor gamma (PPARγ). Measurement of triglyceride (TAG) content showed that miR-212 increased the fat content of mammary epithelial cell lines. The study indicates that miR-212 could target and inhibit the expression of the SIRT2 gene to promote lipogenesis in mammary epithelial cell lines.
Collapse
|
21
|
Pant K, Richard S, Peixoto E, Gradilone SA. Role of Glucose Metabolism Reprogramming in the Pathogenesis of Cholangiocarcinoma. Front Med (Lausanne) 2020; 7:113. [PMID: 32318579 PMCID: PMC7146077 DOI: 10.3389/fmed.2020.00113] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most lethal cancers, and its rate of occurrence is increasing annually. The diagnoses of CCA patients remain elusive due to the lack of early symptoms and is misdiagnosed as HCC in a considerable percentage of patients. It is crucial to explore the underlying mechanisms of CCA carcinogenesis and development to find out specific biomarkers for early diagnosis of CCA and new promising therapeutic targets. In recent times, the reprogramming of tumor cells metabolism has been recognized as a hallmark of cancer. The modification from the oxidative phosphorylation metabolic pathway to the glycolysis pathway in CCA meets the demands of cancer cell proliferation and provides a favorable environment for tumor development. The alteration of metabolic programming in cancer cells is complex and may occur via mutations and epigenetic modifications within oncogenes, tumor suppressor genes, signaling pathways, and glycolytic enzymes. Herein we review the altered metabolism in cancer and the signaling pathways involved in this phenomena as they may affect CCA development. Understanding the regulatory pathways of glucose metabolism such as Akt/mTOR, HIF1α, and cMyc in CCA may further develop our knowledge of this devastating disease and may offer relevant information in the exploration of new diagnostic biomarkers and targeted therapeutic approaches for CCA.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Estanislao Peixoto
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Mastoraki A, Schizas D, Charalampakis N, Naar L, Ioannidi M, Tsilimigras D, Sotiropoulou M, Moris D, Vassiliu P, Felekouras E. Contribution of Histone Deacetylases in Prognosis and Therapeutic Management of Cholangiocarcinoma. Mol Diagn Ther 2020; 24:175-184. [PMID: 32125662 DOI: 10.1007/s40291-020-00454-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cholangiocarcinoma (CCA), a malignant tumor that occurs in the epithelium of the biliary tract, has a very poor prognosis because affected patients are frequently diagnosed at an advanced stage and recurrence after resection is common. Over the last two decades, our understanding of the molecular biology of this malignancy has expanded, and various studies have explored targeted therapy for CCA in order to improve patient survival. The histone acetylation/deacetylation equilibrium is affected in carcinogenesis, leading to altered chromatin structure and therefore changes in gene expression. Understanding the molecular identity of histone deacetylases (HDACs), their cellular interactions and potential role as anticancer agents will help us develop new therapeutic strategies for CCA-affected patients. Furthermore, HDAC inhibitors act on cellular stress response pathways and decrease cancer angiogenesis. Downregulation of pro-angiogenic genes such as vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 (HIF-1), and endothelial nitric oxide synthase (eNOS) inhibit formation of new vessels and can negatively affect the metastatic process. Finally, recent clinical trials prove that administration of both HDAC inhibitors and DNA-targeting chemotherapeutic agents, such as topoisomerase inhibitors, DNA intercalating agents, inhibitors of DNA synthesis, covalently modifying DNA agents, and ionizing radiation, maximizes the anticancer effect by increasing the cytotoxic efficiency of a variety of DNA-damaging anticancer drugs. Therefore, combination therapy of classic chemotherapeutic drugs with HDAC inhibitors can act synergistically for the patients' benefit.
Collapse
Affiliation(s)
- Aikaterini Mastoraki
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece.
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Leon Naar
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Ioannidi
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece
| | - Diamantis Tsilimigras
- Division of Surgical Oncology, Department of Surgery, James Cancer Hospital, Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Pantelis Vassiliu
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece
| | - Evangelos Felekouras
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Pant K, Peixoto E, Richard S, Gradilone SA. Role of Histone Deacetylases in Carcinogenesis: Potential Role in Cholangiocarcinoma. Cells 2020; 9:cells9030780. [PMID: 32210140 PMCID: PMC7140894 DOI: 10.3390/cells9030780] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly invasive and metastatic form of carcinoma with bleak prognosis due to limited therapies, frequent relapse, and chemotherapy resistance. There is an urgent need to identify the molecular regulators of CCA in order to develop novel therapeutics and advance diseases diagnosis. Many cellular proteins including histones may undergo a series of enzyme-mediated post-translational modifications including acetylation, methylation, phosphorylation, sumoylation, and crotonylation. Histone deacetylases (HDACs) play an important role in regulating epigenetic maintenance and modifications of their targets, which in turn exert critical impacts on chromatin structure, gene expression, and stability of proteins. As such, HDACs constitute a group of potential therapeutic targets for CCA. The aim of this review was to summarize the role that HDACs perform in regulating epigenetic changes, tumor development, and their potential as therapeutic targets for CCA.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (K.P.); (E.P.); (S.R.)
| | - Estanislao Peixoto
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (K.P.); (E.P.); (S.R.)
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (K.P.); (E.P.); (S.R.)
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (K.P.); (E.P.); (S.R.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
24
|
Multifaceted Aspects of Metabolic Plasticity in Human Cholangiocarcinoma: An Overview of Current Perspectives. Cells 2020; 9:cells9030596. [PMID: 32138158 PMCID: PMC7140515 DOI: 10.3390/cells9030596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly tumor without an effective therapy. Unique metabolic and bioenergetics features are important hallmarks of tumor cells. Metabolic plasticity allows cancer cells to survive in poor nutrient environments and maximize cell growth by sustaining survival, proliferation, and metastasis. In recent years, an increasing number of studies have shown that specific signaling networks contribute to malignant tumor onset by reprogramming metabolic traits. Several evidences demonstrate that numerous metabolic mediators represent key-players of CCA progression by regulating many signaling pathways. Besides the well-known Warburg effect, several other different pathways involving carbohydrates, proteins, lipids, and nucleic acids metabolism are altered in CCA. The goal of this review is to highlight the main metabolic processes involved in the cholangio-carcinogeneis that might be considered as potential novel druggable candidates for this disease.
Collapse
|
25
|
Gaál Z, Csernoch L. Impact of Sirtuin Enzymes on the Altered Metabolic Phenotype of Malignantly Transformed Cells. Front Oncol 2020; 10:45. [PMID: 32117717 PMCID: PMC7033489 DOI: 10.3389/fonc.2020.00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Sirtuins compose a unique collection of histone deacetylase enzymes that have a wide variety of enzymatic activities and regulate diverse cell functions such as cellular metabolism, longevity and energy homeostasis, mitochondrial function, and biogenesis. Impaired sirtuin functions or alterations of their expression levels may result in several pathological conditions and contribute to the altered metabolic phenotype of malignantly transformed cells in a significant manner. In the twenty-first century, principles of personalized anticancer treatment need to involve not only the evaluation of changes of the genetic material, but also the mapping of epigenetic and metabolic alterations, to both of which the contribution of sirtuin enzymes is fundamental. Since sirtuins are central players in the maintenance of cellular energy and metabolic homeostasis, they are key elements in the development of metabolic transformation of cancer cells referred to as the Warburg effect. Although its most well-known features are enhanced glycolysis and excessive lactate production, Warburg effect has several aspects involving both carbohydrate, lipid, and amino acid metabolism, among which different tumor types have different preferences. Therefore, energy supply of cancer cells can be impaired by a growing number of antimetabolite agents, for which appropriate vectors are strongly needed. However, data are controversial about their tumor suppressor or oncogenic properties, the biological effects of sirtuin enzymes strongly depend on the tissue microenvironment (TME) in which they are expressed. Immune cells are regarded as key players of TME. Sirtuins regulate the survival, activation, metabolism, and mitochondrial function of these cells, therefore, they are not only single elements, but key regulators of the network that determines anticancer immunity. Altered metabolism of tumor cells induces changes in the gene expression pattern of cells in TME, due to altered concentrations of metabolite cofactors of epigenetic modifiers including sirtuins. In summary, epigenetic and metabolic alterations in malignant diseases are influenced by sirtuins in a significant manner, and should be treated in a personalized approach. Since they often develop in early stages of cancer, broad examination of these alterations is required at time of the diagnosis in order to provide a personalized combination of distinct therapeutic agents.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Institute-Clinic of Pediatrics, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
26
|
The Roles of Sirtuin Family Proteins in Cancer Progression. Cancers (Basel) 2019; 11:cancers11121949. [PMID: 31817470 PMCID: PMC6966446 DOI: 10.3390/cancers11121949] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Sirtuin family members are characterized by either mono-ADP-ribosyltransferase or deacylase activity and are linked to various cancer-related biological pathways as regulators of transcriptional progression. Sirtuins play fundamental roles in carcinogenesis and maintenance of the malignant phenotype, mainly participating in cancer cell viability, apoptosis, metastasis, and tumorigenesis. Although sirtuin family members have a high degree of homology, they may play different roles in various kinds of cancer. This review highlights their fundamental roles in tumorigenesis and cancer development and provides a critical discussion of their dual roles in cancer, namely, as tumor promoters or tumor suppressors.
Collapse
|