1
|
Chen G, Xu L, Chen Z, Lin L, Wang W, Chen M, Sun W, Huang X, Zhang X, Chen J. A DNA Fishhook Electrochemical Sensor Based on a Potassium Ferricyanide-Mediated Dual-Signal-Correlation Enhanced Electrocatalysis Reaction for a Simultaneous and Correlation Assay of Multiple Biomarkers. ACS Sens 2025. [PMID: 40375444 DOI: 10.1021/acssensors.4c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Simultaneous detection and correlation analysis of multiple biomarkers in a single run are crucial to improving the detection specificity and indicate disease progression, but they remain a challenge. Herein, we propose a DNA fishhook electrochemical sensor based on the potassium ferricyanide-mediated dual-signal correlation enhanced electrocatalysis reaction (DEER). The designed T-shaped DNA fishhook scaffold has two "hooks" to recruit their respective "fish" (targets) with the help of the "fishing bait" (signal probes, Sp), resulting in the different targets and Sp being specifically captured by the DNA fishhook to the electrode interface, respectively. The proposed DEER not only effectively improves the detection sensitivity without introducing nucleic acid amplification but also can reflect the logical correlation between the targets. As proof of principle, the DNA fishhook sensor was successfully applied in the simultaneous detection of two related gene sequences of SARS-CoV-2 and the active-state assay of the PI3K/AKT signaling pathway. In general, our DNA fishhook sensor provides a meaningful potential tool for the sensitive simultaneous detection and correlation analysis of multiple targets.
Collapse
Affiliation(s)
- Guanyu Chen
- Department of Pharmaceutics, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Lilan Xu
- Department of Pharmaceutics, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Zhuhua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Lifang Lin
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Wenlu Wang
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Mingzhu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Weiming Sun
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Xiaobing Huang
- Department of Medical Oncology, Fuzhou First Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian Province 350009, PR China
| | - Xi Zhang
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Department of Clinical Pharmacy and Pharmacy Administration, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| |
Collapse
|
2
|
Górecki M, Żbikowska A, Tokłowicz M, Sajdak S, Englert-Golon M, Andrusiewicz M. Hsa-miR-21-5p and Hsa-miR-145-5p Expression: From Normal Tissue to Malignant Changes-Context-Dependent Correlation with Estrogen- and Hypoxia-Vascularization-Related Pathways Genes: A Pilot Study. Int J Mol Sci 2025; 26:4461. [PMID: 40362695 PMCID: PMC12072406 DOI: 10.3390/ijms26094461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
Ovarian cancer (OC) is a severe gynecological malignancy with a high mortality rate among women worldwide. It is often diagnosed at advanced stages due to the lack of effective screening methods. This study investigated the expression patterns of microRNAs (miRNAs) hsa-miR-21-5p and hsa-miR-145-5p as potential OC prognostic and diagnostic biomarkers and their correlation with estrogen-dependent (ESR1 & 2, PELP1 and c-SRC) and hypoxia-neovascularization-induced (HIF1A, EPAS1, and VEGFA) pathway genes. Tissue samples obtained from twenty patients with confirmed ovarian cancer and twenty controls were analyzed using quantitative polymerase chain reaction (qPCR) to examine miRNA and mRNA levels. The qPCR analysis revealed significantly higher hsa-miR-21-5p and lower hsa-miR-145-5p expression in OC tissues than controls. Moreover, a significant trend was observed in hsa-miR-21-5p and hsa-miR-145-5p expression levels across normal, non-cancerous changes and malignant ovarian tissues. The hsa-miR-21-5p showed better diagnostic potential than hsa-miR-145-5p. We also observed inconsistent correlations in hsa-miR-21-5p and hsa-mir-145-5p and estrogen-related and hypoxia-neovascularization-dependent genes in ovarian cancer across all groups. This suggests that the relationship between these miRNAs and the selected genes is context-specific. Our findings suggest that hsa-miR-21-5p and hsa-miR-145-5p expression levels may be prognostic or diagnostic markers for ovarian cancer patients.
Collapse
Affiliation(s)
- Mateusz Górecki
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland; (M.G.); (A.Ż.); (M.T.)
- Cell Biology Research Group, Student Scientific Society, Poznan University of Medical Sciences, Rokietnicka 5E, 60-806 Poznań, Poland
| | - Aleksandra Żbikowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland; (M.G.); (A.Ż.); (M.T.)
| | - Małgorzata Tokłowicz
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland; (M.G.); (A.Ż.); (M.T.)
| | - Stefan Sajdak
- Division of Gynecology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznań, Poland;
- Department of Gynaecology and Obstetrics, Collegium Medicum University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Monika Englert-Golon
- Division of Gynaecological Oncology, Department of Gynaecology, Gynecological and Obstetrics Clinical Hospital, Poznan University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
| | - Mirosław Andrusiewicz
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland; (M.G.); (A.Ż.); (M.T.)
| |
Collapse
|
3
|
Li Q, Bai Y, Cavender SM, Miao Y, Nguele Meke F, Lasse-Opsahl EL, Zhu P, Doody GM, Tao WA, Zhang ZY. The PRL2 phosphatase up-regulates miR-21 through activation of the JAK2/STAT3 pathway to down-regulate the PTEN tumor suppressor. Biochem J 2025; 482:341-356. [PMID: 39665584 DOI: 10.1042/bcj20240626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
The phosphatases of regenerating liver (PRLs) are members of the protein tyrosine phosphatase (PTP) superfamily that play pro-oncogenic roles in cell proliferation, migration, and survival. We previously demonstrated that PRLs can post-translationally down-regulate PTEN, a tumor suppressor frequently inactivated in human cancers, by dephosphorylating PTEN at Tyr336, which promotes the NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Here, we report that PRLs can also reduce PTEN expression by up-regulating microRNA-21 (miR-21), which is one of the most frequently overexpressed miRNAs in solid tumors. We observe a broad correlation between PRL and miR-21 levels in multiple human cancers. Mechanistically, PRL2, the most abundant and ubiquitously expressed PRL family member, promotes the JAK2/STAT3 pathway-mediated miR-21 expression by directly dephosphorylating JAK2 at Tyr570. Finally, we confirm that the PRL2-mediated miR-21 expression contributes to its oncogenic potential in breast cancer cells. Our study defines a new functional role of PRL2 in PTEN regulation through a miR-21-dependent post-transcriptional mechanism, in addition to our previously reported NEDD4-dependent post-translational PTEN regulation. Together, these studies further establish the PRLs as negative regulators of PTEN.
Collapse
Affiliation(s)
- Qinglin Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Current address: Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Sarah M Cavender
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Frederick Nguele Meke
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Emily L Lasse-Opsahl
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, U.K
| | - W Andy Tao
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| |
Collapse
|
4
|
Villagrán-Silva F, Loren P, Sandoval C, Lanas F, Salazar LA. Circulating microRNAs as Potential Biomarkers of Overweight and Obesity in Adults: A Narrative Review. Genes (Basel) 2025; 16:349. [PMID: 40149500 PMCID: PMC11942292 DOI: 10.3390/genes16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
In an obesogenic environment, such as the one we have been experiencing in recent decades, epigenetics provides answers to the relationship between hereditary and environmentally acquired patterns that have significantly contributed to the global rise in obesity prevalence. MicroRNA (miRNA) constitutes a diminutive non-coding small RNA molecule, 20 to 24 nucleotides in length, that functions as a regulator of gene regulation at the post-translational level. Circulating miRNAs (c-miRNAs) have been detected in multiple body fluids, including blood, plasma, serum, saliva, milk from breastfeeding mothers, and urine. These molecules hold significant therapeutic value and serve as extracellular biomarkers in metabolic diseases. They aid in the diagnosis and tracking of therapy responses, as well as dietary and physical habit modifications. Researchers have studied c-miRNAs as potential biomarkers for diagnosing and characterizing systemic diseases in people of all ages and backgrounds since then. These conditions encompass dyslipidemia, type 2 diabetes mellitus (T2DM), cardiovascular risk, metabolic syndrome, cardiovascular diseases, and obesity. This review therefore analyzes the usefulness of c-miRNAs as therapeutic markers over the past decades. It also provides an update on c-miRNAs associated with general obesity and overweight, as well as with the most prevalent pathologies in the adult population. It also examines the effect of different nutritional approaches and physical activity regarding the activity of miRNAs in circulation in adults with overweight or general obesity. All of this is done with the aim of evaluating their potential use as biomarkers in various research contexts related to overweight and obesity in adults.
Collapse
Affiliation(s)
- Francisca Villagrán-Silva
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile;
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Fernando Lanas
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| |
Collapse
|
5
|
Yao X, Gao C, Sun C, Chen ZS, Zhuang J. Epigenetic code underlying EGFR-TKI resistance in non-small cell lung cancer: Elucidation of mechanisms and perspectives on therapeutic strategies. Drug Discov Today 2025; 30:104321. [PMID: 40032137 DOI: 10.1016/j.drudis.2025.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype, and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the core drugs used for its treatment. However, the emergence of drug resistance poses a significant challenge to their clinical efficacy. As a significant role-player in cancer development and maintenance, histone modifications, DNA methylation and noncoding RNA (ncRNA) changes have been proven to play a crucial part in driving EGFR-TKI resistance, which provides promising potential therapeutic targets and biomarkers for overcoming drug resistance. This review delves into the complex epigenetic mechanisms that cause EGFR-TKI resistance and emphasizes the potential of combined epigenetic therapies, aiming to provide better-targeted treatment options for NSCLC patients with NSCLC and drive innovative strategies to overcome the challenges of drug resistance.
Collapse
Affiliation(s)
- XiaoYu Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, NY, USA.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| |
Collapse
|
6
|
Saadh MJ, Jasim NY, Ahmed MH, Ballal S, Kumar A, Atteri S, Vashishth R, Rizaev J, Alhili A, Jawad MJ, Yazdi F, Salajegheh A, Akhavan-Sigari R. Critical roles of miR-21 in promotions angiogenesis: friend or foe? Clin Exp Med 2025; 25:66. [PMID: 39998742 PMCID: PMC11861128 DOI: 10.1007/s10238-025-01600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
MiRNAs are small RNA strands that are managed following transcription and are of substantial importance in blood vessel formation. It is essential to oversee the growth, differentiation, death, movement and construction of tubes by angiogenesis-affiliated cells. If miRNAs are not correctly regulated in regard to angiogenesis, it can deteriorate the health and lead to various illnesses, which include cancer, cardiovascular disorder, critical limb ischemia, Crohn's disease, ocular diseases, diabetic microvascular complications, and more. Consequently, it is vital to understand the crucial part that miRNAs play in the development of blood vessels, so we can develop reliable treatment plans for vascular diseases. This write-up will assess the critical role of miR-21/exosomal miR-21 in managing angiogenesis associated with bone growth, wound recovery, and other pathological conditions like tumor growth, ocular illnesses, diabetes, and other diseases connected to formation of blood vessels. Previous investigations have demonstrated that miR-21 is present at higher amounts in certain cancerous cells, and it influences a multitude of genes that moderate the increased creation of blood vessels. Furthermore, studies demonstrated that exosomal miR-21 has the capacity to interact with endothelial cells to foster tumor angiogenesis. For that reason, this review explains the critical importance of miR-21/exosomal miR-21 in managing both healthy and diseased states of angiogenesis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Nisreen Yasir Jasim
- College of Nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Shikha Atteri
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab, 140307, India
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Farzaneh Yazdi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Reza Akhavan-Sigari
- Dr. Schneiderhan GmbH and ISAR Klinikum, Munich, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Management University Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Doghish AS, Abdel Mageed SS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Mohamed AH, Rizk NI, Abulsoud AI, Abdelmaksoud NM, El-Dakroury WA, Aly SH. Natural compounds as regulators of miRNAs: exploring a new avenue for treating colorectal cancer. Funct Integr Genomics 2025; 25:42. [PMID: 39982533 DOI: 10.1007/s10142-025-01547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 02/01/2025] [Indexed: 02/22/2025]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related death globally, impacting both genders equally. The increasing global mortality rates from CRC are strongly linked to contemporary dietary habits, characterized by excessive meat consumption, alcohol intake, and insufficient physical activity. Thus, there is an unprecedented need to develop less hazardous and new therapies for CRC. CRC affects a substantial global population. The main treatments for CRC include chemotherapy and surgical intervention. Nonetheless, the advancement of innovative, safer, and more effective pharmaceuticals for CRC therapy is of paramount importance due to the widespread adverse effects and the dynamic nature of drug resistance. A growing amount of research suggests that natural chemicals may effectively battle CRC and, in certain cases, serve as alternatives to chemotherapeutics. Evidence suggests that miRNAs control important cancer features, including the maintenance of proliferative signals. These features also involve evasion of growth inhibition, resistance to cell death, and immortalization of replication. Additionally, miRNAs play a role in angiogenesis, invasion, and metastasis. Numerous compounds, including those exhibiting cytotoxic and apoptogenic properties against different malignancies, such as CRC, are sourced from diverse marine and medicinal plants. These chemicals stimulate several signaling pathways originating from different phytochemical families. This article evaluates the existing understanding of the anti-CRC capabilities of several phytochemical substances. Furthermore, their impact on several signaling pathways associated with cancer is examined. This article also highlights the potential of medicinal plants as a source of promising anti-CRC chemicals through modulating miRNA expression and the role of nanoparticle-based miRNA therapeutics in enhancing CRC treatment by improving tumor targeting and minimizing off-target effects.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo- Alexandria Agricultural Road, Tukh Tanbisha, Menofia, Egypt
| | - Ashraf Hassan Mohamed
- Faculty of Physical Therapy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| |
Collapse
|
8
|
Xiong Y, Liu YF, Yang ZH, Huang CG. Impact of miRNAs involved in the STAT3 signaling pathway on esophageal cancer (Review). Oncol Rep 2025; 53:27. [PMID: 39749694 DOI: 10.3892/or.2024.8860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Esophageal cancer (ESCA) is a common tumor noted in the digestive tract, which is highly malignant due to unclear early symptoms and poor last‑stage treatment effects; its mortality rate is relatively high. MicroRNA (miR) and signal transducer and activator of transcription 3 (STAT3) are key components of cellular signaling pathways; their interaction forms a complex and intricate information network that controls several types of biological behaviors in the cells. In the tumor cell, these signal transduction pathways are abnormally active, indicating that the STAT3 signaling pathway mediated by miRs is involved in the progression of various cancer types. The present review introduces the biological characteristics of miR and STAT3 and their relationship with ESCA. It summarizes the regulation of ESCA by the miR and STAT3 signaling pathways and analyzes the effects of these pathways on proliferation, apoptosis, invasion, metastasis and immune escape of cancer cells, as well as the impact on patient survival and prognosis. The purpose of the present review is to assess the miR/STAT3 signaling pathway in ESCA, improve the understanding of the pathogenesis of ESCA and facilitate the identification of therapeutic targets for ESCA.
Collapse
Affiliation(s)
- Ying Xiong
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yi-Fan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhi-Hui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cong-Gai Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
9
|
Ibrahim N, Alsadi N, Yasavoli-Sharahi H, Shahbazi R, Hebbo MJ, Kambli D, Balcells F, Matar C. Berberine Inhibits Breast Cancer Stem Cell Development and Decreases Inflammation: Involvement of miRNAs and IL-6. Curr Dev Nutr 2025; 9:104532. [PMID: 39896297 PMCID: PMC11786844 DOI: 10.1016/j.cdnut.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025] Open
Abstract
Background Breast cancer (BC) is a health concern worldwide and is often accompanied by depressive symptoms in patients. In BC, elevated interleukin-6 (IL-6) levels contribute to an inflammatory signature linked to cancer stem cell (CSC) stemness and depressive behaviors. Bioactive food components, such as berberine (BBR), have preventative effects against BC by targeting CSCs. Objectives This study aimed to investigate the effects of BBR on breast CSC proliferation, on levels of specific micro (mi)RNAs and IL-6 in vitro and in vivo, and in alleviating depressive-like behaviors in mice with BC. Methods Mammosphere formation assays were conducted by treating murine 4T1 and human MDA-MB-231 BC cell lines with BBR. qPCR analysis of miRNAs miR-let-7c and miR-34a-5p was performed on 4T1 CSCs exposed to BBR. BBR was administered orally to female BALB/c, followed by injection with mammary carcinoma cells to induce BC. Behavioral tests were conducted to assess depressive-like behaviors. Tumor tissues were collected for ex vivo mammosphere assays, miRNA expression analysis, and IL-6 detection by ELISA. Serum was also collected for IL-6 analysis. Results BBR treatment inhibited mammosphere formation and proliferation of CSCs derived from 4T1 and MDA-MB-231 cell lines. Quantification of mammosphere formation showed a significant decrease in both cell lines at 75 μM BBR (4T1: P < 0.001; MDA-MB-231: P < 0.0001). BBR upregulated the expression of miRNAs miR-let-7c and miR-34a in both cell lines, with miR-34a showing a significant increase (P < 0.001) and let-7c showing a significant increase (P < 0.05) in expression. In vivo, oral administration of BBR reduced mammosphere formation in breast tumor tissues (P < 0.0001) and elevated expression of miR-145 and miR-34a, with both showing significant upregulation (P < 0.0001), indicating its potential tumor-suppressive effects. BBR treatment resulted in a significant decrease in serum IL-6 levels (P < 0.05), suggesting anti-inflammatory properties, while the IL-6 in tumor tissue did not show significant changes (P > 0.05). However, no significant differences were observed in depressive-like behaviors between control and treatment groups. Conclusions BBR may have the potential to be used as an "Epi-Natural Compound" to prevent cancer by reducing inflammation and affecting epigenetics.
Collapse
Affiliation(s)
- Nour Ibrahim
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nawal Alsadi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Roghayeh Shahbazi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary Joe Hebbo
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Darshan Kambli
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Florencia Balcells
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chantal Matar
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Liu Z, Lei M, Bai Y. Chronic Stress Mediates Inflammatory Cytokines Alterations and Its Role in Tumorigenesis. J Inflamm Res 2025; 18:1067-1090. [PMID: 39871957 PMCID: PMC11769853 DOI: 10.2147/jir.s485159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Introduction Prolonged psychological stress is closely associated with cancer due to its role in promoting the release of stress hormones through the sustained activation of the sympathetic-adrenal-medullary system. These hormones interact with receptors on inflammatory cells, leading to the activation of key signaling pathways, including the transcription factors signal transducer and activator of transcription 3 (STAT-3) and kappa-light-chain-enhancer of activated B cells (NF-κB). These factors drive the production of pro-inflammatory substances, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which can influence the initiation and progression of cancer. Purpose This article aims to summarize how the chronic inflammatory environment induced by chronic stress promotes the initiation, progression, and invasion of cancer. By enhancing our understanding of the complex mechanisms through which stress contributes to cancer, we hope to identify new targets for cancer prevention and treatment. Conclusion Chronic stress establishes an inflammatory microenvironment by activating STAT-3 and NF-κB in inflammatory cells. This ongoing inflammation further enhances the activity of these transcription factors, which serve multiple roles: they act as pro-inflammatory agents in inflammatory cells, maintaining chronic inflammation; as oncogenic transcription factors in premalignant cells, promoting cancer initiation; and as pro-differentiation transcription factors in tumor-infiltrating immune cells, facilitating cancer progression. Additionally, the impact of chronic stress varies among different cancer types and individual responses to stress, highlighting the complexity of stress-related cancer mechanisms. Ultimately, this dynamic interplay creates a feedback loop involving IL-6, STAT-3, and TNF-α-NF-κB within the tumor microenvironment, mediating the intricate interactions between inflammation, immunity, and cancer.
Collapse
Affiliation(s)
- Zhihan Liu
- Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Meng Lei
- Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yanxia Bai
- Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
11
|
Levy MV, Fandl HK, Hijmans JG, Stockelman KA, Ruzzene ST, Reiakvam WR, Goldthwaite ZA, Greiner JJ, DeSouza CA, Garcia VP. Effect of 17β-Estradiol on Endothelial Cell Expression of Inflammation- Related MicroRNA. Microrna 2025; 14:3-8. [PMID: 39069709 DOI: 10.2174/0122115366320085240716180112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Estrogen plays a protective role in vascular health due, in part, to its regulation of endothelial inflammation. However, the mechanism(s) by which estrogen negatively regulates inflammatory signaling pathways is not completely understood. MicroRNAs (miRNAs) are recognized as sensitive and selective regulators of cardiovascular function, inflammation, and disease, yet the effects of 17β-estradiol on the endothelial miRNA profile are largely unknown. OBJECTIVE The aim of this study was to determine the effect of 17β-estradiol on the expression of inflammation-associated miRNAs in endothelial cells in vitro. METHODS Human Umbilical Vein Endothelial cells (HUVECs) were treated with media in the absence (control) and presence of 17β-estradiol (100 nM) for 24 hr. Thereafter, endothelial cell release of cytokines (IL-6 and IL-8), the intracellular expression of the central protein inflammatory mediator NF-κB, and the levels of inflammatory-associated miRNAs: miR-126, miR-146a, miR-181b, miR-204, and miR-Let-7a, were determined. RESULTS 17β-estradiol-treated cells released significantly lower levels of IL-6 (47.6±1.5 pg/mL vs. 59.3±4.9 pg/mL) and IL-8 (36.3±2.3 pg/mL vs. 44.0±2.0 pg/mL). Cellular expression of total NF-κB (26.0±2.8 AU vs. 21.2±3.1 AU) was not different between groups; however, activated NF-κB (Ser536) (12.9±1.7 AU vs. 20.2±2.2 AU) was markedly reduced in 17β-estradiol-treated cells as compared to untreated cells. Furthermore, cellular expressions of miR-126 (1.8±0.3 fold), miR-146a (1.7±0.3 fold), miR-181b (2.1±0.4 fold), miR-204 (1.9±0.4 fold), and miR-Let-7a (1.8±0.3 fold) were markedly increased in response to 17β-estradiol treatment. CONCLUSION These data suggest that the anti-inflammatory effect of 17β-estradiol in endothelial cells may be mediated by miRNAs.
Collapse
Affiliation(s)
- Ma'ayan V Levy
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder Boulder, CO 80309, United States
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder Boulder, CO 80309, United States
| | - Jamie G Hijmans
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder Boulder, CO 80309, United States
| | - Kelly A Stockelman
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder Boulder, CO 80309, United States
| | - Samuel T Ruzzene
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder Boulder, CO 80309, United States
| | - Whitney R Reiakvam
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder Boulder, CO 80309, United States
| | - Zoe A Goldthwaite
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder Boulder, CO 80309, United States
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder Boulder, CO 80309, United States
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder Boulder, CO 80309, United States
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder Boulder, CO 80309, United States
| |
Collapse
|
12
|
Figueroa-Angulo EE, Puente-Rivera J, Perez-Navarro YF, Condado EM, Álvarez-Sánchez ME. Epigenetic alteration in cervical cancer induced by human papillomavirus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:25-66. [PMID: 39864896 DOI: 10.1016/bs.ircmb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.
Collapse
Affiliation(s)
- Elisa-Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de la México, Ciudad de México, México
| | - Jonathan Puente-Rivera
- División de Investigación, Hospital Juárez De México, Ciudad de México, México; Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Yussel Fernando Perez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Edgar Mendieta Condado
- Laboratorio Estatal de Salud Pública, Secretaría de Salud de Jalisco, Guadalajara, Jalisco, México
| | - María-Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
| |
Collapse
|
13
|
Hongfang G, Khan R, El-Mansi AA. Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature. Mol Biotechnol 2024; 66:2710-2724. [PMID: 37773313 DOI: 10.1007/s12033-023-00894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
The miRNAs regulate various biological processes in the mammalian body system. The role of miR-181a in the development, progression, and expansion of cancers is well-documented. However, the role of miR-181a in adipogenesis; lipid metabolism; obesity; and obesity-related issues such as diabetes mellitus needs to be explored. Therefore, in the present study, the literature was searched and bioinformatics tools were applied to explore the role of miR-181a in adipogenesis. The list of adipogenic and lipogenic target genes validated through different publications were extracted and compiled. The network and functional analysis of these target genes was performed through in-silico analysis. The mature sequence of miR-181a of different species were extracted from and were found highly conserved among the curated species. Additionally, we also used various bioinformatics tools such as target gene extraction from Targetscan, miRWalk, and miRDB, and the list of the target genes from these different databases was compared, and common target genes were predicted. These common target genes were further subjected to the enrichment score and KEGG pathways analysis. The enrichment score of the vital KEGG pathways of the target genes is the key regulator of adipogenesis, lipogenesis, obesity, and obesity-related syndromes in adipose tissues. Therefore, the information presented in the current review will explore the regulatory roles of miR-181a in fat tissues and its associated functions and manifestations.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang City, 461000, Henan Province, People's Republic of China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Chen J, Liu K, Vadas MA, Gamble JR, McCaughan GW. The Role of the MiR-181 Family in Hepatocellular Carcinoma. Cells 2024; 13:1289. [PMID: 39120319 PMCID: PMC11311592 DOI: 10.3390/cells13151289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth-leading cause of cancer-related death worldwide. Due to the high mortality rate in HCC patients, discovering and developing novel systemic treatment options for HCC is a vital unmet medical need. Among the numerous molecular alterations in HCCs, microRNAs (miRNAs) have been increasingly recognised to play critical roles in hepatocarcinogenesis. We and others have recently revealed that members of the microRNA-181 (miR-181) family were up-regulated in some, though not all, human cirrhotic and HCC tissues-this up-regulation induced epithelial-mesenchymal transition (EMT) in hepatocytes and tumour cells, promoting HCC progression. MiR-181s play crucial roles in governing the fate and function of various cells, such as endothelial cells, immune cells, and tumour cells. Previous reviews have extensively covered these aspects in detail. This review aims to give some insights into miR-181s, their targets and roles in modulating signal transduction pathways, factors regulating miR-181 expression and function, and their roles in HCC.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Ken Liu
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Mathew A. Vadas
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Jennifer R. Gamble
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Geoffrey W. McCaughan
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
15
|
Cheng Y, Wang S, Gao Q, Fang D. ATXN3 functions as a tumor suppressor through potentiating galectin-9-mediated apoptosis in human colon adenocarcinoma. J Biol Chem 2024; 300:107415. [PMID: 38815863 PMCID: PMC11254720 DOI: 10.1016/j.jbc.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
While deubiquitinase ATXN3 has been implicated as a potential oncogene in various types of human cancers, its role in colon adenocarcinoma remains understudied. Surprisingly, our findings demonstrate that ATXN3 exerts an antitumor effect in human colon cancers through potentiating Galectin-9-induced apoptosis. CRISPR-mediated ATXN3 deletion unexpectedly intensified colon cancer growth both in vitro and in xenograft colon cancers. At the molecular level, we identified ATXN3 as a bona fide deubiquitinase specifically targeting Galectin-9, as ATXN3 interacted with and inhibited Galectin-9 ubiquitination. Consequently, targeted ATXN3 ablation resulted in reduced Galectin-9 protein expression, thereby diminishing Galectin-9-induced colon cancer apoptosis and cell growth arrest. The ectopic expression of Galectin-9 fully reversed the growth of ATXN3-null colon cancer in mice. Furthermore, immunohistochemistry staining revealed a significant reduction in both ATXN3 and Galectin-9 protein expression, along with a positive correlation between them in human colon cancer. Our study identifies the first Galectin-9-specific deubiquitinase and unveils a tumor-suppressive role of ATXN3 in human colon cancer.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shengnan Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qiong Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Center for Human Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
16
|
Ma Z, Zhou F, Jin H, Wu X. Crosstalk between CXCL12/CXCR4/ACKR3 and the STAT3 Pathway. Cells 2024; 13:1027. [PMID: 38920657 PMCID: PMC11201928 DOI: 10.3390/cells13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The reciprocal modulation between the CXCL12/CXCR4/ACKR3 axis and the STAT3 signaling pathway plays a crucial role in the progression of various diseases and neoplasms. Activation of the CXCL12/CXCR4/ACKR3 axis triggers the STAT3 pathway through multiple mechanisms, while the STAT3 pathway also regulates the expression of CXCL12. This review offers a thorough and systematic analysis of the reciprocal regulatory mechanisms between the CXCL12/CXCR4/ACKR3 signaling axis and the STAT3 signaling pathway in the context of diseases, particularly tumors. It explores the potential clinical applications in tumor treatment, highlighting possible therapeutic targets and novel strategies for targeted tumor therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (Z.M.); (F.Z.); (H.J.)
| |
Collapse
|
17
|
Wu HH, Leng S, Sergi C, Leng R. How MicroRNAs Command the Battle against Cancer. Int J Mol Sci 2024; 25:5865. [PMID: 38892054 PMCID: PMC11172831 DOI: 10.3390/ijms25115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate more than 30% of genes in humans. Recent studies have revealed that miRNAs play a crucial role in tumorigenesis. Large sets of miRNAs in human tumors are under-expressed compared to normal tissues. Furthermore, experiments have shown that interference with miRNA processing enhances tumorigenesis. Multiple studies have documented the causal role of miRNAs in cancer, and miRNA-based anticancer therapies are currently being developed. This review primarily focuses on two key points: (1) miRNAs and their role in human cancer and (2) the regulation of tumor suppressors by miRNAs. The review discusses (a) the regulation of the tumor suppressor p53 by miRNA, (b) the critical role of the miR-144/451 cluster in regulating the Itch-p63-Ago2 pathway, and (c) the regulation of PTEN by miRNAs. Future research and the perspectives of miRNA in cancer are also discussed. Understanding these pathways will open avenues for therapeutic interventions targeting miRNA regulation.
Collapse
Affiliation(s)
- Hong Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
18
|
Wang S, Stroup EK, Wang TY, Yang R, Ji Z. Comparative analyses of gene networks mediating cancer metastatic potentials across lineage types. Brief Bioinform 2024; 25:bbae357. [PMID: 39041189 PMCID: PMC11262869 DOI: 10.1093/bib/bbae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
Studies have identified genes and molecular pathways regulating cancer metastasis. However, it remains largely unknown whether metastatic potentials of cancer cells from different lineage types are driven by the same or different gene networks. Here, we aim to address this question through integrative analyses of 493 human cancer cells' transcriptomic profiles and their metastatic potentials in vivo. Using an unsupervised approach and considering both gene coexpression and protein-protein interaction networks, we identify different gene networks associated with various biological pathways (i.e. inflammation, cell cycle, and RNA translation), the expression of which are correlated with metastatic potentials across subsets of lineage types. By developing a regularized random forest regression model, we show that the combination of the gene module features expressed in the native cancer cells can predict their metastatic potentials with an overall Pearson correlation coefficient of 0.90. By analyzing transcriptomic profile data from cancer patients, we show that these networks are conserved in vivo and contribute to cancer aggressiveness. The intrinsic expression levels of these networks are correlated with drug sensitivity. Altogether, our study provides novel comparative insights into cancer cells' intrinsic gene networks mediating metastatic potentials across different lineage types, and our results can potentially be useful for designing personalized treatments for metastatic cancers.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60628, United States
| | - Emily K Stroup
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, United States
| | - Ting-You Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, United States
| | - Rendong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, United States
| | - Zhe Ji
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60628, United States
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, United States
| |
Collapse
|
19
|
Alipoor SD, Elieh-Ali-Komi D. Significance of extracellular vesicles in orchestration of immune responses in Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2024; 14:1398077. [PMID: 38836056 PMCID: PMC11148335 DOI: 10.3389/fcimb.2024.1398077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of Tuberculosis, is an intracellular bacterium well known for its ability to subvert host energy and metabolic pathways to maintain its intracellular survival. For this purpose, the bacteria utilize various mechanisms of which extracellular vehicles (EVs) related mechanisms attracted more attention. EVs are nanosized particles that are released by almost all cell types containing active biomolecules from the cell of origin and can target bioactive pathways in the recipient cells upon uptake. It is hypothesized that M.tb dictates the processes of host EV biogenesis pathways, selectively incorporating its molecules into the host EV to direct immune responses in its favor. During infection with Mtb, both mycobacteria and host cells release EVs. The composition of these EVs varies over time, influenced by the physiological and nutritional state of the host environment. Additionally, different EV populations contribute differently to the pathogenesis of disease at various stages of illness participating in a complex interplay between host cells and pathogens. These interactions ultimately influence immune responses and disease outcomes. However, the precise mechanisms and roles of EVs in pathogenicity and disease outcomes remain to be fully elucidated. In this review, we explored the properties and function of EVs in the context of M.tb infection within the host microenvironment and discussed their capacity as a novel therapeutic strategy to combat tuberculosis.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
| |
Collapse
|
20
|
Park JS, Kim C, Choi J, Jeong HY, Moon YM, Kang H, Lee EK, Cho ML, Park SH. MicroRNA-21a-5p inhibition alleviates systemic sclerosis by targeting STAT3 signaling. J Transl Med 2024; 22:323. [PMID: 38561750 PMCID: PMC10983659 DOI: 10.1186/s12967-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND MicroRNA (miRNA)-21-5p participates in various biological processes, including cancer and autoimmune diseases. However, its role in the development of fibrosis in the in vivo model of systemic sclerosis (SSc) has not been reported. This study investigated the effects of miRNA-21a-5p overexpression and inhibition on SSc fibrosis using a bleomycin-induced SSc mouse model. METHODS A murine SSc model was induced by subcutaneously injecting 100 μg bleomycin dissolved in 0.9% NaCl into C57BL/6 mice daily for 5 weeks. On days 14, 21, and 28 from the start of bleomycin injection, 100 μg pre-miRNA-21a-5p or anti-miRNA-21a-5p in 1 mL saline was hydrodynamically injected into the mice. Fibrosis analysis was conducted in lung and skin tissues of SSc mice using hematoxylin and eosin as well as Masson's trichrome staining. Immunohistochemistry was used to examine the expression of inflammatory cytokines, phosphorylated signal transducer and activator of transcription-3 (STAT3) at Y705 or S727, and phosphatase and tensin homologue deleted on chromosome-10 (PTEN) in skin tissues of SSc mice. RESULTS MiRNA-21a-5p overexpression promoted lung fibrosis in bleomycin-induced SSc mice, inducing infiltration of cells expressing TNF-α, IL-1β, IL-6, or IL-17, along with STAT3 phosphorylated cells in the lesional skin. Conversely, anti-miRNA-21a-5p injection improved fibrosis in the lung and skin tissues of SSc mice, reducing the infiltration of cells secreting inflammatory cytokines in the skin tissue. In particular, it decreased STAT3-phosphorylated cell infiltration at Y705 and increased the infiltration of PTEN-expressing cells in the skin tissue of SSc mice. CONCLUSION MiRNA-21a-5p promotes fibrosis in an in vivo murine SSc model, suggesting that its inhibition may be a therapeutic strategy for improving fibrosis in SSc.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Chongtae Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Ha Yeon Jeong
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Young-Mee Moon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
- Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-Gu, Seoul, 06591, South Korea.
| |
Collapse
|
21
|
Sweet-Cordero E, Marini K, Champion E, Lee A, Young I, Leung S, Mathey-Andrews N, Jacks T, Jackson P, Cochran J. The CLCF1-CNTFR axis drives an immunosuppressive tumor microenvironment and blockade enhances the effects of established cancer therapies. RESEARCH SQUARE 2024:rs.3.rs-4046823. [PMID: 38562778 PMCID: PMC10984090 DOI: 10.21203/rs.3.rs-4046823/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Tumors comprise a complex ecosystem consisting of many cell types that communicate through secreted factors. Targeting these intercellular signaling networks remains an important challenge in cancer research. Cardiotrophin-like cytokine factor 1 (CLCF1) is an interleukin-6 (IL-6) family member secreted by cancer-associated fibroblasts (CAFs) that binds to ciliary neurotrophic factor receptor (CNTFR), promoting tumor growth in lung and liver cancer1,2. A high-affinity soluble receptor (eCNTFR-Fc) that sequesters CLCF1 has anti-oncogenic effects3. However, the role of CLCF1 in mediating cell-cell interactions in cancer has remained unclear. We demonstrate that eCNTFR-Fc has widespread effects on both tumor cells and the tumor microenvironment and can sensitize cancer cells to KRAS inhibitors or immune checkpoint blockade. After three weeks of treatment with eCNTFR-Fc, there is a shift from an immunosuppressive to an immunostimulatory macrophage phenotype as well as an increase in activated T, NKT, and NK cells. Combination of eCNTFR-Fc and αPD1 was significantly more effective than single-agent therapy in a syngeneic allograft model, and eCNTFR-Fc sensitizes tumor cells to αPD1 in a non-responsive GEM model of lung adenocarcinoma. These data suggest that combining eCNTFR-Fc with KRAS inhibition or with αPD1 is a novel therapeutic strategy for lung cancer and potentially other cancers in which these therapies have been used but to date with only modest effect. Overall, we demonstrate the potential of cancer therapies that target cytokines to alter the immune microenvironment.
Collapse
Affiliation(s)
| | - Kieren Marini
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | - Emma Champion
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | - Alex Lee
- University of California, San Francisco
| | - Isabelle Young
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | - Stanley Leung
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | | | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research
| | | | | |
Collapse
|
22
|
Hanley S, Chen YY, Hazeldine J, Lord JM. Senescent cell-derived extracellular vesicles as potential mediators of innate immunosenescence and inflammaging. Exp Gerontol 2024; 187:112365. [PMID: 38237747 DOI: 10.1016/j.exger.2024.112365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Ageing is accompanied by a decline in immune function (immunosenescence), increased inflammation (inflammaging), and more senescent cells which together contribute to age-related disease and infection susceptibility. The innate immune system is the front-line defence against infection and cancer and is also involved in the removal of senescent cells, so preventing innate immunosenescence and inflammaging is vital for health in older age. Extracellular vesicles (EVs) modulate many aspects of innate immune function, including chemotaxis, anti-microbial responses, and immune regulation. Senescent cell derived EVs (SEVs) have different cargo to that of non-senescent cell derived EVs, suggesting alterations in EV cargo across the lifespan may influence innate immune function, possibly contributing to immunosenescence and inflammaging. Here we review current understanding of the potential impact of miRNAs, lipids and proteins, found in higher concentrations in SEVs, on innate immune functions and inflammation to consider whether SEVs are potential influencers of innate immunosenescence and inflammaging. Furthermore, senolytics have demonstrated an ability to return plasma EV content closer to that of non-senescent EVs, therefore the potential use of senotherapeutics (senolytics and senostatics) to ameliorate the effects of SEVs on immunosenescence and inflammaging is also considered as a possible strategy for extending health-span in older adults.
Collapse
Affiliation(s)
- Shaun Hanley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Yung-Yi Chen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
23
|
Endale HT, Mariye YF, Negash HK, Hassen FS, Asrat WB, Mengstie TA, Tesfaye W. MiRNA in cervical cancer: Diagnosis to therapy: Systematic review. Heliyon 2024; 10:e24398. [PMID: 38317930 PMCID: PMC10839805 DOI: 10.1016/j.heliyon.2024.e24398] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Cancers are one of the most public health problems worldwide. Among them, cervical cancer (CC) is the fourth most prevalent cancer with 604 000 new cases and 342 000 deaths. Mostly, it is associated with Human papillomavirus (HPV). It has been caused by the aggregation of genetic and epigenetic modifications in cervical epithelial cells. Although genetic mutations are given great attention for the carcinogenesis of CC, epigenetic changes have emerged as a hotspot area for CC biomarkers research with great implications for early diagnosis, prognosis, and treatment response prediction of the disease. Recently, there are several studies focused on miRNAs as biomarkers of cervical cancer. However, the precise function of miRNAs in the development of cervical cancer is not still completely understood, particularly when it comes to unconventional sampling materials like cervical mucus and plasma serum. Hence, this review article will give a summary of the miRNAs profiles that emerge at different stages of cervical cancer progression and their downstream effects on target genes and associated signaling pathways. Finally, these results may provide insight into the use of miRNAs as biomarkers for the prediction or diagnosis of cervical cancer or the development of miRNA-based therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Yitbarek Fantahun Mariye
- Department of Obstetrics & Gynecology, School of Medicine, College of Medicine & Health Sciences, Addis Ababa University, Ethiopia
| | - Habtu Kifle Negash
- Department of Human Anatomy, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Tiget Ayelgn Mengstie
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| |
Collapse
|
24
|
Otmani K, Rouas R, Berehab M, Lewalle P. The regulatory mechanisms of oncomiRs in cancer. Biomed Pharmacother 2024; 171:116165. [PMID: 38237348 DOI: 10.1016/j.biopha.2024.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Cancer development is a complex process that primarily results from the combination of genetic alterations and the dysregulation of major signalling pathways due to interference with the epigenetic machinery. As major epigenetic regulators, miRNAs are central players in the control of many key tumour development factors. These miRNAs have been classified as oncogenic miRNAs (oncomiRs) when they target tumour suppressor genes and tumour suppressor miRNAs (TS miRNAs) when they inhibit oncogene protein expression. Most of the mechanisms that modulate oncomiR expression are linked to transcriptional or posttranscriptional regulation. However, non-transcriptional processes, such as gene amplification, have been described as alternative processes that are responsible for increasing oncomiR expression. The current review summarises the different mechanisms controlling the upregulation of oncomiR expression in cancer cells and the tumour microenvironment (TME). Detailed knowledge of the mechanism underlying the regulation of oncomiR expression in cancer may pave the way for understanding the critical role of oncomiRs in cancer development and progression.
Collapse
Affiliation(s)
- Khalid Otmani
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Redouane Rouas
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mimoune Berehab
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Lewalle
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
25
|
Zhao R, Hu Z, Zhang X, Huang S, Yu G, Wu Z, Yu W, Lu J, Ruan B. The oncogenic mechanisms of the Janus kinase-signal transducer and activator of transcription pathway in digestive tract tumors. Cell Commun Signal 2024; 22:68. [PMID: 38273295 PMCID: PMC10809652 DOI: 10.1186/s12964-023-01421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/03/2023] [Indexed: 01/27/2024] Open
Abstract
Digestive tract tumors are heterogeneous and involve the dysregulation of multiple signaling pathways. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway plays a notable role in the oncogenesis of digestive tract tumors. Typically activated by pro-inflammatory cytokines, it regulates important biological processes, such as cell growth, differentiation, apoptosis, immune responses, and inflammation. The aberrant activation of this pathway manifests in different forms, including mutations in JAKs, overexpression of cytokine receptors, and sustained STAT activation, and contributes to promoting the malignant characteristics of cancer cells, including uncontrolled proliferation, resistance to apoptosis, enhanced invasion and metastasis, angiogenesis, acquisition of stem-like properties, and drug resistance. Numerous studies have shown that aberrant activation of the JAK-STAT pathway is closely related to the development and progression of digestive tract tumors, contributing to tumor survival, angiogenesis, changes in the tumor microenvironment, and even immune escape processes. In addition, this signaling pathway also affects the sensitivity of digestive tract tumors to chemotherapy and targeted therapy. Therefore, it is crucial to comprehensively understand the oncogenic mechanisms underlying the JAK-STAT pathway in order to develop effective therapeutic strategies against digestive tract tumors. Currently, several JAK-STAT inhibitors are undergoing clinical and preclinical trials as potential treatments for various human diseases. However, further investigation is required to determine the role of this pathway, as well as the effectiveness and safety of its inhibitors, especially in the context of digestive tract tumors. In this review, we provide an overview of the structure, classic activation, and negative regulation of the JAK-STAT pathway. Furthermore, we discuss the pathogenic mechanisms of JAK-STAT signaling in different digestive tract tumors, with the aim of identifying potential novel therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Ruihong Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Zhangmin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Xiaoli Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Shujuan Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Zhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
26
|
Saleh Z, Moccia MC, Ladd Z, Joneja U, Li Y, Spitz F, Hong YK, Gao T. Pancreatic Neuroendocrine Tumors: Signaling Pathways and Epigenetic Regulation. Int J Mol Sci 2024; 25:1331. [PMID: 38279330 PMCID: PMC10816436 DOI: 10.3390/ijms25021331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are characterized by dysregulated signaling pathways that are crucial for tumor formation and progression. The efficacy of traditional therapies is limited, particularly in the treatment of PNETs at an advanced stage. Epigenetic alterations profoundly impact the activity of signaling pathways in cancer development, offering potential opportunities for drug development. There is currently a lack of extensive research on epigenetic regulation in PNETs. To fill this gap, we first summarize major signaling events that are involved in PNET development. Then, we discuss the epigenetic regulation of these signaling pathways in the context of both PNETs and commonly occurring-and therefore more extensively studied-malignancies. Finally, we will offer a perspective on the future research direction of the PNET epigenome and its potential applications in patient care.
Collapse
Affiliation(s)
- Zena Saleh
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Matthew C. Moccia
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Zachary Ladd
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Upasana Joneja
- Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Yahui Li
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Francis Spitz
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Young Ki Hong
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Tao Gao
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
- Camden Cancer Research Center, Camden, NJ 08103, USA
| |
Collapse
|
27
|
Chen CW, Wang HC, Tsai IM, Chen IS, Chen CJ, Hou YC, Shan YS. CD204-positive M2-like tumor-associated macrophages increase migration of gastric cancer cells by upregulating miR-210 to reduce NTN4 expression. Cancer Immunol Immunother 2024; 73:1. [PMID: 38175202 PMCID: PMC10766795 DOI: 10.1007/s00262-023-03601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are the predominant immune cells in the tumor microenvironment and portend poor prognosis. However, the molecular mechanisms underlying the tumor promotion of TAMs have not been fully elucidated. METHODS Coculture of gastric cancer cells with U937 cells was performed to investigate the impact of TAMs on cancer cell behavior. MicroRNA (miRNA) microarray and bioinformatics were applied to identify the involved miRNAs and the functional target genes. The regulation of the miRNA on its target gene was studied using anti-miRNA and miRNA mimic. RESULTS Coculture with CD204+ M2-like TAMs increased proliferation, migration, and epithelial-mesenchymal transition of gastric cancer cells. MiR-210 was the most upregulated miRNA in cancer cells identified by miRNA microarray after coculture. In gastric cancer tissues, miR-210 expression was positively correlated with CD204+ M2-like TAM infiltration. Inactivation of miR-210 by antimir attenuated CD204+ M2-like TAMs-induced cancer cell migration. Using pharmacological inhibitors and neutralizing antibodies, CD204+ M2-like TAMs-secreted TNFα was found to upregulate miR-210 through NF-κB/HIF-1α signaling. Bioinformatics analysis showed netrin-4 (NTN4) as a potential target of miR-210 to suppress gastric cancer cell migration. We also found an inverse expression between miR-210 and NTN4 in cancer cells after coculture or in tumor xenografts. Anti-miR-210 increased NTN4 expression, while miR-210 mimics downregulated NTN4 in cancer cells. Reporter luciferase assays showed that MiR-210 mimics suppressed NTN4 3' untranslated region-driven luciferase activity in cancer cells, but this effect was blocked after mutating miR-210 binding site. CONCLUSIONS CD204+ M2-like TAMs can utilize the TNF-α/NF-κB/HIF-1α/miR-210/NTN4 pathway to facilitate gastric cancer progression.
Collapse
Affiliation(s)
- Chin-Wang Chen
- Department of Surgery, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Medical Imaging Center, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | - I-Min Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Shu Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chang-Jung Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chin Hou
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138, Sheng-Li Road, Tainan, 70428, Taiwan.
| |
Collapse
|
28
|
Thakur K, Janjua D, Aggarwal N, Chhokar A, Yadav J, Tripathi T, Chaudhary A, Senrung A, Shrivastav A, Bharti AC. Physical interaction between STAT3 and AP1 in cervical carcinogenesis: Implications in HPV transcription control. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166817. [PMID: 37532113 DOI: 10.1016/j.bbadis.2023.166817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
The constitutive activation and aberrant expression of Signal Transducer and Activator of Transcription 3 (STAT3) plays a key role in initiation and progression of cervical cancer (CaCx). How STAT3 influences HPV transcription is poorly defined. In the present study, we probed direct and indirect interactions of STAT3 with HPV16/18 LCR. In silico assessment of cis-elements present on LCR revealed the presence of potential STAT3 binding motifs. However, experimental validation by ChIP-PCR could not confirm any specific STAT3 binding on HPV16 LCR. Protein-protein interaction (PPI) network analysis of STAT3 with other host transcription factors that bind LCR, highlighted the physical association of STAT3 with c-FOS and c-JUN. This was further confirmed in vitro by co-immunoprecipitation, where STAT3 co-immunoprecipitated with c-FOS and c-JUN in CaCx cells. The result was supported by immunocytochemical analysis and colocalization of STAT3 with c-FOS and c-JUN. Positive signals in proximity ligation assay validated physical interaction and colocalization of STAT3 with AP1. Colocalization of STAT3 with c-FOS and c-JUN increased upon IL-6 treatment and decreased post-Stattic treatment. Alteration of STAT3 expression affected the subcellular localization of c-FOS and c-JUN, along with the expression of viral oncoproteins (E6 and E7) in CaCx cells. High expression of c-JUN in tumor tissues correlated with poor prognosis in both HPV16 and HPV18 CaCx cohort whereas high expression of STAT3 correlated with poor prognosis in HPV18 CaCx lesions only. Overall, the data suggest an indirect interaction of STAT3 with HPV LCR via c-FOS and c-JUN and potentiate transcription of viral oncoproteins.
Collapse
Affiliation(s)
- Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anuraag Shrivastav
- Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada; Paul Albrechtsen Research Institute CCMB, 675 McDermot Ave, Winnipeg, Manitoba, Canada
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
29
|
Li S, Hoefnagel SJM, Krishnadath KK. Molecular Biology and Clinical Management of Esophageal Adenocarcinoma. Cancers (Basel) 2023; 15:5410. [PMID: 38001670 PMCID: PMC10670638 DOI: 10.3390/cancers15225410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a highly lethal malignancy. Due to its rising incidence, EAC has become a severe health challenge in Western countries. Current treatment strategies are mainly chosen based on disease stage and clinical features, whereas the biological background is hardly considered. In this study, we performed a comprehensive review of existing studies and discussed how etiology, genetics and epigenetic characteristics, together with the tumor microenvironment, contribute to the malignant behavior and dismal prognosis of EAC. During the development of EAC, several intestinal-type proteins and signaling cascades are induced. The anti-inflammatory and immunosuppressive microenvironment is associated with poor survival. The accumulation of somatic mutations at the early phase and chromosomal structural rearrangements at relatively later time points contribute to the dynamic and heterogeneous genetic landscape of EAC. EAC is also characterized by frequent DNA methylation and dysregulation of microRNAs. We summarize the findings of dysregulations of specific cytokines, chemokines and immune cells in the tumor microenvironment and conclude that DNA methylation and microRNAs vary with each different phase of BE, LGD, HGD, early EAC and invasive EAC. Furthermore, we discuss the suitability of the currently employed therapies in the clinic and possible new therapies in the future. The development of targeted and immune therapies has been hampered by the heterogeneous genetic characteristics of EAC. In view of this, the up-to-date knowledge revealed by this work is absolutely important for future EAC studies and the discovery of new therapeutics.
Collapse
Affiliation(s)
- Shulin Li
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | - Kausilia Krishnawatie Krishnadath
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2000 Antwerpen, Belgium
| |
Collapse
|
30
|
Gu F, Huang X, Huang W, Zhao M, Zheng H, Wang Y, Chen R. The role of miRNAs in Behçet's disease. Front Immunol 2023; 14:1249826. [PMID: 37860009 PMCID: PMC10584330 DOI: 10.3389/fimmu.2023.1249826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
The symptoms of Behçet's disease (BD), a multisystemic condition with autoimmune and inflammation as hallmarks, include arthritis, recurring oral and vaginal ulcers, skin rashes and lesions, and involvement of the nervous, gastrointestinal, and vascular systems. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), may be important regulators of inflammation and autoimmune disease. These ncRNAs are essential to the physiological and pathophysiological disease course, and miRNA in particular has received significant attention for its role and function in BD and its potential use as a diagnostic biomarker in recent years. Although promising as therapeutic targets, miRNAs must be studied further to fully comprehend how miRNAs in BD act biologically.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanyin Wang
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - Ran Chen
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| |
Collapse
|
31
|
Driva TS, Schatz C, Haybaeck J. Endometriosis-Associated Ovarian Carcinomas: How PI3K/AKT/mTOR Pathway Affects Their Pathogenesis. Biomolecules 2023; 13:1253. [PMID: 37627318 PMCID: PMC10452661 DOI: 10.3390/biom13081253] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Ovarian clear cell (OCCC) and endometrioid (EnOC) carcinomas are often subsumed under the umbrella term "endometriosis-associated ovarian cancer" (EAOC), since they frequently arise from ectopic endometrium settled in the ovaries. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is known to be aberrantly activated both in endometriosis and EAOC; however, its role in the progression of endometriosis to ovarian cancer remains unclear. In fact, cancer-associated alterations in the mTOR pathway may be found in normal uterine epithelium, likely acting as a first step towards ovarian cancer, through the intermediary stage of endometriosis. This review aims to summarize the current knowledge regarding mTOR signaling dysregulation in the uterine endometrium, endometriosis, and EAOC while focusing on the interconnections between the PI3K/AKT/mTOR pathway and other signaling molecules that give rise to synergistic molecular mechanisms triggering ovarian cancer development in the presence of endometriosis.
Collapse
Affiliation(s)
- Tatiana S. Driva
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christoph Schatz
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
32
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
33
|
Liu J, Pan Y, Liu Y, Wei W, Hu X, Xin W, Chen N. The regulation of PTEN: Novel insights into functions as cancer biomarkers and therapeutic targets. J Cell Physiol 2023; 238:1693-1715. [PMID: 37334436 DOI: 10.1002/jcp.31053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
This review summarizes the implications of the primary tumor suppressor protein phosphatase and tensin homolog (PTEN) in aggressive cancer development. PTEN interacts with other cellular proteins or factors suggesting the existence of an intricate molecular network that regulates their oncogenic function. Accumulating evidence has shown that PTEN exists and plays a role in the cytoplasmic organelles and in the nucleus. PTEN blocks phosphoinositide 3-kinases (PI3K)-protein kinase B-mammalian target of rapamycin signaling pathway by dephosphorylating phosphatidylinositol (PI)-3,4,5-triphosphate to PI-4,5-bisphosphate thus counteracting PI3K function. Studies have shown that PTEN expression is tightly regulated at transcriptional, posttranscriptional, and posttranslational levels (including protein-protein interactions and posttranslational modifications). Despite recent advances in PTEN research, the regulation and function of the PTEN gene remain largely unknown. How mutation or loss of specific exons in the PTEN gene occurs and involves in cancer development is not clear. This review illustrates the regulatory mechanisms of PTEN expression and discusses how PTEN participates in tumor development and/or suppression. Future prospects for the clinical applications are also highlighted.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yongli Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Yuheng Liu
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoping Hu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Nan Chen
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
34
|
Chaturvedi S, Biswas M, Sadhukhan S, Sonawane A. Role of EGFR and FASN in breast cancer progression. J Cell Commun Signal 2023:10.1007/s12079-023-00771-w. [PMID: 37490191 DOI: 10.1007/s12079-023-00771-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Breast cancer (BC) emerged as one of the life-threatening diseases among females. Despite notable improvements made in cancer detection and treatment worldwide, according to GLOBACAN 2020, BC is the fifth leading cancer, with an estimated 1 in 6 cancer deaths, in a majority of countries. However, the exact cause that leads to BC progression still needs to be determined. Here, we reviewed the role of two novel biomarkers responsible for 50-70% of BC progression. The first one is epidermal growth factor receptor (EGFR) which belongs to the ErbB tyrosine kinases family, signalling pathways associated with it play a significant role in regulating cell proliferation and division. Another one is fatty acid synthase (FASN), a key enzyme responsible for the de novo lipid synthesis required for cancer cell development. This review presents a rationale for the EGFR-mediated pathways, their interaction with FASN, communion of these two biomarkers with BC, and improvements to overcome drug resistance caused by them.
Collapse
Affiliation(s)
- Suchi Chaturvedi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
- Physical & Chemical Biology Laboratory and Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India.
| |
Collapse
|
35
|
Tsintarakis A, Papalouka C, Kontarini C, Zoumpourlis P, Karakostis K, Adamaki M, Zoumpourlis V. The Intricate Interplay between Cancer Stem Cells and Oncogenic miRNAs in Breast Cancer Progression and Metastasis. Life (Basel) 2023; 13:1361. [PMID: 37374142 DOI: 10.3390/life13061361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Complex signaling interactions between cancer cells and their microenvironments drive the clonal selection of cancer cells. Opposing forces of antitumor and tumorigenic potential regulate the survival of the fittest clones, while key genetic and epigenetic alterations in healthy cells force them to transform, overcome cell senescence, and proliferate in an uncontrolled manner. Both clinical samples and cancer cell lines provide researchers with an insight into the complex structure and hierarchy of cancer. Intratumor heterogeneity allows for multiple cancer cell subpopulations to simultaneously coexist within tumors. One category of these cancer cell subpopulations is cancer stem cells (CSCs), which possess stem-like characteristics and are not easily detectable. In the case of breast cancer, which is the most prevalent cancer type among females, such subpopulations of cells have been isolated and characterized via specific stem cell markers. These stem-like cells, known as breast cancer stem cells (BCSCs), have been linked to major events during tumorigenesis including invasion, metastasis and patient relapse following conventional therapies. Complex signaling circuitries seem to regulate the stemness and phenotypic plasticity of BCSCs along with their differentiation, evasion of immunosurveillance, invasiveness and metastatic potential. Within these complex circuitries, new key players begin to arise, with one of them being a category of small non-coding RNAs, known as miRNAs. Here, we review the importance of oncogenic miRNAs in the regulation of CSCs during breast cancer formation, promotion and metastasis, in order to highlight their anticipated usage as diagnostic and prognostic tools in the context of patient stratification and precision medicine.
Collapse
Affiliation(s)
- Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Chara Papalouka
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Christina Kontarini
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Konstantinos Karakostis
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
36
|
Mohammed SA, Hetta HF, Zahran AM, Tolba MEM, Attia RAH, Behnsawy HM, Algammal AM, Batiha GES, Mohammed AQ, Ahmad AA. T cell subsets, regulatory T, regulatory B cells and proinflammatory cytokine profile in Schistosoma haematobium associated bladder cancer: First report from Upper Egypt. PLoS Negl Trop Dis 2023; 17:e0011258. [PMID: 37068081 PMCID: PMC10109487 DOI: 10.1371/journal.pntd.0011258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND The function of different populations of the immune system in bladder cancer (BCa) is well established. However, the cohesive role of the immune cell profile of schistosomal BCa at systemic and tissue levels is still lacking, especially in endemic countries. The balance hypothesized between protumorigenic and antitumor molecules determines the prognosis of tumor progression. This study aimed to investigate the frequency of T cell subsets at both blood and tumor tissue, regulatory T(Treg), regulatory B cells (Breg) and proinflammatory cytokines in S. haematobium-related BCa patients in Egypt. METHODOLOGY/PRINCIPAL FINDINGS The frequency of T cell subsets at both blood and tumor tissue, regulatory T(Treg), regulatory B cells (Breg) were studied by flow cytometry and proinflammatory cytokines by ELISA in S. haematobium-related BCa patients in Egypt. The results indicated a significant increase in the activity of T-cell populations, particularly CD3+, CD4+, and regulatory T cells (Tregs), and a decrease in cytotoxic CD8+ T cells in the patient group. An increased proportion of CD19+CD24+CD38+ Bregs and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) was also observed. However, T-cell subpopulations in the tumor microenvironment showed a significant reduction in cancer patients compared to controls. Moreover, positive correlations were observed between the frequencies of Bregs and Tregs, suggesting the promotion of cancer progression besides their relation to the intensity of schistosomal infection. CONCLUSIONS/SIGNIFICANCE Trapped Schistosoma haematobium eggs in bladder tissue might lead to persistent inflammation that contributes to immunomodulation and promotes tumor progression, as evidenced by the increase in peripheral T helper, Tregs, Bregs and serum tumor-promoting cytokines. Considering the role and integrated functions of specific immune responses in BCa could help future diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Sara Abdelal Mohammed
- Department of Parasitology, Faculty of veterinary medicine, Assiut University, Assiut, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut Egypt
| | - Mohammed E M Tolba
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rasha A H Attia
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hosny M Behnsawy
- Department of Urology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, Egypt
| | - Ahmed Qasem Mohammed
- Department of Gastroenterology, Hepatology and infectious diseases, Al-Azhar University, Assuit, Egypt
| | | |
Collapse
|
37
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
38
|
Shortridge MD, Chaubey B, Zhang HJ, Pavelitz T, Vidadala V, Tang C, Olsen GL, Calin GA, Varani G. Drug-Like Small Molecules That Inhibit Expression of the Oncogenic MicroRNA-21. ACS Chem Biol 2023; 18:237-250. [PMID: 36727622 PMCID: PMC10593481 DOI: 10.1021/acschembio.2c00502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report the discovery of drug-like small molecules that bind specifically to the precursor of the oncogenic and pro-inflammatory microRNA-21 with mid-nanomolar affinity. The small molecules target a local structure at the Dicer cleavage site and induce distinctive structural changes in the RNA, which correlate with specific inhibition of miRNA processing. Structurally conservative single nucleotide substitutions eliminate the conformational change induced by the small molecules, which is also not observed in other miRNA precursors. The most potent of these compounds reduces cellular proliferation and miR-21 levels in cancer cell lines without inhibiting kinases or classical receptors, while closely related compounds without this specific binding activity are inactive in cells. These molecules are highly ligand-efficient (MW < 330) and display specific biochemical and cellular activity by suppressing the maturation of miR-21, thereby providing an avenue toward therapeutic development in multiple diseases where miR-21 is abnormally expressed.
Collapse
Affiliation(s)
- Matthew D Shortridge
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bhawna Chaubey
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Huanyu J Zhang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Thomas Pavelitz
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Venkata Vidadala
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Changyan Tang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gregory L Olsen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - George A Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
39
|
Balchin C, Tan AL, Wilson OJ, McKenna J, Stavropoulos-Kalinoglou A. The role of microRNAs in regulating inflammation and exercise-induced adaptations in rheumatoid arthritis. Rheumatol Adv Pract 2023; 7:rkac110. [PMID: 36699549 PMCID: PMC9870706 DOI: 10.1093/rap/rkac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/12/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenously generated single-stranded RNAs that play crucial roles in numerous biological processes, such as cell development, proliferation, differentiation, metabolism and apoptosis. They negatively regulate target gene expression by repressing translation of messenger RNA into a functional protein. Several miRNAs have been implicated in the development and progression of RA. They are involved in inflammatory and immune processes and are associated with susceptibility to RA and disease activity. They are also considered to be potential markers of disease activity or even therapeutic targets. Likewise, several miRNAs are affected acutely by exercise and regulate exercise-related adaptations in the skeletal muscle and cardiovascular system and aerobic fitness. Interestingly, some miRNAs affected by exercise are also important in the context of RA. Investigating these might increase our understanding of the effects of exercise in RA and improve exercise prescription and, potentially, disease management. In this review, we focus on the miRNAs that are associated with both RA and exercise and discuss their roles in (and potential interactions between) RA and exercise-induced adaptations.
Collapse
Affiliation(s)
| | - Ai Lyn Tan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Oliver J Wilson
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Jim McKenna
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Antonios Stavropoulos-Kalinoglou
- Correspondence to: Antonios Stavropoulos-Kalinoglou, Carnegie School of Sport, Leeds Beckett University, Headingley Campus, 225 Fairfax Hall, Churchwood Avenue, Leeds LS6 3QS, UK. E-mail:
| |
Collapse
|
40
|
Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics 2023; 28:132-157. [PMID: 36816749 PMCID: PMC9922830 DOI: 10.1016/j.omto.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) comprises a variety of immune cells, among which T cells exert a prominent axial role in tumor development or anti-tumor responses in patients with breast cancer (BC). High or low levels of anti-inflammatory cytokines, such as transforming growth factor β, in the absence or presence of proinflammatory cytokines, such as interleukin-6 (IL-6), delineate the fate of T cells toward either regulatory T (Treg) or T helper 17 (Th17) cells, respectively. The transitional state of RORγt+Foxp3+ Treg (IL-17-producing Treg) resides in the middle of this reciprocal polarization, which is known as Treg/IL-17-producing Treg/Th17 cell axis. TME secretome, including microRNAs, cytokines, and extracellular vesicles, can significantly affect this axis. Furthermore, immune checkpoint inhibitors may be used to reconstruct immune cells; however, some of these novel therapies may favor tumor development. Therefore, understanding secretory and cell-associated factors involved in their differentiation or polarization and functions may be targeted for BC management. This review discusses microRNAs, cytokines, and extracellular vesicles (as secretome), as well as transcription factors and immune checkpoints (as cell-associated factors), which influence the Treg/IL-17-producing Treg/Th17 cell axis in BC. Furthermore, approved or ongoing clinical trials related to the modulation of this axis in the TME of BC are described to broaden new horizons of promising therapeutic approaches.
Collapse
|
41
|
Machida M, Ambo M, Mishina R, Hada N, Tachibana F, Yamashita M, Konda A, Tsuji K. Integrated Predictors by Propensity Scoring With Tumor Markers and Plasma Levels of microRNA-21-5p, IL-17, and IL-10 Complement Early Detection of Hepatocellular Carcinoma in Patients With Liver Cirrhosis. Technol Cancer Res Treat 2023; 22:15330338231212084. [PMID: 37960842 PMCID: PMC10647953 DOI: 10.1177/15330338231212084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 11/15/2023] Open
Abstract
Objectives: The clinical usefulness of tumor markers alpha-fetoprotein (AFP) and des-gamma carboxyprothrombin (DCP) in the early detection of hepatocellular carcinoma (HCC) in patients with liver cirrhosis (LC), including those with marker decline after antiviral therapy, is limited. MicroRNAs (miRNAs) are expected to complement detection; however, their details remain unknown. Our prospective pilot study aimed to improve the surveillance of HCC high-risk LC patients by propensity scoring with tumor markers and additional predictors. Methods: Tumor markers and plasma levels of cytokines and miRNAs were observationally measured and statistically evaluated with propensity scoring in 85 eligible patients: 43 with current HCC (cHCC) including 8 with early-HCC, 22 with previous HCC cured (pHCC), and 20 with intact LC (iLC). Results: The analysis of the area under the receiver operating characteristic curve (AUC) showed that the best single predictor was AFP (0.794 for cHCC-discrimination and 0.771 for pHCC-discrimination). AFP-DCP integrated with miR-21-5p for cHCC-discrimination was 0.896; with IL-10 for pHCC-discrimination was 0.872, these were significantly better than those of AFP alone, independently (P < .01). The best single predictor for iLC-discrimination was IL-17 level (0.756). IL-17 integrated with AFP-DCP was 0.882, which was significantly better than that of IL-17 alone (P < .01). The positive likelihood ratio (pLR) for cHCC-discrimination by integration of AFP-DCP and miR-21-5p was 32.2. Preliminary validation analysis of early-HCCs compared to conventional AFP and DCP showed the combinations of AFP-DCP and 3 integrated predictors, miR-21-5p for cHCC-discrimination, IL-10 for pHCC-discrimination, and IL-17 for iLC-discrimination, sensitivity, specificity, and pLR, improved from 37.5% to 62.5%, 55.8% to 83.1%, and 0.85 to 3.70, respectively. Conclusion: The predictors of AFP-DCP combined with iR-21-5p, IL-10, and IL-17 by propensity scoring achieved higher discrimination of cHCCs, pHCCs, and iLCs, may be beneficial for the surveillance of early-HCCs, improving prediction of early-HCCs over conventional methods. However, further validation is required.
Collapse
Affiliation(s)
- Maiko Machida
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Mayuko Ambo
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Runa Mishina
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Nanaka Hada
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Fuhito Tachibana
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Miki Yamashita
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Ainari Konda
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Kunihiko Tsuji
- Teine Keijinkai Hospital, Center of Gastroenterology, Sapporo Hokkaido, Japan
| |
Collapse
|
42
|
Fazli J, Fattah K, Moliani A, Valizadeh A, Bazavar M. The expression of miR-181b, CYLD, CBX-7, BCL2, and p53 in osteosarcoma patients and correlation with clinicopathological factors. Chem Biol Drug Des 2023; 101:2-8. [PMID: 36098711 DOI: 10.1111/cbdd.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is a common human malignancy with a high mortality rate worldwide. Recent studies have been focused on understanding the involvement of microRNA (miRNAs) in the pathogenesis of osteosarcoma. Therefore, the present study aimed to measure the expression levels of miR-181a, cylindromatosis (CYLD), chromo box homolog 7 (CBX7), B-cell lymphoma 2 (BCL2), and tumor protein p53 in tumor tissue and adjacent normal tissues in patients with osteosarcoma and its relationship with clinicopathological factors. The expression levels of miR-181a, CYLD, CBX7, BCL2, and p53 were measured in 60 patients with osteosarcoma using quantitative real-time polymerase chain reaction. Finally, we compared the relationship between these gene levels and clinicopathological factors in tumor and healthy tissues. Our results showed that the expression levels of miR-181a, BCL2, and p53 were significantly higher in osteosarcoma tissue in comparison with normal tissues (p < .05). On the contrary, CYLD and CBX7 were downregulated in osteosarcoma tumor tissues compared to adjacent healthy tissues (p < .05). In addition, the expression levels of miR-181a in tumor tissues were strongly correlated with patients' age, tumor size, clinical stage, cancer grade, and lymph node metastasis (p < .05). Our findings highlight new insights into understanding the role of miR-181a in the pathogenesis of osteosarcoma. However, further studies are needed to elucidate miRNA as therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Jafar Fazli
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khashayar Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moliani
- Isfahan Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Bazavar
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Hossein Heydari A, Ghaffari S, Khani Z, Heydari S, Eskandari Z, Esmaeil Heidari M. MiR-21 and Tocilizumab interactions improve COVID-19 myocarditis outcomes. Ther Adv Cardiovasc Dis 2023; 17:17539447231182548. [PMID: 37427793 DOI: 10.1177/17539447231182548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Myocarditis is now one of the most fatal and morbid complications of COVID-19. Many scientists have recently concentrated on this problem. OBJECTIVES This study assessed the effects of Remdesivir (RMS) and Tocilizumab (TCZ) in COVID-19 myocarditis. DESIGN Observational, cohort study. METHODS Patients with COVID-19 myocarditis were enrolled in the study and divided into three groups, TCZ-treated, RMS-treated, and Dexamethasone-treated patients. After 7 days of treatment, patients were reassessed for improvement. RESULTS TCZ significantly improved patients' ejection fraction in 7 days, but it had limited efficacy. RMS improved inflammatory characteristics of the disease, but RMS-treated patients showed exacerbated cardiac function over 7 days, and the mortality rate with RMS was higher than TCZ. TCZ protects the heart by decreasing the miR-21 expression rate. CONCLUSION Using Tocilizumab in early diagnosed COVID-19 myocarditis patients can save their cardiac function after hospitalization and decrease the mortality rate. miR-21 level determines the outcome and responsiveness of COVID-19 myocarditis to treatment.
Collapse
Affiliation(s)
- Amir Hossein Heydari
- School of Medicine, Zanjan University of Medical Science, Karmandan District, Mahdavi, Zanjan, Zanjan Province, Iran
| | - Saeid Ghaffari
- School of Medicine, Zanjan University of Medical Science, Zanjan, Zanjan Province, Iran
| | - Zahra Khani
- School of Medicine, Zanjan University of Medical Science, Zanjan, Zanjan Province, Iran
| | - Sophia Heydari
- Shahid Beheshti Hospital, Zanjan University of Medical Science, Zanjan, Zanjan Province, Iran
| | - Zakaria Eskandari
- Shahid Beheshti Hospital, Zanjan University of Medical Science, Zanjan, Zanjan Province, Iran
| | - Mohammad Esmaeil Heidari
- Department of Electrical Engineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
44
|
Francavilla A, Ferrero G, Pardini B, Tarallo S, Zanatto L, Caviglia GP, Sieri S, Grioni S, Francescato G, Stalla F, Guiotto C, Crocella L, Astegiano M, Bruno M, Calvo PL, Vineis P, Ribaldone DG, Naccarati A. Gluten-free diet affects fecal small non-coding RNA profiles and microbiome composition in celiac disease supporting a host-gut microbiota crosstalk. Gut Microbes 2023; 15:2172955. [PMID: 36751856 PMCID: PMC9928459 DOI: 10.1080/19490976.2023.2172955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Current treatment for celiac disease (CD) is adhering to a gluten-free diet (GFD), although its long-term molecular effects are still undescribed. New molecular features detectable in stool may improve and facilitate noninvasive clinical management of CD. For this purpose, fecal small non-coding RNAs (sncRNAs) and gut microbiome profiles were concomitantly explored in CD subjects in relation to strict (or not) GFD adherence over time. In this observational study, we performed small RNA and shotgun metagenomic sequencing in stool from 63 treated CD (tCD) and 3 untreated subjects as well as 66 sex- and age-matched healthy controls. tCD included 51 individuals on strict GFD and with negative transglutaminase (TG) serology (tCD-TG-) and 12 symptomatic with not strict/short-time of GFD adherence and positive TG serology (tCD-TG+). Samples from additional 40 healthy adult individuals and a cohort of 19 untreated pediatric CD subjects and 19 sex/age matched controls were analyzed to further test the outcomes. Several miRNA and microbial profiles were altered in tCD subjects (adj. p < .05). Findings were validated in the external group of adult controls. In tCD-TG-, GFD duration correlated with five miRNA levels (p < .05): for miR-4533-3p and miR-2681-3p, the longer the diet adherence, the less the expression differed from controls. tCD-TG+ and untreated pediatric CD patients showed a similar miRNA dysregulation. Immune-response, trans-membrane transport and cell death pathways were enriched in targets of identified miRNAs. Bifidobacterium longum, Ruminococcus bicirculans, and Haemophilus parainfluenzae abundances shifted (adj. p < .05) with a progressive reduction of denitrification pathways with GFD length. Integrative analysis highlighted 121 miRNA-bacterial relationships (adj. p < .05). Specific molecular patterns in stool characterize CD subjects, reflecting either the long-term GFD effects or the gut inflammatory status, in case of a not strict/short-time adherence. Our findings suggest novel host-microbial interplays and could help the discovery of biomarkers for GFD monitoring over time.
Collapse
Affiliation(s)
- Antonio Francavilla
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy
| | - Giulio Ferrero
- Department of Computer Sciences, University of Torino, Torino, Italy
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Barbara Pardini
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy
| | - Sonia Tarallo
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy
| | - Laura Zanatto
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy
- Institut d’Investigació Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gian Paolo Caviglia
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Giulia Francescato
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Francesco Stalla
- Gastroenterology and Digestive Endoscopy Unit, “Città della Salute e della Scienza” Hospital, Torino, Italy
| | | | - Lucia Crocella
- Gastroenterology, Hospital Mauriziano Umberto I, Torino, Italy
| | - Marco Astegiano
- Gastroenterology and Digestive Endoscopy Unit, “Città della Salute e della Scienza” Hospital, Torino, Italy
| | - Mauro Bruno
- Gastroenterology and Digestive Endoscopy Unit, “Città della Salute e della Scienza” Hospital, Torino, Italy
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Department of Pediatrics, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di, Torino, Italy
| | - Paolo Vineis
- School of Public Health, Imperial College London, London, UK
| | | | - Alessio Naccarati
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Torino, Italy
| |
Collapse
|
45
|
Benbaibeche H, Hichami A, Oudjit B, Haffaf EM, Kacimi G, Koceïr EA, Khan NA. Circulating mir-21 and mir-146a are associated with increased cytokines and CD36 in Algerian obese male participants. Arch Physiol Biochem 2022; 128:1461-1466. [PMID: 32536220 DOI: 10.1080/13813455.2020.1775655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The microRNAs have come up as crucial mediators of energy balance and metabolic control. CD36 is potential biomarker of obesity and metabolic syndrome. This study investigates the concentration of miR-146a and miR-21 and CD 36 in blood samples of obese and healthy young participants. We assessed the association of mir-146a and mir-21 with inflammatory states in Algerian young participants. METHODS Our study included male obese, without co-morbidities (n = 29), and healthy participants (n = 13). miRNA and CD36 expression was measured by real-time RT-PCR, respectively, in serum and blood. RESULTS miR-146a and miR-21 concentrations were significantly decreased; however, CD36 expression was increased in obese subjects. Interestingly, miR-146a and miR-21 concentrations were negatively correlated to IL-6, TNF-α, and CD36 in obese participants. CONCLUSION We demonstrate that the downregulation of miR-146a and miR-21 was associated with upregulation of inflammatory state and increased CD36 expression in obese participants.
Collapse
Affiliation(s)
- Hassiba Benbaibeche
- Département des Sciences de la Nature Et de la Vie, Faculté des Sciences, Université d'Alger, Algérie
- Bioenergetics and Intermediary Metabolism Laboratory, Department of Biological Sciences and Physiology, Faculty of Biologic Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, UMR 1231 INSERM/Université de Bourgogne/Agro-Sup, Dijon, France
| | | | | | | | - Elhadj Ahmed Koceïr
- Bioenergetics and Intermediary Metabolism Laboratory, Department of Biological Sciences and Physiology, Faculty of Biologic Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR 1231 INSERM/Université de Bourgogne/Agro-Sup, Dijon, France
| |
Collapse
|
46
|
Unida V, Vindigni G, Raniolo S, Stolfi C, Desideri A, Biocca S. Folate-Functionalization Enhances Cytotoxicity of Multivalent DNA Nanocages on Triple-Negative Breast Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14122610. [PMID: 36559104 PMCID: PMC9786333 DOI: 10.3390/pharmaceutics14122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
DNA is an excellent programmable polymer for the generation of self-assembled multivalent nanostructures useful for biomedical applications. Herein, we developed (i) folate-functionalized nanocages (Fol-NC), very efficiently internalized by tumor cells overexpressing the α isoform of the folate receptor; (ii) AS1411-linked nanocages (Apt-NC), internalized through nucleolin, a protein overexpressed in the cell surface of many types of cancers; and (iii) nanostructures that harbor both folate and AS1411 aptamer functionalization (Fol-Apt-NC). We analyzed the specific miRNA silencing activity of all types of nanostructures harboring miRNA sequestering sequences complementary to miR-21 and the cytotoxic effect when loaded with doxorubicin in a drug-resistant triple-negative breast cancer cell line. We demonstrate that the presence of folate as a targeting ligand increases the efficiency in miR-21 silencing compared to nanocages functionalized with AS1411. Double-functionalized nanocages (Fol-Apt-NC), loaded with doxorubicin, resulted in an increase of over 51% of the cytotoxic effect on MDA-MB-231 cells compared to free doxorubicin, demonstrating, besides selectivity, the ability of nanocages to overcome Dox chemoresistance. The higher efficiency of the folate-functionalized nanocages is due to the way of entrance, which induces more than four times higher intracellular stability and indicates that the folate-mediated route of cell entry is more efficient than the nucleolin-mediated one when both folate and AS1411 modifications are present.
Collapse
Affiliation(s)
- Valeria Unida
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Vindigni
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Sofia Raniolo
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandro Desideri
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Silvia Biocca
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-72-596-418
| |
Collapse
|
47
|
Roles of RNA-binding proteins in immune diseases and cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35351611 DOI: 10.1016/j.semcancer.2022.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
Genetic information that is transcribed from DNA to mRNA, and then translated from mRNA to protein, is regulated by complex and sophisticated post-transcriptional mechanisms. Recently, it has become clear that mRNA degradation not only acts to remove unnecessary mRNA, but is also closely associated with the regulation of translation initiation, and is essential for maintaining cellular homeostasis. Various RNA-binding proteins (RBPs) have been reported to play central roles in the mechanisms of mRNA stability and translation initiation through various signal transduction pathways, and to modulate gene expression faster than the transcription process via post-transcriptional modifications in response to intracellular and extracellular stimuli, without de novo protein synthesis. On the other hand, inflammation is necessary for the elimination of pathogens associated with infection, and is tightly controlled to avoid the overexpression of inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). It is increasingly becoming clear that RBPs play important roles in the post-transcriptional regulation of these immune responses. Furthermore, it has been shown that the aberrant regulation of RBPs leads to chronic inflammation and autoimmune diseases. Although it has been recognized since the time of Rudolf Virchow in the 19th century that cancer-associated inflammation contributes to tumor onset and progression, involvement of the disruption of the balance between anti-tumor immunity via the immune surveillance system and pro-tumor immunity by cancer-associated inflammation in the malignant transformation of cancer remains elusive. Recently, the dysregulated expression and activation of representative RBPs involved in regulation of the production of pro-inflammatory cytokines have been shown to be involved in tumor progression. In this review, we summarize the recent progress in our understanding of the functional roles of these RBPs in several types of immune responses, and the involvement of RBP dysregulation in the pathogenesis of immune diseases and cancer, and discuss possible therapeutic strategies against cancer by targeting RBPs, coupled with immunotherapy.
Collapse
|
48
|
Nguyen TH, Dao HH, Duong CM, Nguyen XH, Hoang DH, Do XH, Truong TQ, Nguyen TD, Nguyen LT, Than UTT. Cytokine-primed umbilical cord mesenchymal stem cells enhanced therapeutic effects of extracellular vesicles on osteoarthritic chondrocytes. Front Immunol 2022; 13:1041592. [PMID: 36389838 PMCID: PMC9647019 DOI: 10.3389/fimmu.2022.1041592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, extracellular vesicles (EVs) secreted by mesenchymal stem cells (MSCs) have emerged as a potential cell-free therapy against osteoarthritis (OA). Thus, we investigated the therapeutic effects of EVs released by cytokine-primed umbilical cord-derived MSCs (UCMSCs) on osteoarthritic chondrocyte physiology. Priming UCMSCs individually with transforming growth factor beta (TGFβ), interferon alpha (IFNα), or tumor necrosis factor alpha (TNFα) significantly reduced the sorting of miR-181b-3p but not miR-320a-3p; two negative regulators of chondrocyte regeneration, into EVs. However, the EV treatment did not show any significant effect on chondrocyte proliferation. Meanwhile, EVs from both non-priming and cytokine-primed UCMSCs induced migration at later time points of measurement. Moreover, TGFβ-primed UCMSCs secreted EVs that could upregulate the expression of chondrogenesis markers (COL2 and ACAN) and downregulate fibrotic markers (COL1 and RUNX2) in chondrocytes. Hence, priming UCMSCs with cytokines can deliver selective therapeutic effects of EV treatment in OA and chondrocyte-related disorders.
Collapse
Affiliation(s)
- Thu Huyen Nguyen
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
| | - Huy Hoang Dao
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Chau Minh Duong
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
- Department of Biology, Clark University, Worcester, MA, United States
| | - Xuan-Hung Nguyen
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Diem Huong Hoang
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
| | - Xuan-Hai Do
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, Hanoi, Vietnam
| | - Trung Quang Truong
- Hanoi Medical University, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Tu Dac Nguyen
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
| | - Liem Thanh Nguyen
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Uyen Thi Trang Than
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies, Vinmec Healthcare System, Hanoi, Vietnam
- *Correspondence: Uyen Thi Trang Than,
| |
Collapse
|
49
|
Jakwerth CA, Kitzberger H, Pogorelov D, Müller A, Blank S, Schmidt-Weber CB, Zissler UM. Role of microRNAs in type 2 diseases and allergen-specific immunotherapy. FRONTIERS IN ALLERGY 2022; 3:993937. [PMID: 36172292 PMCID: PMC9512106 DOI: 10.3389/falgy.2022.993937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs (miRs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases as well as their potential as biomarkers in allergen-specific treatment options. Their function as post-transcriptional regulators, controlling various cellular processes, is of high importance since any single miR can target multiple mRNAs, often within the same signalling pathway. MiRs can alter dysregulated expression of certain cellular responses and contribute to or cause, but in some cases prevent or repress, the development of various diseases. In this review article, we describe current research on the role of specific miRs in regulating immune responses in epithelial cells and specialized immune cells in response to various stimuli, in allergic diseases, and regulation in the therapeutic approach of allergen-specific immunotherapy (AIT). Despite the fact that AIT has been used successfully as a causative treatment option since more than a century, very little is known about the mechanisms of regulation and its connections with microRNAs. In order to fill this gap, this review aims to provide an overview of the current knowledge.
Collapse
|
50
|
Shortridge MD, Olsen GL, Yang W, Walker MJ, Varani G. A Slow Dynamic RNA Switch Regulates Processing of microRNA-21. J Mol Biol 2022; 434:167694. [PMID: 35752213 PMCID: PMC10593484 DOI: 10.1016/j.jmb.2022.167694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
The microRNAs are non-coding RNAs which post-transcriptionally regulate the expression of many eukaryotic genes, and whose dysregulation is a driver of human disease. Here we report the discovery of a very slow (0.1 s-1) conformational rearrangement at the Dicer cleavage site of pre-miR-21, which regulates the relative concentration of readily- and inefficiently-processed RNA structural states. We show that this dynamic switch is affected by single nucleotide mutations and can be biased by small molecule and peptide ligands, which can direct the microRNA to occupy the inefficiently processed state and reduce processing efficiency. This result reveals a new mechanism of RNA regulation and suggests a chemical approach to suppressing or activating pathogenic microRNAs by selective stabilization of their unprocessed or processed states.
Collapse
Affiliation(s)
| | - Greg L Olsen
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province 518036, China
| | - Matthew J Walker
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA; Neoleukin Therapeutics, 188 East Blaine St, Suite 450, Seattle, WA 98102, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA.
| |
Collapse
|