1
|
Ma J, Wang J, Wan Y, Wang S, Jiang C. Probiotic-fermented traditional Chinese herbal medicine, a promising approach to maintaining the intestinal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118815. [PMID: 39270882 DOI: 10.1016/j.jep.2024.118815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicines (TCHM) have been extensively used in China and other East and Southeast Asian countries. Due to the low content of bioactive components in most TCHM and the potential toxicity of some herbal ingredients to humans, researchers have turned to probiotic fermentation to enhance the efficacy, mitigate the toxic or side effects and improve the taste of TCHM. Both probiotics and certain TCHM benefit the intestinal microbiota and intestinal barrier of human body, demonstrating synergistic effects on in intestinal microecology. AIM OF THE STUDY This review aims to provide an overview of the development of fermentation technology, commonly used probiotic strains for TCHM fermentation, the advantages of probiotic fermentation and the challenges and limitations of probiotic-fermented TCHM. Additionally, it summarises and discusses the impact of probiotic-fermented TCHM on the intestinal barrier and microbiota, as well as the possible mechanisms involved. MATERIALS AND METHODS An extensive search of primary literature was conducted using various databases including PubMed, Google Scholar, Web of Science, Elsevier, SpringerLink, ScienceDirect, CNKI, and others. All the plant names have been checked with World Flora Online (http://www.worldfloraonline.org) on August 7, 2024. RESULTS The literature mentioned above was analyzed and summarized comprehensively. Probiotic-fermented TCHM can improve the intestinal barrier, modulate gut microbiota, and maintain homeostasis of the intestinal microecology. Modulating intestinal microecology by probiotic-fermented TCHM may be a crucial mechanism for its beneficial effects. CONCLUSIONS This article establishes a theoretical basis for further research on the relationship between probiotic-fermented TCHM and the intestinal microecology, with the hope of inspiring innovative concepts for the development of TCHM and exploring the potential of probiotic-fermented TCHM as a promising strategy for maintaining intestinal microecological balance.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China.
| | - Junrui Wang
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, PR China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, 611130, PR China
| | - Shihua Wang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| | - Changqing Jiang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| |
Collapse
|
2
|
Li Z, Zhou D, Wu T, Lee H, Zheng F, Dai Y, Yue H. A novel glycopeptide from mountain-cultivated ginseng residue protects type 2 diabetic symptoms-induced heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118723. [PMID: 39181285 DOI: 10.1016/j.jep.2024.118723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mountain-cultivated Panax ginseng C.A.Mey. (MCG) with high market price and various properties was valuable special local product in Northeast of Asia. MCG has been historically used to mitigate heart failure (HF) for thousand years, HF is a clinical manifestation of deficiency of "heart-qi" in traditional Chinese medicine. However, there was little report focus on the activities of extracted residue of MCG. AIM OF THE STUDY A novel glycopeptide (APMCG-1) was isolated from step ethanol precipitations of alkaline protease-assisted extract from MCG residue. MATERIALS AND METHODS The molecular weight and subunit structure of APMCG-1 were determined by FT-IR, HPLC and GPC technologies, as well as the H9c2 cells, Tg (kdrl:EGFP) zebrafish were performed to evaluated the protective effect of APMCG-1. RESULTS APMCG-1 was identified as a glycopeptide containing seven monosaccharides and seven amino acids via O-lined bonds. Further, in vitro, APMCG-1 significantly decreased reactive oxygen species production and lactate dehydrogenase contents in palmitic acid (PA)-induced H9c2 cells. APMCG-1 also attenuated endoplasmic reticulum stress and mitochondria-mediated apoptosis in H9c2 cells via the PI3K/AKT signaling pathway. More importantly, APMCG-1 reduced the blood glucose, lipid contents, the levels of heart injury, oxidative stress and inflammation of 5 days post fertilization Tg (kdrl:EGFP) zebrafish with type 2 diabetic symptoms in vivo. CONCLUSIONS APMCG-1 protects PA-induced H9c2 cells while reducing cardiac dysfunction in zebrafish with type 2 diabetic symptoms. The present study provides a new insight into the development of natural glycopeptides as heart-related drug therapies.
Collapse
Affiliation(s)
- Zhuoran Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Dongyue Zhou
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tongchuan Wu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Hyogeun Lee
- Jeju National University, Jeju 63243, Republic of Korea.
| | - Fei Zheng
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yulin Dai
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
3
|
Luo X, Dong M, Liu J, Guo N, Li J, Shi Y, Yang Y. Fermentation: improvement of pharmacological effects and applications of botanical drugs. Front Pharmacol 2024; 15:1430238. [PMID: 39253373 PMCID: PMC11381286 DOI: 10.3389/fphar.2024.1430238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Fermentation is an important concoction technique for botanical drugs. Fermentation transforms and enhances the active ingredients of botanical drugs through specific microbiological processes, ultimately affecting their pharmacological effects. This review explores the use of fermented botanical drugs in areas such as anti-tumor, hypolipidemic, antioxidant, antimicrobial, cosmetology, and intestinal flora regulation. It elucidates the potential pharmacological mechanisms and discusses the benefits of fermentation technology for botanical drugs, including reducing toxic side effects, enhancing drug efficacy, and creating new active ingredients. This article also discussesdelves into the common strains and factors influencing the fermentation process, which are crucial for the successful transformation and enhancement of these drugs. Taken together, this study aimed to provide a reference point for further research and wider applications of botanical drug fermentation technology.
Collapse
Affiliation(s)
- Xinxin Luo
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mosi Dong
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Juntong Liu
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Naifei Guo
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jing Li
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yufeng Yang
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
4
|
Yao QX, Li ZY, Kang HL, He X, Kang M. Effect of acacetin on inhibition of apoptosis in Helicobacter pylori-infected gastric epithelial cell line. World J Gastrointest Oncol 2024; 16:3624-3634. [PMID: 39171164 PMCID: PMC11334024 DOI: 10.4251/wjgo.v16.i8.3624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection can cause extensive apoptosis of gastric epithelial cells, serving as a critical catalyst in the progression from chronic gastritis, gastrointestinal metaplasia, and atypical gastric hyperplasia to gastric carcinoma. Prompt eradication of H. pylori is paramount for ameliorating the pathophysiological conditions associated with chronic inflammation of the gastric mucosa and the primary prevention of gastric cancer. Acacetin, which has multifaceted pharmacological activities such as anti-cancer, anti-inflammatory, and antioxidative properties, has been extensively investigated across various domains. Nevertheless, the impact and underlying mechanisms of action of acacetin on H. pylori-infected gastric mucosal epithelial cells remain unclear. AIM To explore the defensive effects of acacetin on apoptosis in H. pylori-infected GES-1 cells and to investigate the underlying mechanisms. METHODS GES-1 cells were treated with H. pylori and acacetin in vitro. Cell viability was assessed using the CCK-8 assay, cell mortality rate via lactate dehydrogenase assay, alterations in cell migration and healing capacities through the wound healing assay, rates of apoptosis via flow cytometry and TUNEL staining, and expression levels of apoptosis-associated proteins through western blot analysis. RESULTS H. pylori infection led to decreased GES-1 cell viability, increased cell mortality, suppressed cell migration, increased rate of apoptosis, increased expressions of Bax and cle-caspase3, and decreased Bcl-2 expression. Conversely, acacetin treatment enhanced cell viability, mitigated apoptosis induced by H. pylori infection, and modulated the expression of apoptosis-regulatory proteins by upregulating Bcl-2 and downregulating Bax and cleaved caspase-3. CONCLUSION Acacetin significantly improved GES-1 cell viability and inhibited apoptosis in H. pylori-infected GES-1 cells, thereby exerting a protective effect on gastric mucosal epithelial cells.
Collapse
Affiliation(s)
- Qi-Xi Yao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Zi-Yu Li
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Hou-Le Kang
- Department of Emergency, Luzhou People’s Hospital, Luzhou 646000, Sichuan Province, China
| | - Xin He
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Min Kang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
5
|
Qiao K, Song Z, Liang L, Zhou X, Feng X, Xu Y, Yang R, Sun B, Zhang Y. Exploring the Underlying Mechanisms of Preventive Treatment Related to Dietary Factors for Gastric Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17782-17801. [PMID: 39102359 DOI: 10.1021/acs.jafc.4c05361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Gastric diseases have emerged as one of the main chronic diseases in humans, leading to considerable health, social, and economic burdens. As a result, using food or "food and medicinal homologous substances" has become an effective strategy to prevent gastric diseases. Diet may play a crucial role in the prevention and mitigation of gastric diseases, particularly long-term and regular intake of specific dietary components that have a protective effect on the stomach. These key components, extracted from food, include polysaccharides, alkaloids, terpenoids, polyphenols, peptides, probiotics, etc. The related mechanisms involve regulating gastric acid secretion, protecting gastric mucosa, increasing the release of gastric defense factors, decreasing the level of inflammatory factors, inhibiting Helicobacter pylori infection, producing antioxidant effects or reducing oxidative damage, preventing gastric oxidative stress by inhibiting lipid peroxides, activating Nrf2 signaling pathway, and inhibiting NF-κB, TLR4, and NOS/NO signaling pathways.
Collapse
Affiliation(s)
- Kaina Qiao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Zichong Song
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Zhou
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100048, China
| | - Youqiang Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Rui Yang
- Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Guo F, Li C, Dou J, Liang J, Chen Z, Xu Z, Wang T. Research progress on pharmacological properties and application of probiotics in the fermentation of Scutellaria baicalensis Georgi. Front Nutr 2024; 11:1407182. [PMID: 38903628 PMCID: PMC11187263 DOI: 10.3389/fnut.2024.1407182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Scutellaria baicalensis Georgi is a medicinal herb with a rich history of use in traditional Chinese medicine. This review concentrates on the chemical constituents of Scutellaria baicalensis Georgi, with a particular emphasis on flavonoids such as baicalin, baicalein, and wogonin. Additionally, it examines the effects of probiotic fermentation on the plant's chemical profile and pharmacological actions. Evidence suggests that probiotic fermentation markedly modifies the bioactive components of Scutellaria baicalensis Georgi, thereby augmenting its medicinal potency. The paper delves into the mechanisms by which the primary active constituents of Scutellaria baicalensis Georgi are altered during fermentation and how these changes influence its pharmacological properties. This review aims to lay a theoretical groundwork for the clinical utilization of Scutellaria baicalensis Georgi and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Chunhai Li
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
7
|
Yao ZW, Qin XL, Li QL, Pan LH, Hu WF, Ling SP, Liu H, Zhu H. Fe(III)/peroxymonosulfate oxidation system for the degradation of rhein, a toxic component abundance in rhubarb residue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116474. [PMID: 38772144 DOI: 10.1016/j.ecoenv.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Rhubarb is widely used in health care, but causing a great amount of rhein-containing herbal residue. Rhein with several toxicities might pollute environment, damage ecology and even hazard human health if left untreated. In this study, the degradation effects of bisulfite- (BS) and peroxymonosulfate- (PMS) based oxidation systems on rhein in rhubarb residue were compared and investigated. The effects of BS and PMS with two valence states of ferric ion (Fe) on the degradation of rhein in rhubarb residue were optimized for the selection of optimal oxidation system. The influences of reaction temperature, reaction time and initial pH on the removal of rhein under the optimal oxidation system were evaluated. The chemical profiles of rhubarb residue with and without oxidation process were compared by UPLC-QTOF-MS/MS, and the degradation effects were investigated by PLS-DA and S plot/OPLS-DA analysis. The results manifested that PMS showed relative higher efficiency than BS on the degradation of rhein. Moreover, Fe(III) promoted the degradation effect of PMS, demonstrated that Fe(III)/PMS is the optimal oxidation system to degrade rhein in rhubarb residue. Further studies indicated that the degradation of rhein by the Fe(III)/PMS oxidation system was accelerated with the prolong of reaction time and the elevation of reaction temperature, and also affected by the initial pH. More importantly, Fe(III)/PMS oxidation system could degrade rhein in rhubarb residue completely under the optimal conditions. In conclusion, Fe(III)/PMS oxidation system is a feasible method to treat rhein in rhubarb residue.
Collapse
Affiliation(s)
- Zhong-Wei Yao
- Drug Clinical Trial Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China; Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Xiang-Ling Qin
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Qi-Long Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Ling-Hui Pan
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Wei-Feng Hu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Su-Ping Ling
- Drug Clinical Trial Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China.
| | - Hui Liu
- Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| | - He Zhu
- Drug Clinical Trial Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China.
| |
Collapse
|
8
|
Li Z, Ma N, Gong X, Shi W, Meng X, Yan J, Zhao Z, Li J. Effects of herbal dregs supplementation of Salvia miltiorrhiza and Isatidis Radix residues improved production performance and gut microbiota abundance in late-phase laying hens. Front Vet Sci 2024; 11:1381226. [PMID: 38764854 PMCID: PMC11100463 DOI: 10.3389/fvets.2024.1381226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/26/2024] [Indexed: 05/21/2024] Open
Abstract
The present study was designed to evaluate the effect of a mixture of Chinese medicinal residues (CMRs) consisting of Salvia miltiorrhiza residues (SMR) and Isatidis Radix residues (IRR) on productive performance, egg quality, serum lipid and hormone levels, liver and blood antioxidant capacity, oviduct inflammation levels, and gut microbiota in the late-laying stage. A total of 288 fifty-four-week-old BaShang long-tailed hens were divided into four groups. The feed trial period was 8 weeks. The control group was fed the basic diet as a CCMR group, supplemented with 3, 4, and 6% for the experimental groups LCMR, MCMR, and HCMR. The egg production rate of the MCMR group was 8.1% higher than that of the CCMR group (p < 0.05). Serum triglyceride (TG) levels of hens of the CMR-supplemented group were significantly decreased than those of the CCMR group (p < 0.05). The group supplemented with different levels of CMR had significantly higher serum HDL-C levels compared with the control group (p < 0.05). Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were remarkably increased for the LCMR and MCMR groups and significantly decreased for the HCMR group compared to CCMR (p < 0.05). Serum and liver glutathione peroxidase (GSH-PX) activities were significantly increased, and malondialdehyde (MDA) levels were significantly decreased in the MCMR group compared to the CCMR group (p < 0.05). The expression levels of tubal inflammatory factor markers (IL-4, IL-1β, TNF-α) in the MCMR and HCMR groups were consistent with the pathological findings of the sections. As for cecal microbiota, supplementation with CMR affected the alpha diversity of the cecum microbiome at the genus level. The Shannon index was significantly higher in the MCMR group than in the CCMR and HCMR groups (p < 0.05). Supplementation with different levels of CMR mainly regulated the ratio of intestinal Firmicutes to Bacteroidetes and the abundance of phyla such as Proteobacteria. In addition, CMR supplementation at different levels in the diet enriched lipid-metabolizing bacteria, such as Bacteroides and Ruminococcus_gnavus_group. Furthermore, according to linear discriminant analysis (LDA) effect size (LEfSe) analysis, the MCMR group showed an increase in the number of short-chain fatty acid-producing bacteria Romboutsia and fiber-degrading specialized bacteria Monoglobus. Therefore, supplementation of appropriate amounts of CMR to the diet of laying hens enhanced reproductive hormone levels, hepatic antioxidant capacity, and lipid metabolism, alleviated the levels of oviductal inflammatory factors, and modulated the abundance structure of bacterial flora to improve the late-laying performance and egg quality. The results of the current study showed that CMR is a beneficial feed supplement for chickens when added in moderation.
Collapse
Affiliation(s)
- Zhaonian Li
- Institute of Animal Husbandry and Veterinary Medicine of Hebei Province, Baoding, China
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ning Ma
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xincheng Gong
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xianhua Meng
- Hebei General Station of Animal Husbandry, Shijiazhuang, China
| | - Jingjiao Yan
- Animal Husbandry Technology Promotion Institution of Zhangjiakou, Zhangjiakou, China
| | - Zhiqiang Zhao
- Institute of Animal Husbandry and Veterinary Medicine of Hebei Province, Baoding, China
| | - Jiefeng Li
- Institute of Animal Husbandry and Veterinary Medicine of Hebei Province, Baoding, China
| |
Collapse
|
9
|
Niu K, Wang H, Kim SK, Wassie T, Wu X. Stepwise co-fermented traditional Chinese medicine byproducts improve antioxidant and anti-inflammatory effects in a piglet model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1166-1177. [PMID: 37740928 DOI: 10.1002/jsfa.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 09/23/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Lianhua Qingwen capsule is a traditional Chinese medicine (TCM) formula having antiviral and anti-inflammatory activities. During capsule production, a large amount of byproducts will be yielded and disposed of as waste by burying. Resourceful utilization of these kinds of TCM byproducts as feed additives through stage-based co-fermentation using enzyme and probiotics could reduce environmental stress and resource shortage. The in vitro characterization and the supplementary effects of fermented TCM byproducts (FTCM) for weaned piglets (initial body weight: 7.23 ± 0.33 kg; dose: basal diet + 300 mg kg-1 FTCM) were investigated. RESULTS Higher reducing sugar content, total flavonoid content, flavonoid compounds (e.g. tectoridin, tricetin, flavone, apigenin, naringenin) and total antioxidant activity were determined in the FTCM compared to spontaneously fermented and unfermented materials. Supplementation of the FTCM to piglets did not significantly affect the feed intake, body weight gain and feed/gain ratio, but significantly decreased a proinflammatory cytokine, IL-8, and increased intestinal total antioxidant activity (TAC) and superoxide dismutase (SOD) activity. Moreover, FTCM supplementation increased α-diversity of the colonic microbiota accompanied with increased abundance of Prevotella genus and Treponema berlinense species. Correlation analysis indicates that T. berlinense is responsible for the decreased IL-8 level and enhanced intestinal TAC and SOD activities which might be mediated by a homoserine lactone molecule (3-oxo-C14). CONCLUSION Overall, the stepwise co-fermentation enriched bioactive compounds within the TCM byproducts and their dietary supplementation did not generate any side effect on growth performance but displayed beneficial effects on enrichment of potential probiotic T. berlinense and relevant functions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Haoyang Wang
- Tianjin Institute of Industrial Biotechnology, National Technology Innovation Center of Synthetic Biology, Chinese Academy of Sciences, Tianjin, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Teketay Wassie
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xin Wu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- Tianjin Institute of Industrial Biotechnology, National Technology Innovation Center of Synthetic Biology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
10
|
Liu Y, Zhang Y, Wang M, Wang L, Zheng W, Zeng Q, Wang K. Comparison of the basic processes of aerobic, anaerobic, and aerobic-anaerobic coupling composting of Chinese medicinal herbal residues. BIORESOURCE TECHNOLOGY 2023; 379:128996. [PMID: 37011845 DOI: 10.1016/j.biortech.2023.128996] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Chinese medicinal herbal residues (CMHRs) are waste generated after extracting Chinese medicinal materials, and they can be used as a renewable bioresource. This study aimed to evaluate the potential of aerobic composting (AC), anaerobic digestion (AD), and aerobic-anaerobic coupling composting (AACC) for the treatment of CMHRs. CMHRs were mixed with sheep manure and biochar, and composted separately under AC, AD, and AACC conditions for 42 days. Physicochemical indices, enzyme activities, and bacterial communities were monitored during composting. Results showed that AACC- and AC-treated CMHRs were well-rotted, with the latter exhibiting the lowest C/N ratio and maximal germination index (GI) values. Higher phosphatase and peroxidase activities were detected during the AACC and AC treatments. Better humification was observed under AACC based on the higher catalase activities and lower E4/E6. AC treatment was effective in reducing compost toxicity. This study provides new insights into biomass resource utilisation.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Minghuan Wang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510130, China
| | - Lisheng Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Wanting Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Qiannuo Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Kui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
11
|
Zhang X, Miao Q, Pan C, Yin J, Wang L, Qu L, Yin Y, Wei Y. Research advances in probiotic fermentation of Chinese herbal medicines. IMETA 2023; 2:e93. [PMID: 38868438 PMCID: PMC10989925 DOI: 10.1002/imt2.93] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
Chinese herbal medicines (CHM) have been used to cure diseases for thousands of years. However, the bioactive ingredients of CHM are complex, and some CHM natural products cannot be directly absorbed by humans and animals. Moreover, the contents of most bioactive ingredients in CHM are low, and some natural products are toxic to humans and animals. Fermentation of CHM could enhance CHM bioactivities and decrease the potential toxicities. The compositions and functions of the microorganisms play essential roles in CHM fermentation, which can affect the fermentation metabolites and pharmaceutical activities of the final fermentation products. During CHM fermentation, probiotics not only increase the contents of bioactive natural products, but also are beneficial for the host gut microbiota and immune system. This review summarizes the advantages of fermentation of CHM using probiotics, fermentation techniques, probiotic strains, and future development for CHM fermentation. Cutting-edge microbiome and synthetic biology tools would harness microbial cell factories to produce large amounts of bioactive natural products derived from CHM with low-cost, which would help speed up modern CHM biomanufacturing.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Qin Miao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Yulong Yin
- Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources IndustrializationNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
12
|
Luo J, Yang R, Ma F, Jiang W, Han C. Recycling utilization of Chinese medicine herbal residues resources: systematic evaluation on industrializable treatment modes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32153-32167. [PMID: 36719578 DOI: 10.1007/s11356-023-25614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Traditional Chinese medicine (TCM) is an indispensable part of the world health and medical system and plays an important role in treatment, prevention, and health care. These TCM produce a large amount of Chinese medicine herbal residues (CHMRs) during the application process, most of which are the residues after the decoction or extraction of botanical medicines. These CMHRs contain a large number of unused components, which can be used in medical, breeding, planting, materials, and other industries. Considering the practical application requirements, this paper mainly introduces the low-cost treatment methods of CHMRs, including the extraction of active ingredients, cultivation of edible fungi, and manufacture of feed. These methods not only have low upfront investment, but also have some income in the future. Furthermore, other methods are briefly introduced. In conclusion, this paper can provide a reference for people who need to deal with CMHRs and contribute to the sustainable development of TCM.
Collapse
Affiliation(s)
- Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Feifei Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China.
| |
Collapse
|
13
|
Amalia R, Panenggak NSR, Doohan D, Rezkitha YAA, Waskito LA, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. A comprehensive evaluation of an animal model for Helicobacter pylori-associated stomach cancer: Fact and controversy. Helicobacter 2023; 28:e12943. [PMID: 36627714 DOI: 10.1111/hel.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
Even though Helicobacter pylori infection was the most causative factor of gastric cancer, numerous in vivo studies failed to induce gastric cancer using H. pylori infection only. The utilization of established animal studies in cancer research is crucial as they aim to investigate the coincidental association between suspected oncogenes and pathogenesis as well as generate models for the development and testing of potential treatments. The methods to establish gastric cancer using infected animal models remain limited, diverse in methods, and showed different results. This study investigates the differences in animal models, which highlight different pathological results in gaster by literature research. Electronic databases searched were performed in PubMed, Science Direct, and Cochrane, without a period filter. A total of 135 articles were used in this study after a full-text assessment was conducted. The most frequent animal models used for gastric cancer were Mice, while Mongolian gerbils and Transgenic mice were the most susceptible model for gastric cancer associated with H. pylori infection. Additionally, transgenic mice showed that the susceptibility to gastric cancer progression was due to genetic and epigenetic factors. These studies showed that in Mongolian gerbil models, H. pylori could function as a single agent to trigger stomach cancer. However, most gastric cancer susceptibilities were not solely relying on H. pylori infection, and numerous factors are involved in cancer progression. Further study using Mongolian gerbils and Transgenic mice is crucial to conduct and establish the best models for gastric cancer associated H. pylori.
Collapse
Affiliation(s)
- Rizki Amalia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Texas, Houston, USA
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
14
|
Guo W, Qiu M, Pu Z, Long N, Yang M, Ren K, Ning R, Zhang S, Peng F, Sun F, Dai M. Geraniol-a potential alternative to antibiotics for bovine mastitis treatment without disturbing the host microbial community or causing drug residues and resistance. Front Cell Infect Microbiol 2023; 13:1126409. [PMID: 36875515 PMCID: PMC9978373 DOI: 10.3389/fcimb.2023.1126409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Mastitis is one of the most prevalent diseases of dairy cows. Currently, mastitis treatment in dairy cows is mainly based on antibiotics. However, the use of antibiotics causes adverse effects, including drug resistance, drug residues, host-microbiome destruction, and environmental pollution. The present study sought to investigate the potentiality of geraniol as an alternative to antibiotics for bovine mastitis treatment in dairy cows. Additionally, the effectiveness of treatment, improvement in inflammatory factors, the influence on microbiome, presence of drug residues, and drug resistance induction were compared and analyzed comprehensively.Geraniol showed an equivalent therapeutic rate as antibiotics in the mouse infection model and cows with mastitis. Moreover, geraniol significantly inhibited the pathogenic bacteria and restored the microbial community while increasing the abundance of probiotics in milk. Notably, geraniol did not destroy the gut microbial communities in cows and mice, whereas antibiotics significantly reduced the diversity and destroyed the gut microbial community structure. Additionally, no geraniol residue was detected in milk four days after treatment discontinuation, but, antibiotic residues were detected in milk at the 7th day after drug withdrawal. In vitro experiments revealed that geraniol did not induce drug resistance in the Escherichia coli strain ATCC25922 and Staphylococcus aureus strain ATCC25923 after 150 generations of culturing, while antibiotics induced resistance after 10 generations. These results suggest that geraniol has antibacterial and anti-inflammatory effects similar to antibiotics without affecting the host-microbial community structure or causing drug residues and resistance. Therefore, geraniol can be a potential substitute for antibiotics to treat mastitis or other infectious diseases and be widely used in the dairy industry.
Collapse
Affiliation(s)
- Wei Guo
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Min Qiu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Zhonghui Pu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Nana Long
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Min Yang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Ke Ren
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Ruihong Ning
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| |
Collapse
|
15
|
Wang YZ, Chen J, Pei SQ, Wang C, Han G, Kan LD, Li LC. Treatment strategies and pharmacist-led medication management for Helicobacter pylori infection. Drug Dev Res 2022; 84:326-336. [PMID: 36567647 DOI: 10.1002/ddr.22025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Half of the world's population is Helicobacter pylori carrier. Updated guidelines and consensus have been issued across regions with the main aim of reducing social transmission and increasing H. pylori eradication rate. Although alternative therapies including traditional Chinese medicine and probiotics have also been used to improve H. pylori eradication rate in clinical practice, current mainstream treatment is still dependent on triple and quadruple therapies that includes antibacterial agents (e.g., amoxicillin and furazolidone) and proton pump inhibitor. Researches also assessed the eradication rate of optimized high-dose dual therapy in treating H. pylori infection. With the increase of antibiotic resistance rate, the treatment strategies for H. pylori infection are constantly adjusted and improved. Besides, low medication compliance is another key influencing factor for H. pylori treatment failure. Emerging studies indicate that pharmacists' intervention and new pharmaceutical care methods can enhance patient medication compliance, reduce adverse drug reactions, and improve H. pylori eradication rate. The purpose of this review is to summarize the advances in treating H. pylori infection and highlight the necessity of developing novel strategies to cope with the increasing challenges and to achieve personalized medication. Also, this review attaches great importance to pharmacists in optimizing H. pylori treatment outcomes as a routine part of therapy.
Collapse
Affiliation(s)
- Yu-Zhen Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi-Qin Pei
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Chen Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Han
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lian-Di Kan
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liu-Cheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Xiao D, Shao H, Huo Y, Agung Nugroho W, Ifeoluwa Ogunniran B, Fan W, Huo M. Reclamation of ginseng residues using two-stage fermentation and evaluation of their beneficial effects as dietary feed supplements for piglets. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:293-302. [PMID: 36308796 DOI: 10.1016/j.wasman.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/24/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Environmental pollution caused by herbal residues, such as ginseng residue (GR), and the huge waste of medicinal ingredients in such residues hinder the development of the pharmaceutical industry. Few studies focused on the biotransformation of GRs and the practical utilization of their bioproducts. In this study, we developed a two-stage fermentation method to optimize GR bioconversion and used the fermented products as dietary supplements for piglets. The tested GR contained abundant lignocelluloses, protein, sugar, and amino acids. Approximately 43.10% of the total lignocelluloses were degraded into sugars by Inonotus obliquus in stage 1 of fermentation. Meanwhile, the sugar content increased by 36.20%, which became the feed for Bacillus subtilis and Saccharomyces cerevisiae in stage 2 of fermentation. These two strains boosted the production of bacterial proteins and other metabolites, including peptides, organic acids, and amino acids. At the end of fermentation, the contents of bioactive compounds significantly increased by 3.18%-21.79%. The dietary supplementation of fermented GR significantly improved the growth performance (6.47%-7.98%), intestinal microbiota, immune function, and healthy status and reduced the diarrhea incidence and noxious gas emission of the piglets. This study provides evidence-based results for the development and deployment of a circular economy between ginseng and livestock industries.
Collapse
Affiliation(s)
- Dan Xiao
- Jilin Academy of Agricultural Science, Changchun 130033, China
| | - Hongze Shao
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130000, China
| | - Yang Huo
- School of Environment, Northeast Normal University, Changchun 130117, China
| | | | | | - Wei Fan
- School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
17
|
Wei LS, Goh KW, Abdul Hamid NK, Abdul Kari Z, Wee W, Van Doan H. A mini-review on co-supplementation of probiotics and medicinal herbs: Application in aquaculture. Front Vet Sci 2022; 9:869564. [PMID: 36406063 PMCID: PMC9666728 DOI: 10.3389/fvets.2022.869564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2024] Open
Abstract
The aquaculture industry is geared toward intensification and successfully meets half of the world's demand for fish protein. The intensive farming system exposes the animal to the risk of disease outbreaks, which has economic consequences. Antibiotics are commonly used for the health management of aquaculture species. However, this has several drawbacks, including the increase in antibiotic resistance in pathogenic bacteria and the entry of antibiotic residues into the human food chain, which is a public health and environmental concern. The potential of probiotics, prebiotics, synbiotics, and medicinal herbs as alternatives to antibiotics for the health management of aquaculture species has been investigated in numerous studies. This review discusses the potential use of combinations of probiotics and medicinal herbs as prophylactic agents in aquaculture, along with the definitions, sources, and modes of action. The positive aspects of combining probiotics and medicinal herbs on growth performance, the immune system, and disease resistance of aquaculture species are also highlighted. Overall, this review addresses the potential of combinations of probiotics and medicinal herbs as feed additives for aquaculture species and the key role of these feed additives in improving the welfare of aquaculture species.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | | | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
18
|
Shi CF, Yang HT, Chen TT, Guo LP, Leng XY, Deng PB, Bi J, Pan JG, Wang YM. Artificial neural network-genetic algorithm-based optimization of aerobic composting process parameters of Ganoderma lucidum residue. BIORESOURCE TECHNOLOGY 2022; 357:127248. [PMID: 35500835 DOI: 10.1016/j.biortech.2022.127248] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The rapid development of traditional Chinese medicine enterprises has put forward higher requirements for the resource utilization of traditional Chinese medicine residues (TCMR). Aerobic composting of TCMR to prepare bio-organic fertilizer is an effective resource utilization method. In this study, a back-propagation artificial neural network (BPNN) model using composting factors as inputs (C/N, initial moisture content, type of inoculant, composting days) and the humic acid content as the output was constructed based on the orthogonal test data. BPNN-GA (a genetic algorithm) was used for extreme value optimization, and the optimal composting process parameter combination was obtained and verified. The results show that the combination of orthogonal testing and BPNN can effectively establish the relationship between the composting process parameters and humic acid content. The R2 value was 0. 9064. The optimized parameter combination is as follows: C/N,37.42; moisture content,69.76%; bacteria,no; and composting time,50 d.
Collapse
Affiliation(s)
- Chun-Fang Shi
- College of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou 014010, China
| | - Hui-Ting Yang
- College of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Tian-Tian Chen
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Li-Peng Guo
- College of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xiao-Yun Leng
- College of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou 014010, China
| | - Pan-Bo Deng
- College of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Jie Bi
- College of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou 014010, China
| | - Jian-Gang Pan
- College of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou 014010, China
| | - Yue-Ming Wang
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China.
| |
Collapse
|
19
|
The Anti-Inflammatory Effect of Callicarpa nudiflora Extract on H. Pylori-Infected GES-1 Cells through the Inhibition of ROS/NLRP3/Caspase-1/IL-1β Signaling Axis. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:5469236. [PMID: 35873363 PMCID: PMC9307406 DOI: 10.1155/2022/5469236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/21/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022]
Abstract
Helicobacter pylori (H. pylori) is the main pathogenic factor of gastric cancer, chronic gastritis, and other gastric diseases. It has been found that Callicarpa nudiflora (CN) as an air-dried leaf extract has a broad-spectrum antibacterial effect. This study aims to examine the effect of CN on H. pylori-infected GES-1 cells in vitro and elucidate its underlying mechanism by extracting active ingredients from air-dried leaves. GES-1 cells were cocultured with HPSS1 at MOI = 100 : 1 and treated with different concentrations of CN (100 and 200 μg/ml). Results showed that CN can significantly reduce cellular LDH leakage and attenuate H. pylori-induced cell apoptosis and ROS production in GSE-1 cells, so as to protect gastric epithelial cells from damage by H. pylori. CN can also inhibit the secretion of inflammatory factors, such as TNF-α, IL-1β, IL-6, and IL-8. After CN treatment, the expression levels of active caspase-1, PYCARD, and NLRP3 were remarkably decreased in the treatment groups compared with the model group. To sum up, CN is highly protective against H. pylori-induced cell damage and apoptosis; CN can depress NLRP3 inflammasome activation and ROS production via the ROS/NLRP3/caspase-1/IL-1β signaling axis to suppress H. pylori-triggered inflammatory response and pyroptosis.
Collapse
|
20
|
Effects of Chinese medicine herbal residues on antibiotic resistance genes and the bacterial community in chicken manure composting. J Antibiot (Tokyo) 2022; 75:164-171. [DOI: 10.1038/s41429-022-00505-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 01/18/2023]
|
21
|
Huang C, Li ZX, Wu Y, Huang ZY, Hu Y, Gao J. Treatment and bioresources utilization of traditional Chinese medicinal herb residues: Recent technological advances and industrial prospect. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113607. [PMID: 34467864 DOI: 10.1016/j.jenvman.2021.113607] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Traditional Chinese medicine (TCM) has wide application and important functions in curing many diseases, but a great number of herb residues are usually generated after its manufacture and usage. Without proper and timely treatment, these traditional Chinese medicinal herb (TCMH) residues will cause some environmental pollution. In addition to treatment, bioresources utilization of TCMH residues is also important for its great potential as a suitable feedstock for the production of energy, materials, and chemicals. In this situation, advanced and well-designed solid waste management is important to make the TCM industry environmentally friendly and economically attractive. In this review article, the recent progress focusing on various methods for TCMH residues treatment and bioresources utilization are introduced in detail. In particular, the technologies for thermochemical conversion and biochemical conversion of TCMH residues are mainly focused on in order to show how to fulfill effective and efficient bioresources utilization. Besides, some other technologies which are suitable for the treatment and bioresources utilization of TCMH residues are presented as well. Finally, some industrial prospects are given from the economic, operational, and environmental aspects for the further development of treatment and bioresources utilization of TCMH residues. Overall, this work can provide some systematical and comprehensive information for the development of technologies that help sustainably manage the herb residues generated in the TCM industry.
Collapse
Affiliation(s)
- Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China.
| | - Zhi-Xuan Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Yi Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Zhong-Ying Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Jing Gao
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China.
| |
Collapse
|
22
|
Su X, Xue Q, Sun M, Liu J, Wong MH, Wang C, Chen S. Co-production of polysaccharides, ginsenosides and succinic acid from Panax ginseng residue: A typical industrial herbal waste. BIORESOURCE TECHNOLOGY 2021; 331:125073. [PMID: 33819907 DOI: 10.1016/j.biortech.2021.125073] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Co-production of polysaccharides, ginsenosides and succinic acid was achieved from Panax ginseng residue (PGR) in this study. Physico-chemical separation was first applied to recover the released polysaccharides and ginsenoside. Enzymatic hydrolysis was then conducted to covert the left PGR into mono-sugars which was following transformed into succinic acid by constructing a succinic acid-producing strain of Escherichia coli-ZW333. Results indicated that the yields of polysaccharides and ginsenosides increased according to the increase of deconstruction content of PGR. A total sugar yield reached 52 g/L at 10% PGR loading and increased to 94.33 g/L following fed-batch enzymatic hydrolysis. Finally, 56.28 g/L succinic acid was produced. In total, 18 g ginseng polysaccharides, 230 mg ginsenosides and 39 g succinic acid were produced from 100 g PGR. Accordingly, the total economic output could reach RMB 80,149 from 1 t PGR, illustrating the great value increasement of PGR by this industrially possible process.
Collapse
Affiliation(s)
- Xinyao Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301607, PR China
| | - Qiang Xue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Mengchu Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Jiarou Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China; College of Bioscience and Bioengineering, Hebei University of Science & Technology, Shijiazhuang 050000, PR China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, PR China
| | - Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| |
Collapse
|
23
|
Lu XL, Wu H, Song SL, Bai HY, Tang MJ, Xu FJ, Ma Y, Dai CC, Jia Y. Effects of multi-phase inoculation on the fungal community related with the improvement of medicinal herbal residues composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27998-28013. [PMID: 33523381 DOI: 10.1007/s11356-021-12569-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Composting has become the most important way to recycle medicinal herbal residues (MHRs). The traditional composting method, adding a microbial agent at one time, has been greatly limited due to its low composting efficiency, mutual influence of microbial agents, and unstable compost products. This study was conducted to assess the effect of multi-phase inoculation on the lignocellulose degradation, enzyme activities, and fungal community during MHRs composting. The results showed that multi-phase inoculation treatment had the highest thermophilic temperature (68.2 °C) and germination index (102.68%), significantly improved available phosphorus content, humic acid, and humic substances concentration, accelerated the degradation of cellulose and lignin, and increased the activities of cellulase in the mature phase, xylanase, manganese peroxidase, and utilization of phenolic compounds. Furthermore, the non-metric multi-dimensional scaling showed that the composting process and inoculation significantly influenced fungal community composition. In multi-phase inoculation treatment, Thermomyces in mesophilic, thermophilic, and mature phase, unclassified_Sordariales, and Coprinopsis in mature phase were the dominant genus that might be the main functional groups to degrade lignocellulose and improve the MHRs composting process.
Collapse
Affiliation(s)
- Xiao-Lin Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hao Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shi-Li Song
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hong-Yan Bai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Fang-Ji Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yan Ma
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
24
|
Zhang P, Sun S, Cheng W, Abdallah A, Sun Z, Zhong Q. Effects of dietary inclusion of Tongmai granule residue on growth
performance, nutrient digestibility, blood biochemical parameters
and rumen fermentation in sheep. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/134167/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Wang H, Lou X, Hu Q, Sun T. Adsorption of antibiotics from water by using Chinese herbal medicine residues derived biochar: Preparation and properties studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114967] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Wang L, Chen T, Wang H, Wu X, Cao Q, Wen K, Deng KY, Xin H. Engineered Bacteria of MG1363-pMG36e-GLP-1 Attenuated Obesity-Induced by High Fat Diet in Mice. Front Cell Infect Microbiol 2021; 11:595575. [PMID: 33732656 PMCID: PMC7959774 DOI: 10.3389/fcimb.2021.595575] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background Although gut hormone glucagon-like peptide 1 (GLP-1) has been widely used for treating diabetes, the extremely short half-life greatly limits its application. The purpose of this study is to explore the effects of an engineered bacteria with expression of GLP-1 on obese mice induced by high fat diet (HFD). Methods The engineered strain of MG1363-pMG36e-GLP-1 (M-GLP-1) was constructed and its anti-obesity effects were evaluated in vivo. The bodyweight, the morphology of adipose and liver tissue, and liver function were examined. Quantitative RT-PCR and Western blot were used to measure the expressions of the genes involved in fatty acid oxidation synthesis. The intestinal microbial diversity was detected with high-throughput sequencing analysis. Results The engineered bacteria could produce GLP-1. It also significantly decreased the bodyweight and improved the glucose intolerance in the obese mice induced by HFD. Moreover, the strain also reduced the triglyceride (TG) in serum, protected liver, as well as decreased the intracellular TG in liver tissues of the obese mice. Furthermore, our results showed that the expressions of the genes including peroxisome proliferator-activated receptors α (PPARα) and its target genes were enhanced in liver tissues when mice treated with M-GLP-1. Finally, we found that the engineered strain markedly increased intestinal microbial diversity. Conclusion Our results suggested the genetically engineered bacteria that constitutively secreted GLP-1 could improve obesity and the mechanism may be related to promoting fatty acid oxidation and increasing intestinal microbial diversity of the obese mice.
Collapse
Affiliation(s)
- Lingfang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Huan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xiaoli Wu
- College of Basic Medicine, JiangXi University of Traditional Chinese Medicine, Nanchang, China
| | - Qing Cao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ke Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hongbo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Wei S, Wang Y, Tang Z, Xu H, Wang Z, Yang T, Zou T. A novel green synthesis of silver nanoparticles by the residues of Chinese herbal medicine and their biological activities. RSC Adv 2021; 11:1411-1419. [PMID: 35424137 PMCID: PMC8693586 DOI: 10.1039/d0ra08287b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) by using the extracts of Chinese herbal medicines (CHMs) has attracted tremendous attention due to the potential synergistic effect between metal nanoparticles and capping agents. However, since CHMs are precious and expensive, finding other cheap and eco-friendly resources for biosynthesizing AgNPs with superior medicinal activites is necessary. Herbal medicine residues (HMRs) are the by-products of traditional Chinese herbal medicine after decoction and were identified to contain approximately 30-50% of medicinally active ingredients, which may be advantageous for green synthesis of medicinal AgNPs. Inspired by this, we present herein the preparation of AgNPs by reusing Bazheng Mixture residues and evaluate both biosynthesis parameters and bioactivities, where Bazheng Mixture is a famous Chinese patent medicine for relieving inflammation and pain, and allaying fever. The UV-visible spectrum and DLS analysis showed that the as-prepared AgNPs were sensitive to pH, material proportion and incubation time, but the yield was impervious to material proportion. TEM, HRTEM, SAED and DLS characterization found that AgNPs (pH 10.0; material proportion 1 : 1; 6 h) had a face-centered cubic (fcc) structure and spherical shape with an average size of 22.2 ± 0.5 nm covered by anions, and existed in monodispersed form with long term stability. The AgNPs displayed potent toxic effects against both cancer cell lines and pathogens, and superior antioxidant activity. The IC50 for HCT116, HepG2 and HeLa cell lines were 13.07, 19.67, and 26.18 μg mL-1, respectively. The MICs of AgNPs for E. coli and S. aureus were both 50.0 μg mL-1. The uptake analysis of AgNPs for both pathogens and cancer cell lines was performed to preliminarily illustrate the mechanism of toxic effects. These results confirm that HMRs could be a low-cost, nontoxic and eco-friendly resource for green synthesis of medicinal AgNPs, and also provide an alternative method for general recycling strategies of HMRs.
Collapse
Affiliation(s)
- Simin Wei
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine 712046 China
| | - Yinghui Wang
- College of Science, Chang'an University 710064 China
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine 712046 China
| | - Hongbo Xu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine 712046 China
| | - Zhe Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine 712046 China
| | - Tian Yang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine 712046 China
| | - Taiyan Zou
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine 712046 China
| |
Collapse
|
28
|
Jin Z, Hou Q, Niu T. Effect of cultivating Pleurotus ostreatus on substrates supplemented with herb residues on yield characteristics, substrates degradation, and fruiting bodies' properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4901-4910. [PMID: 32478436 DOI: 10.1002/jsfa.10551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/02/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Inappropriate disposal of herb residues in China has caused major problems for the immediate environment and to human safety. Here, three herb residues, compound Kushen injection (CKI), Qizhi Tongluo capsule (QTC), and Shenbai Shuxin capsule (SSC), were applied as substrates to corncob at various ratios (30:60, 45:45, and 60:30) for the propagation of the mushroom Pleurotus ostreatus. The effects of supplementation using herb residues on yield, biodegradation ability, bioactive compounds, antioxidant properties, and safety of P. ostreatus were assessed. RESULTS Different spawn running times were observed using growth medium, whereas 45CKI, 60QTC, and 30SSC media were determined as optimal-performing substrate combinations, resulting in yields of 843 g kg-1 , 828 g kg-1 , and 715 g kg-1 respectively. Biodegradation analysis of consumed substrates revealed a significant decrease in cellulose and hemicellulose levels compared with lignin. Furthermore, chemical analysis of fruiting bodies revealed that the 45CKI and 60QTC substrates resulted in higher total phenol, flavonoid, terpenoid, and vitamin C levels, but significantly reduced water-soluble polysaccharides compared with the corncob medium. The methanol extract of fruiting bodies grown on substrates containing herb residues exhibited higher antioxidant properties than the control, as it was more effective in scavenging 2,2-diphenyl-1-picrylhydrazyl radicals, had greater reducing power, and more strongly inhibiting lipid peroxidation. Furthermore, high-performance liquid chromatography studies indicated that fruiting bodies did not generate matrine (a specific toxin produced in Kushen) when cultivated using the CKI substrate. CONCLUSIONS P. ostreatus cultivation on substrates mixed with herb residues facilitates herb residue management as well as bioactivity-rich and non-toxic fruit body formation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Jin
- Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, 046011, China
| | - Qinwen Hou
- Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, 046011, China
| | - Tianzeng Niu
- Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, 046011, China
| |
Collapse
|
29
|
Yu Z, Yousaf K, Ahmad M, Yousaf M, Gao Q, Chen K. Efficient pyrolysis of ginkgo biloba leaf residue and pharmaceutical sludge (mixture) with high production of clean energy: Process optimization by particle swarm optimization and gradient boosting decision tree algorithm. BIORESOURCE TECHNOLOGY 2020; 304:123020. [PMID: 32088630 DOI: 10.1016/j.biortech.2020.123020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Production of sustainable clean energy can be achieved by co-pyrolysis of agricultural residues and wastewater sludge. Herein, non-additive thermal behaviour of co-pyrolysis of pharmaceutical sludge and ginkgo biloba leaf residues was investigated. Synergistic effect of co-pyrolysis was not obvious at elevated temperatures. Further, kinetics of co-pyrolysis was studied by fitting Coats-Redfern integration method to thermogravimetric (TG) curve. The change of heat and mass transfer in the reactor caused the change of dynamic parameters. Moreover, hybrid particle swarm optimization and gradient boosting decision tree (PSO-GBDT) algorithm was designed to boost the energy production at full-scale pyrolysis plant by monitoring TG curves. PSO-GBDT model well predicts mass loss rate of the mixture at different heating rates confirming that co-pyrolysis of PS and GBLR can results in high energy production by increasing PS pyrolysis. Designing PSO-GBDT model help to reduced waste production by resourceful treatment of waste in to energy.
Collapse
Affiliation(s)
- Zhenwei Yu
- College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Khurram Yousaf
- College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Muhammad Ahmad
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; Department of Environmental Engineering, College of Environmental Science and Engineering, Peking University, 100871, China.
| | - Maryam Yousaf
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Qi Gao
- SPH Xing Ling Sci. & Tech. Pharmaceutical Co., Ltd., 3500 Huqingping Road, Shanghai 201703, China
| | - Kunjie Chen
- College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| |
Collapse
|
30
|
Chang F, Jia F, Lv R, Zhen L, Li Y, Wang Y. Changes in structure and function of bacterial and fungal communities in open composting of Chinese herb residues. Can J Microbiol 2019; 66:194-205. [PMID: 31790274 DOI: 10.1139/cjm-2019-0347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, dynamic changes in bacterial and fungal communities, metabolic characteristics, and trophic modes in Chinese herb residues open composting for 30 days were analyzed by using high-throughput sequencing, PICRUSt, and FUNGuild, respectively. Bacillaceae and Basidiomycota predominated at the early composting stage, while Proteobacteria and Ascomycota became the dominant phyla during the active phase. Aerobic composting had a significant effect on bacterial metabolic characteristics and fungal trophic modes over the composting time. The function of the bacterial communities changed from environmental information processing to metabolism. Fungal communities changed as well, with the pathogenic fungi decreasing and wood saprotrophs increasing. These results indicated that open composting of Chinese herb residues not only influenced microbial community structure but also changed metabolic characteristics and trophic modes, which became the internal dynamics of composting.
Collapse
Affiliation(s)
- Fan Chang
- Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China.,Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China
| | - Fengan Jia
- Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China.,Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China
| | - Rui Lv
- Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China.,Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China
| | - Lisha Zhen
- Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China.,Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China
| | - Yan Li
- Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China.,Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China
| | - Yan Wang
- Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China.,Research Center for Metabolites, Shaanxi Institute of Microbiology, 76 Xiying Road, Xi'an, Shaanxi 710043, P.R. China
| |
Collapse
|
31
|
An X, Bao Q, Di S, Zhao Y, Zhao S, Zhang H, Lian F, Tong X. The interaction between the gut Microbiota and herbal medicines. Biomed Pharmacother 2019; 118:109252. [DOI: 10.1016/j.biopha.2019.109252] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
|
32
|
Reclamation of Astragalus By-Product through Dietary Inclusion in Ruminant Diets: Effects on Growth Performance, Nutrient Digestibility, Rumen Fermentation, Blood Biochemical Parameters, and Humoral Immune Response in Sheep. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8530961. [PMID: 31565064 PMCID: PMC6745106 DOI: 10.1155/2019/8530961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/01/2019] [Indexed: 01/15/2023]
Abstract
This study was conducted to investigate the effects of Astragalus by-product (ABP) through dietary supplementation at different levels on performance, nutrient digestibility, rumen fermentation, blood metabolites, and immune response in sheep. Twenty-four Doper × Small Tail Han ewes (6-7 months of age; 29.07 ± 2.28 kg initial body weight) were randomly assigned to one of three treatments for a 47 d feeding period. Treatments consisted of the sheep diet supplemented with 0% ABP-control, 10% ABP, or 15% ABP of the diet (dry matter basis). Blood samples were collected on days 0, 15, 30, and 45 of the feeding period. APB supplementation did not affect growth performance and apparent digestibility of organic matter, crude protein, and acid detergent fibre (P > 0.05). However, ether extract digestibility was decreased in the 10% ABP group and increased in the 15% ABP group (P < 0.001), and both 10% ABP and 15% ABP decreased the neutral detergent fibre digestibility (P=0.005). Feeding ABP increased rumen pH (P < 0.001) and ammonia N (P < 0.001) and decreased concentrations of acetate (P=0.007) and propionate (P=0.001) which resultantly increased the acetate-to-propionate ratio (P < 0.001) in ruminal fluid. There were no interaction effects between treatment and sampling time for plasma metabolites and immunity (P > 0.05). However, inclusion of dietary 10% ABP decreased concentrations of plasma cholesterol (P=0.043). Also, plasma concentrations of low-density lipoprotein decreased on days 30 and 45 (P=0.017) of the feeding period. Metabolite concentrations of total protein, albumin, globulin, blood urea N, glucose, triglyceride, and high-density lipoprotein cholesterol and humoral immune indicators were not affected (P > 0.05) by dietary ABP supplementation. The results suggest that ABP could be reclaimed through dietary inclusion in animal feed since it had beneficial effects on rumen fermentation patterns and lipid metabolism and had no adverse effects on performance and humoral immunity in sheep.
Collapse
|
33
|
Zhang S, Chang S, Xiao P, Qiu S, Ye Y, Li L, Yan H, Guo S, Duan J. Enzymatic in situ saccharification of herbal extraction residue by a medicinal herbal-tolerant cellulase. BIORESOURCE TECHNOLOGY 2019; 287:121417. [PMID: 31076294 DOI: 10.1016/j.biortech.2019.121417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Herbel-tolerant strains exhibit considerable environmental and commercial values not only due to their harmless treatment of herbal-extraction residues (HERs) but also because of their use in preparing high-quality cellulase cocktails. In this study, three typical HERs were evaluated for enzymatic in situ saccharification performance. A HERs-tolerance fungus, identified as Penicillium oxalicum G2, can grow in 1.5% (w/v) Radix isatidis residues (RIR), thereby exhibiting the highest FPase (2.2 U/mL), carboxymethyl cellulase (13.3 U/mL), and β-glucosidase (4.6 U/mL) activities. The most effective production of cellulase cocktail was achieved via orthogonal experiment in a system with pH 6.0, 30 °C, and 96 h. Cellulase cocktail from P. oxalicum G2 can directly saccharify the extraction RIR, thereby achieving a maximum reducing sugar yield of 7.2 mg/mL, which is 1.7-fold higher than those of commercial cellulases. Results illustrate the potential of P. oxalicum G2 for enzymatic in situ saccharification.
Collapse
Affiliation(s)
- Sen Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources and Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Siyuan Chang
- School of Biology and Environment, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing 210048, Jiangsu, China; School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources and Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shouzhe Qiu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources and Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yin Ye
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources and Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lizhi Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources and Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources and Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources and Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources and Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Abdallah A, Zhang P, Zhong Q, Sun Z. Application of Traditional Chinese Herbal Medicine By-products as Dietary Feed Supplements and Antibiotic Replacements in Animal Production. Curr Drug Metab 2019; 20:54-64. [PMID: 29788885 DOI: 10.2174/1389200219666180523102920] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/08/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Misuse of synthetic antibiotics in livestock leads to the transfer of antibiotic resistant pathogens into humans and deposits toxic residues in meat and milk. There is therefore an urgent need for safe and viable alternative approaches to improve the nutrition and wellbeing of farm animals. An alternative source that has been widely exploited is Traditional Chinese Herbal Medicine (TCHM). These herbs contain several but less toxic bioactive compounds which are generally regarded as biodegradable. Recently, advances in the knowledge of the importance of TCHM have led to a rapid increase in its production and hence, increasing the amount of by-products generated. Such by-products have become a serious environmental challenge because producers regard them as industrial waste and discard them directly. This review summarizes scientific findings on the bioactive compounds in TCHM and TCHM by-products, discusses functional dietary patterns and outlines challenges that may hinder full utilization of TCHM by-products in animal production. METHODS Information for this review was obtained through scientific databases and websites such as Pubmed and Google scholar from 2004 to 2017 using experimental studies on bioactive compounds in TCHM and their effects in animal production. RESULTS Studies have shown that TCHM by-products contain high amounts of bioactive compounds which confer several nutritional and health benefits to animals and thus could be incorporated as feed additives. CONCLUSION The findings for this review indicate that TCHM by-products apart from being a good alternative for synthetic antibiotics could also minimize the current environmental challenges associated with its disposal.
Collapse
Affiliation(s)
- Abedin Abdallah
- Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Pei Zhang
- Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qingzhen Zhong
- Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zewei Sun
- Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
35
|
Kong W, Huang C, Shi J, Li Y, Jiang X, Duan Q, Huang Y, Duan Y, Zhu X. Recycling of Chinese herb residues by endophytic and probiotic fungus Aspergillus cristatus CB10002 for the production of medicinal valuable anthraquinones. Microb Cell Fact 2019; 18:102. [PMID: 31164126 PMCID: PMC6547571 DOI: 10.1186/s12934-019-1150-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background The global prevalence of traditional Chinese medicine stimulates the prosperous development of herb medicines, but the annual generation of massive herb residues becomes big issues about environmental pollution and waste of resources. Microbes play important roles in the circulation of substances in nature, and endophytes represent an underexplored microbial resource possessing the unique symbiotic relationship with plants, not only for discovery of secondary metabolites, but also for potential green recycling of herb residues. Results The recycling capacities of several endophytic strains were respectively evaluated via solid state fermentation with herb residues of commercial Huazhenghuisheng oral-liquid (HOL). Among them, Aspergillus cristatus CB10002, a probiotic fungus isolated from Chinese Fu-brick tea, was competent to recycle HOL residues for the production of medicinal valuable anthraquinones, in which four of them, especially citreorosein with significant anti-obesity activity, were first discovered in A. cristatus. Subsequent quantitative analysis showed that about 2.0 mg/g citreorosein and 7.5 mg/g total anthraquinones could be obtained after 35-day fermentation, which was very competitive and economically beneficial. Further nutritional comparisons also revealed that the recycling process indeed ameliorated the nutrients of HOL residues, and thus proposed a possibility to directly dispose the final leftovers as a compost organic fertilizer. Conclusions The endophytic and probiotic fungus A. cristatus CB10002 isolated from Chinese Fu-brick tea was screened out to effectively reutilize HOL residues for the production of nine medicinal valuable anthraquinones, whose biosynthesis may be regulated by the induction of HOL residues. The competitive yields of these anthraquinones, as well as the certain composting properties of final leftovers, have made the microbial recycling of HOL residues economically beneficial. Our work demonstrated a promising applied potential of A. cristatus in reutilization of herb residues, and provided a practical strategy for sustainable and value-added microbial recycling of herb residues. Electronic supplementary material The online version of this article (10.1186/s12934-019-1150-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenping Kong
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Chengshuang Huang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Jie Shi
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Yu Li
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Xinxin Jiang
- Hayaocihang Pharmaceutical Co. Ltd, Changsha, 410205, Hunan, China
| | - Quwen Duan
- Hayaocihang Pharmaceutical Co. Ltd, Changsha, 410205, Hunan, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China. .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410205, Hunan, China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China. .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410205, Hunan, China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| |
Collapse
|
36
|
Chen T, Tian P, Huang Z, Zhao X, Wang H, Xia C, Wang L, Wei H. Engineered commensal bacteria prevent systemic inflammation-induced memory impairment and amyloidogenesis via producing GLP-1. Appl Microbiol Biotechnol 2018; 102:7565-7575. [PMID: 29955935 DOI: 10.1007/s00253-018-9155-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
The anti-obesity drug GLP-1 has been proven to have an impact on central nervous system, while its extremely short half-life greatly limited its use. In this study, our group constructed two engineering strains MG1363-pMG36e-GLP-1 and VNP20009-pLIVE-GLP-1 to continuously express GLP-1, and supplementation of these strains, especially MG1363-pMG36e-GLP-1, had significantly restored the spatial learning and memory impairment of mice caused by LPS (p < 0.05), suppressed glia activation and Aβ accumulation, and downregulated inflammatory expressions of COX-2, TLR-4, TNF-a, and IL-1β. In addition, MG1363-pMG36e-GLP-1 had significantly blocked the translocation of NF-κB signal and inhibited the phosphorylation of redox-sensitive cytoplasmic signalings of MAPKs and PI3K/AKT. These data suggest that MG1363-pMG36e-GLP-1 could be used as a safe and effective nonabsorbed oral treatment for neuroinflammation-related diseases such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Tingtao Chen
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.,Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Puyuan Tian
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.,Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Zhixiang Huang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Xiaoxiao Zhao
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Huan Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Chaofei Xia
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Le Wang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Hua Wei
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Nanchang University 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China.
| |
Collapse
|
37
|
Jin Z, Li Y, Ren J, Qin N. Yield, Nutritional Content, and Antioxidant Activity of Pleurotus ostreatus on Corncobs Supplemented with Herb Residues. MYCOBIOLOGY 2018; 46:24-32. [PMID: 29998030 PMCID: PMC6037074 DOI: 10.1080/12298093.2018.1454014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/02/2018] [Accepted: 02/13/2018] [Indexed: 05/03/2023]
Abstract
Improper disposal of herb residues in China has caused severe problems to the surrounding environment and human safety. Three herb residues, i.e., compound Kushen injection residues (CKI) and part one and part two of Qizhitongluo Capsule residues (QC1 and QC2, respectively), were used for the cultivation of Pleurotus ostreatus. The effect of the supplementation of corncobs (CC) with different herb residues on yield, nutritional composition, and antioxidant activity of P. ostreatus was investigated. Compared to the control, the higher mycelial growth rate was observed on substrates CC +30% CKI and CC +30% QC1, while the higher yield was obtained from substrates CC +30% QC2 and CC +30% CKI. Moreover, chemical analysis of fruit bodies revealed that the addition of herb residues to CC significantly increased proteins, amino acids, ashes, minerals (Na and Ca), and total phenolic contents but significantly reduced carbohydrates and IC50 values of DPPH radicals. In addition, no heavy metals (Pb, Cd, and As) were detected in the fruiting bodies harvested from different substrate combinations. These results demonstrated that mixtures of CC with herb residues might be utilized as a novel, practical, and easily available substrate for the cultivation of P. ostreatus, which is beneficial for the effective management of herb residues.
Collapse
Affiliation(s)
- Zhiqiang Jin
- Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, China
| | - Yunling Li
- Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, China
| | - Jiahong Ren
- Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, China
| | - Nan Qin
- Department of Pharmaceutical and Food Engineering, Shanxi University of Traditional Chinese Medicine, Yuci, Shanxi, China
| |
Collapse
|
38
|
Zhang L, Gu J, Wang X, Zhang R, Tuo X, Guo A, Qiu L. Fate of antibiotic resistance genes and mobile genetic elements during anaerobic co-digestion of Chinese medicinal herbal residues and swine manure. BIORESOURCE TECHNOLOGY 2018; 250:799-805. [PMID: 30001586 DOI: 10.1016/j.biortech.2017.10.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 06/08/2023]
Abstract
Swine manure is an important reservoir for antibiotic resistance genes (ARGs) but anaerobic co-digestion (AcoD) can potentially reduce the abundance of these ARGs. However, few studies have considered the effects of Chinese medicinal herbal residues (CMHRs) on the variations in ARGs and mobile genetic elements (MGEs) during AcoD. Thus, this study explored the fate of ARGs and MGEs during the AcoD of CMHRs and swine manure. The results showed that CMHRs effectively reduced the abundances of the main ARGs (excluding ermF, qnrA, and tetW) and four MGEs (by 36.7-96.5%) after AcoD. Redundancy analysis showed that changes in the bacterial community mainly affected the fate of ARGs rather than horizontal gene transfer by MGEs. Network analysis indicated that 17 bacterial genera were possible hosts of ARGs. The results of this study suggest that AcoD with CMHRs could be employed to remove some ARGs and MGEs from swine manure.
Collapse
Affiliation(s)
- Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ranran Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaxia Tuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aiyun Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Qiu
- Northwest A&F University, College of Mechanical and Electrical Engineering, Yangling, Shaanxi 712100, China
| |
Collapse
|
39
|
Chen Y, Chang SKC, Chen J, Zhang Q, Yu H. Characterization of microbial community succession during vermicomposting of medicinal herbal residues. BIORESOURCE TECHNOLOGY 2018; 249:542-549. [PMID: 29080518 DOI: 10.1016/j.biortech.2017.10.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Large amounts of medicinal herbal residues (MHR) are produced in the world annually due to the increasing demand for herbal products. In this study, vermicomposting was used to stabilize MHR. Four inoculating density of earthworms was studied, specifically, 0 (W1), 60 (W2), 120 (W3) and 180 (W4) earthworms per kilogram of substrate. The C:N ratios of vermicomposts in W2, W3 and W4 were less than 20 by the end of the first week, while the value for W1 was 30.92. This indicates that earthworms promote the stabilization of MHR. In the initial stage, richness and diversity of the microbial community decreased due to earthworm inoculation, and then began to increase. The dominant phyla were Proteobacteria, Bacteroidetes, Basidiomycota and Ascomycota in the substrates. The abundance of the dominant phyla varied according to earthworm density, indicating that earthworms change the microbial composition. The results suggest that MHR can be stabilized by vermicomposting.
Collapse
Affiliation(s)
- Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| | - Sam K C Chang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, United States
| | - Jing Chen
- Logistics College, Beijing Wuzi University, Beijing 101149, China
| | - Qiang Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Haiye Yu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
40
|
Reclamation of Herb Residues Using Probiotics and Their Therapeutic Effect on Diarrhea. Mediators Inflamm 2018; 2017:4265898. [PMID: 29317795 PMCID: PMC5727800 DOI: 10.1155/2017/4265898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/03/2017] [Accepted: 10/11/2017] [Indexed: 12/03/2022] Open
Abstract
Residues from herbal medicine processing in pharmaceutical plants create a large amount of waste (herb residues), which consists mainly of environmental pollution and medicinal waste. In order to resolve this problem, probiotics of Bacillus (B.) subtilis, Aspergillus (A.) oryzae, and Lactobacillus (L.) plantarum M3 are selected to reuse herb residue of Jianweixiaoshi tablets (JT), and an antibiotic-associated diarrhea (AAD) mouse model was established to evaluate the therapeutic effects of the herb residue fermentation supernatant. Our results indicated that the fermentation supernatant had scavenged 77.8% of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 78% of O2•−, 36.7% of •OH, 39% of Fe2+ chelation, and 716 mg/L reducing power. The inhibition zones for Salmonella (S.) typhimurium, S. enteritidis, Shigella (Sh.) flexneri, Escherichia (E.) coli, Listeria (L.) monocytogenes, Sh. dysenteriae 301, and Staphylococcus (S.) aureus were 17, 14, 19, 18, 20, 19, and 20 mm, respectively. The in vivo results indicated that the fermentation supernatant resulted in a high diarrhea inhibition rate (56%, p < 0.05), greatly enhanced the disruption of bacterial diversity caused by antibiotics, and restored the dominant position of L. johnsonii in the treatment and recovery stages. Therefore, the combination of the herb residue and probiotics suggests a potential to explore conversion of these materials for the possible development of therapies for AAD.
Collapse
|
41
|
Zhao X, Chen T, Meng F, Wang H, Tian P, Tang X, Wang X, Wang X, Xin H, Wei H. Therapeutic effect of herb residue fermentation supernatant on spleen‑deficient mice. Mol Med Rep 2017; 17:2764-2770. [PMID: 29207096 DOI: 10.3892/mmr.2017.8150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/03/2017] [Indexed: 11/05/2022] Open
Abstract
To minimize the waste of active ingredients present in herb residues, in the present study, probiotics of Bacillus subtilis, Aspergillus oryzae and Lactobacillus plantarum M3 were selected to reuse herb residues from Jianweixiaoshi tablets, and the therapeutic effects of the herb residue fermentation supernatant were evaluated using a spleen‑deficient mouse model. The results of the present study indicated that the fermentation supernatant may effectively improve the immunity of mice, as measured by body weight, spleen and thymus index, and inflammatory cytokines, including interleukin (IL)‑2, IL‑4 and interferon‑γ. The viable cell count and denaturing gradient gel electrophoresis results indicated that the fermentation supernatant markedly enhanced bacterial diversity and the number of lactobacilli in mouse intestines. Therefore, the combination of the Jianweixiaoshi herb residue and probiotics provided a novel method to reuse herb residues and may in the future contribute to the treatment of spleen deficiency.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Fanjing Meng
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Huan Wang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Puyuan Tian
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Xianyao Tang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Xin Wang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Xiaolei Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Hua Wei
- Jiangxi‑OAI Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| |
Collapse
|
42
|
Zhang L, Gu J, Wang X, Sun W, Yin Y, Sun Y, Guo A, Tuo X. Behavior of antibiotic resistance genes during co-composting of swine manure with Chinese medicinal herbal residues. BIORESOURCE TECHNOLOGY 2017; 244:252-260. [PMID: 28780258 DOI: 10.1016/j.biortech.2017.07.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Swine manure is considered to be a reservoir for antibiotic resistance genes (ARGs) but little is known about the variations in ARGs during the co-composting of swine manure with Chinese medicinal herbal residues (CMHRs). Thus, this study explored the effects of CMHRs on the variations in ARGs during co-composting with swine manure. The results showed that CMHRs could reduce effectively most of the targeted ARGs (0.18-2.82logs) and mobile genetic elements (MGEs) (0.47-3.34logs). The correlations indicated that CMHRs might decrease the spread of ARGs via horizontal gene transfer. Redundancy analysis showed that the bacterial communities had more important effects on the variations in ARGs compared with environmental factors and MGEs. The results of this study demonstrate that CMHRs can decrease the abundances of ARGs and MGEs, as well as reducing the risk of ARGs spreading during the application of compost products to farmland.
Collapse
Affiliation(s)
- Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yixin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aiyun Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaxia Tuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
43
|
Quercetin from Polygonum capitatum Protects against Gastric Inflammation and Apoptosis Associated with Helicobacter pylori Infection by Affecting the Levels of p38MAPK, BCL-2 and BAX. Molecules 2017; 22:molecules22050744. [PMID: 28481232 PMCID: PMC6154337 DOI: 10.3390/molecules22050744] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori-associated gastritis is a major threat to public health and Polygonum capitatum (PC) may have beneficial effects on the disease. However, the molecular mechanism remains unknown. Quercetin was isolated from PC and found to be a main bioactive compound. The effects of quercetin on human gastric cancer cells GES-1 were determined by xCELLigence. H. pylori-infected mouse models were established. All mice were divided into three groups: control (CG, healthy mice), model (MG, H. pylori infection) and quercetin (QG, mouse model treated by quercetin) groups. IL-8 (interleukin-8) levels were detected via enzyme-linked immunosorbent assay (ELISA). Cell cycle and apoptosis were measured by flow cytometry (FCM). Quantitative reverse transcription PCR (qRT-PCR) and Western Blot were used to detect the levels of p38MAPK (38-kD tyrosine phosphorylated protein kinase), apoptosis regulator BCL-2-associated protein X (BAX) and B cell lymphoma gene 2 (BCL-2). The levels of IL-8 were increased by 8.1-fold in a MG group and 4.3-fold in a QG group when compared with a CG group. In a MG group, G0–G1(phases of the cell cycle)% ratio was higher than a CG group while S phase fraction was lower in a model group than in a control group (p < 0.01). After quercetin treatment, G0–G1% ratio was lower in a QG group than a MG group while S phase fraction was higher than a MG group (p < 0.01). Quercetin treatment reduced the levels of p38MAPK and BAX, and increased the levels of BCL-2 when compared with a MG group (p < 0.05). Quercetin regulates the balance of gastric cell proliferation and apoptosis to protect against gastritis. Quercetin protects against gastric inflammation and apoptosis associated with H. pylori infection by affecting the levels of p38MAPK, BCL-2 and BAX.
Collapse
|