1
|
Zhang X, Shao W, Gao Y, Wang X. Macrophage polarization-mediated PKM2/mTORC1/YME1L signaling pathway activation in fibrosis associated with Cardiorenal syndrome. Cell Signal 2025; 131:111664. [PMID: 39961408 DOI: 10.1016/j.cellsig.2025.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 02/14/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Cardiorenal syndrome (CRS) is a complex condition characterized by the interplay between cardiac and renal dysfunction, often culminating in renal fibrosis. The role of macrophage polarization and its downstream effects in CRS-induced renal fibrosis remains an area of active investigation. METHODS Single-cell RNA sequencing (scRNA-seq) and immune infiltration analyses were employed to identify key immune cells and genes involved in renal fibrosis in CRS. Meta-analysis and pseudo-time analysis were conducted to validate the functional relevance of these genes. Functional studies utilizing CRISPR/Cas9 gene editing and lentiviral vectors assessed macrophage polarization and epithelial-to-mesenchymal transition (EMT). In vivo, a CRS mouse model was established, and fibrosis progression was tracked using histological and imaging methods. RESULTS The PKM2/mTORC1/YME1L signaling axis was identified as a critical pathway driving renal fibrosis, mediated by HIF-1α-induced M1 macrophage polarization. Inhibition of HIF-1α significantly alleviated renal fibrosis by restricting M1 polarization and suppressing the PKM2/mTORC1/YME1L axis. Co-culture models further demonstrated the involvement of EMT and metabolic reprogramming in affected cells. CONCLUSION Targeting the HIF-1α signaling pathway offers a promising therapeutic strategy for renal fibrosis by modulating macrophage polarization and the PKM2/mTORC1/YME1L axis.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China.
| | - Wen Shao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Yun Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xiaojun Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
2
|
Luo J, Pan S, Luo J, Wang L, Yin J, Zhao H, Su R, Liao M, Liu L, Zhang J. GNA15 induces drug resistance in B cell acute lymphoblastic leukemia by promoting fatty acid oxidation via activation of the AMPK pathway. Mol Cell Biochem 2025; 480:3719-3733. [PMID: 39812998 PMCID: PMC12095422 DOI: 10.1007/s11010-024-05198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
The prognosis of B cell acute lymphoblastic leukemia (B-ALL) is poor, primarily due to drug resistance and relapse. Ga15, encoded by GNA15, belongs to the G protein family, with G protein-coupled receptors playing a crucial role in multiple biological process. GNA15 has been reported to be involved in various malignancies; however, its potential role in B-ALL remain unknown. In this study, high expression of GNA15 in B-ALL was observed in multiple databases. We further confirmed an increased transcriptional level of GNA15 in newly diagnosed B-ALL patients which was closely correlated with relapse. We showed that GNA15 promoted cell growth, inhibited apoptosis and enhanced drug resistance in leukemia cell lines. Metabolomics analysis revealed a significant enrichment of fatty acid oxidation (FAO) according to the GNA15 expression. We further confirmed that GNA15 could enhance FAO process as evidenced by the upregulation of key molecules involved in FAO including carnitine palmitoyl transferase1 (CPT1), CPT2 and CD36. And inhibition of FAO using etomoxir partially reversed the drug resistance caused by high expression of GNA15. Mechanism study showed that GNA15 promoted FAO by up-regulation of AMPK phosphorylation thus leading to survival advantage in leukemia cells. In conclusion, we observed elevated GNA15 transcript levels in B-ALL, which were associated with relapse. GNA15 could induce drug resistance though activation of the AMPK/FAO axis in leukemia cell lines. Targeting GNA15 and FAO may represent potential therapeutic strategy for improving the prognosis of B-ALL.
Collapse
Affiliation(s)
- Jie Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shirui Pan
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lan Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Oncology and Hematology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400016, China
| | - Jiaxiu Yin
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiqiu Zhao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rong Su
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mingyan Liao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Jiamin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Wang C, Liang W, Zhong J, Liu J, Zhou C, Ma C, Liao Y, Gao Y, Zhao J, He Y. m6A-mediated regulation of CPSF6 by METTL3 promotes oxaliplatin resistance in colorectal cancer through enhanced glycolysis. Cell Signal 2025; 130:111676. [PMID: 40010558 DOI: 10.1016/j.cellsig.2025.111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/16/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Oxaliplatin resistance poses a significant challenge in colorectal cancer (CRC) treatment. Recent studies have implicated CPSF6 in cancer progression and drug resistance, although its role in chemotherapy resistance and regulatory mechanisms is unclear. This study investigates CPSF6's involvement in oxaliplatin resistance in CRC and its regulation via m6A methylation by METTL3. We assessed CPSF6 expression in oxaliplatin-resistant (OxR) CRC cell lines (HT29-OxR and HCT116-OxR) compared to sensitive counterparts using qRT-PCR and Western blotting. CPSF6 was significantly upregulated in OxR cells, and its knockdown reduced cell viability, colony formation, and glycolytic activity while increasing apoptosis. m6A modification of CPSF6 mRNA was elevated in OxR cells, correlating with increased METTL3 expression. METTL3 knockdown decreased CPSF6 levels and m6A enrichment, enhancing mRNA degradation, while its overexpression stabilized CPSF6 mRNA, promoting resistance. Xenograft experiments showed that CPSF6 knockdown suppressed tumor growth and glycolysis. Thus, CPSF6 is identified as a mediator of oxaliplatin resistance in CRC, regulated by the METTL3/m6A axis, suggesting potential therapeutic targets to overcome resistance.
Collapse
Affiliation(s)
- Chengxing Wang
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Guangdong 529000, China; Digestive Disease Research Center, Jiangmen Central Hospital, Guangdong 529000, China
| | - Weijun Liang
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Guangdong 529000, China; Digestive Disease Research Center, Jiangmen Central Hospital, Guangdong 529000, China
| | - Jietao Zhong
- Digestive Disease Research Center, Jiangmen Central Hospital, Guangdong 529000, China; Department of Gastroenterology, Jiangmen Central Hospital, Guangdong 529000, China
| | - Jiachen Liu
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong 510000, China
| | - Chaorong Zhou
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Guangdong 529000, China; Digestive Disease Research Center, Jiangmen Central Hospital, Guangdong 529000, China
| | - Changyi Ma
- Department of Radiology, Jiangmen Central Hospital, Guangdong 529000, China
| | - Yuehua Liao
- Department of Pathology, Jiangmen Central Hospital, Guangdong 529000, China
| | - Yuan Gao
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Guangdong 529000, China; Digestive Disease Research Center, Jiangmen Central Hospital, Guangdong 529000, China
| | - Jinglin Zhao
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Guangdong 529000, China; Digestive Disease Research Center, Jiangmen Central Hospital, Guangdong 529000, China.
| | - Yaoming He
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Guangdong 529000, China; Digestive Disease Research Center, Jiangmen Central Hospital, Guangdong 529000, China.
| |
Collapse
|
4
|
Huang D, Xu F, Xu L, Tang Z, Hu Y, Li J, Yu J. Triiodothyronine promotes the proliferation and chemoresistance of cholangiocarcinoma cells via HIF-1α/Glut1-stimulated glycolysis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167814. [PMID: 40168755 DOI: 10.1016/j.bbadis.2025.167814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
Thyroid hormones not only are crucial for normal growth, development, and metabolism but also influence the development and progression of various malignancies. The effects of thyroid hormones on cholangiocarcinoma remain unclear. Here, we examined the effects of triiodothyronine (T3), a major thyroid hormone, on the behavior of cultured human cholangiocarcinoma cells after short-term (1 week) or long-term (6 months) T3 treatment. Whereas short-term T3 treatment did not influence the growth or behavior of cholangiocarcinoma cells, long-term T3 treatment had several significant effects. Cell proliferation, colony-forming and spheroid formation assays indicated the long-term T3 treatment increased cholangiocarcinoma cell growth in vitro and in mouse xenografts, and increased resistance to gemcitabine and cisplatin. Cells exposed to T3 long-term also exhibited increased glycolysis in a manner dependent on the glucose transporter 1 (Glut1). Expression of both Glut1 and hypoxia-inducible transcription factor 1α (HIF-1α) was upregulated in long-term T3-treated cholangiocarcinoma cells. Either pharmacological inhibition of Glut1 activity or siRNA-mediated knockdown of HIF-1α expression suppressed the increase in proliferation and chemoresistance induced by long-term T3 treatment. Notably, HIF-1α knockdown also reversed the effects of T3 exposure on Glut1 expression and glycolytic rate. Moreover, inhibition of lactate dehydrogenase suppressed upregulated expression of HIF-1α in long-term T3-treated cells. Finally, we found that elevated T3 levels activated the HIF-1α/Glut1 axis in ICC tissues and was associated with a worse prognosis of ICC patients. These results demonstrate that chronic exposure to T3 can promote the proliferation and chemoresistance of cholangiocarcinoma cells through a pathway involving HIF-1α, Glut1, and glycolysis.
Collapse
Affiliation(s)
- Dihua Huang
- Department of Endocrinology, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Feng Xu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Luohang Xu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Zekai Tang
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China
| | - Yanxin Hu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Jiandong Li
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China
| | - Jianhua Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China.
| |
Collapse
|
5
|
Qin F, Wang Y, Yang C, Ren Y, Wei Q, Tang Y, Xu J, Wang H, Luo F, Luo Q, Luo X, Liu X, Yang D, Zuo X, Yang Y, Cheng C, Xu J, Wang W, Liu T, Yi P. hnRNPL phase separation activates PIK3CB transcription and promotes glycolysis in ovarian cancer. Nat Commun 2025; 16:4828. [PMID: 40413189 PMCID: PMC12103590 DOI: 10.1038/s41467-025-60115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/13/2025] [Indexed: 05/27/2025] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecologic tumors worldwide, with unclear underlying mechanisms of pathogenesis. RNA-binding proteins (RBPs) primarily direct post-transcriptional regulation through modulating RNA metabolism. Recent evidence demonstrates that RBPs are also implicated in transcriptional control. However, the role and mechanism of RBP-mediated transcriptional regulation in tumorigenesis remain largely unexplored. Here, we show that the RBP heterogeneous ribonucleoprotein L (hnRNPL) interacts with chromatin and regulates gene transcription by forming phase-separated condensates in ovarian cancer. hnRNPL phase separation activates PIK3CB transcription and glycolysis, thus promoting ovarian cancer progression. Notably, we observe that the PIK3CB promoter is transcribed to produce a non-coding RNA which interacts with hnRNPL and promotes hnRNPL condensation. Furthermore, hnRNPL is significantly amplified in ovarian cancer, and its high expression predicts poor prognosis for ovarian cancer patients. By using cell-derived xenograft and patient-derived organoid models, we show that hnRNPL knockdown suppresses ovarian tumorigenesis. Together, our study reveals that phase separation of the chromatin-associated RBP hnRNPL promotes PIK3CB transcription and glycolysis to facilitate tumorigenesis in ovarian cancer. The formed hnRNPL-PIK3CB-AKT axis depending on phase separation can serve as a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Fengjiang Qin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenyue Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yifei Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Tang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haocheng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fatao Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingya Luo
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinzhao Zuo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunming Cheng
- Department of Radiation Oncology James Comprehensive Cancer Center and College of Medicine, The Ohio State University, Columbus Ohio, USA
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ping Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Hu R, Duan Z, Wang M, Liu M, Zhang Y, Lu Y, Qian Y, Wei E, Feng J, Guo P, Chen Y. Stable isotope tracing reveals glucose metabolism characteristics of drug-resistant B-cell acute lymphoblastic leukemia. Anal Chim Acta 2025; 1352:343884. [PMID: 40210293 DOI: 10.1016/j.aca.2025.343884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/26/2024] [Accepted: 03/02/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Adult B-cell acute lymphocytic leukemia (B-ALL) is a malignant hematologic tumor characterized by the uncontrolled proliferation of B-cell lymphoblasts in the bone marrow. Despite advances in treatment, including chemotherapy and consolidation therapy, many B-ALL patients experience unfavorable prognoses due to the development of drug resistance. The precise mechanisms governing chemotherapy resistance, particularly those related to metabolic reprogramming within tumors, remain inadequately elucidated. RESULTS Nalm6/DOX cells exhibited significantly elevated levels of glucose, pyruvate, alanine, glutamine, and glycine compared to Nalm6 cells. Conversely, reduced levels of citrate, acetate, and leucine were observed in Nalm6/DOX cells. Upon exposure to the culture medium supplemented with tracer 13C6-glucose, the Nalm6/DOX cells showed an increase in the abundance of 13C-alanine and a decrease in the levels of 13C-lactate, indicating impaired utilization of 13C-pyruvate. Combining β-chloro-alanine (ALTi) with DOX could decrease the drug resistance phenotype of Nalm6/DOX cells. The results demonstrated that glycolysis and tricarboxylic acid cycle were suppressed in Nalm6/DOX cells, while metabolic flux through the alanine and glutamine pathways was increased. Therefore, inhibition of alanine biosynthesis in Nalm6/DOX exhibits the potential to reverse drug resistance. SIGNIFICANCE A new insight into the impact of metabolism on chemotherapy resistance in B-ALL has been gained through the use of stable isotope resolved metabolomics based on nuclear magnetic resonance and ultra-performance liquid chromatography/tandem mass spectrometry. This provides promising ways for the development of innovative therapeutic strategies to alleviate drug resistance and relapse in affected patients.
Collapse
Affiliation(s)
- Rong Hu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fujian Medical University, Fuzhou, 350122, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Zhengwei Duan
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Mengyao Wang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fujian Medical University, Fuzhou, 350122, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Mengting Liu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Yaoxin Zhang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Yanxi Lu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Yuhan Qian
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Enjie Wei
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, China
| | - Yang Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fujian Medical University, Fuzhou, 350122, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
7
|
Xu M, Pan G, Zhang Q, Huang J, Wu Y, Ashan Y. FOXM1 boosts glycolysis by upregulating SQLE to inhibit anoikis in breast cancer cells. J Cancer Res Clin Oncol 2025; 151:162. [PMID: 40360780 PMCID: PMC12075401 DOI: 10.1007/s00432-025-06174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/15/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Resisting anoikis is a prerequisite for cancer to spread and invade and a major cause of cancer-related deaths. Yet, the intricate mechanisms of how cancer cells evade anoikis remain largely unknown. There is a significant need to explore how these mechanisms play out in breast cancer (BC). METHODS Bioinformatics analysis revealed the expression levels of SQLE and FOXM1 in BC tissue, along with their correlation. The enrichment pathways of SQLE were also explored. qPCR detected the expression of SQLE and FOXM1 in BC cells. CCK-8 assessed cell viability, while flow cytometry measured anoikis. Western blot was employed to examine the protein expression of key genes in glycolytic metabolism and apoptosis-related proteins. Extracellular acidification rate was quantified, and corresponding kits evaluated glucose consumption, lactate production, and adenosine triphosphate levels in cells. Dual-luciferase reporter assays and chromatin immunoprecipitation tests unveiled the binding relationship between FOXM1 and SQLE. RESULTS SQLE was found to be highly expressed in BC and enriched in pathways associated with anoikis and glycolysis. SQLE curbed anoikis in BC via the aerobic glycolysis pathway. There was also a direct binding between FOXM1 and SQLE and a positive correlation between their expression. Recovery experiments substantiated that FOXM1 targeted SQLE to suppress anoikis in BC cells. CONCLUSION FOXM1 upregulates SQLE, which in turn mediates glycolysis to suppress anoikis in BC. The FOXM1/SQLE axis is a promising therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Mei Xu
- Radiotherapy Department of Changji Hui Autonomous Prefecture People's Hospital, No. 303 Yan'an North Road, Changji City, Xinjiang Province, 831100, China.
| | - Guozhi Pan
- Cardiothoracic Surgery Department, Changji Hui Autonomous Prefecture People's Hospital, Changji, China
| | - Qian Zhang
- Radiotherapy Department of Changji Hui Autonomous Prefecture People's Hospital, No. 303 Yan'an North Road, Changji City, Xinjiang Province, 831100, China
| | - Jiangming Huang
- Department of Surgical Oncology, Changji People's Hospital, Changji, China
| | - Yehua Wu
- General Surgery Department of Changji Hui Autonomous Prefecture People's Hospital, Changji, China
| | - Yashengjiang Ashan
- Radiotherapy Department of Changji Hui Autonomous Prefecture People's Hospital, No. 303 Yan'an North Road, Changji City, Xinjiang Province, 831100, China
| |
Collapse
|
8
|
Garcia-Sureda L, Jacques C, Pons DG, Sastre-Serra J, Oliver J, Floris I. Active Substances from the Micro-Immunotherapy Medicine 2LMIREG Display Antioxidative Properties In Vitro in Two Colorectal Cancer Cell Lines. Life (Basel) 2025; 15:743. [PMID: 40430171 PMCID: PMC12112867 DOI: 10.3390/life15050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Mitochondria play a crucial role in oxidative stress control and reactive oxygen species (ROS) generation, impacting many cellular processes. Dysregulated mitochondria are linked to diseases such as colorectal cancer (CRC), known for its aggressiveness. Since ROS plays a role in tumor growth and metastasis, there is considerable interest in developing therapies that target these reactives. This study investigates the effects of some active substances from the micro-immunotherapy (MI) medicine 2LMIREG® on mitochondrial metabolism parameters in two CRC-derived cell lines. HT-29 and the metastasis-derived SW620 cell lines, which heavily rely on ROS for proliferation, were used to evaluate the effects of the tested active substances. Cellular viability and various mitochondrial metabolism parameters were measured: ROS production, mitochondrial mass index, and mitochondrial DNA levels. In both cell lines, the tested MI formulation reduced cellular viability as well as ROS production compared to the vehicle used as a control. The treatment also appeared to increase the mitochondrial mass index without affecting mitochondrial DNA levels in the two CRC models. Altogether, these preliminary results report for the first time the mitochondria-related effects of some actives from 2LMIREG® in two CRC cell models and open perspectives for further in-depth metabolism-based studies.
Collapse
Affiliation(s)
| | - Camille Jacques
- Preclinical Research Department, Labo’life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| | - Daniel G. Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Ilaria Floris
- Preclinical Research Department, Labo’life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| |
Collapse
|
9
|
Diab M, Hamdi A, Al-Obeidat F, Hafez W, Cherrez-Ojeda I, Gador M, Rashid G, Elkhazin SF, Ibrahim MA, Ismail TF, Alkafaas SS. Discovery of drug transporter inhibitors tied to long noncoding RNA in resistant cancer cells; a computational model -in silico- study. Front Immunol 2025; 16:1511029. [PMID: 40352931 PMCID: PMC12061905 DOI: 10.3389/fimmu.2025.1511029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/26/2025] [Indexed: 05/14/2025] Open
Abstract
Chemotherapeutic resistance is a major obstacle to chemotherapeutic failure. Cancer cell resistance involves several mechanisms, including epithelial-to-mesenchymal transition (EMT), signaling pathway bypass, drug efflux activation, and impairment of drug entry. P-glycoproteins (P-gp) are an efflux transporter that pumps chemotherapeutic drugs out of cancer cells, resulting in chemotherapeutic resistance. Several types of long noncoding RNA (lncRNAs) have been identified in resistant cancer cells, including ODRUL, MALAT1, and ANRIL. The high expression level of ODRUL is related to the induction of ATP-binding cassette (ABC) gene expression, resulting in the emergence of doxorubicin resistance in osteosarcoma. lncRNAs are observed to be regulators of drug transporters in cancer cells such as MALAT1 and ANRIL. Targeting P-gp expression using natural products is a new strategy to overcome cancer cell resistance and improve the sensitivity of resistant cells toward chemotherapies. This review validates the inhibitory effects of natural products on P-gp expression and activity using in silico molecular docking. In silico analysis showed that Delphinidin and Asparagoside-f are the most significant natural product inhibitors of p-glycoprotein-1. These inhibitors can reverse multi-drug resistance and induce the sensitivity of resistant cancer cells toward chemotherapy based on in silico molecular docking. It is important to validate that pre-elementary docking can be confirmed using in vitro and in vivo experimental data.
Collapse
Affiliation(s)
- Mohanad Diab
- Mediclinic Airport Road Hospital, Abu Dhabi, United Arab Emirates
| | - Amel Hamdi
- Molecular biology and Hematology, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Feras Al-Obeidat
- College of Technological Innovation at Zayed University, Abu Dhabi, United Arab Emirates
| | - Wael Hafez
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
- Department of Internal Medicine, Medical Research and Clinical Studies Institute, The National Research Center, Cairo, Egypt
| | - Ivan Cherrez-Ojeda
- School of Health, Universidad Espíritu Santo-Ecuador, Samborondón, Guayas, Ecuador
- Respiralab Research Group, Guayaquil, Guayas, Ecuador
| | - Muneir Gador
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
| | - Gowhar Rashid
- Department of Clinical Biochemistry, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Sana F. Elkhazin
- Mediclinic Airport Road Hospital, Abu Dhabi, United Arab Emirates
| | | | | | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Yang Y, Qiang C, Jie Z, Ce H, Yan H, Xiu-Bin L, Wen-Mei F, Xu Z, Yu G. Exosomes derived from ccRCC cells confers fibroblasts activation to foster tumor progression through Warburg effect by downregulating PANK3. Cell Death Discov 2025; 11:198. [PMID: 40280913 PMCID: PMC12032068 DOI: 10.1038/s41420-025-02434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/27/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
The interaction between tumor-derived exosomes and stroma plays a crucial role in tumor progression. However, the mechanisms through which tumor cells influence stromal changes are not yet fully understood. In our study, through single-cell sequencing analysis of clear cell renal cell carcinoma tissues at varying stages of progression, we determined that the proportion of cancer-associated fibroblasts (CAFs) in advanced renal cell carcinoma tissues was notably higher compared to localized renal cell carcinoma tissues. Comparison of transcriptome sequencing and energy metabolism tests between CAFs primarily isolated from advanced renal cell carcinoma tissues and normal fibroblasts (NFs) revealed the occurrence of the Warburg effect during the fibroblast activation process. Additionally, we observed an increase in glucose transporter GLUT1 expression, total reactive oxygen species (ROS) levels, lactic acid production, and subsequent excretion of excess lactic acid through monocarboxylate transporter-4 (MCT4) in CAFs. Interestingly, renal cancer cells were found to uptake lactic acid via MCT1 upon interaction with CAFs, thereby enhancing their malignant phenotypes. Furthermore, the down-regulation of PANK3 induced by exosomes derived from renal cancer cells was identified as a crucial step in fibroblast activation. These findings indicate that exosomes play a role in facilitating intercellular communication between renal cancer cells and fibroblasts. Targeting this communication pathway could potentially offer new strategies for the prevention and treatment of advanced renal cell carcinoma.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, the third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Cheng Qiang
- Department of Urology, the third Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhu Jie
- Department of Urology, the third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Han Ce
- Department of Urology, the third Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Huang Yan
- Department of Urology, the third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Li Xiu-Bin
- Department of Urology, the third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fan Wen-Mei
- Department of Urology, the third Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Zhang Xu
- Department of Urology, the third Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Gao Yu
- Department of Urology, the third Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
11
|
Hunt S, Thyagarajan A, Sahu RP. Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer. Med Sci (Basel) 2025; 13:47. [PMID: 40407542 PMCID: PMC12101198 DOI: 10.3390/medsci13020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/09/2025] [Accepted: 04/21/2025] [Indexed: 05/26/2025] Open
Abstract
Cancer is the second leading cause of mortality worldwide. Despite the available treatment options, a majority of cancer patients develop drug resistance, indicating the need for alternative approaches. Repurposed drugs, such as antiglycolytic and anti-microbial agents, have gained substantial attention as potential alternative strategies against different disease pathophysiologies, including lung cancer. To that end, multiple studies have suggested that the antiglycolytic dichloroacetate (DCA) and the antibiotic salinomycin (SAL) possess promising anticarcinogenic activity, attributed to their abilities to target the key metabolic enzymes, ion transport, and oncogenic signaling pathways involved in regulating cancer cell behavior, including cell survival and proliferation. We used the following searches and selection criteria. (1) Biosis and PubMed were used with the search terms dichloroacetate; salinomycin; dichloroacetate as an anticancer agent; salinomycin as an anticancer agent; dichloroacetate side effects; salinomycin side effects; salinomycin combination therapy; dichloroacetate combination therapy; and dichloroacetate or salinomycin in combination with other agents, including chemotherapy and tyrosine kinase inhibitors. (2) The exclusion criteria included not being related to the mechanisms of DCA and SAL or not focusing on their anticancer properties. (3) All the literature was sourced from peer-reviewed journals within a timeframe of 1989 to 2024. Importantly, experimental studies have demonstrated that both DCA and SAL exert promising anticarcinogenic properties, as well as having synergistic effects in combination with other therapeutic agents, against multiple cancer models. The goal of this review is to highlight the mechanistic workings and efficacy of DCA and SAL as monotherapies, and their combination with other therapeutic agents in various cancer models, with a major emphasis on non-small-cell lung cancer (NSCLC) treatment.
Collapse
Affiliation(s)
- Sunny Hunt
- Department of Chemistry and Biochemistry, Oberlin College, 173 W Lorain St, Oberlin, OH 44074, USA;
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Dayton, OH 45435, USA;
| | - Ravi P. Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Dayton, OH 45435, USA;
| |
Collapse
|
12
|
Zhang W, Xia M, Li J, Liu G, Sun Y, Chen X, Zhong J. Warburg effect and lactylation in cancer: mechanisms for chemoresistance. Mol Med 2025; 31:146. [PMID: 40264038 PMCID: PMC12016192 DOI: 10.1186/s10020-025-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
In the clinical management of cancers, the emergence of chemoresistance represents a profound and imperative "pain point" that requires immediate attention. Understanding the mechanisms of chemoresistance is essential for developing effective therapeutic strategies. Importantly, existing studies have demonstrated that glucose metabolic reprogramming, commonly referred to as the Warburg effect or aerobic glycolysis, is a major contributor to chemoresistance. Additionally, lactate, a byproduct of aerobic glycolysis, functions as a signaling molecule that supports lysine lactylation modification of proteins, which also plays a critical role in chemoresistance. However, it is insufficient to discuss the role of glycolysis or lactylation in chemoresistance from a single perspective. The intricate relationship between aerobic glycolysis and lactylation plays a crucial role in promoting chemoresistance. Thus, a thorough elucidation of the mechanisms underlying chemoresistance mediated by aerobic glycolysis and lactylation is essential. This review provides a comprehensive overview of these mechanisms and further outlines that glycolysis and lactylation exert synergistic effects, promoting the development of chemoresistance and creating a positive feedback loop that continues to mediate this resistance. The close link between aerobic glycolysis and lactylation suggests that the application of glycolysis-related drugs or inhibitors in cancer therapy may represent a promising anticancer strategy. Furthermore, the targeted application of lactylation, either alone or in combination with other treatments, may offer new therapeutic avenues for overcoming chemoresistance.
Collapse
Affiliation(s)
- Wenjie Zhang
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Min Xia
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiahui Li
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Gaohua Liu
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Sun
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xisha Chen
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jing Zhong
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
13
|
Zhao L, Zhou Q, Krishnan V, Chan J, Sasse S, Tallapragada S, Eisenberg D, Leung L, Dorigo O, Morser J. Active Forms of Chemerin Are Elevated in Human and Mouse Ovarian Carcinoma. Biomedicines 2025; 13:991. [PMID: 40299651 PMCID: PMC12024974 DOI: 10.3390/biomedicines13040991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/01/2025] Open
Abstract
Background: Chemerin is a small adipokine that is activated and inactivated by proteolysis of its C-terminus with a role in regulating metabolism, immunity, and inflammation. Significant levels of chemerin are found in circulation and ascitic fluid of ovarian carcinoma patients. Methods: We investigated the levels of different chemerin forms in three cohorts: people with BMI < 25, with BMI > 40, and ovarian carcinoma ascites with ELISAs specific for different chemerin forms. Ascites from a mouse model of ovarian carcinoma were also analyzed, and the model was compared between wild-type and chemerin-deficient mice. Results: Conversion of plasma to serum increased the levels of processed chemerin with lower increases in samples from people with BMI < 25 than in people with BMI > 40. High levels of total chemerin and processed forms of chemerin were found in ascitic fluid from both patients who had a mean BMI of 29 and the mouse model. In chemerin-deficient mice the tumors grew slower than in wild-type mice. Conclusions: Serum has more processed and active chemerin than plasma irrespective of source. Ascites of ovarian carcinoma patients contained high levels of active chemerin, which, based on the mouse data, enhance tumor growth.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.Z.); (Q.Z.); (L.L.)
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA;
| | - Qin Zhou
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.Z.); (Q.Z.); (L.L.)
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA;
| | - Venkatesh Krishnan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford Women’s Cancer Center, Stanford Cancer Institute, Stanford, CA 94305, USA; (V.K.); (J.C.); (S.S.); (S.T.); (O.D.)
| | - Justine Chan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford Women’s Cancer Center, Stanford Cancer Institute, Stanford, CA 94305, USA; (V.K.); (J.C.); (S.S.); (S.T.); (O.D.)
| | - Simone Sasse
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford Women’s Cancer Center, Stanford Cancer Institute, Stanford, CA 94305, USA; (V.K.); (J.C.); (S.S.); (S.T.); (O.D.)
| | - Supreeti Tallapragada
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford Women’s Cancer Center, Stanford Cancer Institute, Stanford, CA 94305, USA; (V.K.); (J.C.); (S.S.); (S.T.); (O.D.)
| | - Dan Eisenberg
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA;
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lawrence Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.Z.); (Q.Z.); (L.L.)
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA;
| | - Oliver Dorigo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford Women’s Cancer Center, Stanford Cancer Institute, Stanford, CA 94305, USA; (V.K.); (J.C.); (S.S.); (S.T.); (O.D.)
| | - John Morser
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA;
| |
Collapse
|
14
|
Chen Y, Zhu H, Luo Y, Xie T, Hu Y, Yan Z, Ji W, Wang Y, Yin Q, Xian H. ALDOC promotes neuroblastoma progression and modulates sensitivity to chemotherapy drugs by enhancing aerobic glycolysis. Front Immunol 2025; 16:1573815. [PMID: 40313939 PMCID: PMC12043483 DOI: 10.3389/fimmu.2025.1573815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Neuroblastoma (NB), a malignant extracranial solid tumor originating from the sympathetic nervous system, exhibits poor prognosis in high-risk cases, with a 5-year overall survival rate below 50%. Glycolysis has been implicated in NB pathogenesis, and targeting glycolysis-related pathways shows therapeutic potential. This study investigates the role of the glycolysis-associated gene ALDOC in NB pathogenesis and its impact on chemotherapy sensitivity. Methods Transcriptomic data from NB patients were analyzed to identify ALDOC as an independent risk factor for high-risk NB. Protein expression levels of ALDOC were assessed in NB cells versus normal cells using immunoblotting. Functional experiments, including proliferation and migration assays, were conducted in ALDOC-interfered NB cell lines. Glycolytic activity was evaluated by measuring glucose uptake, lactate production, and ATP generation. Additionally, the sensitivity of ALDOC-downregulated NB cells to cisplatin and cyclophosphamide was tested to explore its role in chemotherapy response. Results ALDOC was identified as a high-risk prognostic marker in NB, with elevated protein expression in NB cells compared to normal controls. Silencing ALDOC significantly inhibited NB cell proliferation and migration. Glycolytic activity was markedly reduced in ALDOC-downregulated cells, evidenced by decreased glucose uptake, lactate production, and ATP levels. Furthermore, ALDOC suppression enhanced NB cell sensitivity to cisplatin and cyclophosphamide, suggesting a glycolysis-dependent mechanism underlying chemotherapy resistance. Discussion Our findings highlight ALDOC as a critical driver of NB progression through glycolysis acceleration, with implications for therapeutic targeting. The observed increase in chemotherapy sensitivity upon ALDOC inhibition underscores its potential as a biomarker for treatment optimization. However, the complexity of glycolysis regulation, involving multiple genes and pathways, necessitates further mechanistic studies to clarify ALDOC's specific role. Despite this limitation, our work emphasizes the importance of aerobic glycolysis in NB pathogenesis and provides a foundation for developing novel therapeutic strategies targeting ALDOC or associated pathways. Future research should explore interactions between ALDOC and other glycolytic regulators to refine combinatorial treatment approaches.
Collapse
Affiliation(s)
- Yunpeng Chen
- School of Medicine, Nantong University, Nantong, China
| | - Haixia Zhu
- Cancer Research Center Nantong, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Yishu Luo
- School of Medicine, Nantong University, Nantong, China
| | - Tianyue Xie
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, China
| | - Youyang Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiwei Yan
- School of Medicine, Nantong University, Nantong, China
| | - Weichao Ji
- School of Medicine, Nantong University, Nantong, China
| | - YaXuan Wang
- Department of Urology, Nantong Tumor Hospital, Nantong, China
| | - Qiyou Yin
- Department of Paediatric Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hua Xian
- Department of Paediatric Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Liu X, Ren H, Wang A, Liang Z, Min S, Yao S, Wan S, Gao Y, Wang H, Cai H. SIX1 enhances aerobic glycolysis and progression in cervical cancer through ENO1. Hum Cell 2025; 38:88. [PMID: 40234326 DOI: 10.1007/s13577-025-01215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
Cervical cancer is a significant threat to women's health, and its incidence in China has been increasing in recent years. Treating advanced and recurrent cervical cancer has become increasingly challenging, highlighting the urgent need to identify new therapeutic targets for this disease. SIX1 is associated with cell proliferation, metastasis, and chemoresistance in various human malignancies. SIX1 overexpression in cervical cancer tissues has been linked to increased clinical stage and lymph node metastasis; however, the regulatory function of SIX1 in cervical cancer remains largely unexplored. In this study, we found that SIX1 promotes cervical cancer cell proliferation, invasion, and migration by enhancing glucose metabolism. Additionally, SIX1 was shown to influence the glycolytic process in cervical cancer by upregulating GLUT1, PFK1, PGK1, ENO1, and PKM2 expression. Furthermore, we identified a binding site for SIX1 in the ENO1 promoter region, demonstrating that SIX1 has a regulatory effect. These results suggest that SIX1 regulates proliferation and glucose metabolism in cervical cancer cells by promoting the transcription of key glycolytic enzymes, such as ENO1. Understanding this regulatory mechanism is crucial for identifying potential therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Xuelian Liu
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Hang Ren
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Anjin Wang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Ziyan Liang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Su Min
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Shijie Yao
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Shimeng Wan
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China.
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China.
| |
Collapse
|
16
|
Liang Y, An R, Du P, Wei Y, Liu S, Zheng J, Lei P, Zhang H. NIR-Activated Hollow Upconversion Nanocomposites for Tumor Therapy via GLUT1 Inhibition and Mitochondrial Function Disruption. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20849-20858. [PMID: 40166910 DOI: 10.1021/acsami.5c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Tumor remains a leading contributor to global mortality rates, necessitating urgent advancements in therapeutic interventions. Due to the intricate nature of the tumor microenvironment, individual differences make it difficult to achieve desired efficacy with a single strategy. To overcome these challenges, we develop for the first time hollow NaBiF4-based nanocomposites NaBiF4-W/R-D for tumor therapy by glucose transporter 1 (GLUT1) inhibition and mitochondrial function disruption. NaBiF4-W/R-D can inhibit GLUT1 function due to the presence of WZB117, which leads to a decrease in intracellular glucose in tumor cells, leaving them in a starved state. Meanwhile, the upconversion luminescence of NaBiF4-W/R-D under near-infrared (NIR) laser irradiation can stimulate the photosensitizer to efficiently generate singlet oxygen to disrupt the mitochondrial function and then kill the tumor cells. In addition, NIR-II emission from NaBiF4-W/R-D is used for fluorescence imaging to determine the optimal time point for tumor treatment. Finally, NaBiF4-W/R-D leads to mitochondrial membrane potential depolarization, impaired mitochondrial function, activation of caspase-3, and ultimately the amplification of apoptosis.
Collapse
Affiliation(s)
- Yuan Liang
- School of Rare Earths, University of Science and Technology of China, Anhui, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Jiangxi, Ganzhou 341000, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| | - Ran An
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| | - Pengye Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| | - Jianhao Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| | - Hongjie Zhang
- School of Rare Earths, University of Science and Technology of China, Anhui, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Jiangxi, Ganzhou 341000, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Zhang R, Tan Y, Xu K, Huang N, Wang J, Liu M, Wang L. Cuproplasia and cuproptosis in hepatocellular carcinoma: mechanisms, relationship and potential role in tumor microenvironment and treatment. Cancer Cell Int 2025; 25:137. [PMID: 40205387 PMCID: PMC11983883 DOI: 10.1186/s12935-025-03683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 02/08/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the main phenotype of liver cancer with a poor prognosis. Copper is vital in liver function, and HCC cells rely on it for growth and metastasis, leading to cuproplasia. Excessive copper can induce cell death, termed cuproptosis. Tumor microenvironment (TME) is pivotal in HCC, especially in immunotherapy, and copper is closely related to the TME pathogenesis. However, how these two mechanisms contribute to the TME is intriguing. MAIN BODY We conducted the latest progress literature on cuproplasia and cuproptosis in HCC, and summarized their specific roles in TME and treatment strategies. The mechanisms of cuproplasia and cuproptosis and their relationship and role in TME have been deeply summarized. Cuproplasia fosters TME formation, angiogenesis, and metastasis, whereas cuproptosis may alleviate mitochondrial dysfunction and hypoxic conditions in the TME. Inhibiting cuproplasia and enhancing cuproptosis in HCC are essential for achieving therapeutic efficacy in HCC. CONCLUSION An in-depth analysis of cuproplasia and cuproptosis mechanisms within the TME of HCC unveils their opposing nature and their impact on copper regulation. Grasping the equilibrium between these two factors is crucial for a deeper understanding of HCC mechanisms to shed light on novel directions in treating HCC.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Yunfei Tan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ke Xu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, P.O. Box 2258, 100021, Beijing, People's Republic of China.
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
18
|
Lyu H, Bao S, Cai L, Wang M, Liu Y, Sun Y, Hu X. The role and research progress of serine metabolism in tumor cells. Front Oncol 2025; 15:1509662. [PMID: 40265021 PMCID: PMC12011608 DOI: 10.3389/fonc.2025.1509662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Serine is crucial for tumor initiation, progression, and adaptive immunity. Metabolic pathways for serine synthesis, acquisition, and utilization in tumors and tumor-associated cells are influenced by various physiological factors and the tumor microenvironment, leading to metabolic reprogramming and amplification. Excessive serine metabolism promotes abnormal macromolecule biosynthesis, mitochondrial dysfunction, and epigenetic modifications, driving malignant transformation, proliferation, metastasis, immune suppression, and drug resistance in tumor cells. Restricting dietary serine intake or reducing the expression of serine synthetic enzymes can effectively slow tumor growth and extend patient survival. Consequently, targeting serine metabolism has emerged as a novel and promising research focus in cancer research. This paper reviews serine metabolic pathways and their roles in tumor development. It summarizes the influencing factors of serine metabolism. The article explores the significance of serine synthesis and metabolizing enzymes, along with related biomarkers, in tumor diagnosis and treatment, providing new insights for developing targeted therapies that modulate serine metabolism in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Sun
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoyang Hu
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Yin R, Gao J, Liu Y, Guo C. Functional analysis of the effects of propofol on tamoxifen‑resistant breast cancer cells: Insights into transcriptional regulation. Oncol Lett 2025; 29:194. [PMID: 40041408 PMCID: PMC11878209 DOI: 10.3892/ol.2025.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Although 70% of patients with estrogen receptor-positive breast cancer benefit from tamoxifen (TAM) therapy, the development of resistance to TAM leads to high rates of metastasis and a poor prognosis. Propofol, a commonly used anesthetic, can inhibit the occurrence and progression of breast cancer. In the present study, the effects of propofol on TAM-resistant (TR) breast cancer cells were evaluated. MCF7-TR cells were treated with or without propofol. Subsequently, cell cycle progression and the induction of apoptosis were detected by flow cytometry, whereas cell proliferation was assessed using Cell Counting Kit-8 and colony formation assays. Furthermore, the potential transcriptional regulatory effects of propofol on MCF7-TR cells were investigated using RNA sequencing. The results indicated that propofol significantly promoted cell cycle arrest, induced apoptosis, and inhibited proliferation and colony formation in MCF7-TR cells. Furthermore, transcriptome sequencing analysis revealed 1,065 differentially expressed genes between propofol-treated MCF7-TR and untreated MCF7-TR cells. Gene Ontology annotation enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and Gene Set Enrichment Analysis indicated that propofol affected the expression levels of genes located on the 'plasma membrane' and 'cell periphery', while mainly regulating signals involved in cancer biology, immune response and metabolic pathways. These results identified the potential effects of propofol on TR breast cancer cells and provided a theoretical basis for clinical treatment, particularly for individuals with TAM resistance.
Collapse
Affiliation(s)
- Runyang Yin
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Jing Gao
- First Clinical Medical College, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Yang Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Chunyan Guo
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| |
Collapse
|
20
|
Liu W, Wang W. LncRNA in gastric cancer drug resistance: deciphering the therapeutic strategies. Front Oncol 2025; 15:1552773. [PMID: 40236651 PMCID: PMC11996845 DOI: 10.3389/fonc.2025.1552773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Gastric cancer (GC) is an exceedingly aggressive disease and ranks as the third leading cause of cancer-related deaths, which poses a huge health burden globally. Chemotherapy is commonly employed during the middle to advanced stages of cancer, although it faces frequent treatment failures attributed to drug resistance. Thus, it is imperative for researchers to identify potential targets for overcoming therapeutic resistance, thereby facilitating the development of novel anti-cancer agents for GC patients with advanced stages. Long noncoding RNAs (lncRNAs) are a diverse group of transcripts with limited protein-coding capacity, which have been recognized for functional molecules for regulating cancer progression including cell proliferation, metastasis, and drug resistance in GC. In this review, we examine the intricate molecular networks on the role of lncRNAs in drug resistance of GC. LncRNAs conferred cancer cell resistance to anti-cancer drug through various molecular mechanisms, therefore functioning as promising therapeutic targets for GC patients. Additionally, we discuss current advancements of strategies targeting lncRNAs in cancer therapy, which may pave the way for lncRNA-mediated precision medicine for this malignant disease.
Collapse
Affiliation(s)
| | - WeiFa Wang
- Department of Gastrointestinal Surgery, Chengdu Seventh People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Wang J, Zhang N, Wang Y, Chen F, Wang L, Wang K, Yao X, Pan X. LncRNA SPINT1-AS1 enhances the Warburg effect and promotes the progression of osteosarcoma via the miR-135b-5p/PGAM1 axis. Cancer Cell Int 2025; 25:124. [PMID: 40170094 PMCID: PMC11963676 DOI: 10.1186/s12935-025-03761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Osteosarcoma (OS) is a malignant bone tumor that originates from interstitial tissues and affects the health of children and adolescents. Long noncoding RNAs (lncRNAs) are an intriguing category of widely distributed endogenous RNAs involved in OS progression, many of which remain functionally uncharacterized. Herein, we observed an increased expression of lncRNA SPINT1-AS1 in OS tissues and cell lines. Further analysis confirmed that SPINT1-AS1 promotes the proliferation and metastasis of OS cells. Moreover, miR-135b-5p was identified as a downstream target of SPINT1-AS1. Through bioinformatics analysis, PGAM1 mRNA was validated as a target of miR-135b-5p via RIP and luciferase reporter assays. SPINT1-AS1 could enhance OS cell proliferation and metastasis by promoting aerobic glycolysis, acting as a ceRNA by binding to miR-135b-5p, thereby increasing PGAM1 expression. Taken together, these results indicate that SPINT1-AS1 functions as a tumor promoter and regulates OS cell progression through the miR-135b-5p/PGAM1 axis.
Collapse
Affiliation(s)
- Jinyou Wang
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Ning Zhang
- Department of Orthopedics, Yixing People's Hospital, Yixing, Jiangsu, China
| | - Yan Wang
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Fanghong Chen
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Lei Wang
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Kailun Wang
- Department of Orthopedics, Zhenjiang First People's Hospital Branch, Zhenjiang, People's Republic of China.
| | - Xiao Yao
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
| | - Xiaohui Pan
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
22
|
Liu C, He W, Zhao H, Wang S, Qian Z. KRT80, Regulated by RNF8-Mediated Ubiquitination, Contributes to Glucose Metabolic Reprogramming and Progression of Glioblastoma. Neurochem Res 2025; 50:128. [PMID: 40146410 DOI: 10.1007/s11064-025-04380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
Glioblastoma (GBM) is a highly malignant and aggressive brain tumor with a remarkably poor prognosis and is one of the greatest challenges in the field of neurosurgery. Keratin 80 (KRT80) is primarily expressed in epithelial cells and is involved in the stability and integrity of cellular structures. Although it plays a role in skin and hair follicle development, its function in bridging cancer cells with metabolic pathways is gradually being revealed, such as its activation of glycolysis pathways to promote tumor proliferation. Ring finger protein 8 (RNF8) is an E3 ubiquitin ligase, whose expression has been documented to be significantly reduced in gliomas. Predictions from multiple databases suggest that KRT80 may bind specifically with RNF8. This study aimed to explore the function of KRT80 in GBM procession and the regulatory mechanism between RNF8 and KRT80. We confirmed that KRT80 promoted cell proliferation by constructing overexpression and knockout cell lines. This was also demonstrated by in vivo tumor formation experiments. Besides, higher caspase3/9 activity induced by KRT80 knockout prompted active apoptosis, which was confirmed by flow cytometry showing increased rate of apoptosis. Results also found KRT80 overexpression caused the activation of glycolytic pathways (glucose transporter 1, hexokinase2, and lactate dehydrogenase A) by real-time PCR and the increase of metabolites levels by non-targeted metabolomics. Immunofluorescence co-localization and co-immunoprecipitation assays showed RNF8 attenuated KRT80-induced adverse effects via influencing its ubiquitination degradation. In conclusion, KRT80 is regulated by RNF8-mediated ubiquitination, promoting glycolysis and the progression of GBM.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Weiming He
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Hantong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
| | - Shuguang Wang
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China.
| |
Collapse
|
23
|
Flausino LE, Carrasco AGM, Furuya TK, Tuan WJ, Chammas R. Impact of SGLT2 inhibitors on survival in gastrointestinal cancer patients undergoing chemotherapy and/or radiotherapy: a real-world data retrospective cohort study. BMC Cancer 2025; 25:542. [PMID: 40133838 PMCID: PMC11938601 DOI: 10.1186/s12885-025-13966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND The role of sodium-glucose co-transporter 2 inhibitor (SGLT2i) drugs in the management of diabetes and cardiovascular disease is well-established, but emerging evidence suggests potential effects on cancer outcomes, including gastrointestinal (GI) cancers. We conducted an extensive, sex-oriented, real-world data analysis to investigate whether SGLT2i can enhance GI cancer outcomes when used alongside standard therapies such as chemotherapy and radiotherapy. METHODS The study applied a retrospective cohort design with data from the TriNetX research database ( https://trinetx.com ), examining GI cancer patients treated with chemotherapy and/or radiotherapy between 2013 and 2023. The intervention cohort consisted of Gl cancer patients who received SGLT2i, while the control cohort did not. A 5-year follow-up period was used, and baseline characteristics were balanced using a 1:1 propensity score matching technique. Cox proportional-hazards and logistic regression models assessed mortality and morbidity risks between the cohorts. RESULTS The study included 6,389 male and 3,457 female patients with GI cancer (ICD-10: C15-C25). The use of SGLT2i was significantly associated with improved survival for both male (HR 0.568; 95% CI 0.534-0.605) and female (HR 0.561; 95% CI 0.513-0.614) patients undergoing chemotherapy and/or radiotherapy. SGLT2i use also correlated significantly with lower hospitalisation rates both in male (OR 0.684; 95% CI 0.637-0.734) and female (OR, 0.590; 95% CI 0.536-0.650) patients. The analysis of GI cancer subtypes also demonstrated similar benefits, without significant adverse effects. CONCLUSIONS Repurposing SGLT2 inhibitors for cancer treatment could potentially improve outcomes for GI cancer patients without causing significant side effects. Further clinical trials are needed to confirm these findings and establish the optimal condition for its application in GI cancer treatment.
Collapse
Affiliation(s)
- Lucas E Flausino
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil
| | - Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil
| | - Tatiane Katsue Furuya
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil
| | - Wen-Jan Tuan
- Department of Family and Community Medicine, and Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Roger Chammas
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Wang K, Zhong D, Yang L, Zeng C, Hu Q, Zhou M, Tang Z. Microalgae-based biodegradable embolic agent for the treatment of hepatocellular carcinoma through transarterial embolization. J Nanobiotechnology 2025; 23:234. [PMID: 40119439 PMCID: PMC11929208 DOI: 10.1186/s12951-025-03290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Transarterial chemoembolization (TACE) serves as a locoregional therapy for hepatocellular carcinoma (HCC) patients. Nevertheless, the rapid dissociation of conventional TACE (cTACE) preparations, attributed to the instability of the emulsion, often leads to inadequate concentrations of chemotherapeutic agents within the tumor site. Consequently, there exists a pressing demand for an embolic agent that possesses facile injectability and the capacity to provide continuous delivery of chemotherapy drugs. Herein, we leveraged the inherent drug-loading capabilities and distinctive structural attributes of Spirulina platensis (SP) to formulate a novel microalgae embolic agent, doxorubicin loaded-Spirulina platensis (DOX-SP). The DOX-SP formulation exhibited a notable capacity for drug loading and demonstrated the ability to sustain drug release in response to acidic tumor microenvironments (TME). The spiral structure and micron-scale size of SP contributed to effective vascular embolization and continuous localized release of DOX. Furthermore, the biodegradability of SP as a natural biomaterial ensured good biosafety, with its degradation products potentially enhancing the pH of TME. In a rat model of in-situ hepatocellular carcinoma, DOX-SP effectively suppressed tumor growth and significantly reduced tumor size following intra-arterial injection, while exhibiting minimal adverse effects. Taken together, the high drug loading capacity, effective vascular embolization, pH sensitivity, TME pH modulation, and biodegradability of DOX-SP made it a promising embolic agent for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Kaiyue Wang
- Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Danni Zhong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
| | - Lingxiao Yang
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Cheng Zeng
- Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qitao Hu
- Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Min Zhou
- Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China.
- Key Laboratory of Cancer Prevention and Intervention (Ministry of Education), Zhejiang University, Hangzhou, 310009, China.
- Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China.
- The National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, China.
| | - Zhe Tang
- Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
25
|
Lu B, Chen S, Guan X, Chen X, Du Y, Yuan J, Wang J, Wu Q, Zhou L, Huang X, Zhao Y. Lactate accumulation induces H4K12la to activate super-enhancer-driven RAD23A expression and promote niraparib resistance in ovarian cancer. Mol Cancer 2025; 24:83. [PMID: 40102876 PMCID: PMC11921584 DOI: 10.1186/s12943-025-02295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Ovarian cancer is a gynecological malignancy with the highest recurrence and mortality rates. Although niraparib can effectively affect its progression, the challenge of drug resistance remains. Herein, niraparib-resistant ovarian cancer cell lines were constructed to identify the abnormally activated enhancers and associated target genes via RNA in situ conformation sequencing. Notably, the target gene RAD23A was markedly upregulated in niraparib-resistant cells, and inhibiting RAD23A restored their sensitivity. Additionally, abnormal activation of glycolysis in niraparib-resistant cells induced lactate accumulation, which promoted the lactylation of histone H4K12 lysine residues. Correlation analysis showed that key glycolysis enzymes such as pyruvate kinase M and lactate dehydrogenase A were significantly positively correlated with RAD23A expression in ovarian cancer. Additionally, H4K12la activated the super-enhancer (SE) of niraparib and RAD23A expression via MYC transcription factor, thereby enhancing the DNA damage repair ability and promoting the drug resistance of ovarian cancer cells. Overall, the findings of this study indicate that lactic acid accumulation leads to lactylation of histone H4K12la, thereby upregulating SE-mediated abnormal RAD23A expression and promoting niraparib resistance in ovarian cancer cells, suggesting RAD23A as a potential therapeutic target for niraparib-resistant ovarian cancer.
Collapse
Affiliation(s)
- Bingfeng Lu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Xue Guan
- Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xi Chen
- Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yuping Du
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Jielin Wang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Qinghua Wu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Lingfeng Zhou
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Xiangchun Huang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Raod, Liwan District, Guangzhou, Guangdong Province, P. R. China.
- Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.
| |
Collapse
|
26
|
Wu X, Wang B, Hou Y, Fang Y, Jiang Y, Song Y, Liu Y, Jin C. PFKM-Mediated Glycolysis: A Pathway for ASIC1 to Enhance Cell Survival in the Acidic Microenvironment of Liver Cancer. Biomolecules 2025; 15:356. [PMID: 40149892 PMCID: PMC11940220 DOI: 10.3390/biom15030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
The acidic tumor microenvironment plays a critical role in promoting liver cancer cell survival by enhancing glycolysis and adaptive mechanisms. Acid-sensing ion channel 1 (ASIC1) is a key regulator of pH sensing, but its role in liver cancer progression and underlying mechanisms remain unclear. In this study, we examined ASIC1 expression in clinical liver tumor tissues using immunohistochemistry and immunofluorescence, correlating it with tumor stages. HepG2 and Li-7 cells were cultured in tumor supernatant and acidic conditions to mimic the tumor microenvironment. Western blotting assessed the expression of ASIC1 and glycolysis-related enzymes, with siRNA transfections used to investigate ASIC1 and phosphofructokinase muscle-type (PFKM) in liver cancer cell survival. Our results showed that ASIC1 expression was significantly elevated in liver tumor tissues and correlated with tumor progression. Acidic conditions increased ASIC1 expression in both cell lines, enhancing cell survival, while knockdown of ASIC1 reduced viability and increased apoptosis, particularly under acidic conditions. Moreover, PFKM silencing reversed the survival advantage conferred by ASIC1, confirming PFKM as a critical downstream effector. Additionally, lactate dehydrogenase (LDH) and phosphofructokinase (PFK) activity assays showed no significant changes, suggesting other regulatory mechanisms may also be involved. These findings suggest that the ASIC1/PFKM pathway promotes liver cancer cell survival in acidic environments, representing a potential therapeutic target for disrupting tumor adaptation in liver malignancies.
Collapse
Affiliation(s)
- Xiaomin Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi 214041, China; (X.W.); (Y.H.); (Y.F.); (Y.J.); (Y.S.)
| | - Boshi Wang
- Wuxi School of Medicine, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China;
| | - Yingjian Hou
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi 214041, China; (X.W.); (Y.H.); (Y.F.); (Y.J.); (Y.S.)
- Wuxi School of Medicine, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China;
| | - Yipeng Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi 214041, China; (X.W.); (Y.H.); (Y.F.); (Y.J.); (Y.S.)
- Wuxi School of Medicine, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China;
| | - Yuan Jiang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi 214041, China; (X.W.); (Y.H.); (Y.F.); (Y.J.); (Y.S.)
- Wuxi School of Medicine, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China;
| | - Yuelei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi 214041, China; (X.W.); (Y.H.); (Y.F.); (Y.J.); (Y.S.)
- Wuxi School of Medicine, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China;
| | - Youyi Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi 214041, China; (X.W.); (Y.H.); (Y.F.); (Y.J.); (Y.S.)
- Wuxi School of Medicine, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China;
| | - Cheng Jin
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi 214041, China; (X.W.); (Y.H.); (Y.F.); (Y.J.); (Y.S.)
- Wuxi School of Medicine, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China;
| |
Collapse
|
27
|
Xu A, Li X, Cai Q, Yang C, Yang M, Gao H, Cheng M, Chen X, Ji F, Tang H, Wang K. CircXPO6 promotes breast cancer progression through competitively inhibiting the ubiquitination degradation of c-Myc. Mol Cell Biochem 2025; 480:1731-1745. [PMID: 39179754 DOI: 10.1007/s11010-024-05093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
The number of breast cancer (BC) patients is increasing year by year, which is severely endangering to human life and health. c-Myc is a transcription factor, studies have shown that it is a very significant factor in tumor progression, but how it is regulated in BC is still not well understood. Here, we used the RIP microarray sequencing to confirm circXPO6, which had a high affinity with c-Myc and highly expressed in triple-negative breast cancer (TNBC) tissues and cells. CircXPO6 overexpression promoted tumor growth in vivo and in vitro. Furthermore, circXPO6 largely promoted the expression of genes related to glucose metabolism, such as GLUT1, HK2, and MCT4 in TNBC cells. Finally, high levels of circXPO6 expression were found to be closely associated with malignant pathological factors, such as tumor size, lymph node metastasis, TNM staging, and histopathological grading of TNBC. Mechanistically, circXPO6 interacted with c-Myc to prevent speckle-type POZ-mediated c-Myc ubiquitination and degradation, thus promoting TNBC progression. Through the regulation of c-Myc-mediated signal transduction, circXPO6 plays a key role in TNBC progresses. This discovery can provide new ideas for TNBC molecular targeted therapy.
Collapse
Affiliation(s)
- Aiqi Xu
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xi Li
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou, 510180, People's Republic of China
| | - Qiaoting Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ciqiu Yang
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Mei Yang
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Hongfei Gao
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Minyi Cheng
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xianzhe Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Fei Ji
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Kun Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
28
|
Yu Y, Wang Y, Mao L, Ye S, Lai X, Chen J, Zhang Y, Liu J, Wu J, Qin T, Yao H. Phase I clinical trial to assess safety and efficacy of Oraxol, a novel oral paclitaxel chemotherapy agent, in patients with previously treated metastatic breast cancer. MedComm (Beijing) 2025; 6:e70097. [PMID: 39968500 PMCID: PMC11831190 DOI: 10.1002/mco2.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Oraxol, a novel oral paclitaxel chemotherapy agent, has emerged as a potential alternative for treating metastatic breast cancer (MBC). However, its safety and efficacy remain uncertain due to insufficient evidence supporting it. This open-label, single-arm, phase I trial was designed to assess the pharmacokinetics, safety, and preliminary antitumor activity of Oraxol in previously treated MBC. The primary objective was to investigate the pharmacokinetics of Oraxol, while secondary endpoints included assessing safety, tolerability, and antitumor activity. Twenty-four patients (median age, 53 years) were enrolled, and pharmacokinetic analysis showed consistent and reproducible absorption of Oraxol. Note that 96% patients experienced treatment-related adverse events (TRAEs) and no deaths attributed to TRAEs. The overall response rate was 34.8%, including 34.8% achieving partial response and 56.5% having stable disease. The median follow-up was 45.7 months, with median progression-free survival (PFS) of 3.41 months and median overall survival of 17.80 months. Notably, among patients with triple-negative breast cancer, the disease control rate was 100%, and the median PFS was 8.90 months, which notably exceeded the outcomes observed in other subtypes. Oraxol significantly alters metabolism and correlates with response and survival. In conclusion, Oraxol exhibited promising antitumor efficacy and manageable safety profiles in MBC patients.
Collapse
Affiliation(s)
- Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Phase I Clinical Trial Centre, Department of Medical OncologyBreast Tumor Centre, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Faculty of MedicineMacau University of Science and TechnologyTaipaChina
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Phase I Clinical Trial Centre, Department of Medical OncologyBreast Tumor Centre, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Luhui Mao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Phase I Clinical Trial Centre, Department of Medical OncologyBreast Tumor Centre, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Suiwen Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Phase I Clinical Trial Centre, Department of Medical OncologyBreast Tumor Centre, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Faculty of MedicineMacau University of Science and TechnologyTaipaChina
| | - Xiuping Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Phase I Clinical Trial Centre, Department of Medical OncologyBreast Tumor Centre, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Junyi Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Phase I Clinical Trial Centre, Department of Medical OncologyBreast Tumor Centre, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yiwen Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Phase I Clinical Trial Centre, Department of Medical OncologyBreast Tumor Centre, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jieqiong Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Phase I Clinical Trial Centre, Department of Medical OncologyBreast Tumor Centre, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Junyan Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Phase I Clinical Trial Centre, Department of Medical OncologyBreast Tumor Centre, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Tao Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Phase I Clinical Trial Centre, Department of Medical OncologyBreast Tumor Centre, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Phase I Clinical Trial Centre, Department of Medical OncologyBreast Tumor Centre, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
29
|
Ren F, Pang X, Jin F, Luan N, Guo H, Zhu L. Integration of scRNA-seq and bulk RNA-seq to reveal the association and potential molecular mechanisms of metabolic reprogramming regulated by lactylation and chemotherapy resistance in ovarian cancer. Front Immunol 2025; 16:1513806. [PMID: 40093000 PMCID: PMC11907005 DOI: 10.3389/fimmu.2025.1513806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Objective Ovarian cancer (OC) ranks among the foremost causes of mortality in gynecological malignancies, with chemoresistance being the primary factor contributing to unfavorable prognosis. This work seeks to clarify the mechanisms of resistance-related lactylation in OC, intending to offer novel theoretical foundations and therapy strategies for addressing chemoresistance. Methods Through the combined analysis of bulk RNA-seq and single-cell RNA-seq data, we initially found lactylation genes linked to chemoresistance. Subsequently, we employed differential expression analysis, survival analysis, enrichment analysis, and other methodologies to further investigate the roles and molecular mechanisms of these genes in tumor resistance. Ultimately, we investigated the differential expression of these genes in resistant and non-resistant tissues and cells via experimentation. Results We found two candidate genes associated with lactylation chemoresistance, ALDH1A1 and S100A4. Analysis of single-cell data indicated that tumor cells represent the primary cell subpopulation relevant to resistance studies. Subpopulation analysis indicated that several tumor cell subtypes were markedly linked to resistance, with elevated expression levels of ALDH1A1 and S100A4 in the resistant subpopulation, notably correlating with various immunological and metabolic pathways. Analysis of metabolic pathways indicated that oxidative phosphorylation and glycolysis activity was elevated in the resistant subpopulation, and lactic acid buildup was associated with chemoresistance. The investigation of the marker gene protein-protein interaction network in the resistant subgroup elucidated the intricate interactions among these genes. The expression levels of ALDH1A1 and S100A4 in the OC tissues of the platinum-resistant cohort were markedly elevated compared to the sensitive cohort, with a considerable rise in S100A4 expression observed in resistant OC cells, demonstrating co-localization with lactylation. Conclusion This work elucidates the significant function of lactylation in OC chemoresistance and identifies ALDH1A1 and S100A4 as possible genes associated with drug resistance. These findings enhance our comprehension of the mechanisms behind chemoresistance in OC and offer critical insights for the formulation of novel therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Liu Y, Liu H, Xiong Y. Metabolic pathway activation and immune microenvironment features in non-small cell lung cancer: insights from single-cell transcriptomics. Front Immunol 2025; 16:1546764. [PMID: 40092988 PMCID: PMC11906459 DOI: 10.3389/fimmu.2025.1546764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction In this study, we aim to provide a deep understanding of the tumor microenvironment (TME) and its metabolic characteristics in non-small cell lung cancer (NSCLC) through single-cell RNA sequencing (scRNAseq) data obtained from public databases. Given that lung cancer is a leading cause of cancer-related deaths globally and NSCLC accounts for the majority of lung cancer cases, understanding the relationship between TME and metabolic pathways in NSCLC is crucial for developing new treatment strategies. Methods Finally, machine learning algorithms were employed to construct a risk signature with strong predictive power across multiple independent cohorts. After quality control, 29,053 cells were retained, and PCA along with UMAP techniques were used to distinguish 13 primary cell subpopulations. Four highly activated metabolic pathways were identified within malignant cell subpopulations, which were further divided into seven distinct subgroups showing significant differences in differentiation potential and metabolic activity. WGCNA was utilized to identify gene modules and hub genes closely associated with these four metabolic pathways. Results Our analysis showed that DEGs between tumor and normal tissues were predominantly enriched in immune response and cell adhesion pathways. The comprehensive examination of our model revealed substantial variations in clinical and pathological characteristics, enriched pathways, cancer hallmarks, and immune infiltration scores between high-risk and low-risk groups. Wet lab experiments validated the role of KRT6B in NSCLC, demonstrating that KRT6B expression is elevated and it stimulates the proliferation of cancer cells. Discussion These observations not only enhance our understanding of metabolic reprogramming and its biological functions in NSCLC but also provide new perspectives for early detection, prognostic evaluation, and targeted therapy. However, future research should further explore the specific mechanisms of these metabolic pathways and their application potentials in clinical practice.
Collapse
Affiliation(s)
- Yanru Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Pediatric Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ying Xiong
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
31
|
Xi Z, Dai R, Ze Y, Jiang X, Liu M, Xu H. Traditional Chinese medicine in lung cancer treatment. Mol Cancer 2025; 24:57. [PMID: 40001110 PMCID: PMC11863959 DOI: 10.1186/s12943-025-02245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Lung cancer remains a major global health challenge and one of the leading causes of cancer-related deaths worldwide. Despite significant advancements in treatment, challenges such as drug resistance, side effects, metastasis and recurrence continue to impact patient outcomes and quality of life. In response, there is growing interest in complementary and integrative approaches to cancer care. Traditional Chinese medicine (TCM), with its long history, abundant clinical experience, holistic perspective and individualized approach, has garnered increasing attention for its role in lung cancer prevention and management. This review provides a comprehensive overview of the advances in TCM for lung cancer treatment, covering its theoretical foundation, treatment principles, clinical experiences and evidence supporting its efficacy. We also provide a systematic summary of the preclinical mechanisms, through which TCM impacts lung cancer, including the induction of cell death, reversal of drug resistance, inhibition of metastasis and modulation of immune responses. Additionally, future prospects for TCM in lung cancer treatment are discussed, offering insights into its expanded application and integration with modern medicine to address this challenging disease.
Collapse
Affiliation(s)
- Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| |
Collapse
|
32
|
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S, Jia R. Lactate and lactylation in cancer. Signal Transduct Target Ther 2025; 10:38. [PMID: 39934144 PMCID: PMC11814237 DOI: 10.1038/s41392-024-02082-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 02/13/2025] Open
Abstract
Accumulated evidence has implicated the diverse and substantial influence of lactate on cellular differentiation and fate regulation in physiological and pathological settings, particularly in intricate conditions such as cancer. Specifically, lactate has been demonstrated to be pivotal in molding the tumor microenvironment (TME) through its effects on different cell populations. Within tumor cells, lactate impacts cell signaling pathways, augments the lactate shuttle process, boosts resistance to oxidative stress, and contributes to lactylation. In various cellular populations, the interplay between lactate and immune cells governs processes such as cell differentiation, immune response, immune surveillance, and treatment effectiveness. Furthermore, communication between lactate and stromal/endothelial cells supports basal membrane (BM) remodeling, epithelial-mesenchymal transitions (EMT), metabolic reprogramming, angiogenesis, and drug resistance. Focusing on lactate production and transport, specifically through lactate dehydrogenase (LDH) and monocarboxylate transporters (MCT), has shown promise in the treatment of cancer. Inhibitors targeting LDH and MCT act as both tumor suppressors and enhancers of immunotherapy, leading to a synergistic therapeutic effect when combined with immunotherapy. The review underscores the importance of lactate in tumor progression and provides valuable perspectives on potential therapeutic approaches that target the vulnerability of lactate metabolism, highlighting the Heel of Achilles for cancer treatment.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ya Chen
- Department of Radiology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Yongning Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| |
Collapse
|
33
|
Delgado-Pujol EJ, Martínez G, Casado-Jurado D, Vázquez J, León-Barberena J, Rodríguez-Lucena D, Torres Y, Alcudia A, Begines B. Hydrogels and Nanogels: Pioneering the Future of Advanced Drug Delivery Systems. Pharmaceutics 2025; 17:215. [PMID: 40006582 PMCID: PMC11859140 DOI: 10.3390/pharmaceutics17020215] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Conventional drug delivery approaches, including tablets and capsules, often suffer from reduced therapeutic effectiveness, largely attributed to inadequate bioavailability and difficulties in ensuring patient adherence. These challenges have driven the development of advanced drug delivery systems (DDS), with hydrogels and especially nanogels emerging as promising materials to overcome these limitations. Hydrogels, with their biocompatibility, high water content, and stimuli-responsive properties, provide controlled and targeted drug release. This review explores the evolution, properties, and classifications of hydrogels versus nanogels and their applications in drug delivery, detailing synthesis methods, including chemical crosslinking, physical self-assembly, and advanced techniques such as microfluidics and 3D printing. It also examines drug-loading mechanisms (e.g., physical encapsulation and electrostatic interactions) and release strategies (e.g., diffusion, stimuli-responsive, and enzyme-triggered). These gels demonstrate significant advantages in addressing the limitations of traditional DDS, offering improved drug stability, sustained release, and high specificity. Their adaptability extends to various routes of administration, including topical, oral, and injectable forms, while emerging nanogels further enhance therapeutic targeting through nanoscale precision and stimuli responsiveness. Although hydrogels and nanogels have transformative potential in personalized medicine, challenges remain in scalable manufacturing, regulatory approval, and targeted delivery. Future strategies include integrating biosensors for real-time monitoring, developing dual-stimuli-responsive systems, and optimizing surface functionalization for specificity. These advancements aim to establish hydrogels and nanogels as cornerstones of next-generation therapeutic solutions, revolutionizing drug delivery, and paving the way for innovative, patient-centered treatments.
Collapse
Affiliation(s)
- Ernesto J. Delgado-Pujol
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Guillermo Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - David Casado-Jurado
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Juan Vázquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Jesús León-Barberena
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - David Rodríguez-Lucena
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| |
Collapse
|
34
|
Marchio V, Augimeri G, Morelli C, Vivacqua A, Giordano C, Catalano S, Sisci D, Barone I, Bonofiglio D. Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer. Cell Mol Biol Lett 2025; 30:11. [PMID: 39863855 PMCID: PMC11762563 DOI: 10.1186/s11658-025-00694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer. Moreover, the development of chemoresistance is a major cause of therapeutic failure in this neoplasia, leading to disease relapse and patient death. In addition, chemotherapy's adverse side effects may substantially worsen health-related quality of life. Therefore, to improve the outcome of patients with breast cancer who are undergoing chemotherapy, several therapeutic options are under investigation, including the combination of chemotherapeutic drugs with natural compounds. Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), including docosahexaenoic and eicosapentaenoic acids, have drawn attention for their antitumoral properties and their preventive activities against chemotherapy-induced toxicities in breast cancer. A literature review was conducted on PubMed using keywords related to breast cancer, omega-3, chemoresistance, and chemotherapy. This review aims to provide an overview of the molecular mechanisms driving breast cancer chemoresistance, focusing on the role of ω-3 PUFAs in these recognized cellular paths and presenting current findings on the effects of ω-3 PUFAs combined with chemotherapeutic drugs in breast cancer management.
Collapse
Affiliation(s)
- Vittoria Marchio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
| | - Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Diego Sisci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| |
Collapse
|
35
|
Shi P, Ma Y, Zhang S. Non-histone lactylation: unveiling its functional significance. Front Cell Dev Biol 2025; 13:1535611. [PMID: 39925738 PMCID: PMC11802821 DOI: 10.3389/fcell.2025.1535611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Lactylation, a newly discovered protein posttranslational modification (PTM) in 2019, primarily occurs on lysine residues. Lactylation of histones was initially identified, and subsequent studies have increasingly demonstrated its widespread presence on non-histone proteins. Recently, high-throughput proteomics studies have identified a large number of lactylated proteins and sites, revealing their global regulatory role in disease development. Notably, this modification is catalyzed by lactyltransferase and reversed by delactylase, with numerous new enzymes, such as AARS1/2, reported to be involved. Specifically, these studies have revealed how lactylation exerts its influence through alterations in protein spatial conformation, molecular interactions, enzyme activity and subcellular localization. Indeed, lactylation is implicated in various physiological and pathological processes, including tumor development, cardiovascular and cerebrovascular diseases, immune cell activation and psychiatric disorders. This review provides the latest advancements in research on the regulatory roles of non-histone protein lactylation, highlighting its crucial scientific importance for future studies.
Collapse
Affiliation(s)
- Pusong Shi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongjie Ma
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, China
| | - Shaolu Zhang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, China
| |
Collapse
|
36
|
Yi J, Gao W, Wu C, Yang R, Yu C. A multidimensional pan-cancer analysis of NDUFA4L2 and verification of the oncogenic value in colon cancer. FASEB J 2025; 39:e70300. [PMID: 39792315 DOI: 10.1096/fj.202402165rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/01/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) protein is located in the mitochondria and can regulate cell proliferation. Some studies have shown that the high NDUFA4L2 expression is linked with poor prognosis and cancer progression in various patients with cancers. However, the correlation between NDUFA4L2 and pan-cancer is unknown. In this study, we used the databases and investigated the expression and variation of NDUFA4L2 in many cancers in detail to determine its diagnostic and prognostic values. We also validated the oncogenic capability of NDUFA4L2 in colon cancer by experiments or tissue microarray. In most cancers, NDUFA4L2 expression levels are upregulated, and a high level of NDUFA4L2 expression is associated with poor OS. In addition, the results showed that 10 proteins and 30 genes were correlated to NDUFA4L2. An additional analysis demonstrated that these genes and proteins exhibited either negative or positive correlations with specific pathways. Moreover, we discovered that NDUFA4L2 expression was related to tumor stemness, MSI, TMB, immune cell infiltration and ROS production. Our results show that NDUFA4L2 affects the development and mitochondrial function of colon cancer cell lines. Finally, we identified that NDUFA4L2 was sensitive to 10 anticancer drugs. Our study suggest that NDUFA4L2 could serve as a prognostic and therapeutic biomarker for most cancer, including colon cancer.
Collapse
Affiliation(s)
- Jianing Yi
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Wenjie Gao
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Cheng Wu
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Ranzhiqiang Yang
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
37
|
Li S, Han H, Yang K, Li X, Ma L, Yang Z, Zhao YX. Emerging role of metabolic reprogramming in the immune microenvironment and immunotherapy of thyroid cancer. Int Immunopharmacol 2025; 144:113702. [PMID: 39602959 DOI: 10.1016/j.intimp.2024.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The metabolic reprogramming of cancer cells is a hallmark of many malignancies. To meet the energy acquisition needs of tumor cells for rapid proliferation, tumor cells reprogram their nutrient metabolism, which is caused by the abnormal expression of transcription factors and signaling molecules related to energy metabolic pathways as well as the upregulation and downregulation of abnormal metabolic enzymes, receptors, and mediators. Thyroid cancer (TC) is the most common endocrine tumor, and immunotherapy has become the mainstream choice for clinical benefit after the failure of surgical, endocrine, and radioiodine therapies. TC change the tumor microenvironment (TME) through nutrient competition and metabolites, causing metabolic reprogramming of immune cells, profoundly changing immune cell function, and promoting immune evasion of tumor cells. A deeper understanding of how metabolic reprogramming alters the TME and controls immune cell fate and function will help improve the effectiveness of TC immunotherapy and patient outcomes. This paper aims to elucidate the metabolic communication that occurs between immune cells around TC and discusses how metabolic reprogramming in TC affects the immune microenvironment and the effectiveness of anti-cancer immunotherapy. Finally, targeting key metabolic checkpoints during metabolic reprogramming, combined with immunotherapy, is a promising strategy.
Collapse
Affiliation(s)
- Shouhua Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Hengtong Han
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Kaili Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoxiao Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Libin Ma
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Ze Yang
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xun Zhao
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
38
|
Shen C, Suo Y, Guo J, Su W, Zhang Z, Yang S, Wu Z, Fan Z, Zhou X, Hu H. Development and validation of a glycolysis-associated gene signature for predicting the prognosis, immune landscape, and drug sensitivity in bladder cancer. Front Immunol 2025; 15:1430583. [PMID: 39867879 PMCID: PMC11757262 DOI: 10.3389/fimmu.2024.1430583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Background Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined. Methods The fused merge dateset from TCGA, GSE13507 and GSE31684 were used for the analysis of glycolysis-related genes expression or subtyping; and corresponding clinical data of these BCa patients were also collected. In the merge cohort, we constructed a 18 multigene signature using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The four external cohorts (i.e., IMvigor210, GSE32894, GSE48276 and GSE48075) of BCa patients were used to validate the accuracy. We evaluated immune infiltration using seven published algorithms: CIBERSORT, QUANTISEQ, XCELL, TIMER, CIBERSORT-ABS, EPIC, and MCPCOUNTER. Subsequently, in order to analyze the correlation between risk groups(scores) and overall survival, recognised immunoregolatory cells or common chemotherapeutic agents, clinicopathological data and immune checkpoint-related genes of BCa patients, Wilcox rank test, chi-square test, cox regression and spearman's correlation were performed. Results Conspicuously, we could see that CD8+ T, cancer associated fibroblast, macrophage M2, NK, endothelial cells and so on were significantly dysregulated between the two risk groups. In addition, compared with the low-risk group, high-risk group predicted poor prognosis and relatively weak sensitivity of chemotherapy. Additionally, we also found that the expression level of partial genes in the model was significantly correlated with objective responses to anti-PD-1 or anti-PD-L1 treatment in the IMvigor210, GSE111636, GSE176307, GSE78220 or GSE67501 cohort; and its expression level was also varied in different objective response cases receiving tislelizumab combined with low-dose nab-paclitaxel therapy based on our mRNA sequencing (TRUCE-01). According to "GSEA" algorithm of R package "clusterProfiler", the most significantly enriched HALLMARK, KEGG pathway and GO term was separately the 'Epithelial Mesenchymal Transition', 'Ecm Receptor Interaction' and 'MF_Extracellular_matrix_structural_constitunet' in the high- vs. low-risk group. Subsequently, we verified the protein and mRNA expression of interested model-related genes from the Human Protein Atlas (HPA) and 10 paired BCa tissues collected by us. Furthermore, in vitro functional experiments demonstrated that FASN was a functional oncogene in BCa cells through promoting cell proliferation, migration, and invasion abilities. Conclusion In summary, the glycolysis-associated gene signature established by us exhibited a high predictive performance for the prognosis, immunotherapeutic responsiveness, and chemotherapeutic sensitivity of BCa. And, The model also might function as a chemotherapy and immune checkpoint inhibitor (ICI) treatment guidance.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Suo
- Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jian Guo
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wei Su
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhenqian Fan
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoliang Zhou
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
39
|
Zhang J, Yao M, Xia S, Zeng F, Liu Q. Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer. Cell Mol Biol Lett 2025; 30:2. [PMID: 39757165 DOI: 10.1186/s11658-024-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes. Thus, the review delves into the mechanisms by which HIF-1 maintains its stability under normoxia including but not limited to giving insights into transcriptional, translational, as well as posttranslational regulation to underscore the pivotal role of HIF-1 in cellular adaptation and malignancy. Moreover, HIF-1 is extensively involved in cancer and cardiovascular diseases and potentially serves as a bridge between them. An overview of HIF-1-related drugs that are approved or in clinical trials is summarized, highlighting their potential capacity for targeting HIF-1 in cancer and cardiovascular toxicity related to cancer treatment. The review provides a comprehensive insight into HIF-1's regulatory mechanism and paves the way for future research and therapeutic development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Mingxuan Yao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shiting Xia
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
40
|
Vorwerk J, Liu L, Stadler TH, Frank D, Ahmed HMM, Patnana PK, Kebenko M, Dazert E, Opalka B, von Bubnoff N, Khandanpour C. Germline Single-Nucleotide Polymorphism GFI1-36N Causes Alterations in Mitochondrial Metabolism and Leads to Increased ROS-Mediated DNA Damage in a Murine Model of Human Acute Myeloid Leukemia. Biomedicines 2025; 13:107. [PMID: 39857691 PMCID: PMC11762481 DOI: 10.3390/biomedicines13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: GFI1-36N represents a single-nucleotide polymorphism (SNP) of the zinc finger protein Growth Factor Independence 1 (GFI1), in which the amino acid serine (S) is replaced by asparagine (N). The presence of the GFI1-36N gene variant is associated with a reduced DNA repair capacity favoring myeloid leukemogenesis and leads to an inferior prognosis of acute myeloid leukemia (AML) patients. However, the underlying reasons for the reduced DNA repair capacity in GFI1-36N leukemic cells are largely unknown. Since we have demonstrated that GFI1 plays an active role in metabolism, in this study, we investigated whether increased levels of reactive oxygen species (ROS) could contribute to the accumulation of genetic damage in GFI1-36N leukemic cells. Methods: We pursued this question in a murine model of human AML by knocking in human GFI1-36S or GFI1-36N variant constructs into the murine Gfi1 gene locus and retrovirally expressing MLL-AF9 to induce AML. Results: Following the isolation of leukemic bone marrow cells, we were able to show that the GFI1-36N SNP in our model is associated with enhanced oxidative phosphorylation (OXPHOS), increased ROS levels, and results in elevated γ-H2AX levels as a marker of DNA double-strand breaks (DSBs). The use of free radical scavengers such as N-acetylcysteine (NAC) and α-tocopherol (αT) reduced ROS-induced DNA damage, particularly in GFI1-36N leukemic cells. Conclusions: We demonstrated that the GFI1-36N variant is associated with extensive metabolic changes that contribute to the accumulation of genetic damage.
Collapse
Affiliation(s)
- Jan Vorwerk
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, 23562 Lübeck, Germany; (J.V.)
- Department of Hematology, Hemostaseology, Oncology, and Pneumology, West German Cancer Center Essen-Münster (WTZ), University Hospital Münster, 49149 Münster, Germany
| | - Longlong Liu
- Department of Hematology, Hemostaseology, Oncology, and Pneumology, West German Cancer Center Essen-Münster (WTZ), University Hospital Münster, 49149 Münster, Germany
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Theresa Helene Stadler
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, 23562 Lübeck, Germany; (J.V.)
| | - Daria Frank
- Department of Hematology, Hemostaseology, Oncology, and Pneumology, West German Cancer Center Essen-Münster (WTZ), University Hospital Münster, 49149 Münster, Germany
| | - Helal Mohammed Mohammed Ahmed
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, 23562 Lübeck, Germany; (J.V.)
- Department of Hematology, Hemostaseology, Oncology, and Pneumology, West German Cancer Center Essen-Münster (WTZ), University Hospital Münster, 49149 Münster, Germany
| | - Pradeep Kumar Patnana
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, 23562 Lübeck, Germany; (J.V.)
- Department of Hematology, Hemostaseology, Oncology, and Pneumology, West German Cancer Center Essen-Münster (WTZ), University Hospital Münster, 49149 Münster, Germany
| | - Maxim Kebenko
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, 23562 Lübeck, Germany; (J.V.)
| | - Eva Dazert
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, 23562 Lübeck, Germany; (J.V.)
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen-Münster (WTZ), University Hospital Essen, 45147 Essen, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, 23562 Lübeck, Germany; (J.V.)
| | - Cyrus Khandanpour
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, 23562 Lübeck, Germany; (J.V.)
- Department of Hematology, Hemostaseology, Oncology, and Pneumology, West German Cancer Center Essen-Münster (WTZ), University Hospital Münster, 49149 Münster, Germany
| |
Collapse
|
41
|
Zhao G, Liu Y, Yin S, Cao R, Zhao Q, Fu Y, Du Y. FOSL1 transcriptionally dictates the Warburg effect and enhances chemoresistance in triple-negative breast cancer. J Transl Med 2025; 23:1. [PMID: 39748430 PMCID: PMC11697476 DOI: 10.1186/s12967-024-06014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood. METHODS The Cancer Genome Atlas (TCGA) cohort was utilized to identify genes associated with glycolysis. The role of FOSL1 in glycolysis and tumor growth in TNBC cells was confirmed through both loss-of-function and gain-of-function experiments. The subcutaneous xenograft model was established to evaluate the therapeutic potential of targeting FOSL1 in TNBC. Additionally, chromatin immunoprecipitation and luciferase reporter assays were employed to investigate the transcriptional regulation of glycolytic genes mediated by FOSL1. RESULTS FOSL1 is identified as a pivotal glycolysis-related transcription factor in TNBC. Functional verification shows that FOSL1 enhances the glycolytic metabolism of TNBC cells, as evidenced by glucose uptake, lactate production, and extracellular acidification rates. Notably, FOSL1 promotes tumor growth in TNBC in a glycolysis-dependent manner, as inhibiting glycolysis with 2-Deoxy-D-glucose markedly diminishes the oncogenic effects of FOSL1 in TNBC. Mechanistically, FOSL1 transcriptionally activates the expression of genes such as SLC2A1, ENO1, and LDHA, which further accelerate the glycolytic flux. Moreover, FOSL1 is highly expressed in doxorubicin (DOX)-resistant TNBC cells and clinical samples from cases of progressive disease following neoadjuvant chemotherapy. Targeting FOSL1 proves effective in overcoming chemoresistance in DOX-resistant MDA-MB-231 cells. CONCLUSION In summary, FOSL1 establishes a robust link between aerobic glycolysis and carcinogenesis, positioning it as a promising therapeutic target, especially in the context of TNBC chemotherapy.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Runxiang Cao
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Qian Zhao
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Yifan Fu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.
| |
Collapse
|
42
|
Wang C, Ma X. The role of acetylation and deacetylation in cancer metabolism. Clin Transl Med 2025; 15:e70145. [PMID: 39778006 PMCID: PMC11706801 DOI: 10.1002/ctm2.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
As a hallmark of cancer, metabolic reprogramming adjusts macromolecular synthesis, energy metabolism and redox homeostasis processes to adapt to and promote the complex biological processes of abnormal growth and proliferation. The complexity of metabolic reprogramming lies in its precise regulation by multiple levels and factors, including the interplay of multiple signalling pathways, precise regulation of transcription factors and dynamic adjustments in metabolic enzyme activity. In this complex regulatory network, acetylation and deacetylation, which are important post-translational modifications, regulate key molecules and processes related to metabolic reprogramming by affecting protein function and stability. Dysregulation of acetylation and deacetylation may alter cancer cell metabolic patterns by affecting signalling pathways, transcription factors and metabolic enzyme activity related to metabolic reprogramming, increasing the susceptibility to rapid proliferation and survival. In this review, we focus on discussing how acetylation and deacetylation regulate cancer metabolism, thereby highlighting the central role of these post-translational modifications in metabolic reprogramming, and hoping to provide strong support for the development of novel cancer treatment strategies. KEY POINTS: Protein acetylation and deacetylation are key regulators of metabolic reprogramming in tumour cells. These modifications influence signalling pathways critical for tumour metabolism. They modulate the activity of transcription factors that drive gene expression changes. Metabolic enzymes are also affected, altering cellular metabolism to support tumour growth.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaoxin Ma
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
43
|
Liu S, Ji H, Zhang T, Huang J, Yin X, Zhang J, Wang P, Wang F, Tang X. Modified Zuojin pill alleviates gastric precancerous lesions by inhibiting glycolysis through the HIF-1α pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156255. [PMID: 39603037 DOI: 10.1016/j.phymed.2024.156255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Gastric precancerous lesions (GPL) typically originates from chronic gastritis (CG), and the changes in glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL are unclear. Modified Zuojin pill (SQQT) is a traditional Chinese herbal formula used for treating GPL. However, the underlying mechanism has not been fully elucidated. PURPOSE To investigate the changes in glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL and whether SQQT can alleviate GPL by attenuating glycolysis through the HIF-1α pathway. METHODS A rat model of GPL was established, and the changes of glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL were detected in 12th, 18th, 24th, and 30th weeks. The therapeutic efficacy of SQQT was evaluated through pathological changes. In vitro, the GPL cell model (MC cell) originated from GES-1 cells intervened by MNNG. The effects of SQQT on glycolysis and the HIF-1α pathway were detected in vivo and in vitro. In vitro, HIF-1α overexpression was used to confirmed that SQQT attenuated glycolysis by targeting the HIF-1α pathway. RESULTS Our study revealed that glycolysis mediated by the HIF-1α pathway exhibited dynamic changes in the progression from CG to GPL, characterized by sequential activation, deactivation, and reactivation. SQQT ameliorated gastric mucosal pathology and inflammation in GPL rats. Mechanistic studies revealed that SQQT alleviated glycolysis by targeting the HIF-1α pathway, and improved abnormal cellular proliferation and apoptosis. Importantly, HIF-1α overexpression blocked the effect of SQQT on glycolysis. CONCLUSION In the progression from CG to GPL, the HIF-1α pathway-mediated glycolysis was characterized by sequential activation, deactivation, and reactivation. SQQT attenuated glycolysis by targeting the HIF-1α pathway and improved abnormal cellular proliferation and apoptosis in the gastric mucosa, thereby exerting therapeutic effects on GPL.
Collapse
Affiliation(s)
- Shan Liu
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Haijie Ji
- Shanxi Province Academy of Traditional Chinese Medicine, Taiyuan 030012, China
| | - Tai Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China; Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing 100091, China
| | - Jinke Huang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiaolan Yin
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jiaqi Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ping Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
44
|
Gu J, Xiao X, Zou C, Mao Y, Jin C, Fu D, Li R, Li H. Ubiquitin-specific protease 7 maintains c-Myc stability to support pancreatic cancer glycolysis and tumor growth. J Transl Med 2024; 22:1135. [PMID: 39707401 PMCID: PMC11662425 DOI: 10.1186/s12967-024-05962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The typical pathological feature of pancreatic ductal adenocarcinoma (PDAC) is a significant increase in stromal reaction, leading to a hypoxic and poorly vascularized tumor microenvironment. Tumor cells undergo metabolic reprogramming, such as the Warburg effect, yet the underlying mechanisms are not fully understood. METHODS Interference and overexpression experiments were conducted to analyze the in vivo and in vitro effects of USP7 on the growth and glycolysis of tumor cells. Small-molecule inhibitors of USP7 and transgenic mouse models of PDAC were employed to assess the consequences of targeting USP7 in PDAC. The molecular mechanism underlying USP7-induced c-Myc stabilization was determined by RNA sequencing, co-IP and western blot analyses. RESULTS USP7 is abnormally overexpressed in PDAC and predicts a poor prognosis. Hypoxia and extracellular matrix stiffness can induce USP7 expression in PDAC cells. Genetic silencing of USP7 inhibits the glycolytic phenotypes in PDAC cells, while its overexpression has the opposite effect, as demonstrated by glucose uptake, lactate production, and extracellular acidification rate. Importantly, USP7 promotes PDAC tumor growth in a glycolysis-dependent manner. The small-molecule inhibitor P5091 targeting USP7 effectively suppresses the Warburg effect and cell growth in PDAC. In a transgenic mouse model of PDAC, named KPC, P5091 effectively blocks tumor progression. Mechanistically, USP7 interacts with c-Myc, enhancing its stability and expression, which in turn upregulates expression of glycolysis-related genes. CONCLUSIONS This study sheds light on the molecular mechanisms underlying the Warburg effect in PDAC and unveils USP7 as a potential therapeutic target for improving PDAC treatment.
Collapse
Affiliation(s)
- Jichun Gu
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xi Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Caifeng Zou
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yishen Mao
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chen Jin
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Deliang Fu
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Rongkun Li
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Hengchao Li
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
45
|
Tavukcuoglu Z, Butt U, de Faria AVS, Oesterreicher J, Holnthoner W, Laitinen S, Palviainen M, Siljander PRM. Platelet-derived extracellular vesicles induced through different activation pathways drive melanoma progression by functional and transcriptional changes. Cell Commun Signal 2024; 22:601. [PMID: 39695652 DOI: 10.1186/s12964-024-01973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Beyond their conventional roles in hemostasis and wound healing, platelets have been shown to facilitate hematogenous metastasis by interacting with cancer cells. Depending on the activation route, platelets also generate different platelet-derived extracellular vesicles (PEVs) that may educate cancer cells in the circulation or within the tumor microenvironment. We engaged different platelet-activating receptors, including glycoprotein VI and C-type lectin-like receptor 2, to generate a spectrum of PEV types. This allowed us to investigate the differential capacity of PEVs to alter cancer hallmark functions such as proliferation, invasion, and pro-angiogenic potential using melanoma as a model. Additionally, we analyzed changes in the cell transcriptomes and cancer EV profiles. METHODS Two human melanoma cell lines (MV3 and A2058) with differential metastatic potential were studied in the 3D spheroid cultures. Human platelets were activated with collagen related peptide (CRP), fucoidan from Fucus vesiculosus (FFV), thrombin & collagen co-stimulus and Ca2+ ionophore, and PEVs were isolated by size-exclusion chromatography followed by ultrafiltration. Spheroids or cells were treated with PEVs and used in functional assays of proliferation, invasion, and endothelial tube formation as well as for the analysis of cancer EV production and their tetraspanin profiles. Differentially expressed genes and enriched signaling pathways in the PEV-treated spheroids were analyzed at 6 h and 24 h by RNA sequencing. RESULTS Among the studied PEVs, those generated by CRP and FFV exhibited the most pronounced effects on altering cancer hallmark functions. Specifically, CRP and FFV PEVs increased proliferation in both MV3 and A2058 spheroids. Distinct tetraspanin signatures of melanoma EVs were induced by all PEV types. While the PI3K-Akt and MAPK signaling pathways were activated by both CRP and FFV PEVs, they differently upregulated the immunomodulatory TGF-β and type-I interferon signaling pathways, respectively. CONCLUSIONS Our study revealed both shared and distinct, cancer-promoting functions of PEVs, which contributed to the transcriptome and metastatic capabilities of the melanoma spheroids. Inhibiting the platelet receptors that modulate the PEVs' cancer-promoting properties may open up new strategies for identifying promising treatment targets for cancer therapy.
Collapse
Affiliation(s)
- Zeynep Tavukcuoglu
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Umar Butt
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Alessandra V Sousa de Faria
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Wolfgang Holnthoner
- AUVA Research Centre, Ludwig Boltzmann Institute for Traumatology, Vienna, Austria
| | - Saara Laitinen
- Finnish Red Cross Blood Service (FRCBS), Helsinki, Finland
| | - Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland.
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
46
|
Nishimura N, Miyake M, Onishi S, Tomizawa M, Shimizu T, Onishi K, Hori S, Morizawa Y, Gotoh D, Nakai Y, Tanaka N, Fujimoto K. The Circadian Rhythm of Intracellular Protoporphyrin IX Accumulation Through Heme Synthesis Pathway in Bladder Urothelial Cancer Cells Exposed to 5-Aminolevulinic Acid. Cancers (Basel) 2024; 16:4112. [PMID: 39682298 DOI: 10.3390/cancers16234112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: The standard recommendation for patients with non-muscle invasive bladder cancer is 5-aminolevulinic acid-mediated photodynamic diagnosis. The intensity of the fluorescence caused by the intracellular accumulation of protoporphyrin IX (PPIX) varies among tumors and patients. This study investigated the circadian rhythm of intracellular PPIX accumulation in bladder urothelial cancer cells exposed to 5-aminolevulinic acid. Methods: The expression of two clock genes, PER2 and BMAL1, and their impact on intracellular PPIX accumulation were evaluated in two bladder cancer cell lines, UM-UC-3 and J82, and mouse xenograft models. We evaluated the enzymes involved in the heme synthesis pathway that potentially affect the circadian rhythm of intracellular PPIX accumulation. The red fluorescence intensity of the images captured during photodynamic diagnosis-assisted transurethral resection of bladder tumors was quantified and compared among the four groups according to surgery start time: 9 a.m.-11 a.m., 11 a.m.-1 p.m., 1-3 p.m., and 3-5 p.m. Results: We observed the circadian rhythm of intracellular PPIX accumulation, which was potentially regulated by the clock genes PER2 and BMAL1. Two enzymes involved in the heme synthesis pathway, coproporphyrinogen oxidase and ferrochelatase, exhibit a circadian rhythm. The fluorescence intensity started gradually increasing at 12 p.m., and the highest level was observed in patients who underwent surgery between 3 and 5 p.m. Conclusions: Our findings suggest that it may be possible to optimize the timing of the photodynamic diagnosis in photodynamic diagnosis-assisted transurethral resection of bladder cancer based on the circadian rhythm to improve tumor detection and treatment outcomes.
Collapse
Affiliation(s)
- Nobutaka Nishimura
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Sayuri Onishi
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Mitsuru Tomizawa
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Takuto Shimizu
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Kenta Onishi
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Daisuke Gotoh
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
- Department of Prostate Brachytherapy, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| |
Collapse
|
47
|
Li Z, Liang P, Chen Z, Chen Z, Jin T, He F, Chen X, Yang K. CAF-secreted LOX promotes PD-L1 expression via histone Lactylation and regulates tumor EMT through TGFβ/IGF1 signaling in gastric Cancer. Cell Signal 2024; 124:111462. [PMID: 39395525 DOI: 10.1016/j.cellsig.2024.111462] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
In gastric cancer treatment, cancer-associated fibroblasts (CAF) may significantly influence the efficacy of immune checkpoint inhibitors by modulating PD-L1 expression. However, the precise mechanisms remain unclear. This study aims to explore the relationship between CAF and PD-L1 expression, providing new insights for improving PD-L1-targeted therapies. Using primary fibroblasts, transcriptome sequencing, ChIP-qPCR, and a lung metastasis model, we discovered that CAF secrete lysyl oxidase (LOX), which activates the TGFβ signaling pathway in gastric cancer cells, thereby promoting insulin-like growth factor 1(IGF1) expression. Upregulation of IGF1 enhances gastric cancer cell migration, epithelial-mesenchymal transition (EMT), and glycolysis. Additionally, we found that lactate accumulation leads to lysine 18 lactylation on histone H3 (H3K18la), which enriches at the PD-L1 promoter region, thus promoting PD-L1 transcription. These findings suggest that CAF may diminish the effectiveness of PD-1/PD-L1 blockade immunotherapy through LOX-induced glycolysis and lactate accumulation. Consequently, we have constructed a model of the interactions among CAF, lactate, and PD-L1 in gastric cancer progression, providing new experimental evidence for PD-L1-based immunotherapy.
Collapse
Affiliation(s)
- Zedong Li
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China; Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Panping Liang
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Zhengwen Chen
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Zehua Chen
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Tao Jin
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Fengjun He
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Xiaolong Chen
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Kun Yang
- Department of General Surgery, West China Hospital, Sichuan University, China; Gastric Cancer Center, West China Hospital, Sichuan University, China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China.
| |
Collapse
|
48
|
Fang J, Wang Y, Li C, Liu W, Wang W, Wu X, Wang Y, Zhang S, Zhang J. A hypoxia-derived gene signature to suggest cisplatin-based therapeutic responses in patients with cervical cancer. Comput Struct Biotechnol J 2024; 23:2565-2579. [PMID: 38983650 PMCID: PMC11231957 DOI: 10.1016/j.csbj.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Cervical cancer remains a significant global public health concern, often exhibits cisplatin resistance in clinical settings. Hypoxia, a characteristic of cervical cancer, substantially contributes to cisplatin resistance. To evaluate the therapeutic efficacy of cisplatin in patients with cervical cancer and to identify potential effective drugs against cisplatin resistance, we established a hypoxia-inducible factor-1 (HIF-1)-related risk score (HRRS) model using clinical data from patients treated with cisplatin. Cox and LASSO regression analyses were used to stratify patient risks and prognosis. Through qRT-PCR, we validated nine potential prognostic HIF-1 genes that successfully predict cisplatin responsiveness in patients and cell lines. Subsequently, we identified fostamatinib, an FDA-approved spleen tyrosine kinase inhibitor, as a promising drug for targeting the HRRS-high group. We observed a positive correlation between the IC50 values of fostamatinib and HRRS in cervical cancer cell lines. Moreover, fostamatinib exhibited potent anticancer effects on high HRRS groups in vitro and in vivo. In summary, we developed a hypoxia-related gene signature that suggests cisplatin response prediction in cervical cancer and identified fostamatinib as a potential novel treatment approach for resistant cases.
Collapse
Affiliation(s)
- Jin Fang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
| | - Ying Wang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
| | - Chen Li
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
- MOE Key Laboratory of Tumor Molecular Biology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
| | - Weixiao Liu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
| | - Wannan Wang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
- MOE Key Laboratory of Tumor Molecular Biology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
| | - Xuewei Wu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
- MOE Key Laboratory of Tumor Molecular Biology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
| | - Jing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
- MOE Key Laboratory of Tumor Molecular Biology, The First Affiliated Hospital of Jinan University, Guangzhou 510613, China
| |
Collapse
|
49
|
Wang Y, Lian H, Li J, Zhao M, Hao Z, Zheng X, Zhao L, Cui J. The HIF-1α/PKM2 Feedback Loop in Relation to EGFR Mutational Status in Lung Adenocarcinoma. J INVEST SURG 2024; 37:2301081. [PMID: 38224012 DOI: 10.1080/08941939.2023.2301081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Gene mutations in tumor cells can lead to several unique metabolic phenotypes, which are crucial for the proliferation of cancer cells. EGFR mutation (EGFR-mt) is the main oncogenic driving mutation in lung adenocarcinoma (LUAD). HIF-1 α and PKM2 are two key metabolic regulatory proteins that can form a feedback loop and promote cancer growth by promoting glycolysis. Here, the linkage between EGFR mutational status and HIF-1α/PKM2 feedback loop in LUAD were evaluated. METHODS Retrospective study were performed on LUAD patients (n = 89) undergoing first-time therapeutic surgical resection. EGFR mutation was analyzed by real-time PCR. Immunohistochemistry was used to measure the expressions of HIF-1α and PKM2. RESULTS We found that the protein expressions of HIF-1α and PKM2 were significantly higher in LUAD than normal lung tissues. In adenocarcinomas, the two protein expressions were both correlated with worse pTNM stage. Moreover, the correlation between the proteins of HIF-1α/PKM2 feedback loop and the EGFR mutational status were also analyzed. We found that EGFR-mt tumors showed higher HIF-1α and PKM2 proteins compared to tumors with EGFR wild-type. Meanwhile, HIF-1α expression was significantly correlated with higher pTNM stage, and PKM2 showed a similar trend, only in EGFR-mutated tumors. The expression of HIF-1α was positively correlated with PKM2 in LUAD, furthermore, this correlation was mainly in patients with EGFR-mt. CONCLUSION Different expression and clinical features of HIF-1α/PKM2 feedback loop was existed between LUAD and normal lung tissues, especially in EGFR mutational tumors, supporting the relationship between EGFR mutation and the key related proteins of aerobic glycolysis (HIF-1α and PKM2) in lung adenocarcinomas.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Hongguang Lian
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jiajun Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Man Zhao
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Zengfang Hao
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xue Zheng
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Linyuan Zhao
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
50
|
Li H, Xie W, Huang X, Chen Y. FBP1 over-expression suppresses HIF-1α in papillary thyroid cancer. Sci Rep 2024; 14:29167. [PMID: 39587225 PMCID: PMC11589751 DOI: 10.1038/s41598-024-81017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is generally a slow-growing disease with a favorable 10-year survival rate. However, about 10% of PTC cases show significant aggressiveness, with tendencies for local invasion or distant metastasis, the mechanisms of which remain unclear. This study aims to identify predictive indicators and explore new potential targets for clinical treatment, highlighting the need for novel biomarkers and therapeutic targets. We analyzed FBP1 expression in PTC tissues. Cell proliferation, apoptosis, and invasion were evaluated with and without FBP1 overexpression in PTC cells to assess FBP1's effects. We then investigated whether FBP1 reduces PTC cell tumorigenesis and metastasis by regulating HIF-1α expression. FBP1 expression was reduced in PTC samples and showed a negative correlation with T stage. In vitro experiments indicated that FBP1 acts as a hypoxia response inhibitor, regulating tumor cells. Additionally, FBP1 inhibited the proliferation, apoptosis, and invasion of thyroid cancer cells by modulating HIF-1α expression. Our results provide new insights into the role of FBP1 in PTC progression and indicate that targeting the FBP1-HIF-1α axis could be a promising therapeutic approach for this disease.
Collapse
Affiliation(s)
- Huashui Li
- General Surgery Department, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Wenjun Xie
- General Surgery Department, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xiangqin Huang
- Breast Surgery Department, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yifan Chen
- Breast Surgery Department, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| |
Collapse
|