1
|
Xin M, Wang A, Ji M, Wu J, Jiang B, Shi M, Song L, Xin Z. Molecular Biology and Functions of T Follicular Helper Cells in Cancer and Immunotherapy. Immune Netw 2025; 25:e7. [PMID: 40342840 PMCID: PMC12056291 DOI: 10.4110/in.2025.25.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 05/11/2025] Open
Abstract
T follicular helper (Tfh) cells are integral to the germinal center (GC) response and the development of potent humoral immunity. By priming B cells, Tfh cells can initiate both extrafollicular and GC-dependent Ab responses. The dynamic physical interactions between Tfh and B cells constitute the primary platform for Tfh cells to provide essential "help" factors to B cells, as well as for reciprocal signaling from B cells to sustain the helper state of Tfh cells. In recent years, significant advancements have been made in understanding the diverse roles of Tfh cells across various diseases, particularly in cancer. Notably, beyond the classical GC-Tfh cells, it is increasingly recognized that the Tfh cell phenotype is highly heterogeneous and dynamic, which adds complexity to their roles in disease contexts. This review aims to encapsulate progress in Tfh cell biology, with a focus on their role in cancer and immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Antuo Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Minghao Ji
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jingru Wu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| |
Collapse
|
2
|
Wang D, Tan M, Touch S, Kouy S, Sou S, Liu K, Zhu Y, Zhu H, Nov P. Burden of disease and risk factors for primary liver cancer by etiology in the United States, 1990-2021: Results from the Global Burden of Disease study, 2021. Ann Hepatol 2025; 30:101906. [PMID: 40122522 DOI: 10.1016/j.aohep.2025.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION AND OBJECTIVES The distribution of major causes of liver cancer (LC) in the United States (US) has changed significantly over time. This study analyzes recent temporal trends in the causes of LC in the US from 1990 to 2021 and predicts future trends. MATERIALS AND METHODS We obtained detailed data on LC in the US from the Global Burden of Disease (GBD) 2021 study. Estimated annual percentage change (EAPC) values for LC in the US were then calculated using linear regression models. An exponential smoothing (ES) projection model and Bayesian Age-Period-Cohort (BAPC) projection model were then used to predict the future disease burden of LC. Risk factors for LC were also assessed. RESULTS In 2021, the disease burden of LC in the US was significantly higher than in 1990. Hepatitis C virus (HCV)-associated LC resulted in the greatest burden of disease. The fastest growing burden of disease was attributed to metabolic dysfunction-associated steatotic liver disease (MASLD)-associated LC. Higher burdens of disease were seen in older and male populations. CONCLUSIONS In the US, the disease burden of LC from different etiologies continues to rise. As such, targeted prevention and control strategies should be developed to address these unique disease characteristics.
Collapse
Affiliation(s)
- Duanyu Wang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410119, China
| | - Minghao Tan
- Department of Gastrointestinal Surgery, Liuzhou Workers Hospital, Liuzhou, Guangxi Province, 545005, China
| | - Socheat Touch
- Department of Radiation Oncology and Oncology, LuangMe Hospital of University of Health Sciences, Phnom Penh 120110, Cambodia
| | - Samnang Kouy
- Department of Radiation Oncology and Oncology, LuangMe Hospital of University of Health Sciences, Phnom Penh 120110, Cambodia
| | - Syphanna Sou
- Department of Radiation Oncology and Oncology, LuangMe Hospital of University of Health Sciences, Phnom Penh 120110, Cambodia
| | - Kun Liu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410119, China
| | - Youwen Zhu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410119, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410119, China.
| | - Pengkhun Nov
- Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510282, China.
| |
Collapse
|
3
|
Wang K, Lan Z, Zhou H, Fan R, Chen H, Liang H, You Q, Liang X, Zeng G, Deng R, Lan Y, Shen S, Chen P, Hou J, Bu P, Sun J. Long-chain acylcarnitine deficiency promotes hepatocarcinogenesis. Acta Pharm Sin B 2025; 15:1383-1396. [PMID: 40370557 PMCID: PMC12069247 DOI: 10.1016/j.apsb.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 05/16/2025] Open
Abstract
Despite therapy with potent antiviral agents, chronic hepatitis B (CHB) patients remain at high risk of hepatocellular carcinoma (HCC). While metabolites have been rediscovered as active drivers of biological processes including carcinogenesis, the specific metabolites modulating HCC risk in CHB patients are largely unknown. Here, we demonstrate that baseline plasma from CHB patients who later developed HCC during follow-up exhibits growth-promoting properties in a case-control design nested within a large-scale, prospective cohort. Metabolomics analysis reveals a reduction in long-chain acylcarnitines (LCACs) in the baseline plasma of patients with HCC development. LCACs preferentially inhibit the proliferation of HCC cells in vitro at a physiological concentration and prevent the occurrence of HCC in vivo without hepatorenal toxicity. Uptake and metabolism of circulating LCACs increase the intracellular level of acetyl coenzyme A, which upregulates histone H3 Lys14 acetylation at the promoter region of KLF6 gene and thereby activates KLF6/p21 pathway. Indeed, blocking LCAC metabolism attenuates the difference in KLF6/p21 expression induced by baseline plasma of HCC/non-HCC patients. The deficiency of circulating LCACs represents a driver of HCC in CHB patients with viral control. These insights provide a promising direction for developing therapeutic strategies to reduce HCC risk further in the antiviral era.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhixian Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Heqi Zhou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rong Fan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huiyi Chen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongyan Liang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiuhong You
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xieer Liang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ge Zeng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rui Deng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sheng Shen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Rayapati D, McGlynn KA, Groopman JD, Kim AK. Environmental exposures and the risk of hepatocellular carcinoma. Hepatol Commun 2025; 9:e0627. [PMID: 39813595 PMCID: PMC11737496 DOI: 10.1097/hc9.0000000000000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025] Open
Abstract
The global epidemiology of HCC is shifting due to changes in both established and emerging risk factors. This transformation is marked by an emerging prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes, alongside traditional risks such as viral hepatitis (HBV and HCV), and exposure to chemical agents like aflatoxin, alcohol, tobacco, and air pollution. This review examines how environmental exposures and evolving liver pathology, exacerbated by lifestyle and metabolic conditions, are contributing to the rising worldwide incidence of HCC. Effective prevention strategies must not only address traditional risk factors through vaccination and therapeutic measures but also confront metabolic and socioeconomic disparities through comprehensive public health efforts. As the burden of liver cancer continues to grow, particularly in resource-limited settings, an expansive and inclusive approach is vital for mitigating its impact across diverse populations.
Collapse
Affiliation(s)
- Divya Rayapati
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John D. Groopman
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Amy K. Kim
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res 2025; 10:98-115. [PMID: 39351450 PMCID: PMC11440256 DOI: 10.1016/j.ncrna.2024.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpoor
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Pérez-Navarro Y, Salinas-Vera YM, López-Camarillo C, Figueroa-Angulo EE, Alvarez-Sánchez ME. The role of long non-coding RNA NORAD in digestive system tumors. Noncoding RNA Res 2025; 10:55-62. [PMID: 39296642 PMCID: PMC11406672 DOI: 10.1016/j.ncrna.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In recent years, it has been discovered that the expression of long non-coding RNAs is highly deregulated in several types of cancer and contributes to its progression and development. Recently, it has been described that in tumors of the digestive system, such as colorectal cancer, pancreatic cancer, and gastric cancer, DNA damage-activated lncRNA (NORAD) was frequently up-regulated. The purpose of this review is to elucidate the functions of NORAD in tumors of the digestive system, emphasizing its involvement in important cellular processes such as invasion, metastasis, proliferation, and apoptosis. NORAD acts as a ceRNA (competitive endogenous RNA) that sponges microRNAs and regulates the expression of target genes involved in tumorigenesis. Thus, the mechanisms underlying the effects of NORAD are complex and involve multiple signaling pathways. This review consolidates current knowledge on the role of NORAD in digestive cancers and highlights the need for further research to explore its potential as a therapeutic target. Understanding the intricate functions of NORAD could elucidate the way for innovative approaches to cancer treatment.
Collapse
Affiliation(s)
- Yussel Pérez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, CDMX, Mexico
| | - Yarely M. Salinas-Vera
- Centro Nacional de Identificación Humana, Comisión Nacional de Búsqueda, Secretaría de Gobernación, Camino a Santa Teresa No 1679, Jardines del Pedregal, Ciudad de México, Mexico
| | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Laboratorio de Oncogenómica y Proteómica del cáncer, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
| | - Elisa Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, CDMX, Mexico
| |
Collapse
|
7
|
Yao H, Ma S, Huang J, Si X, Yang M, Song W, Lv G, Wang G. Trojan-Horse Strategy Targeting the Gut-Liver Axis Modulates Gut Microbiome and Reshapes Microenvironment for Orthotopic Hepatocellular Carcinoma Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310002. [PMID: 39373804 PMCID: PMC11600211 DOI: 10.1002/advs.202310002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/06/2024] [Indexed: 10/08/2024]
Abstract
Reversing the hepatic inflammatory and immunosuppressive microenvironment caused by gut microbiota-derived lipopolysaccharides (LPS), accumulating to the liver through the gut-liver axis, is crucial for suppressing hepatocellular carcinoma (HCC) and metastasis. However, synergistically manipulating LPS-induced inflammation and gut microbiota remains a daunting task. Herein, a Trojan-horse strategy is proposed using an oral dextran-carbenoxolone (DEX-CBX) conjugate, which combines prebiotic and glycyrrhetinic acid (GA) homologs, to targeted delivery GA to HCC through the gut-liver axis for simultaneous modulation of hepatic inflammation and gut microbiota. In the orthotopic HCC model, a 95-45% reduction in the relative abundances of LPS-associated microbiota is observed, especially Helicobacter, caused by DEX-CBX treatment over phosphate-buffered saline (PBS) treatment. Notably, a dramatic increase (37-fold over PBS) in the abundance of Akkermansia, which is known to strengthen systemic immune response, is detected. Furthermore, DEX-CBX significantly increased natural killer T cells (5.7-fold) and CD8+ T cells (3.9-fold) as well as decreased M2 macrophages (59% reduction) over PBS treatment, resulting in a tumor suppression rate of 85.4%. DEX-CBX is anticipated to offer a novel strategy to precisely modulate hepatic inflammation and the gut microbiota to address both the symptoms and root causes of LPS-induced immunosuppression in HCC.
Collapse
Affiliation(s)
- Haochen Yao
- Hepatobiliary and Pancreatic Surgery DepartmentGeneral Surgery CenterFirst Hospital of Jilin UniversityNo.1 Xinmin StreetChangchunJilin130021China
- Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic Medical SciencesJilin UniversityChangchunJilin130021China
| | - Sheng Ma
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin RoadChangchun130022China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun Institute of Applied Chemistry5625 Renmin RoadChangchun130022China
| | - Juanjuan Huang
- Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic Medical SciencesJilin UniversityChangchunJilin130021China
- Department of Computational MathematicsSchool of MathematicsJilin UniversityChangchun130012China
| | - Xinghui Si
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin RoadChangchun130022China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun Institute of Applied Chemistry5625 Renmin RoadChangchun130022China
| | - Ming Yang
- Department of Molecular BiologyCollege of Basic Medical SciencesJilin UniversityChangchun130021China
| | - Wantong Song
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin RoadChangchun130022China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun Institute of Applied Chemistry5625 Renmin RoadChangchun130022China
| | - Guoyue Lv
- Hepatobiliary and Pancreatic Surgery DepartmentGeneral Surgery CenterFirst Hospital of Jilin UniversityNo.1 Xinmin StreetChangchunJilin130021China
| | - Guoqing Wang
- Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic Medical SciencesJilin UniversityChangchunJilin130021China
| |
Collapse
|
8
|
Hefnawy A, Abdelhamid AS, Abdelaziz MM, Elzoghby AO, Khalil IA. Recent advances in nano-based drug delivery systems for treatment of liver cancer. J Pharm Sci 2024; 113:3145-3172. [PMID: 39151795 DOI: 10.1016/j.xphs.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Liver cancer is one of the aggressive primary tumors as evident by high rate of incidence and mortality. Conventional treatments (e.g. chemotherapy) suffer from various drawbacks including wide drug distribution, low localized drug concentration, and severe off-site toxicity. Therefore, they cannot satisfy the mounting need for safe and efficient cancer therapeutics, and alternative novel strategies are needed. Nano-based drug delivery systems (NDDSs) are among these novel approaches that can improve the overall therapeutic outcomes. NDDSs are designed to encapsulate drug molecules and target them specifically to liver cancer. Thus, NDDSs can selectively deliver therapeutic agents to the tumor cells and avoid distribution to off-target sites which should improve the safety profile of the active agents. Nonetheless, NDDSs should be well designed, in terms of the preparing materials, nanocarriers structure, and the targeting strategy, in order to accomplish these objectives. This review discusses the latest advances of NDDSs for cancer therapy with emphasis on the aforementioned essential design components. The review also entails the challenges associated with the clinical translation of NDDSs, and the future perspectives towards next-generation NDDSs.
Collapse
Affiliation(s)
- Amr Hefnawy
- Smyth Lab, College of Pharmacy, University of Texas at Austin, TX 78712, USA.
| | - Ahmed S Abdelhamid
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Moustafa M Abdelaziz
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA.
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12582, Giza, Egypt.
| |
Collapse
|
9
|
Gu X, Wang J, Guan J, Li G, Ma X, Ren Y, Wu S, Chen C, Zhu H. Predictive Prognostic Model for Hepatocellular Carcinoma Based on Seven Genes Participating in Arachidonic Acid Metabolism. Cancer Med 2024; 13:e70284. [PMID: 39540710 PMCID: PMC11561968 DOI: 10.1002/cam4.70284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The occult onset and rapid progression of hepatocellular carcinoma (HCC) lead to an unsatisfactory overall survival (OS) rate. Established prognostic predictive models based on tumor-node-metastasis staging and predictive factors do not report satisfactory predictive efficacy. Arachidonic acid plays pivotal roles in biological processes including inflammation, regeneration, immune modulation, and tumorigenesis. We, therefore, constructed a prognostic predictive model based on seven genes linked to arachidonic acid metabolism, using samples of HCC patients from databases to analyze the genomic profiles. We also assessed the predictive stability of the constructed model. METHODS Sample data of 365 patients diagnosed with HCC were extracted from The Cancer Genome Atlas (TCGA, training set) and HCCDB18, GSE14520, and GSE76427 databases (validation sets). Patient samples were clustered using ConsensusClusterPlus analysis based on the expression levels of 12 genes involved in arachidonic acid metabolism that were significantly associated with HCC prognosis. Differentially expressed genes (DEGs) within different clusters were distinguished and compared using WebGestaltR. Immunohistochemistry (IHC) analysis was performed using a human HCC tissue microarray (TMA). Tumor immune microenvironment assessment was performed using ESTIMATE, ssGSEA, and TIDE. RESULTS Samples of patients with HCC were classified into three clusters, with significant differences in OS. Cluster 2 showed the best prognosis, whereas cluster 1 presented the worst. The three clusters showed significant differences in immune infiltration. We then performed Cox and LASSO regression analyses, which revealed CYP2C9, G6PD, CDC20, SPP1, PON1, TRNP1, and ADH4 as prognosis-related hub genes, making it a simplified prognostic model. TMA analysis for the seven target genes showed similar results of regression analyses. The high-risk group showed a significantly worse prognosis and reduced immunotherapy efficacy. Our model showed stable prognostic predictive efficacy. CONCLUSIONS This seven-gene-based model showed stable outcomes in predicting HCC prognosis as well as responses to immunotherapy.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guojun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of HepatologyThe Second Hospital of Yinzhou of NingboNingboChina
| | - Xiao Ma
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
10
|
Pham YTH, Huang DQ, Zhang Z, Ng CH, Tan DJH, Nguyen HC, Nguyen TC, Behari J, Yuan JM, Luu HN. Changing global epidemiology of chronic hepatitis C virus-related outcomes from 2010 to 2019: cirrhosis is the growing burden of hepatitis C virus-related disease. Eur J Cancer Prev 2024; 33:512-524. [PMID: 38568179 PMCID: PMC11416569 DOI: 10.1097/cej.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND Chronic infection with hepatitis C virus (HCV) has a long-term impact on hepatic consequences. A comprehensive evaluation of the global burden of HCV-related health outcomes can help to develop a global HCV prevention and treatment program. METHODS We used the 2019 Global Burden of Disease (GBD) Study to comprehensively investigate burden and temporal trends in incidence, mortality and disability-adjusted life-years (DALYs) of HCV-related diseases, including liver cancer and cirrhosis and other liver diseases across 264 countries and territories from 2010 to 2019. RESULTS Globally, there were 152 225 incident cases, 141 811 deaths and approximately 2.9 million DALYs because of HCV-related liver cancer, and 551 668 incident cases, 395 022 deaths and about 12.2 million DALYs because of HCV-related cirrhosis in 2019. Worldwide, during the 2010-2019 period, liver cancer incidence declined, however, there was a 62% increase in cirrhosis incidence. In 2019, the Eastern Mediterranean was the region with the highest rates of incidence and mortality of both liver cancer and cirrhosis. Africa was the region with the fastest-growing trend of incidence of cirrhosis in the 2010-2019 period [annual percentage change (APC) = 2.09, 95% confidence interval (CI): 1.93-2.25], followed by the Western Pacific region (APC = 1.17, 95% CI: 1.09-1.22). Americas were the only region observing increased trends in liver cancer and cirrhosis mortality (APC = 0.70 and 0.12, respectively). We identified three patterns of temporal trends of mortality rates of liver cancer and cirrhosis in countries that reported HCV treatment rates. CONCLUSION Urgent measures are required for diagnosis, treatment and research on HCV-related cirrhosis at global, regional and country levels, particularly in Africa, the Western Pacific and the Eastern Mediterranean.
Collapse
Affiliation(s)
- Yen Thi-Hai Pham
- University of Pittsburgh Medical Center Hillman Cancer Center
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Q. Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Zhongjie Zhang
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Darren Jun Hao Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Hiep C. Nguyen
- Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tin C. Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical Center
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jian-Min Yuan
- University of Pittsburgh Medical Center Hillman Cancer Center
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hung N. Luu
- University of Pittsburgh Medical Center Hillman Cancer Center
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Uchikawa S, Kawaoka T, Murakami S, Miura R, Shirane Y, Johira Y, Kosaka M, Fujii Y, Fujino H, Ono A, Murakami E, Miki D, Hayes CN, Tsuge M, Oka S. Time trend of outcomes according to systemic therapy for patients with unresectable hepatocellular carcinoma: A single-institution study. Hepatol Res 2024. [PMID: 39460960 DOI: 10.1111/hepr.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND We have been able to use molecular targeted agents for unresectable hepatocellular carcinoma since 2009, and immune checkpoint inhibitors have been approved in recent years. We assessed the efficacy of systemic therapy in Hiroshima University Hospital by each era. METHODS A total of 357 patients who were treated with sorafenib, lenvatinib, atezolizumab plus bevacizumab combination therapy, or durvalumab plus tremeliumab combination therapy as first-line systemic therapy in our hospital from November 2009 to December 2023 were enrolled in this retrospective cohort study. We divided the years from 2009 to 2023 into the following three periods: cohort I, 2009-2016, the single-molecular targeted agent era; cohort II, 2017-2020, the multi-molecular targeted agent era; and cohort III, 2020-2023, the immuno-oncology era. RESULTS The median survival time was 9.5 months in cohort I, 15.8 months in cohort II, and 20.2 months in cohort III. The median survival time in cohort III was significantly (p < 0.01) longer than in the other cohorts. The overall response rate by mRECIST was 4.1% in cohort I, 28.7% in cohort II, and 47.2% in cohort III. The disease control rate was 41.6% in cohort I, 61.2% in cohort II, and 73.6% in cohort III. Both overall response rate and disease control rate significantly increased by era. CONCLUSIONS We consider that advancements in systemic therapy, along with changes in treatment strategies, such as sequential therapy after progression, contribute to the prolonged prognosis across different eras.
Collapse
Affiliation(s)
- Shinsuke Uchikawa
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Serami Murakami
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ryoichi Miura
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuki Shirane
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yusuke Johira
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Masanari Kosaka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yasutoshi Fujii
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
- Department of Clinical Oncology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hatsue Fujino
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Atsushi Ono
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Eisuke Murakami
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Masataka Tsuge
- Liver Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
12
|
Shetty M, Shenoy S, Amuthan A, Devi V, Kumar N, Kiran A, Shenoy G, Chinta DR, Prasada K S, Shetty A, Rao K G M. Kadukkai maathirai (Indian herbal drug) prevents hepatocellular cancer progression by enhancing GSTM1 expression and modulating β catenin transcription: in-silico and in-vivo study. F1000Res 2024; 13:639. [PMID: 39916986 PMCID: PMC11800331 DOI: 10.12688/f1000research.145961.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/09/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with poor clinical outcomes. Hence cost-effective drugs with fewer side effects as a standard supportive therapy might yield substantial advantages in efficacy and safety. Kadukkai maathirai (KM) is being used as a supplement in hepatocellular carcinoma. We evaluated whether KM has any preventive action on cancer progression in diethyl nitrosamine (DEN) - induced HCC in rats. Methods DEN was injected to produce HCC in rats, which was confirmed after 16 weeks. All the rats were orally administered KM for 4 weeks. Hepatoprotective potential (serum AST, ALT, ALP, Bilirubin) and anticancer efficacy (body weight, nodule count, tumor progression by histopathology, expression of GSTM1 by Liquid chromatography-mass spectrometry (LC-MS), and In-silico analysis of phytoconstituents against β catenin and LRP analysis were evaluated. Results KM prevented cancer progression against DEN-induced HCC by an increase in GSTM1, a phase II detoxifying enzyme. It significantly reversed altered nodule count, relative liver weight, body weight, and histopathological features of HCC. In silico analysis of phytoconstituents of KM showed that they modulate the intracellular transcription process by inhibiting the armadillo repeat region of β catenin. Conclusions Our results elucidate the potential of KM as a supplement in HCC by reducing nodule count, protecting the liver from further damage, GSTM1 expression, and inhibiting armadillo repeat region of β catenin.
Collapse
Affiliation(s)
- Manjunath Shetty
- Centre Of Excellence, Ocular Nanoscience, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arul Amuthan
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Vaishali, Bihar, 844102, India
| | - Amruth Kiran
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ganesh Shenoy
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Diya Rajasekhar Chinta
- Department of Pharmacology, Manipal University College Malaysia, Bukit Baru, Melaka, 75150, Malaysia
| | - Shama Prasada K
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Manipal, Karnataka, 576104, India
| | - Akshatha Shetty
- Department of Research and Development, Muniyal Institute of Ayurveda and Medical Sciences, Manipal, Manipal, Karnataka, 576104, India
| | - Mohandas Rao K G
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
13
|
McGlynn KA, Petrick JL, Groopman JD. Liver Cancer: Progress and Priorities. Cancer Epidemiol Biomarkers Prev 2024; 33:1261-1272. [PMID: 39354815 DOI: 10.1158/1055-9965.epi-24-0686] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 10/03/2024] Open
Abstract
Liver cancer, the sixth most frequently occurring cancer in the world and the third most common cause of cancer mortality, has wide geographical variation in both incidence and mortality rates. At the end of the 20th century, incidence rates began declining in some high-rate areas and increasing in some lower-rate areas. These trends were undoubtedly driven by the shifting contributions of both well-established and more novel risk factors. While notable strides have been made in combating some major risk factors, such as hepatitis B virus and hepatitis C virus, the emergence of metabolic conditions as important drivers of liver cancer risk indicates that much work remains to be done in prevention. As liver cancer is strongly associated with economic and social deprivation, research, early-diagnosis, and treatment among disadvantaged populations are of paramount importance.
Collapse
Affiliation(s)
- Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | | | - John D Groopman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
14
|
Yang Z, Deng X, Wen D, Sun L, An R, Xu J. Identification of RCAN1's role in hepatocellular carcinoma using single-cell analysis. BMC Cancer 2024; 24:1056. [PMID: 39192218 PMCID: PMC11348566 DOI: 10.1186/s12885-024-12807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The regulator of calcineurin 1 (RCAN1) is expressed in multiple organs, including the heart, liver, brain, and kidney, and is closely linked to the pathogenesis of cardiovascular diseases, Down syndrome, and Alzheimer's disease. It is also implicated in the development of various organ tumors; however, its potential role in hepatocellular carcinoma (HCC) remains poorly understood. Therefore, the objective of this study was to investigate the potential mechanisms of RCAN1 in HCC through bioinformatics analysis. METHODS We conducted a joint analysis based on the NCBI and TCGA databases, integrating both bulk transcriptome and single-cell analyses to examine the principal biological functions of RCAN1 in HCC, as well as its roles related to phenotype, metabolism, and cell communication. Subsequently, an RCAN1-overexpressing cell line was established, and the effects of RCAN1 on tumor cells were validated through in vitro experiments. Moreover, we endeavored to identify potential related drugs using molecular docking and molecular dynamics simulations. RESULTS The expression of RCAN1 was found to be downregulated in 19 types of cancer tissues and upregulated in 11 types of cancer tissues. Higher levels of RCAN1 expression were associated with improved patient survival. RCAN1 was predominantly expressed in hepatocytes, macrophages, endothelial cells, and monocytes, and its high expression not only closely correlated with the distribution of cells related to the HCC phenotype but also with the distribution of HCC cells themselves. Additionally, Rcan1 may directly or indirectly participate in metabolic pathways such as alanine, aspartate, and glutamate metabolism, as well as butanoate metabolism, thereby influencing tumor cell proliferation and migration. In vitro experiments confirmed that RCAN1 overexpression promoted apoptosis while inhibiting proliferation and invasion of HCC cells. Through molecular docking of 1615 drugs, we screened brompheniramine as a potential target drug and verified our results by molecular dynamics. CONCLUSION In this study, we revealed the relationship between RCAN1 and HCC through bioinformatics methods, verified that RCAN1 can affect the progress of the disease through experiments, and finally identified potential therapeutic drugs through drug molecular docking and molecular dynamics.
Collapse
Affiliation(s)
- Ziqi Yang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiwei Deng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Didi Wen
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijun Sun
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui An
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jian Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Zhou Y, Song K, Chen Y, Zhang Y, Dai M, Wu D, Chen H. Burden of six major types of digestive system cancers globally and in China. Chin Med J (Engl) 2024; 137:1957-1964. [PMID: 38958046 PMCID: PMC11332782 DOI: 10.1097/cm9.0000000000003225] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Digestive system cancers constitute a significant number of cancer cases, but their burden is not uniform. As Global Cancer Observatory (GLOBOCAN) 2022 has recently updated its estimates of cancer burden, we aimed to investigate the burden of six major digestive system cancers both worldwide and in China, along with geographical and temporal variations in cancer-specific incidence and mortality. METHODS We extracted data on primary cancers of the esophagus, stomach, colorectum, liver, pancreas, and gallbladder from the GLOBOCAN database for 2022. Age-standardized incidence and mortality rates were calculated and stratified by sex, country, region, and human development index (HDI). We used the 2022 revision of the World Population Prospects (United Nations) to obtain demographic data for various age groups in China from 1988 to 2012 and used the joinpoint model and the average annual percentage change (AAPC) to analyze cancer incidence trends in China. RESULTS In 2022, the estimated global incidence of digestive system cancers reached 4,905,882, with an estimated 3,324,774 cancer-related deaths. Colorectal cancer was most prevalent in terms of incidence and mortality. There was a significant correlation between the burden of gastrointestinal cancers and country HDI. From 1988 to 2012, the incidence of esophageal, gastric, and liver cancers declined in China, whereas colorectal and pancreatic cancer incidences continued to increase. By 2050, colorectal and liver cancers are projected to remain the leading cancer types in China in terms of incidence and mortality, respectively. CONCLUSIONS Digestive system cancers remain a significant public health challenge globally and in China. Although progress has been made in the prevention and control of some cancers, the burden of digestive system cancers persists. The implementation of tertiary prevention strategies must be intensified to reduce the incidence and mortality of digestive system cancers, mitigating their impact on public health.
Collapse
Affiliation(s)
- Yueyang Zhou
- Center for Prevention and Early Intervention, National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Kai Song
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yuqing Chen
- Center for Prevention and Early Intervention, National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yuelun Zhang
- Center for Prevention and Early Intervention, National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Min Dai
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Department of Gastroenterology, People’s Hospital of Xizang Autonomous Region, Lhasa, Xizang autonomous region 85000, China
| | - Hongda Chen
- Center for Prevention and Early Intervention, National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
16
|
Zhang S, Li L, Liu C, Pu M, Ma Y, Zhang T, Chai J, Li H, Yang J, Chen M, Kong L, Xia T. The use of peripheral CD3 +γδ +Vδ2 + T lymphocyte cells in combination with the ALBI score to predict immunotherapy response in patients with advanced hepatocellular carcinoma: a retrospective study. J Cancer Res Clin Oncol 2024; 150:365. [PMID: 39052085 PMCID: PMC11272815 DOI: 10.1007/s00432-024-05896-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Currently, there is a lack of effective indicators for predicting the efficacy of immunotherapy in patients with advanced hepatocellular carcinoma (HCC). This study aimed to investigate the expression and prognostic value of peripheral T lymphocyte subsets in advanced HCC. METHODS Patients with advanced HCC who were treated with immune checkpoint inhibitors (ICIs) from December 2021 to December 2023 were included in the study. Flow cytometry was used to detect lymphocyte subsets before treatment. The patients were divided into disease control (DC) and nondisease control (nDC) groups based on treatment efficacy. Relationships between the clinical characteristics/peripheral T lymphocytes and immunotherapy efficacy were analyzed. The effectiveness of peripheral T lymphocyte subsets in predicting immunotherapy efficacy for patients with advanced HCC was analyzed using receiver operating characteristic (ROC) curves. RESULTS A total of 40 eligible patients were included in this study. Non-DC was significantly associated with higher albumin-bilirubin (ALBI) scores. The percentages of γδ+Vδ2+PD1+ T cells and γδ+Vδ2+Tim3+ T cells were greater in the nDC group than in the DC group. Multivariable regression analysis revealed that the ALBI score and T lymphocytes expressing γδ+Vδ2+PD1+ and γδ+Vδ2+Tim3+ were founded to be independent influencing factors. The area under the ROC curve (AUC) values for these combinations was 0.944 (95% CI, 0.882 ~ 1.000). CONCLUSIONS The calculation of the ALBI score and determination of the percentages CD3+γδ+Vδ2+PD1+ T lymphocytes and CD3+γδ+Vδ2+Tim3+ T lymphocytes in the peripheral blood of patients with advanced HCC are helpful for predicting the patients' responses to ICIs, helping to screen patients who may clinically benefit from immunotherapy. RETROSPECTIVELY REGISTERED: number: ChiCTR2400080409, date of registration: 2024-01-29.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/therapy
- Male
- Female
- Retrospective Studies
- Middle Aged
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy/methods
- Aged
- Prognosis
- CD3 Complex/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Adult
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Shuhan Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Luyang Li
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Chengli Liu
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China.
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China.
- Graduate School of Hebei North University, Zhangjiakou, China.
| | - Meng Pu
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yingbo Ma
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Tao Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Jiaqi Chai
- Department of Colorectal Surgery, 731 Hospital of China Aerospace Science and Industry group, Beijing, China
| | - Haoming Li
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Jun Yang
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Meishan Chen
- Department of Ultrasound, Strategic Support Force Xingcheng Specialized Sanatorium, Huludao, China
| | - Linghong Kong
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Tian Xia
- Graduate School of Hebei North University, Zhangjiakou, China
| |
Collapse
|
17
|
Han X, Liu Z, Cui M, Lin J, Li Y, Qin H, Sheng J, Zhang X. FGA influences invasion and metastasis of hepatocellular carcinoma through the PI3K/AKT pathway. Aging (Albany NY) 2024; 16:12806-12819. [PMID: 39227068 PMCID: PMC11501378 DOI: 10.18632/aging.206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/03/2024] [Indexed: 09/05/2024]
Abstract
Fibrinogen is an important plasma protein composed of three polypeptide chains, fibrinogen alpha (FGA), beta, and gamma. Apart from being an inflammation regulator, fibrinogen also plays a role in tumor progression. Liver cancer usually has a poor prognosis, with chronic hepatitis being the main cause of liver cirrhosis and hepatocellular carcinoma (HCC). FGA serves as a serological marker for chronic hepatitis, but its relationship with liver cancer remains unclear. Through bioinformatics analysis and agarose gel electrophoresis, we found that FGA was downregulated in HCC and correlated with tumor stage and grade. By constructing both FGA gene knockout and overexpression cell models, we demonstrated that overexpressing FGA inhibited migration and invasion of liver cancer cells through Transwell migration/invasion and wound healing assays. Western blotting experiments showed that FGA overexpression increased the expression of the epithelial-mesenchymal transition marker protein E-cadherin while decreasing N-cadherin and slug protein expression. In addition, FGA knockout activated the PI3K/AKT pathway. In a mouse model of metastatic tumors, overexpression of FGA restricted the spread of tumor cells. In conclusion, FGA exhibits an inhibitory effect on tumor metastasis, providing new insights for the treatment of advanced HCC metastatic tumors.
Collapse
Affiliation(s)
- Xi Han
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Zefeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Yongzhi Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hanjiao Qin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
18
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
19
|
Mohammadnezhad G, Esmaily H, Talebi M, Jafari M. Atezolizumab and Bevacizumab Targeted-Therapy in Advanced Hepatocellular Carcinoma: A Systematic Review of Cost-effectiveness Analyses. J Gastrointest Cancer 2024; 55:625-637. [PMID: 38488933 DOI: 10.1007/s12029-024-01038-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Atezolizumab (ATZ) plus bevacizumab (BVC) co-administration is one of the newest systemic interventions in advanced hepatocellular carcinoma (AHCC). This treatment approach is more costly and effective than other therapeutic interventions, significantly improving AHCC survival and health-related quality of life. AIM This economic study aimed to systematically review all cost-effectiveness analyses of ATZ/BVC combination in AHCC. METHOD A comprehensive search in scientific databases was performed using a highly sensitive syntax to find all related economic evaluations. The target population was AHCC patients. The intervention was ATZ/BVC, which was compared with sorafenib, nivolumab, and other anticancer strategies. We included studies that reported quality-adjusted life-years (QALYs) and/or life-years, costs, and incremental cost-effectiveness ratio (ICER), and finally, the characteristics of included studies were categorized. RESULTS Out of 315 identified records, 12 cost-effectiveness analyses were eligible for inclusion in the systematic review. Treatment costs were significantly higher with ATZ/BVC in all studies (from 61,397 to 253,687 USD/patient compared to sorafenib and nivolumab, respectively). Incremental QALYs/patient varied from 0.35 to 0.86 compared to sintilimab/BVC and sorafenib. Although ICERs for drugs varied widely, all were united in the lack of cost-effectiveness of the ATZ/BVC. The willingness-to-pay threshold in all studies was lower than the ICER, which indicated a reluctance to pay for this treatment strategy by the health systems. CONCLUSION The ATZ/BVC combination is an expensive targeted immunotherapy in AHCC. Significant discounts in ATZ and BVC prices are essential for this novel approach to be cost-effective and extensively used.
Collapse
Affiliation(s)
| | - Hadi Esmaily
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Talebi
- School of Pharmaceutical Sciences, Islamic Azad University, Tehran, Iran
| | - Matin Jafari
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Xu L, Li J, Hou N, Han F, Sun X, Li Q. 20(S)-Ginsenoside Rh2 inhibits hepatocellular carcinoma by suppressing angiogenesis and the GPC3-mediated Wnt/β‑catenin signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:688-696. [PMID: 38584523 PMCID: PMC11177114 DOI: 10.3724/abbs.2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/14/2023] [Indexed: 04/09/2024] Open
Abstract
20(S)-Ginsenoside Rh2 has significant anti-tumor effects in various types of cancers, including human hepatocellular carcinoma (HCC). However, its molecular targets and mechanisms of action remain largely unknown. Here, we aim to elucidate the potential mechanisms by which Rh2 suppresses HCC growth. We first demonstrate the role of Rh2 in inhibiting angiogenesis. We observe that Rh2 effectively suppresses cell proliferation and induces apoptosis in HUVECs. Furthermore, Rh2 significantly inhibits HepG2-stimulated HUVEC proliferation, migration and tube formation, accompanied by the downregulation of VEGF and MMP-2 expressions. We also reveal that Rh2 inhibits HCC growth through the downregulation of glypican-3-mediated activation of the Wnt/β-catenin pathway. We observe a dose-dependent inhibition of proliferation and induction of apoptosis in HepG2 cells upon Rh2 treatment, which is mediated by the inhibition of glypican-3/Wnt/β-catenin signaling. Moreover, downregulation of glypican-3 expression enhances the effects of Rh2 on the glypican-3/Wnt/β-catenin signaling pathway, resulting in greater suppression of tumor growth in HepG2 cells. Collectively, our findings shed light on the molecular mechanisms through which Rh2 modulates HCC growth, which involve the regulation of angiogenesis and the glypican-3/Wnt/β-catenin pathway. These insights may pave the way for the development of novel therapeutic strategies targeting these pathways for the treatment of HCC.
Collapse
Affiliation(s)
- Linfei Xu
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| | - Jing Li
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| | - Ningning Hou
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| | - Fang Han
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| | - Xiaodong Sun
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| | - Qinying Li
- Department of Endocrinology and MetabolismAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
- Research CenterAffiliated Hospital of Shandong Second Medical UniversityWeifang261031China
| |
Collapse
|
21
|
Yang X, Feng H, Kim J, Ti G, Wang L, Wang K, Song D. PRR34-AS1 promotes mitochondrial division and glycolytic reprogramming in hepatocellular carcinoma cells through upregulation of MIEF2. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1604-1617. [PMID: 38779765 PMCID: PMC11659787 DOI: 10.3724/abbs.2024083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
LncRNA PRR34-AS1 overexpression promotes the proliferation and invasion of hepatocellular carcinoma (HCC) cells, but whether it affects HCC energy metabolism remains unclear. Mitochondrial division and glycolytic reprogramming play important roles in tumor development. In this study, the differential expression of PRR34-AS1 is explored via TCGA analysis, and higher levels of PRR34-AS1 are detected in patients with liver cancer than in healthy individuals. A series of experiments, such as CCK-8, PCR, and immunofluorescence staining, reveal that the proliferation, invasion, glycolysis, and mitochondrial division of PRR34-AS1-overexpressing hepatoma cells are significantly promoted. TCGA analysis and immunohistochemistry reveal high expression of the mitochondrial dynamin MIEF2 in liver cancer tissues. Dual-luciferase reporter assays confirm that miR-498 targets and binds to mitochondrial elongation factor 2 (MIEF2). In addition, we show that PRR34-AS1 can sponge miR-498. Therefore, we further investigate the effects of the lncRNA PRR34-AS1/miR-498/MIEF2 axis on the growth, glucose metabolism, and mitochondrial division in hepatocellular carcinoma cells. A series of experiments are performed on hepatocellular carcinoma cells after different treatments. The results show that the proliferative activity, invasive ability, and glycolytic level of hepatocellular carcinoma cells are decreased in HCC cells with low PRR34-AS1 expression, and the miR-498 expression level is increased in these cells. Inhibition of miR-498 or overexpression of MIEF2 restored the proliferative activity, invasive ability, glycolysis, and mitochondrial division in hepatocellular carcinoma cells. Thus, PRR34-AS1 regulates MIEF2 by sponging miR-498, thereby promoting mitochondrial division, mediating glycolytic reprogramming and ultimately driving the growth and invasion of HCC cells. Furthermore, in vivo mouse experiments yield results similar to those of the in vitro experiments, verifying the above results.
Collapse
Affiliation(s)
- Xuejing Yang
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Huijing Feng
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jonghwa Kim
- Department of Pharmaceutical EngineeringWoosuk UniversityWanjuJeonbukSouthKorea
| | - Gang Ti
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lin Wang
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Kun Wang
- Department of Pharmaceutical EngineeringWoosuk UniversityWanjuJeonbukSouthKorea
| | - Dong Song
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
22
|
Igissin N, Orazbayev D, Telmanova Z, Kudaibergenova I, Mamatov N, Bilyalova Z, Igissinova G, Rustemova K, Turebayev D, Jexenova A, Adaibayev K, Sayakov U, Dzhumabayeva F, Muratbekova S, Sitnikova L, Syzdykov N, Shishkin I, Kozhakhmet K. Liver Cancer Incidence in Kazakhstan: Fifteen-Year Retrospective Study. Asian Pac J Cancer Prev 2024; 25:1763-1775. [PMID: 38809649 PMCID: PMC11318810 DOI: 10.31557/apjcp.2024.25.5.1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE The aim is to study the trends of liver cancer (LC) incidence in the regional context in Kazakhstan. METHODS The retrospective study was done using descriptive and analytical methods of oncoepidemiology. The extensive, crude and age-specific incidence rates are determined according to the generally accepted methodology used in sanitary statistics. The data were used to calculate the average percentage change (APС) using the Joinpoint regression analysis to determine the trend over the study period. RESULTS Between 2005 and 2019, 13,510 cases of LC were documented, comprising 59.3% males and 40.7% females. Most diagnoses were seen in age groups 55-59 years (13.3%) to 75-79 years (11.7%). LC patients' average age increased from 63.6 to 64.5 years. Incidence rates per 100,000 peaked at ages 65-69 years (35.1±1.0) and 70-74 years (43.3±1.0). LC incidence notably rose in the 70-74 years age group (APC=+0.89), contrasting with declining trends in younger age groups. Regional incidence variations revealed diverse patterns, mostly demonstrating unimodal increases, and some regions displaying bimodal growth. The age-standardized incidence rate was 5.7±0.1 per 100,000, declining from 2005 to 2012 (APC: -3.93), then rising until 2019 (APC: +1.13). Gender-specific standardized rates showed varied trends. Analyses of standardized indicators indicated declining trends in most regions but increased values in specific areas. Thematic maps classified incidence rates based on standardized indicators: low (up to 5.22), average (5.22 to 7.11), high (above 7.11 per 100,000 for the entire population). CONCLUSION The study on liver cancer in Kazakhstan reveals marked gender and age differences. The standardized incidence rate among men was twofold greater than that among women. A distinct rise in cases was noted among individuals aged 70-74 years. Regional variations in incidence were evident. These findings emphasize the necessity for focused research to comprehend the causes behind these differences, enabling customized interventions for Kazakhstan's population.
Collapse
Affiliation(s)
- Nurbek Igissin
- Research Institute of Life and Health Sciences, Higher School of Medicine, Kokshetau University named after Sh. Ualikhanov, Kokshetau, Kazakhstan.
- Central Asian Institute for Medical Research, Astana, Kazakhstan
- Asian Pacific Organization for Cancer Prevention, Bishkek, Kyrgyzstan.
| | - Didar Orazbayev
- Central Asian Institute for Medical Research, Astana, Kazakhstan
- Astana Medical University, Astana, Kazakhstan.
- Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan.
| | | | - Indira Kudaibergenova
- Asian Pacific Organization for Cancer Prevention, Bishkek, Kyrgyzstan.
- Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan.
| | - Niyazbek Mamatov
- Asian Pacific Organization for Cancer Prevention, Bishkek, Kyrgyzstan.
- Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan.
| | - Zarina Bilyalova
- Central Asian Institute for Medical Research, Astana, Kazakhstan
- Asian Pacific Organization for Cancer Prevention, Bishkek, Kyrgyzstan.
| | - Gulnur Igissinova
- Central Asian Institute for Medical Research, Astana, Kazakhstan
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan.
| | - Kulsara Rustemova
- Central Asian Institute for Medical Research, Astana, Kazakhstan
- Astana Medical University, Astana, Kazakhstan.
| | - Dulat Turebayev
- Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan.
| | | | - Kairat Adaibayev
- Central Asian Institute for Medical Research, Astana, Kazakhstan
- Astana Medical University, Astana, Kazakhstan.
| | - Umetaly Sayakov
- Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan.
| | | | - Svetlana Muratbekova
- Higher School of Medicine, Kokshetau University named after Sh. Ualikhanov, Kokshetau, Kazakhstan.
| | | | - Nariman Syzdykov
- Central Asian Institute for Medical Research, Astana, Kazakhstan
- Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan.
- Academy of Public Administration under the President of the Republic of Kazakhstan”, Astana, Kazakhstan.
| | - Ivan Shishkin
- Central Asian Institute for Medical Research, Astana, Kazakhstan
- Higher School of Medicine, Kokshetau University named after Sh. Ualikhanov, Kokshetau, Kazakhstan.
| | - Karina Kozhakhmet
- Central Asian Institute for Medical Research, Astana, Kazakhstan
- Higher School of Medicine, Kokshetau University named after Sh. Ualikhanov, Kokshetau, Kazakhstan.
| |
Collapse
|
23
|
Hashemi M, Daneii P, Asadalizadeh M, Tabari K, Matinahmadi A, Bidoki SS, Motlagh YSM, Jafari AM, Ghorbani A, Dehghanpour A, Nabavi N, Tan SC, Rashidi M, Taheriazam A, Entezari M, Goharrizi MASB. Epigenetic regulation of hepatocellular carcinoma progression: MicroRNAs as therapeutic, diagnostic and prognostic factors. Int J Biochem Cell Biol 2024; 170:106566. [PMID: 38513802 DOI: 10.1016/j.biocel.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Asadalizadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Tabari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
24
|
Hsu HT, Lin YM, Hsing MT, Yeh KT, Lu JW, Yang SF. Correlation Between Low Cytoplasmic Expression of XBP1 and the Likelihood of Surviving Hepatocellular Carcinoma. In Vivo 2024; 38:1316-1324. [PMID: 38688649 PMCID: PMC11059868 DOI: 10.21873/invivo.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND/AIM Our objectives in this study were to (i) evaluate the clinical significance of X-box-binding protein 1 (XBP1) expression in cases of hepatocellular carcinoma (HCC) and (ii) assess the potential of XBP1 to be used as a prognostic biomarker. PATIENTS AND METHODS The expression of XBP1 protein in 267 HCC tissue specimens was measured using immunohistochemistry in order to characterize the associations among XBP1 expression, clinicopathological factors and survival outcomes. Survival analysis using follow-up data was used to assess the prognostic value of XBP1 in cases of HCC. Immunohistochemistry revealed a significant decrease in cytoplasmic XBP1 protein expression in HCC tumor tissue. RESULTS Immunoreactivity results showed that low cytoplasmic XBP1 expression was significantly associated with vascular invasion, as well as poor 5-year overall survival and long-term disease-specific (DSS) and disease-free (DFS) survival rates. Kaplan-Meier survival curves further confirmed a significant association between low cytoplasmic XBP1 protein expression and poor DSS and DFS. Univariate and multivariate analyses revealed that XBP1 expression, tumor differentiation, vascular invasion, tumor stage, and the rate of recurrence were linked to DSS, while low cytoplasmic XBP1 expression remained an independent predictor of poor DSS. Our analysis also revealed that XBP1 expression, tumor differentiation, vascular invasion, and T classification were linked to DFS, while low cytoplasmic XBP1 expression remained an independent predictor of poor DFS. CONCLUSION Low cytoplasmic XBP1 protein expression may play an important role in the pathogenesis of HCC, which suggests that XBP1 could potentially be targeted to benefit therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Hui-Ting Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Ming-Tai Hsing
- Department of Neurosurgery, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Jeng-Wei Lu
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark;
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
25
|
Boccatonda A, Del Cane L, Marola L, D’Ardes D, Lessiani G, di Gregorio N, Ferri C, Cipollone F, Serra C, Santilli F, Piscaglia F. Platelet, Antiplatelet Therapy and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Narrative Review. Life (Basel) 2024; 14:473. [PMID: 38672744 PMCID: PMC11051088 DOI: 10.3390/life14040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is not only related to traditional cardiovascular risk factors like type 2 diabetes mellitus and obesity, but it is also an independent risk factor for the development of cardiovascular disease. MASLD has been shown to be independently related to endothelial dysfunction and atherosclerosis. MASLD is characterized by a chronic proinflammatory response that, in turn, may induce a prothrombotic state. Several mechanisms such as endothelial and platelet dysfunction, changes in the coagulative factors, lower fibrinolytic activity can contribute to induce the prothrombotic state. Platelets are players and addresses of metabolic dysregulation; obesity and insulin resistance are related to platelet hyperactivation. Furthermore, platelets can exert a direct effect on liver cells, particularly through the release of mediators from granules. Growing data in literature support the use of antiplatelet agent as a treatment for MASLD. The use of antiplatelets drugs seems to exert beneficial effects on hepatocellular carcinoma prevention in patients with MASLD, since platelets contribute to fibrosis progression and cancer development. This review aims to summarize the main data on the role of platelets in the pathogenesis of MASLD and its main complications such as cardiovascular events and the development of liver fibrosis. Furthermore, we will examine the role of antiplatelet therapy not only in the prevention and treatment of cardiovascular events but also as a possible anti-fibrotic and anti-tumor agent.
Collapse
Affiliation(s)
- Andrea Boccatonda
- Internal Medicine, Bentivoglio Hospital, AUSL Bologna, 40010 Bentivoglio, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Lorenza Del Cane
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Lara Marola
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Damiano D’Ardes
- Institute of “Clinica Medica”, Department of Medicine and Aging Science, “G. D’Annunzio” University of Chieti, 66100 Chieti, Italy (F.C.)
| | | | - Nicoletta di Gregorio
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Claudio Ferri
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Francesco Cipollone
- Institute of “Clinica Medica”, Department of Medicine and Aging Science, “G. D’Annunzio” University of Chieti, 66100 Chieti, Italy (F.C.)
| | - Carla Serra
- Interventional, Diagnostic and Therapeutic Ultrasound Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Francesca Santilli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, 66100 Chieti, Italy;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
26
|
Prasad YR, Anakha J, Pande AH. Treating liver cancer through arginine depletion. Drug Discov Today 2024; 29:103940. [PMID: 38452923 DOI: 10.1016/j.drudis.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Liver cancer, the sixth most common cancer globally and the second-leading cause of cancer-related deaths, presents a critical public health threat. Diagnosis often occurs in advanced stages of the disease, aligning incidence with fatality rates. Given that established treatments, such as stereotactic body radiation therapy and transarterial radioembolization, face accessibility and affordability challenges, the emerging focus on cancer cell metabolism, particularly arginine (Arg) depletion, offers a promising research avenue. Arg-depleting enzymes show efficacy against Arg-auxotrophic cancers, including hepatocellular carcinoma (HCC). Thus, in this review, we explore the limitations of current therapies and highlight the potential of Arg depletion, emphasizing various Arg-hydrolyzing enzymes in clinical development.
Collapse
Affiliation(s)
- Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
27
|
Ren X, Wang X, Song H, Zhang C, Yuan J, He J, Li J, Wang Z. Long non-coding RNA LINC01554 overexpression suppresses viability, migration, and invasion of liver cancer cells through regulating miR-148b-3p/EIF4E3. Heliyon 2024; 10:e27319. [PMID: 38501022 PMCID: PMC10945188 DOI: 10.1016/j.heliyon.2024.e27319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Background Long non-coding RNAs (lncRNAs) can be severed as competing endogenous RNAs (ceRNAs) to regulate target genes or mRNAs via sponging microRNAs (miRNAs). This study explored the effect of LINC01554 on liver cancer cells through the ceRNA mechanism. Methods Five significantly down-regulated lncRNAs were selected for further verification, and then through bioinformatics, interactive miRNAs and mRNAs of lncRNAs were identified. The relationship between LINC01554, miR-148b-3p and EIF4E3 was detected by the dual luciferase reporter gene assay. Afterwards, HCCLM3 cells were transfected with pCDH-LINC01554, miR-148b-3p inhibitor and miR-148b-3p mimics. Cell viability, apoptosis, migration and invasion were measured by Cell Counting Kit-8, flow cytometer, and Transwell assays. Real-time quantitative PCR (RT-qPCR) and Western blot were used to measure the expressions of related genes and proteins. Results LINC01554 was significantly down-regulated in the liver cancer cell lines, and was expressed in the cytoplasm of HCCLM3 cells. LINC01554 overexpression inhibited proliferation, migration, and invasion of HCCLM3 cells, and promote their apoptosis (P < 0.05). Besides, LINC01554 overexpression also significantly increased the levels of BAX, BCL2/BAX, P53, cleaved-Caspase3, TIMP3, E-cadherin and EIF4E3 (P < 0.05). Through bioinformatics and dual-luciferase reporter gene assay, LINC01554, miR-148b-3p and EIF4E3 were proved to interact with each other. Furthermore, the effects of miR-148b-3p knockdown on HCCLM3 cells were similar with those of LINC01554 overexpression, and miR-148b-3p mimics could reverse the changes of cell viability, apoptosis, migration, and invasion induced by LINC01554 overexpression. Conclusions LINC01554 overexpression could suppress the growth and metastasis of HCCLM3 cells via miR-148b-3p/EIF4E3.
Collapse
Affiliation(s)
- Xiaojing Ren
- Radiological & Environment Medicine Dept, China Institute for Radiation Protection, Taiyuan, 030032, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xiaoxiao Wang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Huangqin Song
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Chao Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Junlong Yuan
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jiefeng He
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jianguo Li
- Radiological & Environment Medicine Dept, China Institute for Radiation Protection, Taiyuan, 030032, China
| | - Zhuangqiang Wang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| |
Collapse
|
28
|
Kinami T, Uchikawa S, Kawaoka T, Yamasaki S, Kosaka M, Johira Y, Yano S, Amioka K, Naruto K, Yamaoka K, Fujii Y, Fujino H, Nakahara T, Ono A, Murakami E, Okamoto W, Yamauchi M, Miki D, Tsuge M, Oka S. Efficacy and safety of atezolizumab plus bevacizumab in patients with portal hypertension for unresectable hepatocellular carcinoma. Cancer Med 2024; 13:e7025. [PMID: 38477514 DOI: 10.1002/cam4.7025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/20/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
AIM Atezolizumab plus bevacizumab combination therapy (Atezo + Beva) is used as the first-line therapy for unresectable hepatocellular carcinoma (u-HCC). Serious adverse events (AEs), including rupture of esophagogastric varices, have been seen during treatment. Therefore, the relationships of efficacy, safety, and portal hypertension (PH) were analyzed. METHODS A total of 146 patients with u-HCC and Child-Pugh Scores of 5-7 received Atezo + Beva. Prophylactic treatment for varices was performed for patients with the risk of rupture of varices before the start of Atezo + Beva. A propensity score-matched cohort was created to minimize the risk of potential confounders. Efficacy was assessed in 41 propensity score-matched pairs. AEs were assessed between patients without PH (n = 80) and with PH (n = 66). RESULTS In patients without PH and with PH, median overall survival was 18.4 months and 18.8 months (p = 0.71), and median progression-free survival was 8.6 months and 5.8 months (p = 0.92), respectively. On the best radiological response evaluation for Response Evaluation Criteria in Solid Tumors, the objective response rate was 31.7% and 26.8% (p = 0.81), respectively. Variceal rupture occurred in three patients with PH, but there were no significant differences in the occurrence of variceal rupture (p = 0.090) and Grade 3-4 AEs between patients without and with PH. CONCLUSIONS No significant differences in efficacy and safety were observed with PH. Prophylactic treatment for varices before the start of Atezo + Beva would allow treatment to continue relatively safely.
Collapse
Affiliation(s)
- Takahiro Kinami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinsuke Uchikawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Yamasaki
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanari Kosaka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Johira
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeki Yano
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Amioka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kensuke Naruto
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Yamaoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasutoshi Fujii
- Department of Clinical Oncology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hatsue Fujino
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Nakahara
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Ono
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eisuke Murakami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Okamoto
- Department of Clinical Oncology, Hiroshima University Hospital, Hiroshima, Japan
| | - Masami Yamauchi
- Department of Clinical Oncology, Hiroshima University Hospital, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
29
|
Yang J, Shang X, Li J, Wei N. Comparative study on the efficacy and safety of transarterial chemoembolization combined with hepatic arterial infusion chemotherapy for large unresectable hepatocellular carcinoma. J Gastrointest Oncol 2024; 15:346-355. [PMID: 38482220 PMCID: PMC10932649 DOI: 10.21037/jgo-23-821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/12/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Transarterial chemoembolization (TACE) and hepatic arterial infusion chemotherapy (HAIC) are two new treatments for hepatocellular carcinoma (HCC). Previous studies had reported that TACE combined with HAIC conferred better survival benefit than TACE alone. The study was to evaluate the availability and safety of TACE combined with HAIC for the treatment of large HCC. METHODS Patients with unresectable large HCC who underwent TACE combined with HAIC (TACE-HAIC group) and HAIC alone (HAIC group) at the Department of Interventional Radiology between August 2018 and September 2022 were retrospectively enrolled in this study. Overall survival (OS), progression-free survival (PFS), tumor response, and adverse events (AEs) were used to evaluate the efficacy and safety of the two groups by using log-rank test. The independent factors of OS of large HCC patients were investigated by Cox regression model. RESULTS A total of 73 patients (mean age, 59.8±8.8; 60 men) with unresectable large HCC were finally screened in the current study, including 32 who received TACE combined with HAIC and 41 who received HAIC alone. Compared with patients in HAIC group, TACE-HAIC group had higher median OS (37.1 vs. 14.9 months, P=0.0014). Similarly, PFS in the TACE-HAIC group was longer than that in the HAIC group (16.5 vs. 6.9 months, P=0.0037). The objective response rate (ORR) was 65.6% vs. 53.7% and the disease control rate (DCR) was 90.6% vs. 78.0% in the two groups, neither was statistically significant (P=0.345 and 0.208, respectively). All AEs related to therapy were manageable, and there were no significant differences in the incidence of any grade and grade 3/4 AEs between the two groups (P>0.05). CONCLUSIONS TACE combined with HAIC yielded a promising prognosis in treating patients with large HCC compared with HAIC alone, with tolerable toxicity.
Collapse
Affiliation(s)
- Jing Yang
- Department of Interventional Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xianfu Shang
- Department of Interventional Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junbiao Li
- Department of Interventional Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ning Wei
- Department of Interventional Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
30
|
Huang W, Wang C, Zhang H. Eriodictyol inhibits the motility, angiogenesis and tumor growth of hepatocellular carcinoma via NLRP3 inflammasome inactivation. Heliyon 2024; 10:e24401. [PMID: 38317873 PMCID: PMC10839802 DOI: 10.1016/j.heliyon.2024.e24401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
NLRP3 involves in the development of hepatocellular carcinoma (HCC). Eriodictyol has shown its inhibitory effect on HCC cell proliferation. However, the underlying mechanism of eriodictyol in HCC is still unclear. This study aimed to explore the effect of and mechanism of eriodictyol on HCC. In this study, compared with eriodictyol (0 μM) group, eriodictyol significantly suppressed HepG2 cells (eriodictyol of 25, 50 and 100 μM) and Huh-7 cells (eriodictyol of 50 and 100 μM) viability, invasion, tube formation, metastasis-related genes MMP3, MMP16 and angiogenesis regulator VEGFA expressions with IC50 of 45.63 μM and 78.26 μM in vitro, respectively. Besides, eriodictyol significantly repressed NLRP3 expression, and reduced the protein levels of NLRP3 inflammasome-related proteins, adapter protein ASC, caspase-1, interleukin (IL)-18, and IL-1β in HepG2 (eriodictyol of 25, 50 and 100 μM) and Huh-7 cells (eriodictyol of 50 and 100 μM), respectively. Meanwhile, compared with control group, NLRP3 overexpression reversed the anti-metastatic effects of 100 μM eriodictyol on HCC cells invasion, tube formation, and metastasis-related genes MMP3, MMP16 and angiogenesis regulator VEGFA expressions, whereas NLRP3 knockdown enhanced the anti-metastatic effects of 100 μM eriodictyol on HCC cells. In vivo, compared with control group, eriodictyol significantly reduced the tumor growth, liver damage, inhibited the activation of NLRP3 inflammasome, and improved liver function, whereas NLRP3 overexpressing neutralized the anti-tumor effects of eriodictyol and degraded liver function. Hence, eriodictyol inhibited HCC cell viability, motility, angiogenesis and tumor growth via NLRP3 inflammasome inactivation both in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Huang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Chenyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| |
Collapse
|
31
|
Sato M, Moriyama M, Fukumoto T, Yamada T, Wake T, Nakagomi R, Nakatsuka T, Minami T, Uchino K, Enooku K, Nakagawa H, Shiina S, Koike K, Fujishiro M, Tateishi R. Development of a transformer model for predicting the prognosis of patients with hepatocellular carcinoma after radiofrequency ablation. Hepatol Int 2024; 18:131-137. [PMID: 37689614 PMCID: PMC10857948 DOI: 10.1007/s12072-023-10585-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION Radiofrequency ablation (RFA) is a widely accepted, minimally invasive treatment modality for patients with hepatocellular carcinoma (HCC). Accurate prognosis prediction is important to identify patients at high risk for cancer progression/recurrence after RFA. Recently, state-of-the-art transformer models showing improved performance over existing deep learning-based models have been developed in several fields. This study was aimed at developing and validating a transformer model to predict the overall survival in HCC patients with treated by RFA. METHODS We enrolled a total of 1778 treatment-naïve HCC patients treated by RFA as the first-line treatment. We developed a transformer-based machine learning model to predict the overall survival in the HCC patients treated by RFA and compared its predictive performance with that of a deep learning-based model. Model performance was evaluated by determining the Harrel's c-index and validated externally by the split-sample method. RESULTS The Harrel's c-index of the transformer-based model was 0.69, indicating its better discrimination performance than that of the deep learning model (Harrel's c-index, 0.60) in the external validation cohort. The transformer model showed a high discriminative ability for stratifying the external validation cohort into two or three different risk groups (p < 0.001 for both risk groupings). The model also enabled output of a personalized cumulative recurrence prediction curve for each patient. CONCLUSIONS We developed a novel transformer model for personalized prediction of the overall survival in HCC patients after RFA treatment. The current model may offer a personalized survival prediction schema for patients with HCC undergoing RFA treatment.
Collapse
Affiliation(s)
- Masaya Sato
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Makoto Moriyama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Fukumoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoharu Yamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taijiro Wake
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakagomi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Minami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Uchino
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Enooku
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Gu X, Li P, Gao X, Ru Y, Xue C, Zhang S, Liu Y, Hu X. RNA 5-methylcytosine writer NSUN5 promotes hepatocellular carcinoma cell proliferation via a ZBED3-dependent mechanism. Oncogene 2024; 43:624-635. [PMID: 38182896 PMCID: PMC10890930 DOI: 10.1038/s41388-023-02931-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading contributors to cancer-related mortality worldwide. Nop2/Sun domain family member 5 (NSUN5), a conserved RNA 5-methylcytosine methyltransferase, is conventionally recognized as oncogenic. However, its role in HCC development remains unknown. In this study, we observed a remarkable upregulation of NSUN5 expression in both tumor tissues from patients with HCC, establishing a correlation with unfavorable clinical outcomes. NSUN5 knockdown and overexpression significantly inhibited and promoted HCC cell proliferation, respectively. Additionally, employing a combination of methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RIP-seq techniques, we identified zinc finger BED domain-containing protein 3 (ZBED3) as a novel downstream target of NSUN5. Additionally, we found that the overexpression of ZBED3 counteracted the tumor-suppressing effect of NSUN5 knockdown and simultaneously reversed the inhibition of the Wnt/β-catenin signaling pathway. In summary, we elucidated the oncogenic role of NSUN5 in HCC development and identified the ZBED3/Wnt/β-catenin signaling pathway as its downstream target. This study provides a novel therapeutic target for further development in HCC treatment.
Collapse
Affiliation(s)
- Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiaohui Gao
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yi Ru
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yafeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| |
Collapse
|
33
|
Godoy-Matos AF, Valério CM, Silva Júnior WS, de Araujo-Neto JM, Bertoluci MC. 2024 UPDATE: the Brazilian Diabetes Society position on the management of metabolic dysfunction-associated steatotic liver disease (MASLD) in people with prediabetes or type 2 diabetes. Diabetol Metab Syndr 2024; 16:23. [PMID: 38238868 PMCID: PMC10797995 DOI: 10.1186/s13098-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease affecting 30% of the world's population and is often associated with metabolic disorders such as metabolic syndrome, type 2 diabetes (T2D), and cardiovascular disease. This review is an update of the Brazilian Diabetes Society (Sociedade Brasileira de Diabetes [SBD]) evidence-based guideline for the management of MASLD in clinical practice. METHODS The methodology was published previously and was defined by the internal institutional steering committee. The SBD Metabolic Syndrome and Prediabetes Department drafted the manuscript, selecting key clinical questions for a narrative review using MEDLINE via PubMed with the MeSH terms [diabetes] and [fatty liver]. The best available evidence was reviewed, including randomized clinical trials (RCTs), meta-analyses, and high-quality observational studies related to MASLD. RESULTS AND CONCLUSIONS The SBD Metabolic Syndrome and Prediabetes Department formulated 9 recommendations for the management of MASLD in people with prediabetes or T2D. Screening for the risk of advanced fibrosis associated with MASLD is recommended in all adults with prediabetes or T2D. Lifestyle modification (LSM) focusing on a reduction in body weight of at least 5% is recommended as the first choice for these patients. In situations where LSMs are insufficient to achieve weight loss, the use of anti-obesity medications is recommended for those with a body mass index (BMI) ≥ 27 kg/m2. Pioglitazone and glucagon-like peptide-1 receptor agonists (GLP-1RA) monotherapy are the first-line pharmacological treatments for steatohepatitis in people with T2D, and sodium-glucose cotransporter-2 (SGLT2) inhibitors may be considered in this context. The combination of these agents may be considered in the treatment of steatohepatitis and/or fibrosis, and bariatric surgery should be considered in patients with a BMI ≥ 35 kg/m2, in which the combination of LSM and pharmacotherapy has not been shown to be effective in improving MASLD.
Collapse
Affiliation(s)
- Amélio F Godoy-Matos
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Instituto Estadual de Diabetes e Endocrinologia do Rio de Janeiro (IEDE), Rio de Janeiro, RJ, Brazil
| | - Cynthia Melissa Valério
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Instituto Estadual de Diabetes e Endocrinologia do Rio de Janeiro (IEDE), Rio de Janeiro, RJ, Brazil
| | - Wellington S Silva Júnior
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil.
- Endocrinology Discipline, Department of Medicine I, Faculty of Medicine, Center of Biological Sciences, Universidade Federal do Maranhão (UFMA), Praça Gonçalves Dias, 21, Centro, São Luís, MA, CEP 65020-240, Brazil.
| | - João Marcello de Araujo-Neto
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcello Casaccia Bertoluci
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Wang T, Guo K, Yang S, Zhang D, Cui H, Yin J, Yuan S, Wang Y, Qi Y, Wu W. Identification and validation of SLCO4C1 as a biological marker in hepatocellular carcinoma based on anoikis classification features. Aging (Albany NY) 2024; 16:1440-1462. [PMID: 38226966 PMCID: PMC10866452 DOI: 10.18632/aging.205438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) exhibits a high degree of invasiveness and is closely associated with rapid disease progression. Multiple lines of evidence indicate a strong correlation between anoikis resistance and tumor progression, invasion, and metastasis. Nevertheless, the classification of anoikis in HCC and the investigation of novel biological target mechanisms in this context continue to pose challenges, requiring further exploration. METHODS Combined with HCC samples from TCGA, GEO and ICGC databases, cluster analysis was conducted on anoikis genes, revealing novel patterns among different subtypes. Significant gene analysis of different gene subtypes was performed using WCGNA. The anoikis prognostic risk model was established by Lasso-Cox. Go, KEGG, and GSEA were applied to investigate pathway enrichment primarily observed in risk groups. We compared the disparities in immune infiltration, TMB, tumor microenvironment (TME), and drug sensitivity between the two risk groups. RT-qPCR and Western blotting were performed to validate the expression levels of SLCO4C1 in HCC. The biological functions of SLCO4C1 in HCC cells were assessed through various experiments, including CCK8 assay, colony formation assay, invasion migration assay, wound healing assay, and flow cytometry analysis. RESULTS HCC was divided into 2 anoikis subtypes, and the subtypeB had a better prognosis. An anoikis prognostic model based on 12 (COPZ2, ACTG2, IFI27, SPP1, EPO, SLCO4C1, RAB26, STC2, RAC3, NQO1, MYCN, HSPA1B) risk genes is important for survival and prognosis. Significant differences were observed in immune cell infiltration, TME, and drug sensitivity analysis between the risk groups. SLCO4C1 was downregulated in HCC. SLCO4C1 downregulation promoted the proliferation, invasion, migration, and apoptosis of HCC cells. The tumor-suppressive role of SLCO4C1 in HCC has been confirmed. CONCLUSIONS Our study presents a novel anoikis classification method for HCC that reveals the association between anoikis features and HCC. The anoikis feature is a critical biomarker bridging tumor cell death and tumor immunity. In this study, we provided the first evidence of SLCO4C1 functioning as a tumor suppressor in HCC.
Collapse
Affiliation(s)
- Tianbing Wang
- Department of General Surgery, Anhui No. 2 Provincial People’s Hospital, Hefei 230000, China
| | - Kai Guo
- Department of General Surgery, Anhui No. 2 Provincial People’s Hospital, Hefei 230000, China
| | - Shoushan Yang
- Anhui No. 2 Provincial People’s Hospital Clinical College of Anhui Medical University, Hefei 230000, China
- Anhui No. 2 Provincial People’s Hospital, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
- Department of General Surgery, Luan Fourth People’s Hospital, Luan 237000, China
| | - Di Zhang
- Clinical Genomic Center, Hefei KingMed for Clinical Laboratory, Hefei 230000, China
| | - Haodong Cui
- Anhui No. 2 Provincial People’s Hospital Clinical College of Anhui Medical University, Hefei 230000, China
- Anhui No. 2 Provincial People’s Hospital, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| | - Jimin Yin
- Anhui No. 2 Provincial People’s Hospital Clinical College of Anhui Medical University, Hefei 230000, China
- Anhui No. 2 Provincial People’s Hospital, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| | - Shuhui Yuan
- Anhui Huaheng Biotechnology Co., Ltd., Hefei 230000, China
| | - Yong Wang
- Department of General Surgery, Anhui No. 2 Provincial People’s Hospital, Hefei 230000, China
| | - Yong Qi
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Wenyong Wu
- Anhui No. 2 Provincial People’s Hospital Clinical College of Anhui Medical University, Hefei 230000, China
- Anhui No. 2 Provincial People’s Hospital, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| |
Collapse
|
35
|
Mitchelson KAJ, O’Connell F, O’Sullivan J, Roche HM. Obesity, Dietary Fats, and Gastrointestinal Cancer Risk-Potential Mechanisms Relating to Lipid Metabolism and Inflammation. Metabolites 2024; 14:42. [PMID: 38248845 PMCID: PMC10821017 DOI: 10.3390/metabo14010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Obesity is a major driving factor in the incidence, progression, and poor treatment response in gastrointestinal cancers. Herein, we conducted a comprehensive analysis of the impact of obesity and its resulting metabolic perturbations across four gastrointestinal cancer types, namely, oesophageal, gastric, liver, and colorectal cancer. Importantly, not all obese phenotypes are equal. Obese adipose tissue heterogeneity depends on the location, structure, cellular profile (including resident immune cell populations), and dietary fatty acid intake. We discuss whether adipose heterogeneity impacts the tumorigenic environment. Dietary fat quality, in particular saturated fatty acids, promotes a hypertrophic, pro-inflammatory adipose profile, in contrast to monounsaturated fatty acids, resulting in a hyperplastic, less inflammatory adipose phenotype. The purpose of this review is to examine the impact of obesity, including dietary fat quality, on adipose tissue biology and oncogenesis, specifically focusing on lipid metabolism and inflammatory mechanisms. This is achieved with a particular focus on gastrointestinal cancers as exemplar models of obesity-associated cancers.
Collapse
Affiliation(s)
- Kathleen A. J. Mitchelson
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
| | - Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
36
|
Zhang BC, Ma SY, Zhu P, Zhu LY, Zhao XX, Pu C. LINC00665 target let-7i/HMGA1 promotes the proliferation and invasion of hepatoma cells. Mutat Res 2024; 828:111852. [PMID: 38368811 DOI: 10.1016/j.mrfmmm.2024.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVES Our group previously found that LINC00665 was upregulated in hepatocellular carcinoma (HCC) tissues through database analysis; however, the potential molecular mechanism of LINC00665 in HCC progression still needs further study. METHODS qRTPCR was performed to determine the differential expression of LINC00665 and let-7i in HCC cells. Dual-luciferase reporter assays were performed to analyze the interaction of LINC00665 and let-7i. CCK-8 assays, scratch assays, Transwell invasion assays, qRTPCR and western blotting were performed to determine the regulatory mechanism of LINC00665/let-7i/HMGA1 in HCC cells. RESULTS LINC00665 was upregulated in HCC cells compared with normal hepatocytes. A potential binding site between LINC00665 and let-7i was confirmed by dual-luciferase reporter assay. In HCC cells, inhibition of LINC00665 significantly reduced cell proliferation, migration and invasion ability via the let-7i/HMGA1 signaling axis. CONCLUSION LINC00665 promotes the proliferation and invasion of HCC cells via the let-7i/HMGA1 signaling axis.
Collapse
Affiliation(s)
- Bo-Chao Zhang
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China; Clinical Laboratory, Anhui Province Suixi County Hospital, Huaibei 235100, Anhui, China
| | - Si-Yuan Ma
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China.
| | - Ping Zhu
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Liang-Yu Zhu
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Xiao-Xiao Zhao
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Chun Pu
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
37
|
Chen T, Zhang Y, Liu J, Rao Z, Wang M, Shen H, Zeng S. Trends in liver cancer mortality in China from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023; 13:e074348. [PMID: 38159955 PMCID: PMC10759138 DOI: 10.1136/bmjopen-2023-074348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/08/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE We aimed to examine trends in overall mortality rates for liver cancer and those within subgroups according to sex, age, aetiological factors and modifiable risk factors in China from 1990 to 2019. DESIGN The design of this study involved analysing liver cancer mortality rates in China from 1990 to 2019 using joinpoint regression analysis to identify significant changes in mortality rates. Annual percentage changes (APCs) and 95% CIs were used to quantify the magnitude of changes in mortality rates. The study also conducted subgroup analyses based on sex, age, aetiological factors and risk factors to better understand trends in liver cancer mortality rates. RESULTS The age-standardised mortality from liver cancer in China first increased from 28.12 to 31.54 deaths per 100 000 population in 1990-1996 (APC=2.1%, 95% CI: 1.5% to 2.6%), then dropped at varying rates (1996-2000, APC=-3.7%, 95% CI: -5.2% to -2.1%; 2000-2004, APC=-17.4%, 95% CI: -18.7% to -16.1%; 2004-2007, APC=-5.4%, 95% CI: -8.3% to -2.3%; and 2007-2012, APC=-1.4%, 95% CI: -2.3% to -0.4%), and began to increase again after 2012 (APC=1.3%, 95% CI: 0.9% to 1.7%). Hepatitis B and C virus infections accounted for 63% and 18% of liver cancer-related deaths, respectively, in China from 1990 to 2019. Smoking, drug use, alcohol use and elevated body mass index were the four leading risk factors for liver cancer mortality in China during the study period. Notable variations in both liver cancer mortality rates and changes in mortality rates were observed across sexes and age groups. CONCLUSIONS The age-standardised liver cancer mortality rate in China significantly decreased from 1996 to 2019. The major differences in liver cancer mortality rates and inconsistent changes in mortality rates between 1990 and 2019 merit the attention of researchers and policymakers.
Collapse
Affiliation(s)
- Taili Chen
- Department of Oncology, Xiangya Hospital Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Department of Oncology, Yueyang People's Hospital, Yueyang, Hunan, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | - Mian Wang
- Department of Epidemiology and Health Statistics, University of South China, Hengyang, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
38
|
Kim HR, Seo CW, Kim J. The value of CDC42 effector protein 2 as a novel prognostic biomarker in liver hepatocellular carcinoma: a comprehensive data analysis. Osong Public Health Res Perspect 2023; 14:451-467. [PMID: 38204425 PMCID: PMC10788419 DOI: 10.24171/j.phrp.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The prognostic significance of CDC42 effector protein 2 (CDC42EP2) and its association with tumor-infiltrating immune cells (TIICs) have not been explored in liver hepatocellular carcinoma (LIHC). This study aims to assess the potential prognostic value of CDC42EP2 by conducting a comprehensive analysis of online databases pertaining to LIHC. METHODS We evaluated the potential of CDC42EP2 as a prognostic biomarker by utilizing online databases such as TIMER, GEPIA2, KM, OSlihc, HPA, and LinkedOmics. RESULTS In LIHC, we observed that the mRNA and protein expression of CDC42EP2 were upregulated compared to normal tissues. Upregulated CDC42EP2 expression was associated with a worse prognosis based on the clinicopathological characteristics of patients with LIHC. Furthermore, CDC42EP2 was positively associated with TIICs. In the co-expression and functional enrichment analyses of CDC42EP2, 11,416 genes showed positive associations with CDC42EP2 while 8,008 genes showed negative associations. CDC42EP2-related co-expression genes were involved in protein localization to the endoplasmic reticulum, translational initiation, and RNA catabolic processes in gene set enrichment analysis-Gene Ontology (GSEAGO), and regulated the ribosome, spliceosome, and primary immune deficiency in the GSEAKyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In a survival map, 23 and 17 genes that exhibited positive associations with CDC42EP2 showed a significant hazard ratio (HR) for overall survival and disease-free survival, respectively. CONCLUSION Our findings demonstrated that CDC42EP2 is a novel prognostic biomarker and a potential tumor immune therapeutic target in patients with LIHC.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Choong Won Seo
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| |
Collapse
|
39
|
Wu M, Sun T, Xing L. Circ_0004913 Inhibits Cell Growth, Metastasis, and Glycolysis by Absorbing miR-184 to Regulate HAMP in Hepatocellular Carcinoma. Cancer Biother Radiopharm 2023; 38:708-719. [PMID: 33021399 DOI: 10.1089/cbr.2020.3779] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Circular RNA (circRNA) can regulate the progression of hepatocellular carcinoma (HCC). However, the role and potential mechanism of circ_0004913 in HCC are not explored. Methods: Circ_0004913 was identified from two GSE datasets (GSE94508 and GSE97322) as a differentially expressed circRNA between HCC and normal tissues. Levels of circ_0004913, microRNA-184 (miR-184), and hepcidin (HAMP) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, migration, and invasion were estimated by methyl thiazolyl tetrazolium, colony formation, and Transwell assays, respectively. Levels of all proteins were examined by Western blot. Glucose consumption and lactate and ATP production were analyzed by the glucose, lactate, and ATP assay kits. Dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were performed to verify the interactions among miR-184 and circ_0004913 or HAMP. The mice xenograft models were established to assess the effect of circ_0004913 on tumor growth in vivo. Results: Circ_0004913 was downregulated in HCC, and its expression impeded cell proliferation, migration, and invasion, EMT, and glycolysis in HCC cells. miR-184 was identified as a target miRNA of circ_0004913, and their expression levels were negatively correlated. miR-184 overexpression could reverse the inhibitory effect of circ_0004913 on HCC cell progression. Moreover, as a target gene of miR-184, HAMP expression was positively correlated with circ_0004913 expression in HCC tissues, and repression of miR-184 could inhibit the progression of HCC cells by increasing HAMP expression. Circ_0004913 could inhibit JAK2/STAT3/AKT signaling pathway and tumor growth in vivo by regulating the miR-184/HAMP axis. Conclusion: Circ_0004913 inhibited the tumorigenesis of HCC by sponging miR-184 to regulate HAMP expression in vitro and in vivo.
Collapse
Affiliation(s)
- Mingyuan Wu
- Department of Gastroenterology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tanlezi Sun
- Basic Medical College, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lianjun Xing
- Department of Gastroenterology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
40
|
Zou Y, Yue M, Jia L, Wang Y, Chen H, Zhang A, Xia X, Liu W, Yu R, Yang S, Huang P. Accurate prediction of HCC risk after SVR in patients with hepatitis C cirrhosis based on longitudinal data. BMC Cancer 2023; 23:1147. [PMID: 38007418 PMCID: PMC10676612 DOI: 10.1186/s12885-023-11628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Most existing predictive models of hepatocellular carcinoma (HCC) risk after sustained virologic response (SVR) are built on data collected at baseline and therefore have limited accuracy. The current study aimed to construct an accurate predictive model incorporating longitudinal data using a novel modeling strategy. The predictive performance of the longitudinal model was also compared with a baseline model. METHODS A total of 400 patients with HCV-related cirrhosis who achieved SVR with direct-acting antivirals (DAA) were enrolled in the study. Patients were randomly divided into a training set (70%) and a validation set (30%). Informative features were extracted from the longitudinal variables and then put into the random survival forest (RSF) to develop the longitudinal model. A baseline model including the same variables was built for comparison. RESULTS During a median follow-up time of approximately 5 years, 25 patients (8.9%) in the training set and 11 patients (9.2%) in the validation set developed HCC. The areas under the receiver-operating characteristics curves (AUROC) for the longitudinal model were 0.9507 (0.8838-0.9997), 0.8767 (0.6972,0.9918), and 0.8307 (0.6941,0.9993) for 1-, 2- and 3-year risk prediction, respectively. The brier scores of the longitudinal model were also relatively low for the 1-, 2- and 3-year risk prediction (0.0283, 0.0561, and 0.0501, respectively). In contrast, the baseline model only achieved mediocre AUROCs of around 0.6 (0.6113, 0.6213, and 0.6480, respectively). CONCLUSIONS Our longitudinal model yielded accurate predictions of HCC risk in patients with HCV-relate cirrhosis, outperforming the baseline model. Our model can provide patients with valuable prognosis information and guide the intensity of surveillance in clinical practice.
Collapse
Affiliation(s)
- Yanzheng Zou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linna Jia
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yifan Wang
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Hongbo Chen
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Amei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, China
- Kunming Medical University, Kunming, China
| | - Wei Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Rongbin Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Sheng Yang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Peng Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
41
|
Bai XM, He ZH, Wu H, Yang W, Wang S, Zhang ZY, Wu W, Yan K, Chen MH, Nahum Goldberg S. An evaluation of 20-year survival of radiofrequency ablation for hepatocellular carcinoma as first-line treatment. Eur J Radiol 2023; 168:111094. [PMID: 37738836 DOI: 10.1016/j.ejrad.2023.111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVES To evaluate the changes in clinical characteristics, overall survival (OS), and progression-free survival (PFS) by investigating a 20-year cohort of patients with HCC who underwent RFA treatment. METHODS From 2000 to 2020, 505 consecutive patients with HCC underwent ultrasound-guided percutaneous RFA as first-line therapy at a tertiary cancer hospital. We divided the cohort according to the time when hepatitis-B antiviral therapy was covered by national medical insurance coverage (early 2011), including the first decade (2000-2010) and second decade (2011-2020). The prognostic factors for OS were analyzed by the Cox proportional hazard model. OS and PFS in different groups were compared using the Kaplan-Meier method. To reduce selection bias, matched groups of patients were selected using the propensity score matching (PSM) method. RESULTS In total, 726 RFA sessions were performed to treat 867 HCC lesions. Patients treated in the second decade were younger (p =.047), had smaller tumors (p <.001), had lower Child-Pugh scores (p <.001), and had a higher proportion of antiviral treatment (p <.001). A total of 96.0% of patients achieved technical efficacy from the initial RFA. After PSM analysis, improved PFS was found for the second decade (median, 68 vs. 49 months, p =.003), but no significant difference in OS was observed between the two groups (median, 71 vs. 65 months, p =.20). CONCLUSIONS This study demonstrated that improved PFS was achieved in patients with HCC receiving RFA as first-line treatment in the second decade. However, long-term OS was not significantly increased compared to the first decade suggesting that while RFA treatment has improved, it still might not substantially affect OS results.
Collapse
Affiliation(s)
- Xiu-Mei Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhong-Hu He
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Genetics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Song Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhong-Yi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing, China
| | - Kun Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min-Hua Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing, China
| | - S Nahum Goldberg
- Division of Image-Guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
42
|
Chen M, Lu Y, Wang X, Qin S, Chen H, Lu L, Qin X. The Association between Four Common Polymorphisms in microRNA and Risk of Hepatocellular Carcinoma: An Updated Meta-Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2272-2285. [PMID: 38106842 PMCID: PMC10719708 DOI: 10.18502/ijph.v52i11.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/10/2022] [Indexed: 12/19/2023]
Abstract
Background Many epidemiological studies have explored the relationship between single-nucleotide polymorphism and hepatocellular carcinoma (HCC). However, the results remain controversial. We performed a large-scale meta-analysis to draw a more precise estimation of the aforementioned association. Methods Studies on the association between microRNA (MIR) polymorphisms and HCC risk that had been published up to Sep 30, 2021 were identified by searching the PubMed, Cochrane Library, Google Scholar, Web of Science, and Chinese Biomedical Literature electronic databases and the Excerpta Medical Database. The association between MIR polymorphisms and HCC risk was assessed using odds ratios (ORs) and their 95% confidence intervals (CIs). Results Overall, 29 studies, with a total of 9,263 cases and 10,875 controls, were included in our meta-analysis. MicroRNA149 (MIR149) significantly decreased the risk of developing HCC on the overall population (homozygous model CC vs. TT: OR = 0.703, 95% CI = 0.549-0.899, P = 0.005), and microRNA 196 (MIR196) significantly decreased the risk of developing HCC on the overall population (recessive model TT vs. CT+CC: OR = 0.864, 95% CI = 0.751-0.993, P = 0.04) and on Caucasians (OR = 0.613, 95% CI = 0.414-0.907, P = 0.014). Conclusion The MIR149 and MIR196 polymorphisms are the protect factors of developing HCC. The conduct of multi-center and multi-region studies with gene-gene, gene-environment should be considered.
Collapse
Affiliation(s)
- Mingxing Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yu Lu
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou 545006, Guangxi, China
| | - Xinyang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Simeng Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Huaping Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Liuyi Lu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xue Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| |
Collapse
|
43
|
Chen X, Liu G, Wu B. Analysis and experimental validation of the innate immune gene PSMD1 in liver hepatocellular carcinoma and pan-cancer. Heliyon 2023; 9:e21164. [PMID: 37928041 PMCID: PMC10623288 DOI: 10.1016/j.heliyon.2023.e21164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
This work intends to examine the diagnostic, prognostic, and biological roles of PSMD1 (proteasome 26S subunit, non-ATPase 1) in liver hepatocellular carcinoma (LIHC) and other malignancies, using bioinformatics techniques. PSMD1 is an innate immune gene that has been identified as a biomarker for several cancers. By analyzing TCGA data, we determined that PSMD1 has excellent diagnostic and prognostic value in LIHC. We also examined its correlation with stage-matching clinical features, particularly T staging and stage staging. Independent prognostic analysis, nomogram, and Decision Curve Analysis (DCA) analysis confirmed the predictive ability of PSMD1 on patient clinical outcomes. Our focus was on exploring the biological process, immune infiltration, and genetic variation in which PSMD1 is involved in LIHC. We found a close relationship between PSMD1 and the tumor microenvironment (TME), as well as various immune cell infiltration, immune function, and immune checkpoints. Furthermore, our results suggested that liver cancer patients with low PSMD1 expression were more actively responsive to immunotherapy according to TIDE predictions. Additionally, we observed significant differences in patient survival based on the different immune molecular types of tumors and their correlation with PSMD1 expression. The close relationship between PSMD1 and copy number variation (CNV), tumor mutational burden (TMB), and methylation was also confirmed, showing a significant impact on patient survival. Moreover, the pan-cancer analysis revealed that PSMD1 is closely related to the diagnosis and prognosis of various cancers, as well as immune infiltration across different cancer types. In summary, PSMD1 has the potential to be a useful diagnostic and prognostic biomarker for LIHC and other types of cancers. It is closely associated with indicators such as immune infiltration, CNV, TMB, and methylation. The identification of PSMD1 may offer a potential intervention target for LIHC and various cancers.
Collapse
Affiliation(s)
- Xing Chen
- Hepatobiliary Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, China
- Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Guihai Liu
- Clinical Drug Experiment Center, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Buqiang Wu
- Hepatobiliary Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, China
| |
Collapse
|
44
|
Reddy KR, McLerran D, Marsh T, Parikh N, Roberts LR, Schwartz M, Nguyen MH, Befeler A, Page-Lester S, Tang R, Srivastava S, Rinaudo JA, Feng Z, Marrero JA. Incidence and Risk Factors for Hepatocellular Carcinoma in Cirrhosis: The Multicenter Hepatocellular Carcinoma Early Detection Strategy (HEDS) Study. Gastroenterology 2023; 165:1053-1063.e6. [PMID: 37429366 PMCID: PMC10529044 DOI: 10.1053/j.gastro.2023.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/18/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND & AIMS Worldwide, hepatocellular carcinoma (HCC) is a common malignancy. We aimed to prospectively determine the incidence and risk factors of HCC in a U.S. COHORT METHODS The multicenter Hepatocellular Carcinoma Early Detection Strategy study of the National Institutes of Health prospectively enrolled patients with cirrhosis who underwent standard surveillance for HCC. Demographics, medical and family history, etiology of liver disease, and clinical features were evaluated for associations with HCC. RESULTS Between April 10, 2013 and December 31, 2021, 1723 patients were enrolled and confirmed eligible. During median follow-up of 2.2 years (range, 0-8.7 years), there were 109 incident cases of HCC for an incidence rate of 2.4 per 100 person-years: 88 (81%) patients with very early/early Barcelona Clinic Liver Cancer stage (0, A), 20 (18%) intermediate stage (B), and 1 (1%) unknown stage. Risk factor analyses were restricted to 1325 patients, including 95 incident HCC, with at least 6 months of follow-up. The majority were men (53.2%), obese or severely obese (median body mass index, 30.2 kg/m2), and white (86.3%); 42.0% had history of hepatitis C virus infection, 20.7% had alcoholic liver disease, and 24.9% had nonalcoholic fatty liver disease. Fourteen risk factors for HCC were significant (P < .05) in univariate analyses, and a multivariate subset was selected using stepwise logistic regression. The multivariate subset contained gender (P < .001; male; odds ratio [OR], 2.47; 95% confidence interval [CI], 1.54-4.07), years with cirrhosis (P = .004; OR, 1.06; 95% CI, 1.02-1.1), family history of liver cancer (P = .02; yes; OR, 2.69; 95% CI, 1.11-5.86), age (per 5 years; P = .02; OR, 1.17; 95% CI, 1.03-1.33), obesity (P = .02; yes; OR, 1.7; 95% CI, 1.08-2.73), aspartate aminotransferase (log(1+AST); P = .06; OR, 1.54; 95% CI, 0.97-2.42), alpha-fetoprotein (log(1+AFP); P = .07; OR, 1.32; 95% CI, 0.97-1.77), and albumin (P = .10; OR, 0.7; 95% CI, 0.46-1.07). CONCLUSIONS Thus far, this is the largest prospective and geographically diverse study of a U.S. cohort of patients with cirrhosis that validates known risk factors for HCC (gender, age, obesity, years with cirrhosis, family history of liver cancer, baseline AFP, albumin, and AST). The incidence of HCC was 2.4% per 100 person-years.
Collapse
Affiliation(s)
| | - Dale McLerran
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Tracey Marsh
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | | | | | - Runlong Tang
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Ziding Feng
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | |
Collapse
|
45
|
Cadar R, Lupascu Ursulescu C, Vasilescu AM, Trofin AM, Zabara M, Rusu-Andriesi D, Ciuntu B, Muzica C, Lupascu CD. Challenges and Solutions in the Management of Hepatocellular Carcinoma Associated with Non-Alcoholic Fatty Liver Disease. Life (Basel) 2023; 13:1987. [PMID: 37895369 PMCID: PMC10608140 DOI: 10.3390/life13101987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has gained attention in the last few years due to its increasing prevalence worldwide becoming a global epidemic. The increasing incidence of NAFLD and the concurrent increase in the number of hepatocellular carcinoma (HCC) cases at a global level is a matter of concern. HCC has several risk factors, of which NAFLD and its associated metabolic disturbances-type 2 diabetes mellitus, obesity, and dyslipidemia-are of great interest due to their accelerating rise in incidence worldwide. There is a high amount of data derived from basic and clinical studies that reveal the molecular pathways that drive NAFLD-associated HCC. Based on these findings, new prevention, surveillance, and treatment strategies are emerging. However, current data on treatment modalities in NAFLD-associated HCC are still scarce, though the results from non-NAFLD HCC studies are promising and could provide a basis for a future research agenda to address NAFLD/NASH patients. Clinicians should carefully assess all the clinical and radiological parameters and establish a prognosis based on the Barcelona Clinic Liver Cancer classification and discuss in a multidisciplinary team the treatment strategy. The specific factors associated with NAFLD-associated HCC which can have a negative impact on survival even in patients with early HCC, such as cardiovascular disease, type 2 diabetes, and obesity, should be taken into consideration. This review aims to discuss the latest recommendations regarding the diagnosis and treatment of NAFLD-associated HCC and the remaining challenges.
Collapse
Affiliation(s)
- Ramona Cadar
- Department of Surgery, Gr. T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.); (A.M.T.); (M.Z.); (B.C.); (C.D.L.)
- General Surgery and Liver Transplant Clinic, St. Spiridon University Hospital, 700111 Iasi, Romania
| | - Corina Lupascu Ursulescu
- Department of Radiology, Gr. T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Radiology Clinic, St. Spiridon University Hospital, 700111 Iasi, Romania
| | - Alin Mihai Vasilescu
- Department of Surgery, Gr. T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.); (A.M.T.); (M.Z.); (B.C.); (C.D.L.)
- General Surgery and Liver Transplant Clinic, St. Spiridon University Hospital, 700111 Iasi, Romania
| | - Ana Maria Trofin
- Department of Surgery, Gr. T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.); (A.M.T.); (M.Z.); (B.C.); (C.D.L.)
- General Surgery and Liver Transplant Clinic, St. Spiridon University Hospital, 700111 Iasi, Romania
| | - Mihai Zabara
- Department of Surgery, Gr. T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.); (A.M.T.); (M.Z.); (B.C.); (C.D.L.)
- General Surgery and Liver Transplant Clinic, St. Spiridon University Hospital, 700111 Iasi, Romania
| | - Delia Rusu-Andriesi
- Department of Surgery, Gr. T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.); (A.M.T.); (M.Z.); (B.C.); (C.D.L.)
- General Surgery and Liver Transplant Clinic, St. Spiridon University Hospital, 700111 Iasi, Romania
| | - Bogdan Ciuntu
- Department of Surgery, Gr. T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.); (A.M.T.); (M.Z.); (B.C.); (C.D.L.)
- General Surgery and Liver Transplant Clinic, St. Spiridon University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Gr. T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, St. Spiridon University Hospital, 700111 Iasi, Romania
| | - Cristian Dumitru Lupascu
- Department of Surgery, Gr. T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.C.); (A.M.T.); (M.Z.); (B.C.); (C.D.L.)
- General Surgery and Liver Transplant Clinic, St. Spiridon University Hospital, 700111 Iasi, Romania
| |
Collapse
|
46
|
Omar A, Kaseb A, Elbaz T, El-Kassas M, El Fouly A, Hanno AF, El Dorry A, Hosni A, Helmy A, Saad AS, Alolayan A, Eysa BE, Hamada E, Azim H, Khattab H, Elghazaly H, Tawfik H, Ayoub H, Khaled H, Saadeldin I, Waked I, Barakat EMF, El Meteini M, Hamed Shaaban M, EzzElarab M, Fathy M, Shaker M, Sobhi M, Shaker MK, ElGharib M, Abdullah M, Mokhtar M, Elshazli M, Heikal OMK, Hetta O, ElWakil RM, Abdel Wahab S, Eid SS, Rostom Y, On behalf of the Egyptian Liver Cancer Committee Study Group. Egyptian Society of Liver Cancer Recommendation Guidelines for the Management of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1547-1571. [PMID: 37744303 PMCID: PMC10516190 DOI: 10.2147/jhc.s404424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is the fourth most common cause of death from cancer. The prevalence of this pathology, which has been on the rise in the last 30 years, has been predicted to continue increasing. HCC is the most common cause of cancer-related morbidity and mortality in Egypt and is also the most common cancer in males. Chronic liver diseases, including chronic hepatitis C, which is a primary health concern in Egypt, are considered major risk factors for HCC. However, HCC surveillance is recommended for patients with chronic hepatitis B virus (HBV) and liver cirrhosis; those above 40 with HBV but without cirrhosis; individuals with hepatitis D co-infection or a family history of HCC; and Nonalcoholic fatty liver disease (NAFLD) patients exhibiting significant fibrosis or cirrhosis. Several international guidelines aid physicians in the management of HCC. However, the availability and cost of diagnostic modalities and treatment options vary from one country to another. Therefore, the current guidelines aim to standardize the management of HCC in Egypt. The recommendations presented in this report represent the current management strategy at HCC treatment centers in Egypt. Recommendations were developed by an expert panel consisting of hepatologists, oncologists, gastroenterologists, surgeons, pathologists, and radiologists working under the umbrella of the Egyptian Society of Liver Cancer. The recommendations, which are based on the currently available local diagnostic aids and treatments in the country, include recommendations for future prospects.
Collapse
Affiliation(s)
- Ashraf Omar
- Department of Gastroenterology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Kaseb
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamer Elbaz
- Department of Gastroenterology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed El-Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Amr El Fouly
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Abdel Fatah Hanno
- Department of Gastroenterology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed El Dorry
- Department of Interventional Radiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Hosni
- Department of Interventional Radiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amr Helmy
- Department of Surgery, National Liver Institute Menoufia University, Menoufia, Egypt
| | - Amr S Saad
- Department of Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ashwaq Alolayan
- Department of Oncology, National Guard Hospital, Riyadh, Saudi Arabia
| | - Basem Elsayed Eysa
- Department of Gastroenterology, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Emad Hamada
- Department of Oncology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hamdy Azim
- Department of Oncology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hany Khattab
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hesham Elghazaly
- Department of Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hesham Tawfik
- Department of Oncology, Faculty of Medicine, Tanta University, TantaEgypt
| | - Hisham Ayoub
- Department of Gastroenterology, Military Medical Academy, Cairo, Egypt
| | - Hussein Khaled
- Department of Oncology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ibtessam Saadeldin
- Department of Oncology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Imam Waked
- Department of Gastroenterology, Menoufia Liver Institute, Menoufia, Egypt
| | - Eman M F Barakat
- Department of Gastroenterology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud El Meteini
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Hamed Shaaban
- Department of Interventional Radiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed EzzElarab
- Department of Gastroenterology, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Mohamed Fathy
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Shaker
- Department of Interventional Radiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Sobhi
- Department of Interventional Radiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Kamal Shaker
- Department of Gastroenterology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed ElGharib
- Department of Interventional Radiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohammed Abdullah
- Department of Oncology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohesn Mokhtar
- Department of Oncology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mostafa Elshazli
- Department of Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Osama Hetta
- Department of Interventional Radiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reda Mahmoud ElWakil
- Department of Gastroenterology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sameh Abdel Wahab
- Department of Interventional Radiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samir Shehata Eid
- Department of Oncology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yousri Rostom
- Department of Oncology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - On behalf of the Egyptian Liver Cancer Committee Study Group
- Department of Gastroenterology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt
- Department of Gastroenterology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Department of Interventional Radiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Interventional Radiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Surgery, National Liver Institute Menoufia University, Menoufia, Egypt
- Department of Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Oncology, National Guard Hospital, Riyadh, Saudi Arabia
- Department of Gastroenterology, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
- Department of Oncology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Oncology, Faculty of Medicine, Tanta University, TantaEgypt
- Department of Gastroenterology, Military Medical Academy, Cairo, Egypt
- Department of Gastroenterology, Menoufia Liver Institute, Menoufia, Egypt
- Department of Gastroenterology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Oncology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Oncology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
47
|
Lu N, Min J, Peng L, Huang S, Chai X, Wang S, Wang J. MiR-297 inhibits tumour progression of liver cancer by targeting PTBP3. Cell Death Dis 2023; 14:564. [PMID: 37633911 PMCID: PMC10460384 DOI: 10.1038/s41419-023-06097-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Whereas increasing evidences demonstrate that miR-297 contributes to the tumour development and progression, the role of miR-297 and its underlying molecular mechanisms in hepatocellular carcinoma (HCC) was still unclear. Here, we reported that the expression of miR-297 increased significantly in hepG2 cells after the treatment of the conditioned medium of human amniotic epithelial cells(hAECs) which can inhibit the proliferation and migration of hepG2. And the overexpression of miR-297 inhibits the cell proliferation, migration and invasion of HCC cell lines in vitro and suppressed the tumorigenesis of HCC in vivo. Polypyrimidine tract-binding protein 3 (PTBP3) was identified as a direct target gene of miR-297 in HCC cell lines, and mediated the function of miR-297 in HCC cells. In clinical samples, miR-297 levels have a tendency to decrease, but there are no statistically significant differences. Furthermore, in vitro cell experiments confirmed that overexpression of miR-297 could inhibit the PI3K/AKT signaling pathway by down-regulating PTBP3 expression, thereby inhibiting the proliferation, migration and invasion of HCC cells. In conclusion, our results revealed that miR-297 could down-regulate the expression of PTBP3 and inhibit the activation of PI3K/AKT signaling pathway, thereby preventing HCC growth, migration and invasion.
Collapse
Affiliation(s)
- Na Lu
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Jiali Min
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lin Peng
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Shengjian Huang
- Hunan Guangxiu Hi-tech Life Technology Co., Ltd., Changsha, China
| | - Xiahua Chai
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Susu Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jian Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, China.
| |
Collapse
|
48
|
Lee K, Hwang JW, Sohn HJ, Suh S, Kim SW. A systematic review of progress on hepatocellular carcinoma research over the past 30 years: a machine-learning-based bibliometric analysis. Front Oncol 2023; 13:1227991. [PMID: 37664017 PMCID: PMC10471147 DOI: 10.3389/fonc.2023.1227991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Research on hepatocellular carcinoma (HCC) has grown significantly, and researchers cannot access the vast amount of literature. This study aimed to explore the research progress in studying HCC over the past 30 years using a machine learning-based bibliometric analysis and to suggest future research directions. Methods Comprehensive research was conducted between 1991 and 2020 in the public version of the PubMed database using the MeSH term "hepatocellular carcinoma." The complete records of the collected results were downloaded in Extensible Markup Language format, and the metadata of each publication, such as the publication year, the type of research, the corresponding author's country, the title, the abstract, and the MeSH terms, were analyzed. We adopted a latent Dirichlet allocation topic modeling method on the Python platform to analyze the research topics of the scientific publications. Results In the last 30 years, there has been significant and constant growth in the annual publications about HCC (annual percentage growth rate: 7.34%). Overall, 62,856 articles related to HCC from the past 30 years were searched and finally included in this study. Among the diagnosis-related terms, "Liver Cirrhosis" was the most studied. However, in the 2010s, "Biomarkers, Tumor" began to outpace "Liver Cirrhosis." Regarding the treatment-related MeSH terms, "Hepatectomy" was the most studied; however, recent studies related to "Antineoplastic Agents" showed a tendency to supersede hepatectomy. Regarding basic research, the study of "Cell Lines, Tumors,'' appeared after 2000 and has been the most studied among these terms. Conclusion This was the first machine learning-based bibliometric study to analyze more than 60,000 publications about HCC over the past 30 years. Despite significant efforts in analyzing the literature on basic research, its connection with the clinical field is still lacking. Therefore, more efforts are needed to convert and apply basic research results to clinical treatment. Additionally, it was found that microRNAs have potential as diagnostic and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Kiseong Lee
- Humanities Research Institute, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Woong Hwang
- Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Hee Ju Sohn
- Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Sanggyun Suh
- Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Sun-Whe Kim
- Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| |
Collapse
|
49
|
Wang Y, Yan Y, Huo Y, Pang Y, Chan L, Wang S, Chen D, Lin D, Wang W. mRNA sequencing and CyTOF analysis revealed ASPP2 altered the response patterns of hepatocellular carcinoma HepG2 cells to usnic acid. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1847-1856. [PMID: 36877271 DOI: 10.1007/s00210-023-02428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
In a previous study, our team found that ASPP2 overexpression increases the sensitivity of liver cancer cells to sorafenib. ASPP2 is an important target in the study of drug therapy for hepatocellular carcinoma. In this study, we demonstrated that ASPP2 altered the response of HepG2 cells to usnic acid (UA) by using mRNA sequencing and CyTOF. CCK8 assay was used to detect cytotoxicity of UA on HepG2 cells. Annexin V-RPE assay, TUNEL assay, and cleaved caspase 3 assay were performed to examine the apoptotic cell death induced by UA. Transcriptomic sequencing and a single-cell mass cytometry were used to analyze the dynamic response of HepG2shcon and HepG2shASPP2 cells to UA treatment. We have demonstrated that UA could inhibit proliferation in HepG2 cells in a concentration-dependent manner. Apoptotic cell death was significantly induced by UA in HepG2 cells, while knocking down ASPP2 could increase the resistance of HepG2 cells to UA. Data from mRNA-Seq indicated that knockout of ASPP2 in HepG2 cells affected cell proliferation, cycle, and metabolism. ASPP2 knockdown resulted in increased stemness and decreased apoptosis of HepG2 cells under the action of UA. CyTOF analysis confirmed the above results, ASPP2 knockdown increased oncoproteins in HepG2 cells and altered response patterns of HepG2 cells to UA. Our data suggested that the natural compound UA could inhibit liver cancer HepG2 cells; meanwhile, ASPP2 knockdown could affect response patterns of HepG2 cells to UA. The above results indicate that ASPP2 could be a research target in the chemoresistance of liver cancer.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Institute of Hepatology Beijing You An Hospital Capital Medical University, Beijing, China
| | - Yadong Yan
- Beijing Institute of Hepatology Beijing You An Hospital Capital Medical University, Beijing, China
- Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Yunfei Huo
- Beijing Institute of Hepatology Beijing You An Hospital Capital Medical University, Beijing, China
| | - Yuheng Pang
- Beijing Institute of Hepatology Beijing You An Hospital Capital Medical University, Beijing, China
| | - Liujia Chan
- Beijing Institute of Hepatology Beijing You An Hospital Capital Medical University, Beijing, China
| | - Shanshan Wang
- Beijing Institute of Hepatology Beijing You An Hospital Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology Beijing You An Hospital Capital Medical University, Beijing, China
| | - Dongdong Lin
- Xuanwu Hospital, Capital Medical University, Beijing, China.
- Beijing You An Hospital, Capital Medical University, Beijing, China.
| | - Wenjing Wang
- Beijing Institute of Hepatology Beijing You An Hospital Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Zhang Y, Jin F, Wu Y, Wang B, Xie J, Li Y, Pan Y, Liu Z, Shen W. Prognostic impact of gamma-glutamyl transpeptidase to platelets ratio on hepatocellular carcinoma patients who have undergone surgery: a meta-analysis and systematic review. Eur J Gastroenterol Hepatol 2023; 35:803-811. [PMID: 37395231 DOI: 10.1097/meg.0000000000002572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Gamma-glutamyl transpeptidase to platelet ratio (GPR) is an inflammatory index and has been used as a prognostic index for a variety of tumors. However, the association between GPR and hepatocellular carcinoma (HCC) still remained controversial. Therefore, we performed a meta-analysis to determine the prognostic impact of GPR on HCC patients. PubMed, Embase, Cochrane Library, Web of Science, the Chinese National Knowledge Infrastructure, Wanfang Database, Chinese VIP Database, the US Clinical Trials Registry, and the Chinese Clinical Trials Registry were searched from inception to December 2022. A hazard ratio (HR) with a 95% confidence interval (CI) was used to evaluate the association between preoperative GPR and the prognosis of HCC patients. Ten cohort studies including 4706 HCC patients were identified. This meta-analysis showed that higher GPRs were closely related to worse overall survival (HR: 1.79; 95% CI: 1.35-2.39; P < 0.001; I2 = 82.7%), recurrence-free survival (HR: 1.30; 95% CI: 1.16-1.46; P < 0.001; I2 = 0%), and disease-free survival (HR: 1.84; 95% CI: 1.58-2.15; P < 0.001; I2 = 25.4%) in patients with HCC. This meta-analysis suggests that preoperative GPR appears to be significantly associated with the prognosis of HCC patients who have undergone surgery and may be an effective prognostic marker. Trial registration: PROSPERO: CRD42021296219.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Internal Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine
| | - Yuan Wu
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine
| | - Bingyu Wang
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine
| | - Jingri Xie
- Department of Internal Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine
| | - Yu Li
- Department of Oncology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin
| | - Yujia Pan
- Cixi People's Hospital Medical and Health Group, Ningbo
| | - Zhaolan Liu
- Evidence Based Medicine Center, Beijing University of Chinese Medicine, Beijing
| | - Wenjuan Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|