1
|
Zhou Y, Wang F, Feng S, Li M, Zhu M. USP39 promote post-translational modifiers to stimulate the progress of cancer. Discov Oncol 2025; 16:749. [PMID: 40358671 PMCID: PMC12075731 DOI: 10.1007/s12672-025-02573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Deubiquitinating enzymes (DUBs) are a class of crucial peptidyl hydrolases within the ubiquitin system, playing a significant role in reversing and strictly regulating ubiquitination, which is essential for various biological processes such as protein stability and cellular signal transduction. Ubiquitin-specific protease 39 (USP39) is an important member of the DUBs family. Recent studies have revealed that USP39 is involved in the regulation of multiple cellular activities including cell proliferation, migration, invasion, apoptosis, and DNA damage repair. USP39 also plays a significant role in the development and progression of various cancers. It is believed that USP39 is a unique enzyme that controls the ubiquitin process and is closely associated with the occurrence and progression of many cancers, including hepatocellular, lung, gastric, breast, and ovarian cancer. This review summarizes the structural and functional aspects of USP39 and its research advancements in tumors, investigates the key molecular mechanisms related to USP39, and provides references for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yuli Zhou
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Fang Wang
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Siren Feng
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Mengsen Li
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570216, China.
| | - Mingyue Zhu
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
2
|
Chen Y, Zhang J, Yang J, Zhao J, Guo X, Zhang J, Gan J, Zhao W, Chen S, Zhang X, Lin Y, Jin J. Exploring the cancerous nexus: the pivotal and diverse roles of USP39 in cancer development. Discov Oncol 2025; 16:715. [PMID: 40347416 PMCID: PMC12065690 DOI: 10.1007/s12672-025-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/24/2025] [Indexed: 05/12/2025] Open
Abstract
The ubiquitin-proteasome system enables post-transcriptional protein modification and is a major pathway for the degradation of most of them in eukaryotic cells. Among these, the ubiquitin-specific protease (USP) family is the most extensively studied. As an important member of the USP family, ubiquitin-specific protease 39 (USP39) plays an essential role in RNA splicing and protein regulation. This review comprehensively summarizes the structural characteristics and molecular functions of USP39, emphasizing its pivotal role in the regulation of cellular processes. Dysregulation of USP39 is closely associated with the progression of various cancers through mechanisms such as immune evasion, modulation of oncogenic signaling pathways, and altered RNA splicing. These processes impact key aspects of cancer biology, including proliferation, metastasis, and therapy resistance, underscoring the broad implications of USP39 in tumor progression. Recent studies position USP39 as a promising target for cancer treatment. Future research should explore its upstream regulatory networks, develop small-molecule inhibitors, and evaluate its potential for precision oncology. This review integrates the latest insight into USP39, providing a foundation for its clinical application in cancer therapy.
Collapse
Affiliation(s)
- Yujing Chen
- School of Pharmacy, Guilin Medical University, Guangxi, 541199, Guilin, People's Republic of China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Jingyi Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Institute of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Jinfeng Yang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Jiawei Zhao
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaotong Guo
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Juzheng Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Jinfeng Gan
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Weijia Zhao
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Siqi Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Xinwen Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Yi Lin
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
- Department of Ultrasound, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Jiamin Jin
- School of Pharmacy, Guilin Medical University, Guangxi, 541199, Guilin, People's Republic of China.
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China.
- Department of Ultrasound, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
3
|
Wang R, Wang Q, Liao J, Yu X, Li W. Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnover. JCI Insight 2025; 10:e186165. [PMID: 40125551 PMCID: PMC11949057 DOI: 10.1172/jci.insight.186165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common cause of cancer-related deaths worldwide, and its incidence has been increasing in recent years. While targeted therapies like osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor, have brought about notable improvements in patient outcomes for advanced NSCLC, the challenge of acquired drug resistance persists. Here, we found that cellular mesenchymal-epithelial transition factor (c-Met) was highly expressed in osimertinib-resistant cells, and depletion of c-Met markedly inhibited the growth of osimertinib-resistant cells ex vivo and in vivo, suggesting that c-Met is a potential target to address osimertinib resistance. Through a screening process using a natural product compound library, we identified piperlongumine as a potent inhibitor to overcome osimertinib resistance. Furthermore, the combined treatment of piperlongumine and osimertinib exhibited robust antitumor effects in resistant cells, partially restoring their sensitivity to osimertinib. Additionally, we discovered that piperlongumine could enhance the interaction between E3 ligase RNF4 and Sp1, inhibit the phosphorylation of Sp1 at Thr739, facilitate the ubiquitination and degradation of Sp1, lead to c-Met destabilization, and trigger intrinsic apoptosis in resistant cells. In summary, our study sheds light on the potential of piperlongumine in overcoming osimertinib resistance, offering new strategies and perspectives for the clinical management of drug-resistant NSCLC.
Collapse
Affiliation(s)
| | - Qiang Wang
- NHC Key Laboratory of Translational Research on Transplantation Medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | | | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Li
- Department of Radiology and
| |
Collapse
|
4
|
Shen S, Xue G, Zeng Z, Peng L, Nie W, Zeng X. Toosendanin promotes prostate cancer cell apoptosis, ferroptosis and M1 polarization via USP39-mediated PLK1 deubiquitination. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03916-3. [PMID: 40056202 DOI: 10.1007/s00210-025-03916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025]
Abstract
Toosendanin (TSN) can inhibit the malignant process of many cancers, and has the potential to be developed as an anti-tumor drug. However, the role and mechanism of TSN in prostate cancer (PCa) progression remain unclear. PCa cells (DU145 and LNCaP) were treated with TSN. Cell viability was detected by cell counting kit 8 assay. Cell proliferation, apoptosis and metastasis were assessed by colony formation assay, flow cytometry and transwell assay. Cell ferroptosis was evaluated by examining Fe2+, MDA and lipid-ROS levels. M1 polarization markers were analyzed by flow cytometry. Immunohistochemical staining, quantitative real-time PCR and western blot were used to detect ubiquitin-specific protease 39 (USP39) and polo-like kinase 1 (PLK1) expression. Cycloheximide treatment, Co-IP assay and ubiquitination assay were performed to confirm the regulation of USP39 on PLK1. In vivo experiments were employed to determine the effect of TSN and USP39 on PCa tumor growth. TSN treatment suppressed PCa cell proliferation, cell cycle, migration, and invasion, while enhanced apoptosis, ferroptosis, and M1 polarization. USP39 was upregulated in PCa tissues and cells, and its protein expression was reduced by TSN. USP39 overexpression reversed the regulation of TSN on PCa cell functions. PLK1 had elevated expression in PCa, and USP39 stabilized its protein expression by deubiquitination. USP39 knockdown inhibited PCa cell behaviors, and its regulation was abolished by PLK1 overexpression. Meanwhile, TSN reduced PCa tumor growth by regulating USP39/PLK1. TSN played anti-tumor role in PCa, which promoted PCa cell apoptosis, ferroptosis, and M1 polarization by inhibiting USP39/PLK1 axis.
Collapse
Affiliation(s)
- Siyao Shen
- Department of Urology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, No.90, Bayi Avenue, Xihu District, Nanchang City, 330003, Jiangxi Province, China
- Department of Urology, The Fourth Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, 330003, Jiangxi Province, China
- Institute of Urology, Jiangxi University of Traditional Chinese Medicine, Nanchang City, 330003, Jiangxi Province, China
| | - Guifeng Xue
- Institute of Urology, Jiangxi University of Traditional Chinese Medicine, Nanchang City, 330003, Jiangxi Province, China
| | - Zhigang Zeng
- Department of Urology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, No.90, Bayi Avenue, Xihu District, Nanchang City, 330003, Jiangxi Province, China
- Department of Urology, The Fourth Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, 330003, Jiangxi Province, China
| | - Liang Peng
- Department of Urology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, No.90, Bayi Avenue, Xihu District, Nanchang City, 330003, Jiangxi Province, China
- Department of Urology, The Fourth Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, 330003, Jiangxi Province, China
| | - Weidong Nie
- Department of Urology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, No.90, Bayi Avenue, Xihu District, Nanchang City, 330003, Jiangxi Province, China
- Department of Urology, The Fourth Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, 330003, Jiangxi Province, China
| | - Xiaochun Zeng
- Department of Urology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, No.90, Bayi Avenue, Xihu District, Nanchang City, 330003, Jiangxi Province, China.
- Department of Urology, The Fourth Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, 330003, Jiangxi Province, China.
- Institute of Urology, Jiangxi University of Traditional Chinese Medicine, Nanchang City, 330003, Jiangxi Province, China.
| |
Collapse
|
5
|
Cheng S, Qiu Z, Zhang Z, Li Y, Zhu Y, Zhou Y, Yang Y, Zhang Y, Yang D, Zhang Y, Liu H, Dai Z, Sun SL, Liu S. USP39 phase separates into the nucleolus and drives lung adenocarcinoma progression by promoting GLI1 expression. Cell Commun Signal 2025; 23:56. [PMID: 39885503 PMCID: PMC11783868 DOI: 10.1186/s12964-025-02059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers. However, the nucleolar phase separation of DUBs and association with lung cancer development have remained incompletely investigated till now. METHODS GFP-USP39 fusion proteins were analyzed for LLPS properties using immunofluorescence, fluorescence recovery after photobleaching (FRAP) and in vitro LLPS assays. Intrinsically-disordered regions of USP39 were analyzed by PhaSepDB database. Transcriptomic profiling, Western blot, RT-PCR and luciferase reporter assays were conducted to identify targets regulated by USP39. The effects of USP39 depletion on tumor progression were tested using doxycycline-inducible USP39 knockdown and rescue lung adenocarcinoma cells both in vitro and in vivo by performing MTT, colony formation, EdU staining, transwell and tumor xenograft model experiments. RESULTS USP39 phase separates into nucleoli depending upon its N-terminal disordered region with amino acid residues 1-103. Lung cancer cell growth and migration were dramatically inhibited by USP39 knockdown, which was rescued by exogenous USP39 complementation. Moreover, knockdown of USP39 reduced oncogenic transcription effector GLI1 levels. Finally, USP39 downregulation restricted the formation of lung cancer xenografts in nude mice. CONCLUSIONS USP39 undergoes LLPS in the nucleolus and promotes tumor progression by regulating GLI1 expression. Downregulation of USP39 effectively suppressed lung cancer growth, and therefore targeting USP39 provides novel therapeutic strategy to treat lung cancer.
Collapse
Affiliation(s)
- Shaoxuan Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhiyuan Qiu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Ziyi Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuxuan Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue Zhu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuxin Zhou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yinghui Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yaowen Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhaoxia Dai
- The Second Department of Thoracic Medical Oncology, Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| | - Shu-Lan Sun
- Central Laboratory, Cancer Hospital, Cancer Hospital of China Medical University, Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Shuyan Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
6
|
Sirera J, Sarlak S, Teisseire M, Carminati A, Nicolini VJ, Savy C, Brest P, Juel T, Bontoux C, Deckert M, Ohanna M, Giuliano S, Dufies M, Pages G, Luciano F. Disrupting USP39 deubiquitinase function impairs the survival and migration of multiple myeloma cells through ZEB1 degradation. J Exp Clin Cancer Res 2024; 43:335. [PMID: 39736693 DOI: 10.1186/s13046-024-03241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Multiple Myeloma (MM) is the second most common hematological malignancy, characterized by the accumulation of monoclonal plasmocytes in the bone marrow. Despite advancements with proteasome inhibitors, immunomodulatory agents, and CD38-targeting antibodies, MM remains largely incurable due to resistant clones and frequent relapses. The success of the proteasome inhibitor bortezomib (BTZ) in MM treatment highlights the critical role of the ubiquitin-proteasome system (UPS) in this disease. Deubiquitinases (DUBs), which regulate protein stability, interactions, and localization by removing ubiquitin modifications, have emerged as promising therapeutic targets in various cancers, including MM. METHODS Through a comprehensive loss-of-function screen, we identified USP39 as a critical survival factor for MM cells. Gene Set Enrichment Analysis (GSEA) was employed to correlate USP39 mRNA levels with clinical outcomes in MM patients. USP39 protein expression was evaluated via immunohistochemistry (IHC) on bone marrow samples from MM patients and healthy controls. The impact of USP39 knockdown via SiRNA was assessed through in vitro assays measuring cellular metabolism, clonogenic capacity, cell cycle progression, apoptosis, and sensitivity to BTZ. Co-immunoprecipitation and deubiquitination assays were conducted to elucidate the interaction and regulation of ZEB1 by USP39. Finally, in vitro and in vivo zebrafish experiments were used to characterize the biological consequences of ZEB1 regulation by USP39. RESULTS Our study found that elevated USP39 mRNA levels are directly associated with shorter survival in MM patients. USP39 protein expression is significantly higher in MM patient plasmocytes compared to healthy individuals. USP39 knockdown inhibits clonogenic capacity, induces cell cycle arrest, triggers apoptosis, and overcomes BTZ resistance. Gain-of-function assays revealed that USP39 stabilizes the transcription factor ZEB1, enhancing the proliferation and the trans-migratory potential of MM cells. CONCLUSIONS Our findings highlight the critical role of the deubiquitinase USP39, suggesting that the USP39/ZEB1 axis could serve as a potential diagnostic marker and therapeutic target in MM.
Collapse
Affiliation(s)
- Jessy Sirera
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Saharnaz Sarlak
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Manon Teisseire
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Alexandrine Carminati
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Victoria J Nicolini
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Coline Savy
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Patrick Brest
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Thierry Juel
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, Pasteur Hospital, Hospital-integrated Biobank (BB-0033-00025), FHU OncoAge, IHU RespirERA, Centre Hospitalier Universitaire de Nice, Nice, 06001, France
- Department of Pathology, University Hospital of Toulouse, Cancer Biobank, Cancer University Institute of Toulouse-Oncopole, Toulouse, 31059, France
| | - Marcel Deckert
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Mickael Ohanna
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Sandy Giuliano
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Maeva Dufies
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Gilles Pages
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Frederic Luciano
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France.
| |
Collapse
|
7
|
Becirovic T, Zhang B, Vakifahmetoglu-Norberg H, Kaminskyy VO, Kochetkova E, Norberg E. USP39 regulates pyruvate handling in non-small cell lung cancer. Cell Death Discov 2024; 10:502. [PMID: 39695108 DOI: 10.1038/s41420-024-02264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
The ubiquitin-specific peptidase 39 (USP39) belongs to the USP family of cysteine proteases representing the largest group of human deubiquitinases (DUBs). While the oncogenic function of USP39 has been investigated in various cancer types, its roles in non-small cell lung cancer (NSCLC) remain largely unknown. Here, by applying a gene set enrichment analysis (GSEA) on lung adenocarcinoma tissues and metabolite set enrichment analysis (MSEA) on NSCLC cells depleted of USP39, we identified a previously unknown link between USP39 and the metabolism in NSCLC cells. Mechanistically, we uncovered a component of the pyruvate dehydrogenase (PDH) complex, pyruvate dehydrogenase E1 subunit alpha (PDHA), as a target of USP39. We further present that USP39 silencing caused an elevation in Lys63 ubiquitination on PDHA and a reduction in the PDH complex activity, the levels of TCA cycle intermediates, mitochondrial respiration, cell proliferation in vitro, and of tumor growth in vivo. Consistently, citrate supplementation restored mitochondrial respiration and cell growth in USP39-depleted cells. Our study elucidates and describes how USP39 regulates pyruvate metabolism through a deubiquitylation process that affects NSCLC tumor growth.
Collapse
Affiliation(s)
- Tina Becirovic
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | | | - Vitaliy O Kaminskyy
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
| | - Elena Kochetkova
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
| | - Erik Norberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
| |
Collapse
|
8
|
Gao Q, Li N, Pan Y, Chu P, Zhou Y, Jia H, Cheng Y, Xue G, Song J, Zhang Y, Zhu H, Sun J, Zhang B, Sun Z, Fang D. Hepatocyte growth factor promotes melanoma metastasis through ubiquitin-specific peptidase 22-mediated integrins upregulation. Cancer Lett 2024; 604:217196. [PMID: 39222676 PMCID: PMC11542356 DOI: 10.1016/j.canlet.2024.217196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocyte growth factor (HGF) plays a critical role in promoting tumor migration, invasion, and metastasis, partly by upregulating integrins. The molecular mechanisms behind how HGF facilitates integrin-mediated tumorigenesis are not fully understood. In this study, we demonstrate that the ubiquitin-specific peptidase 22 (USP22) is essential for HGF-induced melanoma metastasis. HGF treatment dramatically increased the expression of both USP22 and multiple integrin family members in particular ITGAV, ITGB3, and ITGA1. An unbiased analysis of the TCGA database reveals integrins as common downstream targets of both USP22 and HGF across multiple human cancer types. Notably, CRISPR-mediated deletion of USP22 completely eliminates HGF-induced integrin expression in melanoma cells. At the molecular level, USP22 acts as a bona fide deubiquitinase for Sp1, a transcription factor for the ITGAV, ITGB3, and ITGA1 genes. USP22 interacts with and inhibits Sp1 ubiquitination, protecting against Sp1 proteasomal degradation. Supporting this, immunohistology analysis detects a positive correlation among USP22, Sp1, and integrin αv in human melanoma tissues. This study identifies the death from the signature gene USP22 as a critical positive regulator for HGF-induced integrin expression by deubiquitinating the Sp1 transcription factor during melanoma metastasis.
Collapse
Affiliation(s)
- Qiong Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Na Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yujie Pan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Peng Chu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yuanzhang Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Huijun Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yang Cheng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guoqing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Jiankun Song
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Houyu Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Jia Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Bin Zhang
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, USA
| | - Zhaolin Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, USA.
| |
Collapse
|
9
|
Zhou Y, Luo Z, Guo J, Wu L, Zhou X, Huang JJ, Huang D, Xiao L, Duan Q, Chang J, Gong L, Hang J. Pan-cancer analysis of Sp1 with a focus on immunomodulatory roles in gastric cancer. Cancer Cell Int 2024; 24:338. [PMID: 39402565 PMCID: PMC11476248 DOI: 10.1186/s12935-024-03521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Sp1, a transcription factor, regulates essential cellular processes and plays important tumorigenic roles across diverse cancers. However, comprehensive pan-cancer analyses of its expression and potential immunomodulatory roles remain unexplored. METHODS Utilizing bioinformatics tools and public datasets, we examined the expression of Sp1 across normal tissues, tumors, and immune cells, and screened for pre- and post-transcriptional modifications, including genetic alterations, DNA methylation, and protein phosphorylation, affecting its expression or function. The association of Sp1 expression with immune cell infiltration, tumor mutational burden, and immune checkpoint signaling was also investigated. Single-cell transcriptome data was used to assess Sp1 expression in immune cells in gastric cancer (GC), and findings were corroborated using immunohistochemistry and multiplex immunofluorescence in an immunotherapy-treated patient cohort. The prognostic value of Sp1 in GC patients receiving immunotherapy was evaluated with Cox regression models. RESULTS Elevated Sp1 levels were observed in various cancers compared to normal tissues, with notable prominence in GC. High Sp1 expression correlated with advanced stage, poor prognosis, elevated tumor mutational burden (TMB), and microsatellite instability (MSI) status, particularly in GC. Significant correlations between Sp1 levels and CD8+ T cell and the M1 phenotype of tumor-associated macrophages were further detected upon multiplex immunofluorescence in GC samples. Interestingly, we verified that GC patients with higher Sp1 levels exhibited improved response to immunotherapy. Moreover, Sp1 emerged as a prognostic and predictive biomarker for GC patients undergoing immunotherapy. CONCLUSIONS Our pan-cancer analysis sheds light on the multifaceted role of Sp1 in tumorigenesis and underscores its potential as a prognostic and predictive biomarker for patients with GC undergoing immunotherapy.
Collapse
Affiliation(s)
- Yang Zhou
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Zhenzhen Luo
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Jinfeng Guo
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Lixia Wu
- Department of Oncology, Shanghai JingAn District ZhaBei Central Hospital, Shanghai, 200070, China
| | - Xiaoli Zhou
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Jun Jie Huang
- JC School of Public Health and Primary Care, Faculty of Medicine, Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Daijia Huang
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Li Xiao
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Qiuhua Duan
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Jianhua Chang
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China.
| | - Libao Gong
- Department of Oncology, The Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China.
| | - Junjie Hang
- Department of Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
10
|
Lu C, Cai Y, Wu S, Wang Y, Li JB, Xu G, Ma J. Deubiquitinating enzyme USP39 promotes the growth and metastasis of gastric cancer cells by modulating the degradation of RNA-binding protein RBM39. J Biol Chem 2024; 300:107751. [PMID: 39260689 PMCID: PMC11490714 DOI: 10.1016/j.jbc.2024.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
It has been revealed recently that the RNA-binding motif protein RBM39 is highly expressed in several cancers, which results in poor patient survival. However, how RBM39 is regulated in gastric cancer cells is unknown. Here, affinity purification-mass spectrometry and a biochemical screening are employed to identify the RBM39-interacting proteins and the deubiquitinating enzymes that regulate the RBM39 protein level. Integration of the data obtained from these two approaches uncovers USP39 as the potential deubiquitinating enzyme that regulates RBM39 stability. Bioinformatic analysis discloses that USP39 is increased in gastric cancer tissues and its elevation shortens the duration of overall survival for gastric cancer patients. Biochemical experiments verify that USP39 and RBM39 interact with each other and highly colocalize in the nucleus. Expression of USP39 elevates while USP39 knockdown attenuates the RBM39 protein level and their interaction regulates this modulation and their colocalization. Mechanistic studies reveal that USP39 reduces the K48-linked polyubiquitin chains on RBM39, thus enhancing its stability and increasing the protein level by preventing its proteasomal degradation. USP39 overexpression promotes while its knockdown attenuates the growth, colony formation, migration, and invasion of gastric cancer cells. Interestingly, overexpression of RBM39 partially restores the impact of USP39 depletion, while RBM39 knockdown partially abolishes the effect of USP39 overexpression on the growth, colony formation, migration, and invasion of gastric cancer cells. Collectively, this work identifies the first DUB for RBM39 and elucidates the regulatory functions and the underlying mechanism, providing a possible alternative approach to suppressing RBM39 by inhibiting USP39 in cancer therapy.
Collapse
Affiliation(s)
- Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yunxin Cai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Shenglong Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China; Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China.
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
11
|
Zeng X, Lu Y, Zeng T, Liu W, Huang W, Yu T, Tang X, Huang P, Li B, Wei H. RNA demethylase FTO participates in malignant progression of gastric cancer by regulating SP1-AURKB-ATM pathway. Commun Biol 2024; 7:800. [PMID: 38956367 PMCID: PMC11220007 DOI: 10.1038/s42003-024-06477-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Gastric cancer (GC) is the 5th most prevalent cancer and the 4th primary cancer-associated mortality globally. As the first identified m6A demethylase for removing RNA methylation modification, fat mass and obesity-associated protein (FTO) plays instrumental roles in cancer development. Therefore, we study the biological functions and oncogenic mechanisms of FTO in GC tumorigenesis and progression. In our study, FTO expression is obviously upregulated in GC tissues and cells. The upregulation of FTO is associated with advanced nerve invasion, tumor size, and LNM, as well as the poor prognosis in GC patients, and promoted GC cell viability, colony formation, migration and invasion. Mechanistically, FTO targeted specificity protein 1 and Aurora Kinase B, resulting in the phosphorylation of ataxia telangiectasia mutated and P38 and dephosphorylation of P53. In conclusion, the m6A demethylase FTO promotes GC tumorigenesis and progression by regulating the SP1-AURKB-ATM pathway, which may highlight the potential of FTO as a diagnostic biomarker for GC patients' therapy response and prognosis.
Collapse
Affiliation(s)
- Xueliang Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yao Lu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Taohui Zeng
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Wenyu Liu
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weicai Huang
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xuerui Tang
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Panpan Huang
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bei Li
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
12
|
Wei S, Zhang J, Zhao R, Shi R, An L, Yu Z, Zhang Q, Zhang J, Yao Y, Li H, Wang H. Histone lactylation promotes malignant progression by facilitating USP39 expression to target PI3K/AKT/HIF-1α signal pathway in endometrial carcinoma. Cell Death Discov 2024; 10:121. [PMID: 38459014 PMCID: PMC10923933 DOI: 10.1038/s41420-024-01898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Histone lactylation has been reported to involve in tumorigenesis and development. However, its biological regulatory mechanism in endometrial carcinoma (EC) is yet to be reported in detail. In the present study, we evaluated the modification levels of global lactylation in EC tissues by immunohistochemistry and western blot, and it was elevated. The non-metabolizable glucose analog 2-deoxy-d-glucose (2-DG) and oxamate treatment could decrease the level of lactylation so as to inhibit the proliferation and migration ability, induce apoptosis significantly, and arrest the cell cycle of EC cells. Mechanically, histone lactylation stimulated USP39 expression to promote tumor progression. Moreover, USP39 activated PI3K/AKT/HIF-1α signaling pathway via interacting with and stabilizing PGK1 to stimulate glycolysis. The results of present study suggest that histone lactylation plays an important role in the progression of EC by promoting the malignant biological behavior of EC cells, thus providing insights into potential therapeutic strategies for endometrial cancer.
Collapse
Affiliation(s)
- Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lanfen An
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhicheng Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jiarui Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
13
|
Campos Alonso M, Knobeloch KP. In the moonlight: non-catalytic functions of ubiquitin and ubiquitin-like proteases. Front Mol Biosci 2024; 11:1349509. [PMID: 38455765 PMCID: PMC10919355 DOI: 10.3389/fmolb.2024.1349509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Proteases that cleave ubiquitin or ubiquitin-like proteins (UBLs) are critical players in maintaining the homeostasis of the organism. Concordantly, their dysregulation has been directly linked to various diseases, including cancer, neurodegeneration, developmental aberrations, cardiac disorders and inflammation. Given their potential as novel therapeutic targets, it is essential to fully understand their mechanisms of action. Traditionally, observed effects resulting from deficiencies in deubiquitinases (DUBs) and UBL proteases have often been attributed to the misregulation of substrate modification by ubiquitin or UBLs. Therefore, much research has focused on understanding the catalytic activities of these proteins. However, this view has overlooked the possibility that DUBs and UBL proteases might also have significant non-catalytic functions, which are more prevalent than previously believed and urgently require further investigation. Moreover, multiple examples have shown that either selective loss of only the protease activity or complete absence of these proteins can have different functional and physiological consequences. Furthermore, DUBs and UBL proteases have been shown to often contain domains or binding motifs that not only modulate their catalytic activity but can also mediate entirely different functions. This review aims to shed light on the non-catalytic, moonlighting functions of DUBs and UBL proteases, which extend beyond the hydrolysis of ubiquitin and UBL chains and are just beginning to emerge.
Collapse
Affiliation(s)
- Marta Campos Alonso
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Rong Y, Tang MZ, Liu SH, Li XF, Cai H. Comprehensive analysis of the potential pathogenesis of COVID-19 infection and liver cancer. World J Gastrointest Oncol 2024; 16:436-457. [PMID: 38425388 PMCID: PMC10900145 DOI: 10.4251/wjgo.v16.i2.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019 (COVID-19) appears to have an impact on the treatment of patients with liver cancer compared to the normal population, and the prevalence of COVID-19 is significantly higher in patients with liver cancer. However, this mechanism of action has not been clarified. AIM To investigate the disease relevance of COVID-19 in liver cancer. METHODS Gene sets for COVID-19 (GSE180226) and liver cancer (GSE87630) were obtained from the Gene Expression Omnibus database. After identifying the common differentially expressed genes (DEGs) of COVID-19 and liver cancer, functional enrichment analysis, protein-protein interaction network construction and screening and analysis of hub genes were performed. Subsequently, the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed. RESULTS Of 518 common DEGs were obtained by screening for functional analysis. Fifteen hub genes including aurora kinase B, cyclin B2, cell division cycle 20, cell division cycle associated 8, nucleolar and spindle associated protein 1, etc., were further identified from DEGs using the "cytoHubba" plugin. Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation, cell cycle and other functions, and they may serve as potential molecular markers for COVID-19 and liver cancer. Finally, we selected 10 of the hub genes for in vitro expression validation in liver cancer cells. CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19. These common pathways and key genes may provide new ideas for further mechanistic studies.
Collapse
Affiliation(s)
- Yao Rong
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Ming-Zheng Tang
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Song-Hua Liu
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiao-Feng Li
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
15
|
Hu Z, You L, Hu S, Yu L, Gao Y, Li L, Zhang S. Hepatocellular carcinoma cell-derived exosomal miR-21-5p promotes the polarization of tumor-related macrophages (TAMs) through SP1/XBP1 and affects the progression of hepatocellular carcinoma. Int Immunopharmacol 2024; 126:111149. [PMID: 38006750 DOI: 10.1016/j.intimp.2023.111149] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) have unique functions in the development of hepatocellular carcinoma (HCC). The tumor microenvironment is in a complex state in chronic disease. As a major participant in tumor-associated inflammation, TAMs have a unique effect on promoting tumor cell proliferation, angiogenesis and immunosuppression. The in-depth study of TAMs has important scientific and clinical value and provides new ideas for the treatment of cancer. METHODS Bioinformatics analysis, dual-luciferase reporter assays, RT-qPCR and clinical samples were used to analyze the potential mechanism of the miR-21-5p/SP1/XBP1 molecular axis in HCC. In this study, miR-21-5p was highly expressed in HCC exosomes compared with normal hepatocyte exosomes, and HCC exosomes containing miR-21-5p promoted the proliferation and migration of HCC cells and inhibited cell apoptosis. In addition, this treatment promoted the M2 polarization of macrophages, induced the expression of transcription factor-specific protein 1 (SP1), and inhibited the expression of X-box binding protein 1 (XBP1). However, these expression trends were reversed after inhibition of miR-21-5p expression in exosomes of hepatoma cells, and the effects of exosomal miR-21-5p were partially restored after overexpression of SP1. Animal experiments also verified that exosomal miR-21-5p in HCC cells affected the expression level of the SP1/XBP1 protein and promoted M2 polarization of TAMs. CONCLUSION Exosomal miR-21-5p in HCC cells can affect the development of HCC cells by regulating SP1/XBP1 and promoting the M2 polarization of TAMs, thereby affecting the adverse prognostic response of HCC patients.
Collapse
Affiliation(s)
- Zongqiang Hu
- Hepato-pancreato-biliary Surgery Department, First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Liying You
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Department of Hepatology, First People's Hospital of Kunming City, Kunming, Yunnan 650032, China
| | - Songqi Hu
- Hepato-pancreato-biliary Surgery Department, First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Lu Yu
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Department of Pathology, First People's Hospital of Kunming City, Kunming, Yunnan 650032, China
| | - Yang Gao
- Hepato-pancreato-biliary Surgery Department, First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Li Li
- Hepato-pancreato-biliary Surgery Department, First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Shengning Zhang
- Hepato-pancreato-biliary Surgery Department, First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| |
Collapse
|
16
|
Li K, Xia Y, He J, Wang J, Li J, Ye M, Jin X. The SUMOylation and ubiquitination crosstalk in cancer. J Cancer Res Clin Oncol 2023; 149:16123-16146. [PMID: 37640846 DOI: 10.1007/s00432-023-05310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The cancer occurrence and progression are largely affected by the post-translational modifications (PTMs) of proteins. Currently, it has been shown that the relationship between ubiquitination and SUMOylation is highly complex and interactive. SUMOylation affects the process of ubiquitination and degradation of substrates. Contrarily, SUMOylation-related proteins are also regulated by the ubiquitination process thus altering their protein levels or activity. Emerging evidence suggests that the abnormal regulation between this crosstalk may lead to tumorigenesis. PURPOSE In this review, we have discussed the study of the relationship between ubiquitination and SUMOylation, as well as the possibility of a corresponding application in tumor therapy. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION The interaction between ubiquitination and SUMOylation is crucial for the occurrence and development of cancer. A greater understanding of the crosstalk of SUMOylation and ubiquitination may be more conducive to the development of more selective and effective SUMOylation inhibitors, as well as a promotion of synergy with other tumor treatment strategies.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yongming Xia
- Department of Oncology, Yuyao People's Hospital of Zhejiang, Yuyao, 315400, Zhejiang, China
| | - Jian He
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jie Wang
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jingyun Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
17
|
Zheng J, Wu S, Tang M, Xi S, Wang Y, Ren J, Luo H, Hu P, Sun L, Du Y, Yang H, Wang F, Gao H, Dai Z, Ou X, Li Y. USP39 promotes hepatocellular carcinogenesis through regulating alternative splicing in cooperation with SRSF6/HNRNPC. Cell Death Dis 2023; 14:670. [PMID: 37821439 PMCID: PMC10567755 DOI: 10.1038/s41419-023-06210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Abnormal alternative splicing (AS) caused by alterations in spliceosomal factors is implicated in cancers. Standard models posit that splice site selection is mainly determined by early spliceosomal U1 and U2 snRNPs. Whether and how other mid/late-acting spliceosome components such as USP39 modulate tumorigenic splice site choice remains largely elusive. We observed that hepatocyte-specific overexpression of USP39 promoted hepatocarcinogenesis and potently regulated splice site selection in transgenic mice. In human liver cancer cells, USP39 promoted tumor proliferation in a spliceosome-dependent manner. USP39 depletion deregulated hundreds of AS events, including the oncogenic splice-switching of KANK2. Mechanistically, we developed a novel RBP-motif enrichment analysis and found that USP39 modulated exon inclusion/exclusion by interacting with SRSF6/HNRNPC in both humans and mice. Our data represented a paradigm for the control of splice site selection by mid/late-acting spliceosome proteins and their interacting RBPs. USP39 and possibly other mid/late-acting spliceosome proteins may represent potential prognostic biomarkers and targets for cancer therapy.
Collapse
Affiliation(s)
- Jingyi Zheng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shasha Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mao Tang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanchen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ren
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hao Luo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Pengchao Hu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liangzhan Sun
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuyang Du
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hui Yang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fenfen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Han Gao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ziwei Dai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xijun Ou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yan Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
18
|
Lv T, Zhang B, Jiang C, Zeng Q, Yang J, Zhou Y. USP35 promotes hepatocellular carcinoma progression by protecting PKM2 from ubiquitination‑mediated degradation. Int J Oncol 2023; 63:113. [PMID: 37594129 PMCID: PMC10552738 DOI: 10.3892/ijo.2023.5561] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/30/2023] [Indexed: 08/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequently diagnosed primary liver cancer with a high mortality rate and imposes a huge burden on patients and society. Recently, ubiquitin‑specific protease 35 (USP35) was found to be involved in cell proliferation and mitosis, but its role in HCC remains largely unknown. The expression of USP35 in HCC and its association with patient prognosis in the study cohort and public databases was analyzed in the present study. The effects of USP35 on the malignant biological behavior of HCC were analyzed by cellular functional experiments. Mechanistically, the effect of USP35 deubiquitylation on the M2 splice isoform of pyruvate kinase (PKM2) and on the Warburg effect of tumor cells were verified by western blotting and ubiquitination assay. The results of the present study demonstrated that USP35 is highly expressed in HCC and its high expression is significantly associated with poor prognosis of patients with HCC. In the present study, it was also demonstrated that inhibiting the expression of USP35 can impair the malignant properties (proliferation, migration and invasion) of HCC tumor cells by elevating the ubiquitination level of PKM2, the deubiquitinated form of which is critical for glycolysis in tumor cells. The present study therefore indicated that USP35 may be a target in the treatment of HCC.
Collapse
Affiliation(s)
- Tao Lv
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network
- Departments of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bo Zhang
- Departments of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chenghao Jiang
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network
- Departments of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiwen Zeng
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network
| | - Jiayin Yang
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network
- Departments of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network
| |
Collapse
|
19
|
Choi Y, Lee Y, Kim JS, Zhang P, Kim J. USP39-Mediated Non-Proteolytic Control of ETS2 Suppresses Nuclear Localization and Activity. Biomolecules 2023; 13:1475. [PMID: 37892157 PMCID: PMC10604658 DOI: 10.3390/biom13101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
ETS2 is a member of the ETS family of transcription factors and has been implicated in the regulation of cell proliferation, differentiation, apoptosis, and tumorigenesis. The aberrant activation of ETS2 is associated with various human cancers, highlighting its importance as a therapeutic target. Understanding the regulatory mechanisms and interacting partners of ETS2 is crucial for elucidating its precise role in cellular processes and developing novel strategies to modulate its activity. In this study, we conducted binding assays using a human deubiquitinase (DUB) library and identified USP39 as a novel ETS2-binding DUB. USP39 interacts with ETS2 through their respective amino-terminal regions, and the zinc finger and PNT domains are not required for this binding. USP39 deubiquitinates ETS2 without affecting its protein stability. Interestingly, however, USP39 significantly suppresses the transcriptional activity of ETS2. Furthermore, we demonstrated that USP39 leads to a reduction in the nuclear localization of ETS2. Our findings provide valuable insights into the intricate regulatory mechanisms governing ETS2 function. Understanding the interplay between USP39 and ETS2 may have implications for therapeutic interventions targeting ETS2-related diseases, including cancer, where the dysregulation of ETS2 is frequently observed.
Collapse
Affiliation(s)
- Yunsik Choi
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Yuri Lee
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Jin Seo Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Peijing Zhang
- Department of Biological Pharmaceutics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jongchan Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
20
|
Ren G, Li H, Hong D, Hu F, Jin R, Wu S, Sun W, Jin H, Zhao L, Zhang X, Liu D, Huang C, Huang H. LINC00955 suppresses colorectal cancer growth by acting as a molecular scaffold of TRIM25 and Sp1 to Inhibit DNMT3B-mediated methylation of the PHIP promoter. BMC Cancer 2023; 23:898. [PMID: 37742010 PMCID: PMC10518100 DOI: 10.1186/s12885-023-11403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Long non-coding RNAs play an important role in the development of colorectal cancer (CRC), while many CRC-related lncRNAs have not yet been identified. METHODS The relationship between the expression of LINC00955 (Long Intergenic Non-protein Coding RNA 955) and the prognosis of colorectal cancer patients was analyzed using the sequencing results of the TCGA database. LINC00955 expression levels were measured using qRT-PCR. The anti-proliferative activity of LINC00955 was evaluated using CRC cell lines in vitro and xenograft models in nude mice in vivo. The interaction of TRIM25-Sp1-DNMT3B-PHIP-CDK2 was analyzed by western blotting, protein degradation experiment, luciferase, RNA-IP, RNA pull-down assays and immunohistochemically analysis. The biological roles of LINC00955, tripartite motif containing 25 (TRIM25), Sp1 transcription factor (Sp1), DNA methyltransferase 3 beta (DNMT3B), pleckstrin homology domain interacting protein (PHIP), cyclin dependent kinase 2 (CDK2) in colorectal cancer cells were analyzed using ATP assays, Soft agar experiments and EdU assays. RESULTS The present study showed that LINC00955 is downregulated in CRC tissues, and such downregulation is associated with poor prognosis of CRC patients. We found that LINC00955 can inhibit CRC cell growth both in vitro and in vivo. Evaluation of its mechanism of action showed that LINC00955 acts as a scaffold molecule that directly promotes the binding of TRIM25 to Sp1, and promotes ubiquitination and degradation of Sp1, thereby attenuating transcription and expression of DNMT3B. DNMT3B inhibition results in hypomethylation of the PHIP promoter, in turn increasing PHIP transcription and promoting ubiquitination and degradation of CDK2, ultimately leading to G0/G1 growth arrest and inhibition of CRC cell growth. CONCLUSIONS These findings indicate that downregulation of LINC00955 in CRC cells promotes tumor growth through the TRIM25/Sp1/DNMT3B/PHIP/CDK2 regulatory axis, suggesting that LINC00955 may be a potential target for the therapy of CRC.
Collapse
Affiliation(s)
- Ganglin Ren
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dan Hong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fangyu Hu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Rongjia Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shuang Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wenhao Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaodong Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dongxiang Liu
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
21
|
Quan J, Zhao X, Xiao Y, Wu H, Di Q, Wu Z, Chen X, Tang H, Zhao J, Guan Y, Xu Y, Chen W. USP39 Regulates NF-κB-Mediated Inflammatory Responses through Deubiquitinating K48-Linked IκBα. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:640-652. [PMID: 36651806 DOI: 10.4049/jimmunol.2200603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/06/2022] [Indexed: 01/19/2023]
Abstract
IκBα is a critical protein that inhibits NF-κB nuclear translocation and impairs NF-κB-mediated signaling. The abundance of IκBα determines the activation and restoration of the inflammatory response. However, posttranslational regulation of IκBα remains to be fully understood. In this study, we identified ubiquitin-specific protease 39 (USP39) as a negative regulator in the NF-κB inflammatory response by stabilizing basal IκBα. The expression of USP39 in macrophages was reduced under LPS-induced inflammation. Knockdown or knockout of USP39 in macrophages significantly increased the expression and secretion of proinflammatory cytokines upon exposure to LPS or Escherichia coli, whereas reexpression of exogenous USP39 in USP39-deficient macrophages rescued the effect. Moreover, USP39-defective mice were more sensitive to LPS or E. coli-induced systemic sepsis. Mechanistically, USP39 interacted with and stabilized IκBα by reducing K48-linked polyubiquination of IκBα. Taken together, to our knowledge, our study for the first time revealed the inhibitory function of USP39 in the NF-κB inflammatory response, providing a previously unknown mechanism for control of inflammatory cytokine induction in the cellular anti-inflammatory response.
Collapse
Affiliation(s)
- Jiazheng Quan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Han Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zherui Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xinyi Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jiajing Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yonghong Guan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yongxian Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
22
|
Wang W, Lei Y, Zhang G, Li X, Yuan J, Li T, Zhong W, Zhang Y, Tan X, Song G. USP39 stabilizes β-catenin by deubiquitination and suppressing E3 ligase TRIM26 pre-mRNA maturation to promote HCC progression. Cell Death Dis 2023; 14:63. [PMID: 36707504 PMCID: PMC9883245 DOI: 10.1038/s41419-023-05593-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
Ubiquitin-specific protease 39(USP39) plays an important role in modulating pre-mRNA splicing and ubiquitin-proteasome dependent proteolysis as a member of conserved deubiquitylation family. Accumulating evidences prove that USP39 participates in the development of hepatocellular carcinoma (HCC). However, little is known about the mechanism especially deubiquitinating target of USP39 in regulating hepatocellular carcinoma (HCC) growth. Here, we prove that USP39 promotes HCC cell proliferation and migration by directly deubiquitin β-catenin, a key molecular of Wnt/β-catenin signaling pathway whose abnormal expression or activation results in several tumors, following its co-localization with USP39. In this process, the expression of E3 ligase TRIM26, which is proved to restrain HCC in our previous research, shows a decreasing trend. We further demonstrate that TRIM26 pre-mRNA splicing and maturation is inhibited by USP39, accompanied by its reduction of ubiquitinating β-catenin, facilitating HCC progression indirectly. In summary, our data reveal a novel mechanism in the progress of HCC that USP39 promotes the proliferation and migration of HCC through increasing β-catenin level via both direct deubiquitination and reducing TRIM26 pre-mRNA maturation and splicing, which may provide a new idea and target for clinical treatment of HCC.
Collapse
Affiliation(s)
- Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yongbin Lei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yuqi Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xuemei Tan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
23
|
USPs in Pancreatic Ductal Adenocarcinoma: A Comprehensive Bioinformatic Analysis of Expression, Prognostic Significance, and Immune Infiltration. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6109052. [PMID: 36582601 PMCID: PMC9794441 DOI: 10.1155/2022/6109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), as an intractable malignancy, still causes an extremely high mortality worldwide. The ubiquitin-specific protease (USP) family constitutes the major part of deubiquitinating enzymes (DUBs) which has been reported to be involved in initiation and progression of various malignancies via the function of deubiquitination. However, the biological function and clinical values of USPs in PDAC have not been comprehensively elucidated. In this study, Gene Expression Profiling Interactive Analysis (GEPIA), Gene Expression Omnibus (GEO) datasets, UALCAN database, and the Human Protein Atlas (HPA) online tool were used to analyze the expression level and the relationship between USP expression and clinicopathological features in PDAC. Survival module of HPA and Kaplan-Meier plotter (KMP) databases was recruited to explore the prognostic value of USPs. Tumor Immune Estimation Resource (TIMER) online tool and KMP databases were utilized to elucidate tumor immune infiltration and immune-related survival of USPs. CBioPortal online tool was used to identify the gene mutation level of USPs in PDAC. Both cBioPortal and LinkedOmics were used to confirm the potential biological functions of USPs in PDAC. Our study showed that USP10, USP14, USP18, USP32, USP33, and USP39 (termed as six-USPs) expressions were significantly elevated in tumor tissues. The high expression of the four USPs (USP10, USP14, USP18, and USP39) indicated a poor prognosis. A significant relationship was indicated between the expression of six-USPs and clinicopathological features. Also, the expression of six-USPs was related to promoter methylation level. Moreover, more than 40% genetic alterations and mutations were discovered in six-USPs. Furthermore, the six-USP expression was correlated with immune infiltration and immune-related prognosis. The functional analysis found that the six-USPs were involved in various biological processes and signaling pathways, such as nucleocytoplasmic transport, choline metabolism in cancer, cell cycle, ErbB signaling pathway, RIG-I-like receptor signaling pathway, TGF-β signaling pathway, and TNF signaling pathway. In conclusion, the results showed that six-USPs are potential prognostic biomarkers and can be recruited as possible therapeutic targets of PDAC.
Collapse
|
24
|
An T, Lu Y, Gong Z, Wang Y, Su C, Tang G, Hou J. Research Progress for Targeting Deubiquitinases in Gastric Cancers. Cancers (Basel) 2022; 14:cancers14235831. [PMID: 36497313 PMCID: PMC9735992 DOI: 10.3390/cancers14235831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancers (GCs) are malignant tumors with a high incidence that threaten global public health. Despite advances in GC diagnosis and treatment, the prognosis remains poor. Therefore, the mechanisms underlying GC progression need to be identified to develop prognostic biomarkers and therapeutic targets. Ubiquitination, a post-translational modification that regulates the stability, activity, localization, and interactions of target proteins, can be reversed by deubiquitinases (DUBs), which can remove ubiquitin monomers or polymers from modified proteins. The dysfunction of DUBs has been closely linked to tumorigenesis in various cancer types, and targeting certain DUBs may provide a potential option for cancer therapy. Multiple DUBs have been demonstrated to function as oncogenes or tumor suppressors in GC. In this review, we summarize the DUBs involved in GC and their associated upstream regulation and downstream mechanisms and present the benefits of targeting DUBs for GC treatment, which could provide new insights for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanting Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Zhaoqi Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongtao Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Guimei Tang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (G.T.); (J.H.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (G.T.); (J.H.)
| |
Collapse
|
25
|
Zhao J, Guo J, Wang Y, Ma Q, Shi Y, Cheng F, Lu Q, Fu W, Ouyang G, Zhang J, Xu Q, Hu X. Research Progress of DUB Enzyme in Hepatocellular Carcinoma. Front Oncol 2022; 12:920287. [PMID: 35875077 PMCID: PMC9303014 DOI: 10.3389/fonc.2022.920287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
According to GLOBOCAN 2021 cancer incidence and mortality statistics compiled by the International Agency for Research on Cancer, hepatocellular carcinoma (HCC) is the most common malignancy in the human liver and one of the leading causes of cancer death worldwide. Although there have been great advances in the treatment of HCC, such as regofenib, sorafenib, and lomvatinib, which have been developed and approved for the clinical treatment of advanced or metastatic HCC. However, they only prolong survival by a few months, and patients with advanced liver cancer are susceptible to tumor invasion metastasis and drug resistance. Ubiquitination modification is a type of post-translational modification of proteins. It can affect the physiological activity of cells by regulating the localization, stability and activity of proteins, such as: gene transcription, DNA damage signaling and other pathways. The reversible process of ubiquitination is called de-ubiquitination: it is the process of re-releasing ubiquitinated substrates with the participation of de-ubiquitinases (DUBs) and other active substances. There is growing evidence that many dysregulations of DUBs are associated with tumorigenesis. Although dysregulation of deuquitinase function is often found in HCC and other cancers, The mechanisms of action of many DUBs in HCC have not been elucidated. In this review, we focused on several deubiquitinases (DUBs) associated with hepatocellular carcinoma, including their structure, function, and relationship to hepatocellular carcinoma. hepatocellular carcinoma was highlighted, as well as the latest research reports. Among them, we focus on the USP family and OTU family which are more studied in the HCC. In addition, we discussed the prospects and significance of targeting DUBs as a new strategy for the treatment of hepatocellular carcinoma. It also briefly summarizes the research progress of some DUB-related small molecule inhibitors and their clinical application significance as a treatment for HCC in the future.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yanan Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiancheng Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu Shi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Feng Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | | | - Ji Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| | - Xiaoge Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| |
Collapse
|
26
|
Sun W, Shen J, Liu J, Han K, Liang L, Gao Y. Gene Signature and Prognostic Value of Ubiquitin-Specific Proteases Members in Hepatocellular Carcinoma and Explored the Immunological Role of USP36. FRONT BIOSCI-LANDMRK 2022; 27:190. [PMID: 35748266 DOI: 10.31083/j.fbl2706190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Ubiquitination is one of the most common post-translational modifications in cells and dysregulation is closely associated with the development of cancer. However, a comprehensive analysis of the role of ubiquitination in hepatocellular carcinoma (HCC) is still lacking. In this study we analyzed expression and prognostic value of Ubiquitin-Specific Proteases (USPs) in HCC, and the immunological role of USP36 in HCC. METHODS Expression data, prognostic data, and DNA methylation data in cases of HCC were obtained from the cancer genome atlas (TCGA). Overexpression of USP36 in HCC was confirmed in the gene expression omnibus (GEO) database and verified by quantitative PCR in 10 pairs of HCC samples. ULCAN was used to analyze the correlation between USP36 and clinicopathological features. TIMER2.0 and DriverDBv3 were used to analyze the USP36 mutational profile. GSEA analysis explored the potential signaling pathways of USP36 affecting HCC. The immune and stromal scores of HCC samples were calculated using the ESTIMATE algorithm. TIMER1.0 was used to explore the correlation between USP36 and immune cell infiltration. Finally, we analyzed the correlation of USP36 expression with immune checkpoint molecules and determined the IC50 values of 6 chemotherapeutic drugs using the pRRophetic software package. RESULTS Most USPs are abnormally expressed in HCC, among which USP36 and USP39 are most closely associated with HCC prognosis. We also found that USP36 is associated with TP53 mutational status. GSEA analysis indicated that USP36 may affect HCC progression through the dysregulation of various pathways such as ubiquitin-mediated proteolysis. USP36 expression positively correlated with both macrophage infiltration levels and multiple immune checkpoint molecules. Finally, chemosensitivity analysis indicated that chemosensitivity was lower in cells within the USP36 high expression group. CONCLUSIONS Most USPs are abnormally expressed in HCC. Overexpression of USP36 in HCC is closely related to poor prognosis. In particular, the unique immunological role of USP36 may have potential clinical application value.
Collapse
Affiliation(s)
- Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Jiapei Shen
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Jiaying Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Kexing Han
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Leilei Liang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| |
Collapse
|
27
|
The Deubiquitinase USP39 Promotes Esophageal Squamous Cell Carcinoma Malignancy as a Splicing Factor. Genes (Basel) 2022; 13:genes13050819. [PMID: 35627203 PMCID: PMC9141838 DOI: 10.3390/genes13050819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive epithelial malignancy and the underlying molecular mechanisms remain elusive. Here, we identify that the ubiquitin-specific protease 39 (USP39) drives cell growth and chemoresistance by functional screening in ESCC, and that high expression of USP39 correlates with shorter overall survival and progression-free survival. Mechanistically, we provide evidence for the role of USP39 in alternative splicing regulation. USP39 interacts with several spliceosome components. Integrated analysis of RNA-seq and RIP-seq reveals that USP39 regulates the alternative splicing events. Taken together, our results indicate that USP39 functions as an oncogenic splicing factor and acts as a potential therapeutic target for ESCC.
Collapse
|
28
|
The curcumin analog EF24 inhibits proliferation and invasion of triple-negative breast cancer cells by targeting the lncRNA HCG11/Sp1 axis. Mol Cell Biol 2021; 42:e0016321. [PMID: 34780286 DOI: 10.1128/mcb.00163-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EF24, a curcumin analog, exerts a potent anti-tumor effect on various cancers. However, whether EF24 retards the progression of triple-negative breast cancer (TNBC) remains unclear. In this study, we explored the role of EF24 in TNBC and clarified the underlying mechanism. In a mouse model of TNBC xenograft, EF24 administration reduced the tumor volume, suppressed cell proliferation, promoted cell apoptosis, and downregulated long non-coding RNA human leukocyte antigen complex group 11 (HCG11) expression. In TNBC cell lines, EF24 administration reduced cell viability, suppressed cell invasion, and downregulated HCG11 expression. HCG11 overexpression re-enhanced the proliferation and invasion of TNBC cell lines suppressed by EF24. The following mechanism research revealed that HCG11 overexpression elevated Sp1 transcription factor (Sp1) expression by reducing its ubiquitination, thereby enhanced Sp1-mediated cell survival and invasion in the TNBC cell line. Finally, the in vivo study showed that HCG11-overexpressed TNBC xenografts exhibited lower responsiveness in response to EF24 treatment. In conclusion, EF24 treatment reduced HCG11 expression, resulting in the degradation of Sp1 expression, thereby inhibiting the proliferation and invasion of TNBC cells.
Collapse
|