1
|
Zhang Z, Mao C, Wu Y, Wang Y, Cong H. Application of non‑coding RNAs in tumors (Review). Mol Med Rep 2025; 31:164. [PMID: 40211701 PMCID: PMC12015154 DOI: 10.3892/mmr.2025.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/31/2025] [Indexed: 04/25/2025] Open
Abstract
Tumors are associated with the highest mortality rates worldwide. For more than a decade, research has focused on the genetic involvement of proteins in cancer; however, a complete class of molecular non‑coding (nc)RNAs have been discovered in recent years, and these are considered to be associated with cancer. Notably, ncRNAs are highly conserved and multifunctional. These interact with multiple signaling pathways, influencing cell cycle progression and various physiological processes. Therefore, the present review aimed to investigate ncRNA, microRNA, transfer RNA‑derived small RNA, PIWI‑interacting RNA and long non‑coding RNA to further understand the associated generation processes, functional mechanisms and therapeutic roles in tumors. The present review demonstrated the critical role of ncRNAs in tumors, and may provide a novel theoretical basis for the role of ncRNAs as biomarkers or therapeutic tools in the treatment of cancer.
Collapse
Affiliation(s)
- Zhihan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chunyan Mao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
2
|
Deng X, Zuo Q, Liu Y, Li M, Wu L, Jiang J, Rahman J, Sagnelli M, Zhang T, Sun L, Xu Y. Inflammation-induced TET3/mir-3942 axis impedes the proliferation and invasion ability of trophoblast cells through destabilization of SERPINE1 in preeclampsia. Placenta 2025; 167:193-203. [PMID: 40424676 DOI: 10.1016/j.placenta.2025.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/29/2025] [Accepted: 05/21/2025] [Indexed: 05/29/2025]
Abstract
INTRODUCTION Abnormal expression of TET3 has been established to be associated with aberrant function of trophoblasts and lead to the progression of Preeclampsia (PE). Yet, the underlying mechanism of PE mediated by TET3 has not been elucidated. METHODS Target factors downstream of TET3 were identified by RNA-seq. Functional assays were used to assess the effects of TET3/SERPINE1 on the proliferation and invasion capabilities of HTR-8 and JAR. ChIP-PCR and Targeted bisulfite sequencing were conducted to detect the demethylation in the SERPINE1 promoter after inhibition of TET3. Luciferase reporter assays were performed to elucidate the mechanism by which miR-3942 binds to TET3/SERPINE1 mRNA. TET3 knockout mice and uterine artery ligation mice to further verify the reliability of this conclusion. RESULTS First, we identified genes mediated by TET3 in HTR-8 by RNA-seq. Then, we focus on SERPINE1 as the special downstream gene. The resulting data showed that SERPINE1 could reduce the proliferation and invasion. RNA-seq and mechanism analysis indicated that inhibition of TET3 suppressed the activation of SERPINE1 by reducing the demethylation of related CpG sites in the SERPINE1 promoter, thereby transcriptionally inactivating SERPINE1 expression. Moreover, luciferase reporter assay indicates that TET3 and SERPINE1 were direct targets of miR-3942. At last inflammatory cytokines may stimulate trophoblasts to enhance TET3 expression, promoting demethylation of SERPINE1 promoter and inducing SERPINE1 expression. DISCUSSION This study uncovers a TET3-mediated regulatory mechanism which can be stimulate by inflammatory cytokines in PE progression and suggests that targeting the miR-3942-TET3-SERPINE1-axis may provide new predictive and therapeutic interventions for PE.
Collapse
Affiliation(s)
- Xiaokang Deng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Qing Zuo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Meilikang Li
- Obstetric and Gynecological Department, The Second Affiliated Hospital of Nanjing Medical University, 210000, Nanjing, Jiangsu, China
| | - Liuxin Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Jingling Jiang
- Department of Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong City, Jiangsu Province, China
| | - Juveria Rahman
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Matthew Sagnelli
- Department of Radiology, Lenox Hill Hospital, Northwell Health, 100 East 77th Street, New York, NY, 10075, USA.
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 20030, China.
| |
Collapse
|
3
|
Pan X, Zhao X, Lu Y, Xie P, Liu L, Chu X. Harnessing Nanomaterials for Enhanced DNA-Based Biosensing and Therapeutic Performance. Chembiochem 2025; 26:e202400936. [PMID: 39655520 DOI: 10.1002/cbic.202400936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
The integration of nanomaterials with DNA-based systems has emerged as a transformative approach in biosensing and therapeutic applications. Unique features of DNA, like its programmability and specificity, complement the diverse functions of nanomaterials, leading to the creation of advanced systems for detecting biomarkers and delivering treatments. Here, we review the developments in DNA-nanomaterial conjugates, emphasizing their enhanced functionalities and potential across various biomedical applications. We first discuss the methodologies for synthesizing these conjugates, distinguishing between covalent and non-covalent interactions. We then categorize DNA-nanomaterials conjugates based on the properties of the DNA and nanomaterials involved, respectively. DNA probes are classified by their application into biosensing or therapeutic uses, and, several nanomaterials are highlighted by their recent progress in living biological. Finally, we discuss the current challenges and future prospects in this field, anticipating that significant progress in DNA-nanomaterial conjugates will greatly enhance precision medicine.
Collapse
Affiliation(s)
- Xumin Pan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiaoman Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Yanhong Lu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Ping Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lan Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
4
|
Moustafa YM, Mageed SSA, El-Dakroury WA, Moustafa HAM, Sallam AAM, Abulsoud AI, Abdelmaksoud NM, Mohammed OA, Nomier Y, Elesawy AE, Abdel-Reheim MA, Zaki MB, Rizk NI, Ayed A, Ibrahim RA, Doghish AS. Exploring the molecular pathways of miRNAs in testicular cancer: from diagnosis to therapeutic innovations. Funct Integr Genomics 2025; 25:88. [PMID: 40229500 DOI: 10.1007/s10142-025-01599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Cancer diagnostics highlight the critical requirement for sensitive and accurate tools with functional biomarkers for early tumor detection, diagnosis, and treatment. With a high burden of morbidity and mortality among young men worldwide and an increasing prevalence, Testicular cancer (TC) is a significant death-related cancer. Along with patient history, imaging, clinical presentation, and laboratory data, histological analysis of the testicular tissue following orchiectomy is crucial. Although some patients in advanced stages who belong to a poor risk group die from cancer, surgical treatments and chemotherapeutic treatment offer a high possibility of cure in the early stages. Testicular tumors lack useful indicators despite their traditional pathological classification, which highlights the need to find and use blood tumor markers in therapy. Regretfully, the sensitivity and specificity of the currently available biomarkers are restricted. Novel non-coding RNA molecules, microRNAs (miRNAs), have recently been discovered, offering a potential breakthrough as viable biomarkers and diagnostic tools. They act as fundamental gene regulators at the post-transcriptional level, controlling cell proliferation, differentiation, and apoptosis. This article aims to comprehensively explore the role of miRNAs in the pathophysiology, diagnosis, and treatment of TC, with a focus on their regulatory mechanisms within key signaling pathways such as TGF-β, PTEN/AKT/mTOR, EGFR, JAK/STAT, and WNT/β-catenin. By investigating the potential of miRNAs as diagnostic and prognostic biomarkers and therapeutic targets, this study seeks to address challenges such as treatment resistance and evaluate the clinical importance of miRNAs in improving patient outcomes. Additionally, the work aims to explore innovative approaches, including nanoparticle-based delivery systems, to enhance the efficacy of miRNA-based therapies. Ultimately, this research aims to provide insights into future directions for precision medicine in TC, bridging the gap between molecular discoveries and clinical applications.
Collapse
Affiliation(s)
- Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, Km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, P.O Box 551, 61922, Bisha, Saudi Arabia
| | - Randa A Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
5
|
Lan M, Qin S, Wei J, Wu L, Lu Z, Huang W. The SLC26A4-AS1/NTRK2 axis in breast cancer: insights into the ceRNA network and implications for prognosis and immune microenvironment. Discov Oncol 2025; 16:329. [PMID: 40090984 PMCID: PMC11911282 DOI: 10.1007/s12672-025-02080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Breast cancer is a leading malignancy in women, with mortality disparities between developed and underdeveloped regions. Accumulating evidence suggests that the competitive endogenous RNA (ceRNA) regulatory networks play paramount roles in various human cancers. However, the complexity and behavior characteristics of the ceRNA network in breast cancer progression have not been fully elucidated. The expression profiles of three RNAs (long non-coding RNAs [lncRNAs], microRNAs [miRNAs], and mRNAs) were extracted from breast cancer and adjacent samples were sourced from the TCGA database. The SLC26A4-AS1- hsa-miR-19a-3p-NTRK2 ceRNA network related to the prognosis of breast cancer was obtained by performing bioinformatics analysis. Importantly, we identified the SLC26A4-AS1/NTRK2 axis within the ceRNA network through correlation analysis and found it to be a potential prognostic model in clinical outcomes based on Cox regression analysis. Moreover, methylation analysis suggests that the aberrant downregulation of the SLC26A4-AS1/NTRK2 axis might be attributed to hypermethylation at specific sites. Immune infiltration analysis indicates that the SLC26A4-AS1/NTRK2 axis may have implications for the alteration of the tumor immune microenvironment and the emergence and progression of immune evasion in breast cancer. Finally, we validated the expression of SLC26A4-AS1-hsa-miR-19a-3p-NTRK2 in breast cancer cell lines. In summary, the present study posits that the SLC26A4-AS1/NTRK2 axis, based on the ceRNA network, could be a novel and significant prognostic factor associated with breast cancer diagnosis and outcomes.
Collapse
Affiliation(s)
- Mengqiu Lan
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Shuang Qin
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Jingjing Wei
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Lihong Wu
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Zhenni Lu
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Wenjie Huang
- Department of Reproductive Medicine, Guangzhou Women and Children'S Medical Center Liuzhou Hospital, Liuzhou, 545616, Guangxi, China.
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001, Guangxi, China.
| |
Collapse
|
6
|
Lehmann J, Yazbeck A, Hackermüller J, Canzler S. An extended miRNA repertoire in Rattus norvegicus. FRONTIERS IN BIOINFORMATICS 2025; 5:1545680. [PMID: 40130010 PMCID: PMC11931075 DOI: 10.3389/fbinf.2025.1545680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Affiliation(s)
- Julienne Lehmann
- Department Computational Biology and Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Ali Yazbeck
- Medical Faculty, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Jörg Hackermüller
- Department Computational Biology and Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Sebastian Canzler
- Department Computational Biology and Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
7
|
Zhou JH, Cai C, Zhou XF, Xu D. Progress in research of non-coding RNAs in colorectal cancer and their application in early diagnosis. Shijie Huaren Xiaohua Zazhi 2025; 33:96-105. [DOI: 10.11569/wcjd.v33.i2.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
Colorectal cancer is one of the common malignant tumors in the digestive system worldwide, with its incidence and mortality rates ranking high among various diseases. Although certain advancements have been achieved in the diagnosis and treatment techniques of colorectal cancer in recent years, the existing diagnostic means and treatment methods still present numerous limitations, significantly influencing the early detection, precise diagnosis, and individualized treatment of colorectal cancer. With the in-depth research of molecular biology, non-coding RNAs (ncRNAs) have gained increasing attention in the development and prognosis evaluation of colorectal cancer. This paper summarizes some studies related to the expression of different types of ncRNAs in colorectal cancer and selects a portion of ncRNAs that are expected to serve as new diagnostic indicators for this malignancy. The emergence of new biological indicators will contribute to the early diagnosis of colorectal cancer, facilitating its early detection and even prevention.
Collapse
Affiliation(s)
- Jin-Hang Zhou
- People's Hospital of Wucheng District, Jinhua City, Jinhua 321000, Zhejiang Province, China
| | - Cheng Cai
- Department of Colorectal and Anal Surgery, Jinhua Central Hospital, Jinhua 321000, Zhejiang Province, China
| | - Xiao-Feng Zhou
- People's Hospital of Wucheng District, Jinhua City, Jinhua 321000, Zhejiang Province, China
| | - Dan Xu
- People's Hospital of Wucheng District, Jinhua City, Jinhua 321000, Zhejiang Province, China
| |
Collapse
|
8
|
Bamahel AS, Sun X, Wu W, Mu C, Liu J, Bi S, Xu H. Regulatory Roles and Therapeutic Potential of miR-122-5p in Hypoxic-Ischemic Brain Injury: Comprehensive Review. Cell Biochem Biophys 2025:10.1007/s12013-025-01686-6. [PMID: 40016565 DOI: 10.1007/s12013-025-01686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
In the regulation of gene expression, epigenetic factors, including non-coding RNAs (ncRNAs) play a role in genetics. Among the ncRNA family, microRNAs (miRNAs) have gained significant attention for their involvement in post-transcriptional gene regulation, with profound implications for both normal and pathological processes including neurological diseases such as hypoxic-ischemic brain injury. A specific miRNA, called miR-122-5p, has gained attention in hypoxic-ischemic conditions, where it modulates critical pathways such as inflammation, oxidative stress, and neuronal survival. The purpose of this review is to highlight recent advances in the biogenesis, expression, and regulation of miR-122-5p, focusing on its role in hypoxic-ischemic conditions and its potential as a therapeutic target. We first studied the therapeutic strategies and potential clinical applications of miR-122-5p, our research showing it interacts with key transcription factors, such as HIF-1α and NF-κB, influencing cellular responses to low oxygen levels. Our findings revealed that miR-122-5p plays a vital role in hypoxic-ischemic brain injury, with its abnormal levels strongly associated with increased brain damage and neuroinflammation, suggesting its potential as a promising therapeutic target. Furthermore, miR-122-5p influences various biological processes in the brain, such as metabolism and blood vessel formation. The use of miR-122-5p inhibitor has been shown to increase autophagy, reduce apoptosis, and decrease oxidative stress and inflammation, thereby protecting neurons and improving outcomes in hypoxic encephalopathy by targeting multiple genes related to these processes. Conversely, miR-122-5p mimics exacerbate oxidative stress and reduce autophagy. These findings highlight the therapeutic potential of miR-122-5p inhibition in reducing brain injury and promoting recovery in hypoxic-ischemic encephalopathy through enhanced neuroprotective mechanisms and the suppression of harmful cellular processes. However, further experimental studies are needed to fully understand the therapeutic potential of targeting miR-122-5p and its related genes in hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei Wu
- Public Health College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jia Liu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Sheng Bi
- Clinical Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hui Xu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
9
|
Wang X, Zhang Q, Zhao D, Li X, Yi L, Li S, Wang X, Gu M, Gao J, Jia X. Identification of regulatory genes associated with POAG by integrating expression and sequencing data. Ophthalmic Genet 2025; 46:56-64. [PMID: 39568137 DOI: 10.1080/13816810.2024.2431103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Primary open-angle glaucoma (POAG) is a subtype of glaucoma that accounts for 60%~70% of all cases. Its pathogenic mechanism is intricate and its pathogenic process is concealed. Numerous significant biological processes associated with POAG continue to be elucidated. METHODS In this study, by exploring the expression data of POAG tissues and normal tissues, we mined the regulatory lncRNAs and mRNAs closely associated with the pathogenesis and progression of POAG by exploring a regulatory network of competing endogenous RNA (ceRNA), established by integrating gene expression data with the known lncRNA-miRNA and miRNA-mRNA-regulatory interactions. The key regulatory pathways and regulatory elements of POAG were identified by topological analysis. Simultaneously, the exome data of 28 cases with POAG and healthy controls were analyzed to identify high-frequency mutations and genes. RESULTS A total of 2712 differentially expressed genes were identified, including 1828 mRNAs and 884 lncRNAs. Network analysis suggested that lncRNAs such as HAGLR, HOTAIR and MIR29B2CHG, and mRNAs such as PPP6R3, BMPR2 and CFL2, may be involved in the onset and progression of POAG. In addition, 55 mutations with potential pathogenicity were identified. CONCLUSION These genes and mutations provide novel potential genetic heterogeneity and genetic susceptibility of POAG, as well as fresh suggestions for elucidating the molecular mechanism underlying the pathogenesis of POAG.
Collapse
Affiliation(s)
- Xizi Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Qiang Zhang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Dongdong Zhao
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xiaofen Li
- Liao Cheng 120 Medical Emergency Command and Dispatch Center, Liaocheng, Shandong, P.R. China
| | - Lili Yi
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Siyuan Li
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xin Wang
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Jianlu Gao
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| |
Collapse
|
10
|
Atta H, Kassem DH, Kamal MM, Hamdy NM. Targeting the ubiquitin proteasome system in cancer stem cells. Trends Cell Biol 2025; 35:97-101. [PMID: 39721924 DOI: 10.1016/j.tcb.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Over the past few years there has been an alarming burst of cancer burden worldwide. Cancer stem cells (CSCs) act as hidden devils within tumors, rendering cancer therapy a strenuous goal. Recently, the ubiquitin proteasome system (UPS) was proved to be an essential contributor to the CSC phenotype. This forum article aims to outline new strategies/technologies targeting UPS modulation in CSCs as a potential novel modality for efficient cancer therapy.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Health Research Center of Excellence, Drug Research and Development Group, The British University in Egypt, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
11
|
Zhao JH, Li S, Du SL, Han GZ, Li H, Shao B, Liu X, Zhou Y, Zhang ZQ. miR-207 Suppresses the Progression of SiO 2-Induced Pulmonary Fibrosis by Targeting Smad3 to Regulate the TGF-β1/Smad3 Signaling Pathway in C57BL/6 Mice. J Biochem Mol Toxicol 2025; 39:e70170. [PMID: 39945717 DOI: 10.1002/jbt.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 05/09/2025]
Abstract
Silicosis is a worldwide occupational disease characterized by irreversible pulmonary fibrosis. Recent studies have showed that microRNAs (miRNAs) may play a crucial role in silicosis progression by modulating fibrosis-related gene express. In this study, we selected miR-207 as our research subject because we found that miR-207 can be match with Smad3 using bioinformatic techniques, which might silence the key fibrosis-related TGF-β1/Smad3 signal pathway. In this study, the mice were given silica suspension (20 µg/µL, 80 µL) via nostril once a day for 16 days to establish silicosis models, and then were transfected with miR-207 mimic or inhibitor. The mice which were given phosphate-buffered saline (PBS) (80 µL) via nostril were used as control. All mice were killed on Day 45 after the first exposure to dust, after which their lungs were removed for pathological observation and to measure the hydroxyproline content. Then, real-time polymerase chain reaction and Western blot analysis were applied to detect the relative expression levels of TGF-β1/Smad3 signaling pathway indicators (TGF-β1, TGF-βR, and Smad3), and myofibroblast transformation indicators (α-SMA and Fn). Results showed that the lung pathological images of silicosis model group mice showed significant fibrosis, and TGF-β1, TGF-βR, Smad3, α-SMA, and Fn were all highly upregulated compared with the control group mice. Intervention with miR-207 mimics significantly inhibited pulmonary fibrosis in silicosis mice by downregulation of TGF-β1/Smad3 and inhibiting of myofibroblast formation. Whereas these phenomena were not observed in silicosis mice treated with miR-207 inhibitor. The results demonstrated that miR-207 can block the progression of SiO2-induced pulmonary fibrosis by targeting the TGF-β/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- School of Public Health, Jining Medical University, Jining, China
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Shuang Li
- School of Public Health, Jining Medical University, Jining, China
| | - Shu-Ling Du
- School of Public Health, Jining Medical University, Jining, China
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Gui-Zhi Han
- School of Public Health, Jining Medical University, Jining, China
| | - Huan Li
- School of Public Health, Jining Medical University, Jining, China
| | - Bo Shao
- School of Public Health, Jining Medical University, Jining, China
| | - Xia Liu
- School of Public Health, Jining Medical University, Jining, China
| | - Yuting Zhou
- School of Public Health, Jining Medical University, Jining, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
12
|
Wang X, Zhang S, Wang S, Cao T, Fan H. Decoding oral cancer: insights from miRNA expression profiles and their regulatory targets. Front Mol Biosci 2025; 11:1521839. [PMID: 39935706 PMCID: PMC11810738 DOI: 10.3389/fmolb.2024.1521839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Oral cancer (OC) is a prevalent malignancy with high mortality rates, largely attributed to late diagnosis and limited therapeutic advancements. MicroRNAs (miRNAs), as critical regulators of gene expression, have emerged as key players in modulating plethora of cellular mechanisms. This study analyzed miRNA and gene expression profiles in OC using publicly available datasets from the Gene Expression Omnibus (GEO) to explore their roles in tumorigenesis. A total of 23 differentially expressed miRNAs (DEmiRs) and 1,233 differentially expressed genes (DEGs) were identified. Functional annotation and pathway enrichment analyses highlighted significant involvement of DEmiRs and their target genes in cell cycle-related processes, including enrichment in the nucleus, transcription factor activity, regulation of nucleosides, nucleotide and nucleic acids, cell growth and/or maintenance, mitotic cell cycle, mitotic M-M/G1 phases an DNA replication. Furthermore, different signaling cascades such as IGF signaling, PDGF signaling and LKB1 signaling and PLK1 signaling pathways were also found associated with DEmiR-related regulation of OC progression. Protein-protein interaction (PPI) network analysis identified key molecular hubs associated with DEmiR and DEGs in OC. Notably, most of these hub genes such as NEK2, NDC80, NUF2, PLK1, SMAD2, TP53, TPX2, TTK, UBE2C, WDHD1, WTAP, YWHAZ are directly or indirectly associated with cell cycle progression, underscoring the role of DEmiRs in driving tumor proliferation and survival in OC via dysregulating cell cycle. This study offers insights into the molecular mechanisms underlying OC and highlights miRNAs as potential biomarkers and therapeutic targets to disrupt the cancerous cell cycle and improve treatment outcomes.
Collapse
Affiliation(s)
- Xin Wang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Shuang Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Shuyi Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Cao
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| | - Hong Fan
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Liu Q, Archilla I, Lopez‐Prades S, Torres F, Camps J, Cuatrecasas M. Polymorphic Single-Nucleotide Variants in miRNA Genes and the Susceptibility to Colorectal Cancer: Combined Evaluation by Pairwise and Network Meta-Analysis, Thakkinstian's Algorithm and FPRP Criterium. Cancer Med 2025; 14:e70621. [PMID: 39840720 PMCID: PMC11751872 DOI: 10.1002/cam4.70621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Considerable epidemiological studies have examined the correlation between polymorphic single-nucleotide variants (SNPs) in miRNA genes and colorectal carcinoma (CRC) risk, yielding inconsistent results. Herein, we sought to systematically investigate the association between miRNA-SNPs and CRC susceptibility by combined evaluation using pairwise and network meta-analysis, the FPRP analysis (false positive report probability), and the Thakkinstian's algorithm. METHODS The MEDLINE, EMBASE, WOS, and Cochrane Library databases were searched through May 2024 to find relevant association literatures. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were computed by the pairwise meta-analysis. Network meta-analysis and the Thakkinstian's method were applied for determining the potentially optimal genetic models; additionally, the FPRP was used to identify noteworthy associations. RESULTS Totally, 39 case-control trials involving 18,028 CRC cases, and 21,816 normal participants were included in the study. Eleven SNPs within nine genes were examined for their predisposition to CRC. miR-27a (rs895819) was found to significantly increase CRC risk among overall population (OR 1.58, 95% CI: 1.32-1.89) and Asians (OR 1.62, 95% CI: 1.31-2.01), with the recessive models identified as the optimal models. Furthermore, miR-196a2 (rs11614913), miR-143/145 (rs41291957), and miR-34b/c (rs4938723) were significantly related to reduced CRC risk among Asian descendants under the optimal dominant (OR 0.75, 95% CI: 0.65-0.86), recessive (OR 0.72, 95% CI: 0.60-0.85), and recessive models (OR 0.69, 95% CI: 0.56-0.85), respectively. The results were also proposed by the network meta-analysis or the Thakkinstian's method and confirmed by the FPRP criterion. CONCLUSION The miR-27a (rs895819) is correlated with elevated CRC risk among overall population and Asians, and the recessive model is found to be optimal for predicting CRC risk. Additionally, the miR-196a2 (rs11614913), miR-143/145 (rs41291957), and miR-34b/c (rs4938723), with the dominant, recessive, and recessive models identified as the optimal, might confer protective effects against CRC among Asians.
Collapse
Affiliation(s)
- Qing Liu
- Faculty of Medicine and Health Sciences, Doctoral SchoolUniversity of BarcelonaBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)BarcelonaSpain
| | - Ivan Archilla
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)BarcelonaSpain
- Pathology Department, Centre of Biomedical Diagnosis (CDB)Hospital Clinic, University of BarcelonaBarcelonaSpain
| | - Sandra Lopez‐Prades
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)BarcelonaSpain
- Pathology Department, Centre of Biomedical Diagnosis (CDB)Hospital Clinic, University of BarcelonaBarcelonaSpain
| | - Ferran Torres
- Department of BiostatisticsAutonomous University of Barcelona (UAB)BellaterraSpain
| | - Jordi Camps
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
- Cell Biology and Medical Genetics Unit, Department of Cell Biology, Physiology and Immunology, Faculty of MedicineAutonomous University of Barcelona (UAB)BellaterraSpain
| | - Miriam Cuatrecasas
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS)BarcelonaSpain
- Pathology Department, Centre of Biomedical Diagnosis (CDB)Hospital Clinic, University of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
- Faculty of Medicine and Health Sciences, Department of Clinical FoundationsUniversity of Barcelona (UB)BarcelonaSpain
| |
Collapse
|
14
|
Hirohata R, Yamamoto Y, Mimae T, Hamai Y, Ibuki Y, Takahashi RU, Okada M, Tahara H. Prediction of Pathologic Complete Response in Esophageal Squamous Cell Carcinoma Using Preoperative Serum Small Ribonucleic Acid Obtained After Neoadjuvant Chemoradiotherapy. Ann Surg Oncol 2025; 32:570-580. [PMID: 39419890 DOI: 10.1245/s10434-024-16247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The authors hypothesized that small ribonucleic acid (sRNA) obtained from blood samples after neoadjuvant therapy from patients treated with neoadjuvant chemoradiation therapy (NACRT) could serve as a novel biomarker for predicting pathologic complete response (pCR). METHODS This study included 99 patients treated with esophagectomy after NACRT between March 2010 and October 2021 whose blood samples were collected between the end of NACRT and surgery. Next-generation sequencing (NGS) was used to analyze sRNAs from the blood samples. A predictive model for pCR comprising micro-RNA isoforms (isomiR), transfer RNA (tRNA)-derived sRNAs (tsRNAs), and clinical factors was constructed using cross-validation. RESULTS Of the 99 patients, pCR was diagnosed for 30 and non-pCR for 69 of the patients. Among sRNAs, the isomiRs of let-7b and miR-93 and the tsRNA group derived from tRNA-Gly-CCC/GCC were identified as predictive factors. The clinical factors included a decrease in the maximum standardized uptake value (SUVmax) at the primary site, clinical complete response post-NACRT, preoperative biopsy, and post-NACRT carcinoembryonic antigen levels. The combined predictive model for pCR (C-PM) was established using the three sRNAs and four clinical factors. The area under the curve for the C-PM was 0.84, which was a significant factor in the multivariate analysis (odds ratio, 89.41; 95 % confidence interval 8.1-987.5; p < 0.001). CONCLUSIONS Pathologic complete response after NACRT can be predicted by a predictive model constructed from preoperative clinical factors obtained via minimally invasive procedures and sRNA identified by NGS. Preoperative pCR prediction may influence treatment decision-making after NACRT.
Collapse
Affiliation(s)
- Ryosuke Hirohata
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Yuki Yamamoto
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Takahiro Mimae
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Yoichi Hamai
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Yuta Ibuki
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
15
|
Mu Y, Lian C, Chen X, Yang X, Li D, Zhang Y. Cutaneous squamous cell carcinoma-derived exosomal MicroRNA-31 acts as an oncogene by targeting the tumor suppressor RhoBTB1. Arch Dermatol Res 2024; 317:114. [PMID: 39673615 DOI: 10.1007/s00403-024-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 09/29/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Tumor-derived exosomes that transport MicroRNAs significantly influence cutaneous squamous cell carcinoma(CSCC) progression. However, the molecular mechanisms of exosomal MicroRNA-31 regulation of CSCC are mostly undefined. To determine whether a targeting relationship exists between MicroRNA-31 (miR-31) in CSCC-derived exosomes and the tumor suppressor RhoBTB1, and the regulatory effect of the relationship on tumor cells. Immunoblotting and quantitative PCR were used to measure miR-31 and RhoBTB1 levels in various cells and exosomes. Differential ultracentrifugation was used to isolate exosomes. MTT and Transwell assays were used to assess cell proliferation, migration, and invasion. Dual luciferase reporter assays were used to assess the direct interaction between miR-31 and the tumor suppressor RhoBTB1 in cutaneous squamous cell carcinoma (CSCC)-derived exosomes. Compared with a human skin keratinocyte cell line, in CSCC cell lines RhoBTB1 was downregulated and miR-31 levels were elevated. Exosomal miR-31 from CSCC cell lines directly targeted RhoBTB1 by binding to the 3' UTR of RhoBTB1. This interaction suppressed expression of RhoBTB1 and enhanced CSCC cell proliferation, migration, and invasion. MicroRNA-31 in CSCC-derived exosomes can enhance CSCC cell proliferation, migration, and invasion by suppressing expression of RhoBTB1. This finding explains, in part, the molecular mechanism of CSCC. Investigative approaches focused on suppressing miR-31 or enhancing RhoBTB1 signaling pathways are promising avenues for developing targeted therapies for CSCC.
Collapse
Affiliation(s)
- Yanan Mu
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China
| | - Chen Lian
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China
| | - Xinghui Chen
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China
| | - Xueying Yang
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China
| | - Dongxia Li
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China.
| | - Yi Zhang
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Xinhua Street, Hohhot, 010030, China.
| |
Collapse
|
16
|
Tafazoli P, Rad HM, Mashayekhi M, Siadat SF, Fathi R. miRNAs in ovarian disorders: Small but strong cast. Pathol Res Pract 2024; 264:155709. [PMID: 39522318 DOI: 10.1016/j.prp.2024.155709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This research aimed to analyze alterations in microRNA expression in the diseases POF (Premature Ovarian Failure), PCOS (Polycystic Ovarian Syndrome), and ovarian cancer in order to understand the molecular changes associated with these conditions. The findings could potentially be utilized for diagnostic, therapeutic, predictive, and preventive purposes. Furthermore, the impact and role of microRNAs in each ailment, along with their functional pathways, were elucidated and examined. METHODS In this study, the genes involved in the disease were studied, and then the miRNAs that targeted these genes were evaluated, and finally the signaling and functional pathways of each of the miRNAs were assessed. In this process, genetic databases and previous studies were carefully assessed. RESULTS miRNAs are short nucleotide sequences that belong to the category of non-coding RNAs. They play a crucial role in various physiological activities, including cell division, growth, differentiation, and cell death (necrosis and apoptosis), miRNAs are involved in various physiological processes Such alterations are common in various diseases, including cancer. miRNAs are involved in various physiological processes, such as folliculogenesis and steroidogenesis, as well as in pathological conditions such as POF, PCOS, and ovarian cancer. They have powerful regulatory effects and controlling the most activities of normal and pathological cells. While microRNAs (miRNAs) play a significant role in normal ovarian functions, there are reports of their expression changes in PCOS, ovarian cancer, and POF. CONCLUSIONS miRNAs have been found to exert significant influence on both physiological and pathological cellular processes. Understanding the dynamic patterns of miRNA alterations can provide valuable insights for researchers and therapists, enabling them to utilize these biomarkers effectively in diagnostic, therapeutic, and preventive applications.
Collapse
Affiliation(s)
- Parsa Tafazoli
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hanieh Motahari Rad
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehri Mashayekhi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
17
|
Zhang Q, Zhang Y, Guo S, Wang X, Wang H. Hydrogen sulfide plays an important role by regulating microRNA in different ischemia-reperfusion injury. Biochem Pharmacol 2024; 229:116503. [PMID: 39179120 DOI: 10.1016/j.bcp.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
MicroRNAs (miRNAs) are the short endogenous non-coding RNAs that regulate the expression of the target gene at posttranscriptional level through degrading or inhibiting the specific target messenger RNAs (mRNAs). MiRNAs regulate the expression of approximately one-third of protein coding genes, and in most cases inhibit gene expression. MiRNAs have been reported to regulate various biological processes, such as cell proliferation, apoptosis and differentiation. Therefore, miRNAs participate in multiple diseases, including ischemia-reperfusion (I/R) injury. Hydrogen sulfide (H2S) was once considered as a colorless, toxic and harmful gas with foul smelling. However, in recent years, it has been discovered that it is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO), with multiple important biological functions. Increasing evidence indicates that H2S plays a vital role in I/R injury through regulating miRNA, however, the mechanism has not been fully understood. In this review, we summarized the current knowledge about the role of H2S in I/R injury by regulating miRNAs, and analyzed its mechanism in detail.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
18
|
Jin LL, Lu HJ, Shao JK, Wang Y, Lu SP, Huang BF, Hu GN, Jin HC, Wang CQ. Relevance and mechanism of STAT3/miR-221-3p/Fascin-1 axis in EGFR TKI resistance of triple-negative breast cancer. Mol Cell Biochem 2024; 479:3037-3047. [PMID: 38145448 DOI: 10.1007/s11010-023-04907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023]
Abstract
The epidermal growth factor receptor 1 (EGFR) plays a crucial role in the progression of various malignant tumors and is considered a potential target for treating triple-negative breast cancer (TNBC). However, the effectiveness of representative tyrosine kinase inhibitors (TKIs) used in EGFR-targeted therapy is limited in TNBC patients. In our study, we observed that the TNBC cell lines MDA-MB-231 and MDA-MB-468 exhibited resistance to Gefitinib. Treatment with Gefitinib caused an upregulation of Fascin-1 (FSCN1) protein expression and a downregulation of miR-221-3p in these cell lines. However, sensitivity to Gefitinib was significantly improved in both cell lines with either inhibition of FSCN1 expression or overexpression of miR-221-3p. Our luciferase reporter assay confirmed that FSCN1 is a target of miR-221-3p. Moreover, Gefitinib treatment resulted in an upregulation of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in MDA-MB-231 cells. Using Stattic, a small-molecule inhibitor of STAT3, we observed a significant enhancement in the inhibitory effect of Gefitinib on the growth, migration, and invasion of MDA-MB-231 cells. Additionally, Stattic treatment upregulated miR-221-3p expression and downregulated FSCN1 mRNA and protein expression. A strong positive correlation was noted between the expression of STAT3 and FSCN1 in breast cancer tissues. Furthermore, patients with high expression levels of both STAT3 and FSCN1 had a worse prognosis. Our findings suggest that elevated FSCN1 expression is linked to primary resistance to EGFR TKIs in TNBC. Moreover, we propose that STAT3 regulates the expression of miR-221-3p/FSCN1 and therefore modulates resistance to EGFR TKI therapy in TNBC. Combining EGFR TKI therapy with inhibition of FSCN1 or STAT3 may offer a promising new therapeutic option for TNBC.
Collapse
Affiliation(s)
- Lu-Lu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Hua-Jun Lu
- Department of Oncological Radiotherapy, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jun-Kang Shao
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Shi-Ping Lu
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Gui-Nv Hu
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Hong-Chuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China.
| |
Collapse
|
19
|
Huang H, Xiao L, Xiao M, Chen K, Zheng W, Wu N. miR-559 rs58450758 polymorphism is associated with colorectal cancer risk and prognosis in Chinese Han population. Per Med 2024; 21:303-311. [PMID: 39439255 DOI: 10.1080/17410541.2024.2412512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Aim: This research examined the correlation between miR-559 rs58450758 and the clinical pathological characteristics and prognosis of CRC.Materials & methods: RT-qPCR was utilized to assess the miR-559 expression levels. Chi-square test was used to investigate the relationship between miR-559 and clinical features. The association between rs58450758 different genotypes and CRC risk, as well as clinical pathological parameters, was explored, utilizing logistic regression analysis and chi-square tests. The Cox regression model and Kaplan-Meier analysis evaluated overall survival in individuals with CRC.Results: The miR-559 was down-regulated in CRC patients' serum. The expressions of miR-559 were significantly associated with tumor size, differentiation, TNM stage and lymph node metastasis. The rs58450758 TT genotype and T allele carriers were more prevalent among CRC patients. The rs58450758 polymorphism was notably linked to tumor size, differentiation, TNM stage and lymph node metastasis in CRC patients. Furthermore, CC genotype carriers exhibited a longer survival period than CT/TT genotypes within the CRC population.Conclusion: The miR-559 rs58450758 polymorphism exhibits promise as a potential biomarker for prognosticating the outcomes of CRC.
Collapse
Affiliation(s)
- Hanxing Huang
- Department of Pathology, The First Hospital of Putian City, Fujian, 351100, China
| | - Lihan Xiao
- Department of Pathology, The First Hospital of Putian City, Fujian, 351100, China
| | - Min Xiao
- Department of Pathology, The First Hospital of Putian City, Fujian, 351100, China
| | - Kaiying Chen
- Department of Pathology, The First Hospital of Putian City, Fujian, 351100, China
| | - Wentian Zheng
- Department of Thyroid & Breast Surgery, The First Hospital of Putian City, Fujian, 351100, China
| | - Ning Wu
- Department of Pathology, The First Hospital of Putian City, Fujian, 351100, China
| |
Collapse
|
20
|
Guo F, Li H, Wang J, Wang J, Zhang J, Kong F, Zhang Z, Zong J. MicroRNAs in Hepatocellular Carcinoma: Insights into Regulatory Mechanisms, Clinical Significance, and Therapeutic Potential. Cancer Manag Res 2024; 16:1491-1507. [PMID: 39450194 PMCID: PMC11499618 DOI: 10.2147/cmar.s477698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transformation (EMT), invasion, metastasis, metabolism, and drug resistance are the main factors affecting the development and treatment of tumors. MiRNAs play crucial roles in almost all major cellular biological processes. Studies have been carried out on miRNAs as biomarkers and therapeutic targets. Their dysregulation contributes to the progression and prognosis of HCC. This review aims to explore the molecular cascades and corresponding phenotypic changes caused by aberrant miRNA expression and their regulatory mechanisms, summarize and analyze novel biomarkers from somatic fluids (plasma/serum/urine), and highlight the latent capacity of miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Fenfen Guo
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Hong Li
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jingjing Wang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jiangfeng Wang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jinling Zhang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Fanfang Kong
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Zemin Zhang
- Departments of Infectious Disease, Qingdao Women and Children’s Hospital, Qingdao, People’s Republic of China
| | - Jinbao Zong
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| |
Collapse
|
21
|
Chang Y, Hao Y, Su Y, Guo J, Liu Y, Sun R, Feng B, Ma J, Hu Y. MicroRNA-582-5p inhibits the progression of gastric cancer cells and their resistance to oxaliplatin by suppressing ATG7 expression. Front Oncol 2024; 14:1481266. [PMID: 39464718 PMCID: PMC11502292 DOI: 10.3389/fonc.2024.1481266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract worldwide. Both environmental and genetic factors contribute to the occurrence and development of GC. Surgery and chemotherapy are the main treatment modalities for gastric cancer; however, some patients show insensitivity to chemotherapeutic agents. Chemotherapy resistance is one of the primary reasons for poor treatment outcomes and the high likelihood of recurrence and metastasis in gastric cancer patients. Numerous studies have confirmed a correlation between the dysregulation of microRNA expression and the development of various malignant tumors, as well as their resistance to chemotherapeutic agents. However, the role of microRNA-582-3p in gastric cancer cells and its mechanism in the resistance of gastric cancer cells to oxaliplatin have not been studied. Methods We first used q-PCR, CCK8, transwell, and scratch assays to validate the expression of microRNA-582-3p in gastric cancer tissues and cells, while also analyzing the relationship between its expression levels and the clinical pathological data of patients. Additionally, we further confirmed the impact of microRNA-582-3p on gastric cancer cell progression and oxaliplatin resistance through knockdown and overexpression experiments. Subsequently, to explore the specific mechanisms of microRNA-582-3p in gastric cancer, we verified the downstream target of microRNA-582-3p, ATG7, using dual-luciferase reporter assays and examined the effect of ATG7 on gastric cancer cell functions. Moreover, we conducted rescue experiments to further validate the interaction between microRNA-582-3p and ATG7. Results Our experimental results confirmed that microRNA-582-3p is lowly expressed in gastric cancer tissues and cells, and the expression level of miR-582-5p is correlated with the T stage of patients, while showing no correlation with the patients' gender, age, tumor size, degree of differentiation, or N stage. Additionally, we found that microRNA-582-3p functions as a tumor suppressor in gastric cancer cells, as its overexpression inhibits the biological functions of gastric cancer cells and increases their sensitivity to oxaliplatin. Furthermore, we identified binding sites between microRNA-582-3p and the autophagy-related gene ATG7, observing that knockdown of microRNA-582-3p increases ATG7 expression, while its overexpression reduces ATG7 levels. Moreover, ATG7 is overexpressed in gastric cancer cells; knockdown of ATG7 inhibits the biological functions of gastric cancer cells and increases their sensitivity to oxaliplatin, whereas overexpression of ATG7 reverses the inhibitory effect of miR-582-5p on gastric cancer. Conclusion Our study confirms that microRNA-582-3p acts as a tumor suppressor in gastric cancer cells, and its role may be mediated through the regulation of ATG7 expression levels. MicroRNA-582-3p may serve as a potential target for gastric cancer treatment and a predictive biomarker.
Collapse
Affiliation(s)
- Yu Chang
- Department of Radiation Oncology, The First Affiliated Hospital of Yan’an University, Yan’an, Shanxi, China
| | - Yaqin Hao
- Department of Radiation Oncology, The First Affiliated Hospital of Yan’an University, Yan’an, Shanxi, China
| | - Yani Su
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jin Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Yan’an University, Yan’an, Shanxi, China
| | - Yu Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Yan’an University, Yan’an, Shanxi, China
| | - Ruixue Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Yan’an University, Yan’an, Shanxi, China
| | - Bei Feng
- Department of Oncology, The First Affiliated Hospital of Yan’an University, Yan’an, Shanxi, China
| | - Junwei Ma
- Department of Oncology, The First Affiliated Hospital of Yan’an University, Yan’an, Shanxi, China
| | - Yunfeng Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Yan’an University, Yan’an, Shanxi, China
| |
Collapse
|
22
|
Jaime-Casas S, Tripathi A, Pal SK, Yip W. Clinical Implications of the Molecular and Genomic Landscape of Upper Tract Urothelial Carcinoma. Curr Urol Rep 2024; 26:11. [PMID: 39379745 PMCID: PMC11461588 DOI: 10.1007/s11934-024-01245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE OF REVIEW Upper tract urothelial carcinoma (UTUC) is an aggressive entity with treatment strategies mirroring bladder cancer. Genomic and molecular profiling allows for a better characterization of this disease and allows for patient-tailored approaches. We aim to describe the genomic and molecular implications of this disease. RECENT FINDINGS Technological advances have the potential for early diagnosis and precise molecular analysis in patients with UTUC. Genomic profile clustering, specific mRNA signatures, and pathway-specific protein abundance tools have oncologic and clinical implications. We describe their utility in the context of this disease. In the era of precision medicine, designing clinical trials that explore the diagnostic and prognostic implications of biomolecular signatures in the context of UTUC is of utmost importance. Promising advances in this arena provide tools for physicians to avoid overtreatment in this patient population.
Collapse
Affiliation(s)
- Salvador Jaime-Casas
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Abhishek Tripathi
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Sumanta K Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Wesley Yip
- Division of Urology and Urologic Oncology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
23
|
Wang F, Liu Z, Liu Y, Zhang J, Xu W, Liu B, Sun Z, Chu H. A Spatiotemporally Controlled Gene-Regulation Strategy for Combined Tumor Therapy Based on Upconversion Hybrid Nanosystem. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405640. [PMID: 39207039 PMCID: PMC11515897 DOI: 10.1002/advs.202405640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/09/2024] [Indexed: 09/04/2024]
Abstract
The lack of precise spatiotemporal gene modulation and therapy impedes progress in medical applications. Herein, a 980 nm near-infrared (NIR) light-controlled nanoplatform, namely URMT, is developed, which can allow spatiotemporally controlled photodynamic therapy and trigger the enzyme-activated gene expression regulation in tumors. URMT is constructed by engineering an enzyme-activatable antisense oligonucleotide, which combined with an upconversion nanoparticle (UCNP)-based photodynamic nanosystem, followed by the surface functionalization of triphenylphosphine (TPP), a mitochondria-targeting ligand. URMT allows for the 980 nm NIR light-activated generation of reactive oxygen species, which can induce the translocation of a DNA repair enzyme (namely apurinic/apyrimidinic endonuclease 1, APE1) from the nucleus to mitochondria. APE1 can recognize the basic apurinic/apyrimidinic (AP) sites in DNA double-strands and perform cleavage, thereby releasing the functional single-strands for gene regulation. Overall, an augmented antitumor effect is observed due to NIR light-controlled mitochondrial damage and enzyme-activated gene regulation. Altogether, the approach reported in this study offers high spatiotemporal precision and shows the potential to achieve precise and specific gene regulation for targeted tumor treatment.
Collapse
Affiliation(s)
- Fang Wang
- Translational Medicine CenterBeijing Chest HospitalCapital Medical University9 Beiguan StreetBeijing101149China
| | - Zechao Liu
- College of ScienceMinzu University of China27 Zhongguancun South AvenueBeijing100081China
| | - Yuechen Liu
- College of ScienceMinzu University of China27 Zhongguancun South AvenueBeijing100081China
| | - Jiayi Zhang
- Translational Medicine CenterBeijing Chest HospitalCapital Medical University9 Beiguan StreetBeijing101149China
| | - Weizhe Xu
- Translational Medicine CenterBeijing Chest HospitalCapital Medical University9 Beiguan StreetBeijing101149China
| | - Bei Liu
- College of ScienceMinzu University of China27 Zhongguancun South AvenueBeijing100081China
| | - Zhaogang Sun
- Translational Medicine CenterBeijing Chest HospitalCapital Medical University9 Beiguan StreetBeijing101149China
| | - Hongqian Chu
- Translational Medicine CenterBeijing Chest HospitalCapital Medical University9 Beiguan StreetBeijing101149China
| |
Collapse
|
24
|
Shi H, Pan B, Liang J, Cai B, Wu G, Bian Y, Shan G, Ren S, Huang Y, Guo W. miR-30c-5p inhibits esophageal squamous cell carcinoma progression by repressing the PI3K/AKT signaling pathway. Thorac Cancer 2024; 15:2206-2216. [PMID: 39289835 PMCID: PMC11496186 DOI: 10.1111/1759-7714.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors, with high incidence and poor prognosis. Revealing mechanisms of ESCC progression and developing new therapeutic targets remains crucial. The aim of this study was to elucidate the molecular mechanism of miR-30c-5p in regulating the malignant progression of ESCC. METHODS TCGA, GEO, and other datasets were used to analyze the differential expression of miR-30c-5p in ESCC and adjacent tissues, and its impact on prognosis. Then the effects of miR-30c-5p on the proliferation, migration, and invasion of TE-1 and Eca9706 cells were investigated through proliferation experiments, transwell and wounding healing assays. The regulatory mechanism of miR-30c-5p on the PI3K/AKT signaling pathway and its interaction in cancer progression were investigated through Western blots, dual-luciferase reporter assay, and rescue experiments. RESULTS miR-30c-5p was significantly downregulated in ESCC tissue and represented a poor prognosis. miR-30c-5p mimic significantly inhibited the proliferation, migration, and invasion ability of ESCC, while miR-30c-5p inhibitor significantly promoted tumor cell progression. Through bioinformatic analysis and experimental results, miR-30c-5p interacted directly with PIK3CA mRNA and inhibited subsequent signaling pathway activation. PIK3CA activator could eliminate the inhibitory effects of miR-30c-5p mimic on the progression of ESCC, while PIK3CA inhibitors could rescue the promoting effect of miR-30c-5p inhibitor group cells. CONCLUSIONS In summary, we found that miR-30c-5p inhibited the proliferation, invasion and migration of ESCC by inhibiting PI3K/AKT signaling pathway for the first time, and this study is expected to provide a novel insight and potential therapeutic target for managing ESCC.
Collapse
Affiliation(s)
- Haochun Shi
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Binyang Pan
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Benjie Cai
- Department of Thoracic Surgery and UrologyShigatse People's HospitalShigatseChina
| | - Gujie Wu
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Shencheng Ren
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Weigang Guo
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of Thoracic Surgery and UrologyShigatse People's HospitalShigatseChina
| |
Collapse
|
25
|
Yuan F, Hu Y, Lei Y, Jin L. Recent progress in microRNA research for prostate cancer. Discov Oncol 2024; 15:480. [PMID: 39331237 PMCID: PMC11436510 DOI: 10.1007/s12672-024-01376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
In recent years, prostate cancer (PCa) has seen an increasing prevalence, particularly among middle-aged and older men, positioning it as a significant health concern. Current PCa screening predominantly utilizes prostate-specific antigen (PSA) testing, digital rectal examination (DRE), and the Gleason scoring system. However, these diagnostic methods can sometimes be imprecise. Research has identified that specific microRNAs (miRNAs) exhibit altered expression levels in PCa patients, suggesting their potential as biomarkers for both diagnosis and prognosis. Furthermore, advancements in integrating miRNAs with traditional Chinese medicine (TCM) have shown promising results in PCa treatment, potentially serving as micro-markers for TCM syndrome differentiation and treatment effectiveness. Recent developments in anti-cancer therapies that target miRNAs have also been implemented in clinical settings, laying the groundwork for personalized and precise treatment strategies for PCa. This review aims to summarize the expression patterns of miRNAs in PCa patients and explore their roles in the diagnosis, treatment, and prognosis of the disease.
Collapse
Affiliation(s)
- Fan Yuan
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China
| | - Yue Hu
- Health Management (Physical Examination) Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China
| | - Yanmei Lei
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China.
| | - Lingna Jin
- Health Management (Physical Examination) Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, People's Republic of China.
| |
Collapse
|
26
|
D'Amico G, Santonocito R, Grech G, Graceffa G, Cipolla C, Scalia F, Raccosta S, Manno M, Conway de Macario E, Macario AJL, Cappello F, Rappa F, Caruso Bavisotto C, Campanella C. MiRNAs in Extracellular Vesicles as Biomarkers in Plasma of Papillary Thyroid Cancer Patients: A Proof-of-Concept Study. BIOLOGY 2024; 13:743. [PMID: 39336170 PMCID: PMC11428722 DOI: 10.3390/biology13090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The incidence of various types of cancer, for example, papillary thyroid carcinoma (PTC), is on the rise. Since therapeutic success depends greatly on early diagnosis, reliable diagnostic biomarkers must be identified, and easy-to-apply tools for detecting them must urgently be standardized. Here, we contribute to solving this medical challenge by assessing miRNAs suspected of promoting carcinogenesis in extracellular vesicles (EVs) that can be routinely obtained via liquid biopsy. We profit from current progress in cancerology that provides innovations in liquid biopsy and EVs analysis, along with the identification of miRNAs and chaperone system (CS) components implicated in carcinogenesis. METHODS We measured in EVs obtained from circulating blood plasma from PTC patients the levels of three miRNAs implicated in thyroid cancer, hsa-miR-1-3p, hsa-miR-206, and hsa-miR-221-3p, and most likely involved in the regulation of two members of the CS, Hsp60 and CCT. EVs were isolated from the plasma of patients with PTC and controls with benign goiter (BG) and from the culture medium of a PTC cell line (MDAT32) and were appropriately characterized. RESULTS The levels of miRNAs determined by RT-qPCR were consistently higher in PTC patients and decreased down to control levels after thyroidectomy. Bioinformatics showed that the miRNAs target genes are associated with the molecular pathogenesis of PTC. CONCLUSIONS Our exploratory study reaffirms the potential in clinics of the selected miRNAs in EVs as useful biomarkers of PTC easily accessible via liquid biopsy, which is minimally invasive and amenable to periodic repetition, an improvement compared to the established fine-needle aspirate biopsy.
Collapse
Affiliation(s)
- Giuseppa D'Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Radha Santonocito
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Godfrey Grech
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Giuseppa Graceffa
- Department of Precision Medicine in the Medical, Surgical and Critical Area, University of Palermo, 90127 Palermo, Italy
| | - Calogero Cipolla
- Department of Precision Medicine in the Medical, Surgical and Critical Area, University of Palermo, 90127 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Samuele Raccosta
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy
| | - Mauro Manno
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alberto J L Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Claudia Campanella
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
27
|
Chen G, Shangguan Z, Ye X, Chen Z, Li J, Liu W. STM2457 Inhibits METTL3-Mediated m6A Modification of miR-30c to Alleviate Spinal Cord Injury by Inducing the ATG5-Mediated Autophagy. Neurospine 2024; 21:925-941. [PMID: 39363472 PMCID: PMC11456927 DOI: 10.14245/ns.2448494.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE The study aimed to investigate the role of N6-methyladenosine (m6A) modification in spinal cord injury (SCI) and its underlying mechanism, focusing on the interplay between m6A methyltransferase-like 3 (METTL3), miR-30c, and autophagy-related proteins. METHODS An SCI model was established in rats, and changes in autophagy-related proteins, m6A methylation levels, and miR-30c levels were analyzed. Hydrogen peroxide (H2O2)-stimulated spinal cord neuron cells (SCNCs) were used to assess the impact of METTL3 overexpression. The effects of STM2457, an antagonist of METTL3, were evaluated on cell viability, apoptosis, and autophagy markers in H2O2-stimulated SCNCs. RESULTS In the SCI model, decreased levels of autophagy markers and increased m6A methylation, miR-30c levels, and METTL3 were observed. Overexpression of METTL3 in SCNCs led to reduced cell viability, increased apoptosis, and suppressed autophagy. Conversely, co-overexpression of autophagy-related protein 5 (ATG5) or miR-30c inhibition reversed these effects. Knocking out METTL3 yielded opposite results. STM2457 treatment improved cell viability, reduced apoptosis, and upregulated autophagy markers in SCNCs, which also enhanced functional recovery in rats as measured by the Basso-Beattie-Bresnahan score and inclined plate test. CONCLUSION STM2457 alleviated SCI by suppressing METTL3-mediated m6A modification of miR-30c, which in turn induces ATG5-mediated autophagy. This study provides insights into the role of m6A modification in SCI and suggests a potential therapeutic approach through targeting METTL3.
Collapse
Affiliation(s)
- Gang Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Zhitao Shangguan
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Xiaoqing Ye
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Zhi Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Jiandong Li
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Wenge Liu
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| |
Collapse
|
28
|
Beylerli O, Ilyasova T, Shi H, Sufianov A. MicroRNAs in meningiomas: Potential biomarkers and therapeutic targets. Noncoding RNA Res 2024; 9:641-648. [PMID: 38577017 PMCID: PMC10987300 DOI: 10.1016/j.ncrna.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
Meningiomas, characterized primarily as benign intracranial or spinal tumors, present distinctive challenges due to their variable clinical behavior, with certain cases exhibiting aggressive features linked to elevated morbidity and mortality. Despite their prevalence, the underlying molecular mechanisms governing the initiation and progression of meningiomas remain insufficiently understood. MicroRNAs (miRNAs), small endogenous non-coding RNAs orchestrating post-transcriptional gene expression, have garnered substantial attention in this context. They emerge as pivotal biomarkers and potential therapeutic targets, offering innovative avenues for managing meningiomas. Recent research delves into the intricate mechanisms by which miRNAs contribute to meningioma pathogenesis, unraveling the molecular complexities of this enigmatic tumor. Meningiomas, originating from arachnoid meningothelial cells and known for their gradual growth, constitute a significant portion of intracranial tumors. The clinical challenge lies in comprehending their progression, particularly factors associated with brain invasion and heightened recurrence rates, which remain elusive. This comprehensive review underscores the pivotal role of miRNAs, accentuating their potential to advance our comprehension of meningioma biology. Furthermore, it suggests promising directions for developing diagnostic biomarkers and therapeutic interventions, holding the promise of markedly improved patient outcomes in the face of this intricate and variable disease.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Republic of Bashkortostan 450008, Ufa, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
29
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
30
|
Jia Y, He P, Ma X, Lv K, Liu Y, Xu Y. PIK3IP1: structure, aberration, function, and regulation in diseases. Eur J Pharmacol 2024; 977:176753. [PMID: 38897445 DOI: 10.1016/j.ejphar.2024.176753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) pathway, controlling diverse functions in cells, is one of the most frequently dysregulated pathways in cancer. Several negative regulators have been reported to intricately constrain the overactivation of PI3K pathway. Phosphatidylinoinosidine-3-kinase interacting protein 1 (PIK3IP1), as a unique transmembrane protein, is a newly discovered negative regulator of PI3K pathway. PIK3IP1 negatively regulates PI3K activity by directly binding to the p110 catalytic subunit of PI3K. It has been reported that PIK3IP1 is frequently low expressed in tumors and autoimmune diseases. In tumor cells and impaired cardiomyocyte, PIK3IP1 inhibits cell proliferation and survival. Consistently, the expression of PIK3IP1 is related with the condition of cancer. In addition, PIK3IP1 inhibits the inflammatory response and immune function via maintaining the quiescent state of immune cells. Thus, low expression of PIK3IP1 represents the severe condition of autoimmune diseases. PIK3IP1 is regulated by transcription factors, epigenetic factors or micro-RNAs to facilitate its normal function in different cellular contexts. This review integrates the total findings on PIK3IP1 in different disease, and summaries the structure, biological functions and regulatory mechanisms of PIK3IP1.
Collapse
Affiliation(s)
- Yingjie Jia
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengxing He
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xubin Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaili Lv
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yichao Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
31
|
Bermúdez M, Martínez-Barajas MG, Bueno-Urquiza LJ, López-Gutiérrez JA, Villegas-Mercado CE, López-Camarillo C. Role of MicroRNA-204 in Regulating the Hallmarks of Breast Cancer: An Update. Cancers (Basel) 2024; 16:2814. [PMID: 39199587 PMCID: PMC11352763 DOI: 10.3390/cancers16162814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
microRNA-204-5p (miR-204) is a small noncoding RNA with diverse regulatory roles in breast cancer (BC) development and progression. miR-204 is implicated in the instauration of fundamental traits acquired during the multistep development of BC, known as the hallmarks of cancer. It may act as a potent tumor suppressor by inhibiting key cellular processes like angiogenesis, vasculogenic mimicry, invasion, migration, and metastasis. It achieves this by targeting multiple master genes involved in these processes, including HIF-1α, β-catenin, VEGFA, TGFBR2, FAK, FOXA1, among others. Additionally, miR-204 modulates signaling pathways like PI3K/AKT and interacts with HOTAIR and DSCAM-AS1 lncRNAs, further influencing tumor progression. Beyond its direct effects on tumor cells, miR-204 shapes the tumor microenvironment by regulating immune cell infiltration, suppressing pro-tumorigenic cytokine production, and potentially influencing immunotherapy response. Moreover, miR-204 plays a crucial role in metabolic reprogramming by directly suppressing metabolic genes within tumor cells, indirectly affecting metabolism through exosome signaling, and remodeling metabolic flux within the tumor microenvironment. This review aims to present an update on the current knowledge regarding the role of miR-204 in the hallmarks of BC. In conclusion, miR-204 is a potential therapeutic target and prognostic marker in BC, emphasizing the need for further research to fully elucidate its complex roles in orchestrating aggressive BC behavior.
Collapse
Affiliation(s)
- Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31000, Mexico;
| | | | - Lesly Jazmín Bueno-Urquiza
- University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico; (M.G.M.-B.); (L.J.B.-U.)
| | - Jorge Armando López-Gutiérrez
- Faculty of Dentistry, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Mexico;
| | | | - César López-Camarillo
- Genomic Sciences Program, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico
| |
Collapse
|
32
|
Kugaevskaya EV, Timoshenko OS, Gureeva TA, Radko SP, Lisitsa AV. MicroRNAs as promising diagnostic and prognostic markers for the human genitourinary cancer. BIOMEDITSINSKAIA KHIMIIA 2024; 70:191-205. [PMID: 39239894 DOI: 10.18097/pbmc20247004191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Genitourinary cancer (GUC) represents more than one fifth of all human cancers. This makes the development of approaches to its early diagnosis an important task of modern biomedicine. Circulating microRNAs, short (17-25 nucleotides) non-coding RNA molecules found in human biological fluids and performing a regulatory role in the cell, are considered as promising diagnostic and prognostic biomarkers of cancers, including GUC. In this review we have considered the current state of research aimed at assessing microRNAs as biomarkers of such human GUC types as malignant tumors of the bladder, kidney, prostate, testicles, ovaries, and cervix. A special attention has been paid to studies devoted to the identification of microRNAs in urine as a surrogate "liquid biopsy" that may provide the simplest and cheapest approach to mass non-invasive screening of human GUC. The use of microRNA panels instead of single types of microRNA generally leads to higher sensitivity and specificity of the developed diagnostic tests. However, to date, work on the microRNAs assessment as biomarkers of human GUC is still of a research nature, and the further introduction of diagnostic tests based on microRNAs into practice requires successful clinical trials.
Collapse
Affiliation(s)
| | | | - T A Gureeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
33
|
Kashefi S, Mohammadi-Yeganeh S, Ghorbani-Bidkorpeh F, Shabani M, Koochaki A, Haji Molla Hoseini M. The anti-cancer properties of miR-340 plasmid-chitosan complexes (miR-340 CC) on murine model of breast cancer. J Drug Target 2024; 32:838-847. [PMID: 38805391 DOI: 10.1080/1061186x.2024.2361675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
MiRNA-340 (miR-340) has been found to have tumour-suppressing effects in breast cancer (BC). However, for clinical use, miRNAs need to be delivered safely and effectively to protect them from degradation. In our previous study, we used chitosan complexes as a safe carrier with anti-cancer properties to deliver miR-340 plasmid into 4T1 cells. This study explored further information concerning the anti-cancer impacts of both chitosan and miR-340 plasmid in a murine model of BC. Mice bearing 4T1 cells were intra-tumorally administered miR-340 plasmid-chitosan complexes (miR-340 CC). Afterwards, the potential of miR-340 CC in promoting anti-tumour immune responses was evaluated. MiR-340 CC significantly reduced tumour size, inhibited metastasis, and prolonged the survival of mice. MiR-340 CC up-regulates P-27 gene expression related to cancer cell apoptosis, and down-regulates gene expressions involved in angiogenesis and metastasis (breast regression protein-39 (BRP-39)) and CD163 as an anti-inflammatory macrophages (MQs) marker. Furthermore, CD47 expression as a MQs immune check-point was remarkably decreased after miR-340 CC treatment. The level of IL-12 in splenocytes of miR-340 CC treated mice increased, while the level of IL-10 decreased, indicating anti-cancer immune responses. Our findings display that miR-340 CC can be considered as a promising therapy in BC.
Collapse
Affiliation(s)
- Sarvenaz Kashefi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Meyer NH, Kotnik N, Noubissi Nzeteu GA, van Kempen LC, Mastik M, Bockhorn M, Troja A. Unraveling the MicroRNA tapestry: exploring the molecular dynamics of locoregional recurrent rectal cancer. Front Oncol 2024; 14:1407217. [PMID: 39070144 PMCID: PMC11272531 DOI: 10.3389/fonc.2024.1407217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Colorectal cancer (CRC) ranks as the third most prevalent malignancy globally, with a concerning rise in incidence among young adults. Despite progress in understanding genetic predispositions and lifestyle risk factors, the intricate molecular mechanisms of CRC demand exploration. MicroRNAs (miRNAs) emerge as key regulators of gene expression and their deregulation in tumor cells play pivotal roles in cancer progression. Methods NanoString's nCounter technology was utilized to measure the expression of 827 cancer-related miRNAs in tumor tissue and adjacent non-involved normal colon tissue from five patients with locoregional CRC progression. These expression profiles were then compared to those from the primary colon adenocarcinoma (COAD) cohort in The Cancer Genome Atlas (TCGA). Results and discussion Intriguingly, 156 miRNAs showed a contrasting dysregulation pattern in reccurent tumor compared to their expression in the TCGA COAD cohort. This observation implies dynamic alterations in miRNA expression patterns throughout disease progression. Our exploratory study contributes to understanding the regulatory landscape of recurrent CRC, emphasizing the role of miRNAs in disease relapse. Notable findings include the prominence of let-7 miRNA family, dysregulation of key target genes, and dynamic changes in miRNA expression patterns during progression. Univariate Cox proportional hazard models highlighted miRNAs associated with adverse outcomes and potential protective factors. The study underscores the need for more extensive investigations into miRNA dynamics during tumor progression and the value of stage specific biomarkers for prognosis.
Collapse
Affiliation(s)
- N. Helge Meyer
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| | - Nika Kotnik
- Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Center for Blistering Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gaetan Aime Noubissi Nzeteu
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| | - Léon C. van Kempen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Mirjam Mastik
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maximilian Bockhorn
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| | - Achim Troja
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| |
Collapse
|
35
|
Fastner S, Rahman H, Gutierrez J, Shen N, Florell SR, Florell A, Stubben CJ, Boucher KM, Deacon DC, Judson-Torres RL, Grossman D. MicroRNA Signatures Associated with Basal Cell Carcinoma Subtypes. JID INNOVATIONS 2024; 4:100286. [PMID: 38994234 PMCID: PMC11238194 DOI: 10.1016/j.xjidi.2024.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 07/13/2024] Open
Abstract
Basal cell carcinoma (BCC) is classified histologically into subtypes that determine treatment decisions. MicroRNAs (miRs) are short noncoding RNAs that may serve as diagnostic biomarkers. We investigated if particular miRs could distinguish BCC subtypes. We sequenced miRs from 55 archival BCC and 9 control skin specimens and then validated these miRs by qRT-PCR assay on a second BCC cohort (18 superficial, 16 nodular, 15 infiltrative) and control skin (n = 12). Expression values for individual miRs were normalized to miR-16-5p, which was the least variant among the control skin and BCC samples. We found that (i) miR-383-5p and miR-145-5p are downregulated in all BCC subtypes compared with control skin, (ii) miR-181c-5p is downregulated in superficial compared with invasive (nodular/infiltrative) BCC, and (iii) miR-22-5p and miR-708-5p are upregulated in infiltrative compared with superficial/nodular BCC and miR-30c-5p is downregulated in infiltrative compared with nodular BCC. Receiver operating characteristic analysis demonstrated excellent capacity of these miRs to discriminate between BCC and control skin (area under the curve, 0.94-0.98), whereas the capacity to discriminate between superficial and invasive subtypes was less robust (area under the curve, 0.7-0.8). Future prospective studies may determine the utility of these miRs as diagnostic biomarkers to guide biopsy and treatment of BCC.
Collapse
Affiliation(s)
- Suzanne Fastner
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Hafeez Rahman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Jose Gutierrez
- University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Nathan Shen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Scott R. Florell
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Abigail Florell
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Chris J. Stubben
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Kenneth M. Boucher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Dekker C. Deacon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Douglas Grossman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
36
|
Zhang X, Han X. Targeting cuproptosis for cancer therapy: Focus on the anti-tumor immune system. CANCER PATHOGENESIS AND THERAPY 2024. [DOI: 10.1016/j.cpt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
37
|
Duan JF, Zhang QJ, Zhu J, Lu JH. Curcumin affects autophagy of prolactinoma cells by upregulating miR-206 to exert antitumor effects. J Biochem Mol Toxicol 2024; 38:e23734. [PMID: 38764151 DOI: 10.1002/jbt.23734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
We explored the effects of curcumin on the aberrant biological behaviors of prolactinoma cells and the downstream pathways through which curcumin exerts its antitumor effects. We used quantitative reverse transcription-polymerase chain reaction assays to measure miR-206 expression levels in peripheral blood samples from patients with prolactinoma before and after curcumin treatment. We also investigated the proliferation level, viability, and invasion ability of groups of cells treated with different concentrations of curcumin using 3-(4,5)-dimethylthiahiazo (-z-y1)-3-di-phenytetrazoliumromide (MTT) assays, cell cloning assays, and Transwell assays, respectively. Furthermore, we determined the levels of autophagy-related proteins and protein kinase B/mammalian target of the rapamycin (Akt/mTOR) signaling pathway-related proteins in each group of treated cells by western blot. Curcumin treatment upregulated miR-206 expression levels in the peripheral blood of patients with prolactinoma and in GH3 cells. Knockdown of miR-206 expression enhanced the proliferation and invasive ability of GH3 cells, while curcumin treatment effectively inhibited the aberrant biological behavior of GH3 cells enhanced by miR-206 knockdown. miR-206 knockdown also activated the Akt/mTOR signaling pathway and inhibited autophagy in GH3 cells, and these changes were effectively reversed by curcumin treatment. Thus, curcumin inhibited the Akt/mTOR signaling pathway and promoted cell autophagy by miR-206 upregulation, resulting in antitumor effects that inhibited prolactinoma cell proliferation and invasion.
Collapse
Affiliation(s)
- Jia-Feng Duan
- Department of Neurology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Juan Zhang
- Department of neurology, Yueyang Integrated Chinese and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zhu
- Department of Neurology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Hui Lu
- Department of hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Hasan MDN, Rahman MM, Husna AA, Arif M, Jasineviciute I, Kato D, Nakagawa T, Miura N. Upregulation and functional roles of miR-450b in canine oral melanoma. Noncoding RNA Res 2024; 9:376-387. [PMID: 38511062 PMCID: PMC10950611 DOI: 10.1016/j.ncrna.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/22/2024] Open
Abstract
Canine oral melanoma (COM) is a common and highly aggressive disease with the potential to model human melanomas. Dysregulated microRNAs represent an interesting line of research for COM because they are implicated in tumor progression. One example is miR-450b, which has been investigated for its molecular mechanisms and biological functions in multiple human cancers, but not human or canine melanoma. Here, we aimed to investigate miR-450b as a potential diagnostic biomarker of COM and its functional roles in metastatic and non-metastatic forms of the disease. We investigated the expression of miR-450b and its target mRNA genes in clinical (tumor tissue and plasma) samples and metastatic and primary-tumor cell lines. Knockdown and overexpression experiments were performed to determine the influence of miR-450b on cell proliferation, migration, colony formation, and apoptosis. miR-450b was significantly upregulated in COM and differentiated between metastatic and non-metastatic tumors, and its potential as a biomarker of metastatic and non-metastatic COM was further confirmed in ROC analysis. miR-450b knockdown promoted cell proliferation, migration, and clonogenicity and inhibited apoptosis, whereas its overexpression yielded the reverse pattern. miR-450b directly binds 3' UTR of PAX9 mRNA and modulates its function leading to BMP4 downregulation and MMP9 upregulation at the transcript level. Furthermore, we surmised that miR-450b activates the Wnt signaling pathway based on gene ontology and enrichment analyses. We concluded that miR-450b has the potential as a diagnostic biomarker and could be a target candidate for COM treatment.
Collapse
Affiliation(s)
- MD Nazmul Hasan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
| | - Md. Mahfuzur Rahman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Al Asmaul Husna
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
| | - Mohammad Arif
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
| | - Indre Jasineviciute
- Department of Anatomy and Physiology, Veterinary Faculty, Lithuanian University of Health Sciences, LT-47181, Kaunas, Lithuania
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Naoki Miura
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
| |
Collapse
|
39
|
Zhang L, Wang Y, Gao J, Zhou X, Huang M, Wang X, He Z. Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review). Oncol Lett 2024; 27:255. [PMID: 38646493 PMCID: PMC11027111 DOI: 10.3892/ol.2024.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Esophageal cancer (EC) is a common form of malignant tumor in the digestive system that is classified into two types: Esophageal squamous cell carcinomas (ESCC) and esophageal adenocarcinoma. ESCC is known for its early onset of symptoms, which can be difficult to identify, as well as its rapid progression and tendency to develop drug resistance to chemotherapy and radiotherapy. These factors contribute to the high incidence of disease and low cure rate. Therefore, a diagnostic biomarker and therapeutic target need to be identified for ESCC. Non-coding RNAs (ncRNAs) are a class of molecules that are transcribed from DNA but do not encode proteins. Initially, ncRNAs were considered to be non-functional segments generated during transcription. However, with advancements in high-throughput sequencing technologies in recent years, ncRNAs have been associated with poor prognosis, drug resistance and progression of ESCC. The present study provides a comprehensive overview of the biogenesis, characteristics and functions of ncRNAs, particularly focusing on microRNA, long ncRNAs and circular RNAs. Furthermore, the ncRNAs that could potentially be used as diagnostic biomarkers and therapeutic targets for ESCC are summarized to highlight their application value and prospects in ESCC.
Collapse
Affiliation(s)
- Longze Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yanyang Wang
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xue Zhou
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Minglei Huang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
40
|
Chen C, Demirkhanyan L, Gondi CS. The Multifaceted Role of miR-21 in Pancreatic Cancers. Cells 2024; 13:948. [PMID: 38891080 PMCID: PMC11172074 DOI: 10.3390/cells13110948] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
With the lack of specific signs and symptoms, pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at late metastatic stages, resulting in poor survival outcomes. Among various biomarkers, microRNA-21 (miR-21), a small non-coding RNA, is highly expressed in PDAC. By inhibiting regulatory proteins at the 3' untranslated regions (UTR), miR-21 holds significant roles in PDAC cell proliferation, epithelial-mesenchymal transition, angiogenesis, as well as cancer invasion, metastasis, and resistance therapy. We conducted a systematic search across major databases for articles on miR-21 and pancreatic cancer mainly published within the last decade, focusing on their diagnostic, prognostic, therapeutic, and biological roles. This rigorous approach ensured a comprehensive review of miR-21's multifaceted role in pancreatic cancers. In this review, we explore the current understandings and future directions regarding the regulation, diagnostic, prognostic, and therapeutic potential of targeting miR-21 in PDAC. This exhaustive review discusses the involvement of miR-21 in proliferation, epithelial-mesenchymal transition (EMT), apoptosis modulation, angiogenesis, and its role in therapy resistance. Also discussed in the review is the interplay between various molecular pathways that contribute to tumor progression, with specific reference to pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Clare Chen
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Lusine Demirkhanyan
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine and Surgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Christopher S. Gondi
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine and Surgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine, Surgery, and Health Science Education and Pathology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Health Care Engineering Systems Center, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
41
|
Hong G, Wu Y, Huang S, Hu Y, Zhang Y, Guo C, Shi H, Xu S. miR-4429 inhibits ccRCC proliferation, migration, and invasion by directly targeting CD274. Discov Oncol 2024; 15:190. [PMID: 38802631 PMCID: PMC11130097 DOI: 10.1007/s12672-024-01055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive urological malignancies and a highly immunogenic cancer. Yet, its pathogenesis is still not fully understood. This study analyzed the role of the miR-320 family in ccRCC using bioinformatics algorithms and a series of in vitro experiments. miR-4429 was found to be significantly down-regulated in ccRCC tissues and cell lines, while overexpression of miR-4429 significantly inhibited renal cancer cell proliferation, migration, and invasion in vitro. In addition, the UALCAN database, immunohistochemistry, and protein blotting results showed that CD274 expression was up-regulated in ccRCC tissues and correlated with higher histologic grading. Dual luciferase assay indicated that CD274 was a direct target of miR-4429. Overexpression of miR-4429 in 786-O, Caki-2 cells significantly inhibited CD274 expression. KEGG results indicated that the potential target function of miR-4429 was associated with the PI3K/AKT signaling pathway, and protein blotting verified the results. In summary, this data shows that miR-4429 targets CD274 and inhibits ccRCC proliferation, migration, and invasion by regulating PI3K/AKT signaling, thus potentially providing a promising therapeutic target and prognostic biomarker for renal cell carcinoma patients.
Collapse
Affiliation(s)
- GuangYi Hong
- Guizhou University Medicine College, Guiyang, 550025, Guizhou, China
| | - YiKun Wu
- Guizhou University Medicine College, Guiyang, 550025, Guizhou, China
| | - ShiYu Huang
- Department of Urology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, China
| | - Yang Hu
- Department of Urology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, China
| | - Ying Zhang
- Department of Urology, Tongren City People's Hospital, Tongren, Guizhou, China
| | - CiCi Guo
- Department of Urology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, China
| | - Hua Shi
- Department of Urology, Tongren City People's Hospital, Tongren, Guizhou, China.
- Department of Urology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, China.
| | - ShuXiong Xu
- Department of Urology, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, Guizhou, China.
| |
Collapse
|
42
|
Lin ZC, Hung CF, Aljuffali IA, Lin MH, Fang JY. RNA-Based Antipsoriatic Gene Therapy: An Updated Review Focusing on Evidence from Animal Models. Drug Des Devel Ther 2024; 18:1277-1296. [PMID: 38681207 PMCID: PMC11055533 DOI: 10.2147/dddt.s447780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
Psoriasis presents as a complex genetic skin disorder, characterized by the interaction between infiltrated immune cells and keratinocytes. Substantial progress has been made in understanding the molecular mechanisms of both coding and non-coding genes, which has positively impacted clinical treatment approaches. Despite extensive research into the genetic aspects of psoriasis pathogenesis, fully grasping its epigenetic component remains a challenging endeavor. In response to the pressing demand for innovative treatments to alleviate inflammatory skin disorders, various novel strategies are under consideration. These include gene therapy employing antisense nucleotides, silencing RNA complexes, stem cell therapy, and antibody-based therapy. There is a pressing requirement for a psoriasis-like animal model that replicates human psoriasis to facilitate early preclinical evaluations of these novel treatments. The authors conduct a comprehensive review of various gene therapy in different psoriasis-like animal models utilized in psoriasis research. The animals included in the list underwent skin treatments such as imiquimod application, as well as genetic and biologic injections, and the results of these interventions are detailed. Animal models play a crucial role in translating drug discoveries from the laboratory to clinical practice, and these models aid in improving the reproducibility and clinical applicability of preclinical data. Numerous animal models with characteristics similar to those of human psoriasis have proven to be useful in understanding the development of psoriasis. In this review, the article focuses on RNA-based gene therapy exploration in different types of psoriasis-like animal models to improve the treatment of psoriasis.
Collapse
Affiliation(s)
- Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
43
|
Zhang Z, Zhou Y, Liang S. Correlation Between miR-497-5p Expression With Clinicopathological Characteristics and Prognosis in Patients With Breast Cancer. Appl Immunohistochem Mol Morphol 2024; 32:200-205. [PMID: 38497335 DOI: 10.1097/pai.0000000000001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
Breast cancer (BC) comprises multiple biological and histologic properties. MicroRNAs show key functions in cancer prognosis. This paper explored the relationship between miR-497-5p with clinicopathological characteristics and prognosis in BC. Cancer tissues and normal adjacent tissues (NATs) were collected from 140 included patients with BC. The clinical baseline data, including age, tumor size, pathologic grade, clinical stage, modified Scraff-Bloom-Richardson grade, and lymph node metastasis, were recorded. miR-497-5p expression in cancer tissues and NAT was determined by reverse transcription-quantitative polymerase chain reaction. Patients with BC were followed up for 5 years to record their survival. Patients were divided into the miR-497-5p low expression and high expression groups to assess the correlation between miR-497-5p expression with clinicopathological characteristics and overall survival of patients. The role of miR-497-5p as an independent risk factor for death was further analyzed by a multivariate Cox regression model. miR-497-5p was downregulated in BC tissues than NAT. Tumor size, clinical stage, and lymph node metastasis showed significant differences among patients with high and low miR-497-5p expression levels. Patients with BC with low miR-497-5p expression presented decreased survival. Lowly-expressed miR-497-5p was an independent risk factor for death in patients. Collectively, cancer tissue miR-497-5p low expression increases the risk of death and serves as an independent risk factor for death in patients with BC.
Collapse
Affiliation(s)
- Zhiying Zhang
- Department of Hematology and Blood and Marrow Transplantation
| | - Ying Zhou
- Department of Integrated Chinese and Western Medicine, Tianjin Cancer Hospital Airport Hospital, Tianjin
| | - Shujing Liang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
44
|
Chen Y, Li Y, Li C, Zhang D, Liu Y, Zhang J, Guan S, Ding X, Xiao Q. The current perspective and opportunities of small nucleic acid-based therapeutics. Drug Dev Res 2024; 85:e22164. [PMID: 38411296 DOI: 10.1002/ddr.22164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Compared to traditional small molecule and antibody drugs, RNA-based drugs offer a simple design, short research and development cycles, high specificity, broad treatment fields, and long-term efficacy. As a result, RNA-based drugs are extensively used to treat genetic diseases, tumors, viral infections, and other illnesses, suggesting that they have the potential to become the third-largest drug class after small molecule and antibody drugs. Currently, more than 10 small nucleic acid drugs have gained regulatory approval. The commercialization successes of small nucleic acid drugs will stimulate the development of RNA-based drugs. Small nucleic acid drugs primarily target liver diseases, metabolic diseases, genetic diseases, and tumors, and there is also significant potential for expanding indications in the future. This review provides a brief overview of the advantages and development of small nucleic acid-based therapeutics and shows a focus on platform technologies such as chemical modifications and delivery systems that have enabled the clinical translation of small nucleic acid-based therapeutics. Additionally, we summarize the latest clinical progress in small nucleic acid-based therapeutics for the treatment of various diseases, including rare diseases, liver diseases, metabolic diseases, and tumors. Finally, we highlight the future prospects for this promising treatment approach.
Collapse
Affiliation(s)
- Yang Chen
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Yang Li
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Dandan Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Yuheng Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jingjing Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Shan Guan
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Qin Xiao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| |
Collapse
|
45
|
Sun Y, Li Y, Zhou W, Liu Z. MicroRNA expression as a prognostic biomarker of tongue squamous cell carcinoma (TSCC): a systematic review and meta-analysis. BMC Oral Health 2024; 24:406. [PMID: 38556858 PMCID: PMC10981818 DOI: 10.1186/s12903-024-04182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Recent studies have indicated that microRNA (miRNA) expression in tumour tissues has prognostic significance in Tongue squamous cell carcinoma (TSCC) patients. This study explored the possible prognostic value of miRNAs for TSCC based on published research. METHODS A comprehensive literature search of multiple databases was conducted according to predefined eligibility criteria. Data were extracted from the included studies by two researchers, and HR results were determined based on Kaplan‒Meier curves according to the Tierney method. The Newcastle‒Ottawa Scale (NOS) and GRADE (Grading of Recommendations Assessment, Development, and Evaluation) pro-GDT were applied to assess the quality of all studies. Publication bias was estimated by funnel plot, Egger's rank correlation test and sensitivity analysis. RESULTS Eleven studies (891patients) were included, of which 6 reported up-regulated miRNAs and 7 mentioned down-regulated miRNAs. The pooled hazard ratio (HR) from the prognostic indicator overall survival (OS) was 1.34 (1.25-1.44), p < 0.00001, indicating a significant difference in miRNA expression between TSCC patients with better or worse prognosis. CONCLUSION MiRNAs may have high prognostic value and could be used as prognostic biomarkers of TSCC.
Collapse
Affiliation(s)
- Yiwei Sun
- School of Stomatology, Binzhou Medical University, No. 346 The Guanhai Road Yantai, Yantai, Shandong Province, 264003, China
| | - Yuxiao Li
- The Second School of Clinical Medicine, Binzhou Medical University, No. 346 The Guanhai Road Yantai, Yantai, Shandong Province, 264003, China
| | - Wenjuan Zhou
- The affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, 264000, China.
- Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, 264000, China.
- Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, 264003, China.
| | - Zhonghao Liu
- The affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai, 264000, China.
- Yantai Engineering Research Center for Digital Technology of Stomatology, Yantai, 264000, China.
- Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Yantai, 264003, China.
| |
Collapse
|
46
|
You JR, Wen ZJ, Tian JW, Lv XB, Li R, Li SP, Xin H, Li PF, Zhang YF, Zhang R. Crosstalk between ubiquitin ligases and ncRNAs drives cardiovascular disease progression. Front Immunol 2024; 15:1335519. [PMID: 38515760 PMCID: PMC10954775 DOI: 10.3389/fimmu.2024.1335519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiovascular diseases (CVDs) are multifactorial chronic diseases and have the highest rates of morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) plays a crucial role in posttranslational modification and quality control of proteins, maintaining intracellular homeostasis via degradation of misfolded, short-lived, or nonfunctional regulatory proteins. Noncoding RNAs (ncRNAs, such as microRNAs, long noncoding RNAs, circular RNAs and small interfering RNAs) serve as epigenetic factors and directly or indirectly participate in various physiological and pathological processes. NcRNAs that regulate ubiquitination or are regulated by the UPS are involved in the execution of target protein stability. The cross-linked relationship between the UPS, ncRNAs and CVDs has drawn researchers' attention. Herein, we provide an update on recent developments and perspectives on how the crosstalk of the UPS and ncRNAs affects the pathological mechanisms of CVDs, particularly myocardial ischemia/reperfusion injury, myocardial infarction, cardiomyopathy, heart failure, atherosclerosis, hypertension, and ischemic stroke. In addition, we further envision that RNA interference or ncRNA mimics or inhibitors targeting the UPS can potentially be used as therapeutic tools and strategies.
Collapse
Affiliation(s)
- Jia-Rui You
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zeng-Jin Wen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao-Bing Lv
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Rong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Shu-Ping Li
- Department of Cardiology, The Affiliated Qingdao Third People’s Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
47
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
48
|
Hasan MN, Rahman MM, Husna AA, Arif M, Iwanaga T, Tsukiyama-Kohara K, Jasineviciute I, Kato D, Nakagawa T, Miura N. Elevated expression of miR-301a and its functional roles in canine oral melanoma. Vet Comp Oncol 2024; 22:78-88. [PMID: 38148644 DOI: 10.1111/vco.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
miR-301a is one of numerous dysregulated microRNAs (miRNAs) in canine oral melanoma (COM), one of which is miR-301a (upregulated). Its biological role has been described in various human cancer types, including malignant melanoma, but not in COM. Accordingly, in this study, we investigated miR-301a expression in COM in greater detail to ascertain whether it could serve as a diagnostic biomarker, elucidate its functional roles in this cancer, and predict the possible pathways by which it exerts its effects. Relative expression of miR-301a was investigated in clinical oral tissue and plasma samples and COM cell (KMeC and LMeC) lines using qRT-PCR. Knockdown of miR-301a was also validated for KMeC and LMeC cells using qRT-PCR. We performed CCK-8 assays to assess cell proliferation, monolayer wound-healing, and transwell migration assays to assess cell migration, a colony-formation assay to assess clonogenicity, a TUNEL assay and flow cytometry to assess apoptosis-related effects, and gene enrichment analyses to predict possible related pathways. miR-301a was markedly upregulated in COM oral tissue and plasma clinically, suggesting its potential as a diagnostic biomarker for COM diagnosis. In vitro assays demonstrated that miR-301 significantly inhibited apoptosis in COM cells while promoting cell migration, proliferation, and clonogenicity. We also predicted that miR-301 exerts cancer-promoting effects through the Wnt signalling pathway for COM. Our findings suggest that miR-301a is a COM oncomiR that regulates several oncogenic phenotypes with the potential to be a diagnostic biomarker.
Collapse
Affiliation(s)
- Md Nazmul Hasan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Md Mahfuzur Rahman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Al Asmaul Husna
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Mohammad Arif
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tomoko Iwanaga
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Indre Jasineviciute
- Department of Anatomy and Physiology, Veterinary Faculty, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Miura
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
49
|
Li D, Liu Y, Li Y, Xiang Y, Yuan R. Simultaneous and Sensitive Sensing of Intracellular MicroRNA and mRNA for the Detection of the PI3K/AKT Signaling Pathway in Live Cells. Anal Chem 2024; 96:3329-3334. [PMID: 38366976 DOI: 10.1021/acs.analchem.3c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Simultaneous detection of the concentration variations of microRNA-221 (miRNA-221) and PTEN mRNA molecules in the PI3K/AKT signaling pathway is of significance to elucidate cancer cell migration and invasion, which is useful for cancer diagnosis and therapy. In this work, we show the biodegradable MnO2 nanosheet-assisted and target-triggered DNAzyme recycling signal amplification cascaded approach for the specific detection of the PI3K/AKT signaling pathway in live cells via simultaneous and sensitive monitoring of the variation of intracellular miRNA-221 and PTEN mRNA. Our nanoprobes enable highly sensitive and multiplexed sensing of miRNA-221 and PTEN mRNA with low detection limits of 23.6 and 0.59 pM in vitro, respectively, due to the signal amplification cascades. Importantly, the nanoprobes can be readily delivered into cancer cells and the MnO2 nanosheets can be degraded by intracellular glutathione to release the Mn2+ cofactors to trigger multiple DNAzyme recycling cycles to show highly enhanced fluorescence at different wavelengths to realize sensitive and multiplexed imaging of PTEN mRNA and miRNA-221 for detecting the PI3K/AKT signaling pathway. Moreover, the regulation of PTEN mRNA expression by miRNA-221 upon stimulation by various drugs can also be verified by our method, indicating its promising potentials for both disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Daxiu Li
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yinghan Liu
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yuhao Li
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
50
|
Yu H, Li X, Li Y, Wang T, Wang M, Mao P. MiR-4524b-5p-targeting ALDH1A3 attenuates the proliferation and radioresistance of glioblastoma via PI3K/AKT/mTOR signaling. CNS Neurosci Ther 2024; 30:e14396. [PMID: 37551838 PMCID: PMC10848107 DOI: 10.1111/cns.14396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Increasing evidence has revealed a strong connection between the aldehyde dehydrogenase family member ALDH1A3 and tumorigenesis, therapy resistance, and prognosis in diverse types of cancer. However, the specific miRNA involved in the pathways that regulate ALDH1A3-mediated glioblastoma (GBM) radioresistance remains to be elucidated. In this study, we demonstrated a high expression of ALDH1A3 in GBM cells, which plays a critical role in their proliferation and radioresistance. We also identified miR-4524b-5p, which is downregulated in GBM, as the ALDH1A3 upstream regulator. Overexpression of miR-4524b-5p reduced proliferation and radioresistance in GBM cells. Moreover, silencing ALDH1A3 reduced PI3K/AKT/mTOR signaling and glycolytic activity in GBM cells, whereas inhibiting mTOR reversed the radioresistance effects of ALDH1A3 on these cells. In vivo experiments have evidenced that ALDH1A3 silencing and miR-4524b-5p overexpression significantly reduced tumor growth and GBM cells radioresistance. In summary, targeting the miR-4524b-5p and ALDH1A3 axis is a promising therapeutic strategy for treating GBM.
Collapse
Affiliation(s)
- Hai Yu
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xiaodong Li
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yi Li
- Department of RadiotherapyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Tuo Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Maode Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ping Mao
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|