1
|
Liu Q, Yu M, Lin Z, Wu L, Xia P, Zhu M, Huang B, Wu W, Zhang R, Li K, Zhu L, Wang Q. COL1A1-positive endothelial cells promote gastric cancer progression via the ANGPTL4-SDC4 axis driven by endothelial-to-mesenchymal transition. Cancer Lett 2025; 623:217731. [PMID: 40254092 DOI: 10.1016/j.canlet.2025.217731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/19/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Gastric cancer (GC) is an aggressive and heterogeneous disease with poor survival outcomes. The progression of GC involves complex, multi-step processes. Endothelial cells (ECs) play a crucial role in tumor angiogenesis, proliferation, invasion, and metastasis, particularly through the process of endothelial-to-mesenchymal transition (EndoMT). However, the specific role and mechanisms of EndoMT in gastric cancer remain unclear. Based on 6 GC single-cell RNA-sequencing (scRNA-seq) cohorts (samples = 97), we established an EndoMT-related gene signature, termed EdMTS. Leveraging this gene signature, ssGSEA was applied to calculate sample scores across multiple bulk RNA-seq datasets, which include information on immunotherapy, metastasis, GC progression, and survival. Moreover, we applied the Monocle2 method to calculate cell pseudotime and used CellChat to analyze interactions between malignant and EC cells. We verified the molecular mechanism by multiple immunofluorescence and cell function experiments. Findings In this study, we established a single-cell atlas of ECs in GC and identified a subpopulation of COL1A1+ ECs that play a critical role in tumor progression and metastasis. These COL1A1+ ECs were significantly associated with worse clinical outcomes in GC patients. Further analysis revealed that COL1A1+ ECs originated from lymphatic ECs and underwent EndoMT through the upregulation of CEBPB, driving tumor invasiveness. Moreover, COL1A1+ ECs interacted with malignant cells via ANGPTL4-SDC4 axis, enhancing invasion and migration. These findings provide a deeper understanding of the role of COL1A1+ ECs in GC progression and highlight potential therapeutic targets for disrupting the EndoMT process in these cells to provide a benefit for GC patients.
Collapse
Affiliation(s)
- Quanzhong Liu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Miao Yu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Zihan Lin
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Lingxiang Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Peng Xia
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Mengyan Zhu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Bin Huang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Wei Wu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Ruohan Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Kening Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210002, Nanjing, China; School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Zhou J, Xu Y, Li Y, Zhang Q, Zhong L, Pan W, Ji K, Zhang S, Chen Z, Liu Y, Fan L, Liu C, Chen Q, Wang Z. Cancer-associated fibroblasts derived amphiregulin promotes HNSCC progression and drug resistance of EGFR inhibitor. Cancer Lett 2025; 622:217710. [PMID: 40216150 DOI: 10.1016/j.canlet.2025.217710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
In clinical oncology, lack of sustained treatment response is very common in cancer patients and largely limits the efficiency of most anticancer targeted-therapies. While anti-EGFR therapeutics have been extensively employed in head and neck squamous cell carcinoma (HNSCC) management, their clinical efficacy remains limited due to unresolved resistance mechanisms. Notably, the functional role of EGFR ligand proteins in both tumor progression and therapeutic response has not been fully elucidated. Here we reveal that amphiregulin (AREG) as a potential driver of drug resistance of EGFR-targeted treatment in HNSCC patients. We identify a PDGFRβ+FAP+αSMA+ myofibroblast (myCAF) subset as the major source of AREG in tumor microenvironment. TCGA database and clinical cohort demonstrated that patients with high AREG expression exhibited significantly higher lymph node metastasis rates (59.35 %) and poorer prognosis (median 5-year survival: 2.2 years). In contrast, patients with low AREG expression showed reduced metastatic potential (metastasis rate: 45.16 %) and more favorable clinical outcomes (median 5-year survival: 4.8 years). Mechanistically, AREG promotes vascular mimicry formation via epithelial-endothelial transition of tumor cells to offer extra blood supply and metastasis channels. Further, live-cell imaging revealed that AREG induces plasma membrane stabilization of over 90 % receptor proteins while concurrently enhancing receptor recycling, driving EGFR inhibitor resistance. Collectively, our study reveals the crucial role of AREG in tumor landscape, informing a new predictive biomarker of EGFR inhibitor efficiency as well as a new potential therapeutic target of HNSCC.
Collapse
Affiliation(s)
- Jinhan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yining Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qiyue Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Liang Zhong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Weiyi Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Keyan Ji
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Shangjun Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yu Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lijie Fan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Chuanxia Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Zhiyong Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Song Y, Chen J, Zhang Y, Wu N, Zhu Y, Chen G, Miao F, Chen Z, Wang Y. Tumor-specific CXCR6 positive precursor CD8 + T cells mediate tumor control in metastatic melanoma. Cell Oncol (Dordr) 2025; 48:693-708. [PMID: 40192941 PMCID: PMC12119687 DOI: 10.1007/s13402-025-01040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) mediates durable and complete regression of various cancers. However, its efficacy is limited by the long-term persistence of cytotoxic T lymphocytes, given their irreversible dysfunction within the tumor microenvironment. Herein, we aimed to establish an artificial lung metastasis model to examine T-lymphocyte subsets, in order to identify potential effective cell subsets for ACT. METHODS A metastatic lung melanoma mouse model was established using OVA-expressing melanoma B16 cells. Flow cytometry analysis was conducted to examine the surface markers, transcription factors, and secreted cytokines of tumor-specific CD8+ T cells within metastatic tissues. The infiltrated cells were sorted by flow cytometry for in vitro tumor cell killing assays or in vivo cell infusion therapy combined with chemotherapeutic drugs and immune checkpoint blockade antibodies. RESULTS Exhausted CD8+ T cells (Tex) exhibited high heterogeneity in metastatic tissues. Among Tex cells, the CXCR6- precursor cell showed certain memory characteristics, including phenotype, transcription factors, and maintenance, whereas the CXCR6+ subpopulation partially lost these traits. Moreover, CXCR6+ precursor cells effectively replenished effector-like Tex cells in metastatic tissues and exerted direct cytotoxicity against tumor cells. Notably, transferring these tumor-specific CXCR6+ precursor-exhausted T (Texp) cells into recipients induced a substantial regression of metastasis. In addition, these cells could respond to immune checkpoint blockade, which could better control tumor metastasis. CONCLUSIONS In our study, a subset of antigen-specific CXCR6-expressing Texp cells was observed within the metastatic tissue. The cells served as a crucial source of effector-like Tex cells and exerted direct cytotoxic effects on tumor cells. Adoptive transfer of CXCR6+ Texp cells effectively mitigated lung metastasis in mice. This study helps elucidate the role of Texp cells in metastasis, thereby offering novel insights into enhancing the efficacy and durability of immunotherapy.
Collapse
Affiliation(s)
- Yang Song
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Chen
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaqin Zhang
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Wu
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongjun Zhu
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Chen
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Miao
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiming Chen
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yiqing Wang
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Siddiqui AJ, Patel M, Jahan S, Abdelgadir A, Alam MJ, Alshahrani MM, Alturaiki W, Sachidanandan M, Khan A, Badraoui R, Adnan M. Silver Nanoparticles Derived from Probiotic Lactobacillus casei-a Novel Approach for Combating Bacterial Infections and Cancer. Probiotics Antimicrob Proteins 2025; 17:1277-1294. [PMID: 38085438 DOI: 10.1007/s12602-023-10201-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 05/07/2025]
Abstract
In the face of rising antibiotic resistance and the need for novel therapeutic approaches against cancer, the present study delves into the various facets of biosynthesized silver nanoparticles (AgNPs) derived from the probiotic strain Lactobacillus casei (AgNPs-LC), assessing their efficacy in combating bacterial infections, disrupting biofilm formation, interfering with quorum sensing mechanisms, and exhibiting anti-cancer properties. The results showed that the AgNPs-LC had a spherical shape with an average size of 15 nm. The biosynthesized AgNPs-LC showed a symmetrical absorption spectrum with a peak at 458 nm with a diameter of 5-20 nm. AgNPs-LC exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria and inhibited the biofilm formation (> 50% at sub-MIC) and quorum sensing-mediated virulence factors, such as the production of violacein in C. violaceum (> 80% at sub-MIC), pyocyanin in P. aeruginosa (> 70% at sub-MIC), and prodigiosin in S. marcescens (> 80% at sub-MIC). The exopolysaccharides (EPS) were also found to reduce in the presence of AgNPs-LC. Furthermore, the AgNPs-LC showed anti-cancer and anti-metastasis activity via inhibiting cell migration and invasion of human lung cancer (A-549) cells. Overall, the present study brings out the multifaceted therapeutic capabilities of AgNPs-LC which offer exciting prospects for the development of innovative biomedical and pharmaceutical interventions, making AgNPs-LC a versatile and promising candidate for a wide range of applications in healthcare and medicine. However, further research is essential to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia.
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Abdelmushin Abdelgadir
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran, 61441, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 22602, India
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1017 La Rabta, Tunis, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| |
Collapse
|
5
|
Chávez LF, Schweitzer K, Alonso EG, Ferronato MJ, Fermento ME, Alonso EN, Facchinetti MM, Curino AC, Coló GP. GEF-H1 drives breast cancer cells to tumor progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167816. [PMID: 40154811 DOI: 10.1016/j.bbadis.2025.167816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Rho GTPases are involved in several biological processes, including cytoskeletal remodeling, gene transcription, cell proliferation and differentiation. Dysregulation of Rho GTPases activity can lead to enhanced tumor cell proliferation and metastasis. Rho guanine nucleotide exchange factor-H1 (GEFH1) is a RhoA activator that is associated with microtubules (MT) and its localization and activity are regulated, in part, by MT and fibronectin-binding integrins. Our findings showed that GEF-H1 expression is significantly higher in human breast cancer biopsies than in normal tissues. Moreover, patients with increased GEF-H1 expression had a lower survival rate and a higher incidence of metastasis. We generated a GEF-H1 knockout (KO) breast cancer cell line and observed a significant reduction in the number of focal adhesions, formation of stress fibers, and activation of downstream signaling pathways. Concordantly, cell proliferation, migration, adhesion, and invasion were reduced. Furthermore, when GEF-H1 knockout (KO) cells were orthotopically implanted into the mammary fat pads of BALB/c mice, a significant decrease was observed in both tumor formation and lung metastasis compared to control breast cancer cells. These results suggest that GEF-H1/RhoA activation mediates cytoskeletal remodeling and signaling pathways critical for breast cancer cell proliferation, migration, and invasion. In vivo assays and human biopsy studies further support GEF-H1 as a potential biomarker of breast tumor progression.
Collapse
Affiliation(s)
- Lucía Fernández Chávez
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Karen Schweitzer
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Exequiel Gonzalo Alonso
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Julia Ferronato
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Eugenia Fermento
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Eliana Noelia Alonso
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Marta Facchinetti
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Alejandro Carlos Curino
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Georgina Pamela Coló
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
6
|
Liu X, Huang J, Zhou H, Wang S, Guo X, Mao J, Li X, Lu Y, Du Y, Yang F, Luo L, You J. Inhibition of PDT-induced PGE2 surge for enhanced photo-immunotherapy. Biomaterials 2025; 317:123116. [PMID: 39848004 DOI: 10.1016/j.biomaterials.2025.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Nowadays, photodynamic therapy (PDT) offers a non-invasive tumor treatment with high safety profiles and minimal side effects, implying a promising clinical application for patients with malignant tumors. However, the lack of efficacy in metastasis and recurrence still notably limits its application. To solve this problem, one promising strategy is to improve the immune response activated by PDT. Unfortunately, tumor cells derived PGE2 could create immunosuppressive microenvironments and impair the function of multiple immune cells, leading to a failure of immune system activation. Moreover, our research revealed the up-regulation of Ptgs2 in tumor cells after the PDT process, which is associated with a series of pro-tumor effects, including proliferation, invasion, metastasis, apoptotic resistance, and immune evasion. Consequently, controlling the PGE2 surge induced by PDT is crucial for optimizing the efficacy of photo-immunotherapy. Therefore, we combined the regulation of the COX2-PGE2 axis with PDT. The addition of COX inhibitors (COX-Is) could improve the efficiency of PDT, reduce the immunosuppressive effect of PGE2, and help dying tumor cells activate the immune system. Herein, a tumor-targeted nano-delivery platform (FI@T-Lipo) was developed using advanced microfluidic technology. FI@T-Lipo based PDT showed a systemic therapeutic effect in triple negative breast cancer through reclaiming the anti-tumor effect of the immune system under COX2-PGE2 blockage. In a word, we developed an in-situ tumor vaccination strategy based on COX-Is enhanced PDT, which could alleviate intra-tumoral immune suppression and boost immune system activation. Our study offers a promising modality for advancing clinical treatment strategies for metastatic malignant tumors.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yichao Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Fuchun Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| |
Collapse
|
7
|
Ansary A, Montesdeoca N, El-Mashtoly SF, Hahn SA, El-Khouly ME, Karges J. Porphyrin-Derived Carbon Dots for Red-Light Activated Photodynamic Therapy of Breast Cancer. ACS APPLIED BIO MATERIALS 2025; 8:4230-4238. [PMID: 40243213 DOI: 10.1021/acsabm.5c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
In recent years, cancer has emerged as a major global health threat, ranking among the top causes of mortality. While treatments such as surgery, immunotherapy, radiation therapy, and chemotherapy remain widely used, photodynamic therapy has been gaining significant interest. Most of the photosensitizing agents employed in clinical settings are derived from tetrapyrrolic frameworks, including porphyrins, chlorins, and phthalocyanines. Although these compounds have demonstrated therapeutic effectiveness, they suffer from critical drawbacks, such as limited solubility in water and inadequate (photo)stability. To address these issues, herein, the formulation of the previously reported and promising photosensitizer tetrakis(4-carboxyphenyl) porphyrin into carbon dots is reported. The carbon dots were found with enhanced aqueous solubility, high (photo)stability, and greater singlet oxygen quantum yield overcoming the limitations of the molecular photosensitizer. While being nontoxic in the dark, the carbon dots induced a phototherapeutic effect in breast cancer cells and multicellular tumor spheroids.
Collapse
Affiliation(s)
- Abeer Ansary
- Biotechnology Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Department of Molecular GI-Oncology, Clinical Research Center, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
| | - Samir F El-Mashtoly
- Leibniz Institute of Photonic, Technology, Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Stephan A Hahn
- Department of Molecular GI-Oncology, Clinical Research Center, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, 44780, Germany
| |
Collapse
|
8
|
Guo L, Yang Z, Dong H, Lai K, Fu H, Gong Y, Li S, Yue M, Liu Z. Systematic Investigation of Coordination Chemistry in Iridium(III) and Ruthenium(II) Complexes Derived from Pyridyl-Amine Ligands and Their Anticancer Evaluation. Inorg Chem 2025. [PMID: 40380917 DOI: 10.1021/acs.inorgchem.4c05599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
A systematic investigation of the coordination chemistry of iridium(III) and ruthenium(II) complexes synthesized from pyridyl-amine ligands was performed, focusing on how ligand steric hindrance and metal centers affect oxidation behavior, coordination modes, and biological activities. The study revealed that steric hindrance at the ligand's bridge carbon strongly influenced both oxidation behavior and coordination modes. Smaller substituents (e.g., H and Me) facilitated oxidation to form pyridyl-imine species under adventitious oxygen, whereas bulky substituents (e.g., i-Bu and mesityl) suppressed oxidation, yielding stable pyridyl-amine or 16-electron pyridyl-amido complexes. Moreover, iridium(III) complexes were more prone to oxidation than the corresponding ruthenium(II) complexes under similar conditions. The aqueous stability of the newly synthesized complexes was confirmed. Cytotoxicity assays demonstrated that most of the complexes exhibited notable anticancer potency against A549, HeLa and cisplatin-resistant A549/DDP cancer cells. Mechanistic studies suggested a redox-driven pathway involving the catalytic oxidation of NADH to NAD+, the elevation of ROS levels and depolarization of the mitochondrial membrane. Notably, pyridyl-amine complexes induced apoptosis, while 16-electron pyridyl-amido complexes did not, though both caused S phase cell cycle arrest. Additionally these complexes can inhibit A549 cell migration, suggesting their potential to reduce cancer metastasis.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Susu Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mingbo Yue
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
9
|
Li X, Wang L, Ni B, Wang J, Sun Y. Research Progress of Natural Compounds from Chinese Herbal Medicine in the Treatment of Melanoma. Curr Treat Options Oncol 2025:10.1007/s11864-025-01322-8. [PMID: 40372659 DOI: 10.1007/s11864-025-01322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
OPINION STATEMENT Melanoma is a malignant tumor that originates from activated or genetically altered epidermal melanocytes, resulting from the interplay of genetic, somatic, and environmental factors. It is the fastest-growing malignancy among the Caucasian population and has a high mortality rate, second only to lung cancer. Current mainstream treatments have led to unavoidable drug resistance and toxic side effects despite improvements in efficacy and prognosis. Traditional Chinese Medicine is a significant component of complementary and alternative medicine, playing a vital role in cancer treatment. Natural compounds derived from Chinese herbal medicines offer notable advantages owing to their multimolecular, multitarget, and multipathway characteristics. These compounds exert anti-melanoma effects through various mechanisms, including antiproliferation, promotion of apoptosis, inhibition of metastasis, suppression of angiogenesis, modulation of autophagy, and enhancement of the immune response. Furthermore, combining natural compounds with mainstream antagonistic medicine not only enhances treatment efficacy but also significantly reverses multidrug resistance. This article discusses the specific mechanisms by which natural compounds combat melanoma and reviews the recent research advancements in this field. It also addresses the challenges faced in the widespread clinical application of these natural compounds in melanoma treatment and outlines the future directions for their development.
Collapse
Affiliation(s)
- Xin Li
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Lankang Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baoyi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yifeng Sun
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
10
|
Peng P, Sun J, Li MS, Cheng RX, Liu SQ, Qin MB, Zhang JX, Huang JA. SPDL1 inhibition enhances colorectal cancer progression via epidermal growth factor receptor/extracellular signal-regulated kinase pathways. World J Gastrointest Oncol 2025; 17:104686. [DOI: 10.4251/wjgo.v17.i5.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/11/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND In patients with colorectal cancer (CRC), tumour metastasis is the leading cause of death. The search for key genes involved in metastasis of CRC is imperative for improved prognoses and treatments. SPDL1 has been implicated in the development of CRC, however, its mechanism of action remains unclear.
AIM To investigate the role and mechanism of action by which SPDL1 inhibits the development and metastasis of CRC.
METHODS In this study, we examined the relationship between SPDL1 expression and CRC prognosis using immunohistochemistry. Survival analyses were performed using Kaplan-Meier analysis and log-rank test. After knocking down SPDL1 in the HCT116 cancer cell line changes in cell viability, migration, invasion, and gene expression were examined using a cell counting kit 8 assay, Transwell assay, and Western blot. The effect of SPDL1 on the cell cycle was assessed using flow cytometry. RNA sequencing was used to analyse the effect of SPDL1 on gene expression of CRC cells. The mechanism of action of SPDL1 in CRC was further clarified using U0126, an inhibitor of the mitogen-activated protein kinase signaling pathway.
RESULTS SPDL1 is expressed at low levels in tissues of patients with CRC, and this reduced expression is associated with poor prognosis. Functionally, low expression of SPDL1 in CRC promotes cell proliferation, migration, invasion, and affects the cell cycle. Mechanistically, SPDL1 affects the progression of CRC through its regulation of the process of epithelial-mesenchymal transition (EMT) and of the epidermal growth factor receptor (EGFR)/ extracellular signal-regulated kinase (ERK) signaling pathways.
CONCLUSION This study showed that the loss of SPDL1 may induce EMT and promote cell migration and invasion in CRC through the EGFR/ERK pathway.
Collapse
Affiliation(s)
- Peng Peng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Juan Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Meng-Shi Li
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Ruo-Xi Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Shi-Quan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Meng-Bin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Jin-Xiu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Jie-An Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
11
|
Hao Q, Bai Y, Guan R, Dong R, Bai W, Hamdy H, Wang L, Meng M, Sun Y, Shen J, Sun J. VPS35/Retromer-dependent MT1-MMP regulation confers melanoma metastasis. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2884-2. [PMID: 40347217 DOI: 10.1007/s11427-024-2884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/25/2025] [Indexed: 05/12/2025]
Abstract
Retromer is a conserved endosomal trafficking complex responsible for recycling transmembrane protein cargoes. Membrane-type I matrix metalloproteinase (MT1-MMP), a well-studied membrane-type metalloprotease, is highly expressed in metastatic melanomas. Previously, we reported that inducing MT1-MMP perinuclear localization and inhibiting MT1-MMP membrane localization significantly reduce melanoma metastasis. However, the regulation of MT1-MMP subcellular localization and recycling is still largely unknown. Here, we performed target gene shRNA screening and found that shRNA targeting the Retromer complex subunit vacuolar protein sorting 35 (VPS35) inhibited MT1-MMP membrane localization and induced its perinuclear localization. We found that inhibiting VPS35/Retromer decreased MT1-MMP recycling and increased MT1-MMP-lysosome localization, which significantly affected the stability of MT1-MMP. Furthermore, our results indicated that VPS35/Retromer regulates the transcription of MT1-MMP by activating interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) inflammatory signaling pathway. Tissue microarray analysis indicated that VPS35/Retromer positively correlated with MT1-MMP levels and distant metastasis. Xenograft experiments showed that targeting VPS35/Retromer significantly inhibited melanoma lung metastasis, which is dependent on MT1-MMP. Our results implicate the importance of VPS35/Retromer in metastatic dissemination. Our study suggests that targeting the VPS35/Retromer-MT1-MMP axis will contribute to inhibiting the metastasis of melanoma.
Collapse
Affiliation(s)
- Qinggang Hao
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650504, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Yan Bai
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Ruiqi Guan
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Rui Dong
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Weiyu Bai
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Hayam Hamdy
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Liqiong Wang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Mingyao Meng
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China
| | - Yan Sun
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Junling Shen
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650504, China.
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China.
| | - Jianwei Sun
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650504, China.
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China.
| |
Collapse
|
12
|
Li X, Li S, Li H, Wu G, Zhao H, Liu S, Xu X, Saw PE. Inhibition of recurrence and metastasis in triple-negative breast cancer through nanoparticle-mediated silencing of LPCAT1 to remodel ATP energy metabolism. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2887-x. [PMID: 40343577 DOI: 10.1007/s11427-024-2887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/26/2025] [Indexed: 05/11/2025]
Abstract
Breast cancer remains the most prevalent malignancy among women worldwide, with triple-negative breast cancer (TNBC) representing its most aggressive and lethal subtype. TNBC is characterized by high rates of recurrence and lung metastasis after surgery, severely impacting patient quality of life. Recent studies highlight the critical role of metabolic reprogramming in driving cancer recurrence, migration, and invasion. While the underlying mechanisms remain complex and not fully elucidated, transcriptomic analyses comparing primary and metastatic breast cancer tissues from TNBC and Luminal patients have identified lysophosphatidylcholine acyltransferase 1 (LPCAT1) as a key enzyme upregulated in lung metastases and TNBC. LPCAT1 is strongly associated with poor prognosis due to its activation of the TGFβ signaling pathway. This activation is driven by LPCAT1's ability to increase cellular ATP levels, fostering a high-energy state that stimulates ATPase activity. Consequently, ATP-dependent chromatin remodeling via the BAF complex, which includes double PHD finger 2 (DPF2) as a critical subunit, regulates gene transcription essential for tumor progression. Through the LPCAT1-DPF2-TGFBR2 axis, TNBC cells enhance TGFβ signaling, promoting malignant behavior and metastasis. Addressing this, we developed a reduction-responsive nanoparticle platform for the systemic delivery of LPCAT1-targeted siRNA (siLPCAT1), which has shown significant efficacy in suppressing TNBC tumor growth and metastasis. These findings suggest that nanoparticle-mediated siLPCAT1 delivery represents a promising therapeutic strategy for advanced TNBC treatment.
Collapse
Affiliation(s)
- Xiuling Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Senlin Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, 404100, China
| | - Haotian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Guo Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Huijie Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Shaomin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
13
|
Coelho KBCA, Wosniaki DK, Pereira JL, Luz M, Albrecht L, Nardin JM, Aoki MN, Reis LO, dos Reis RB, Zanette DL. Comparative Analysis of Cytokine Expression Profiles in Prostate Cancer Patients. BIOLOGY 2025; 14:505. [PMID: 40427694 PMCID: PMC12109277 DOI: 10.3390/biology14050505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/24/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025]
Abstract
This study aimed to identify the cytokine expression profile in prostate cancer (PCa) patients compared to healthy individuals. Plasma samples from 75 PCa patients and 14 healthy controls were analyzed using Multiplex ELISA (Luminex) to measure the expression levels of 12 cytokines: IL-4, IL-5, IL-6, IL-10, IL-1β, IL-17A, IL-12p70, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, TNF-α, and IFN-γ. Differences in cytokine expression levels were analyzed using the Mann-Whitney test, Wilcoxon's rank-sum test, Spearman's rank correlation, and K-means Clustering unsupervised machine learning to validate cytokine expression patterns. In PCa patients, MIP-1α/CCL3, MIP-1β/CCL4, IFN-γ, and interleukins exhibited significantly higher expression levels; conversely, TNF-α and MCP-1/CCL2 both had decreased expression compared to healthy individuals. The clustering analysis confirmed that PCa patients exclusively exhibit the highest associations with MIP-1α/CCL3, IFN- γ, IL-12p70, IL-4, and IL-5. Furthermore, specific correlations between IL-4 and MIP-1 beta, IL-4 and IFN-gamma, IL-5 and IL-12p70, and IL-5 and IFN-gamma in PCa patients did not occur in healthy individuals. Such results will guide forthcoming in vitro and in vivo human prostate cancer-drug treatment models, paving the way for exploration of future drug targets and candidates with potential to predict FDA-approved prostate cancer treatment responses by targeting cytokine levels and the oncogenesis pathways.
Collapse
Affiliation(s)
- Karoline Brito Caetano Andrade Coelho
- Uro-Oncology Laboratory, Surgery and Anatomy Department, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14090-000, SP, Brazil; (K.B.C.A.C.); (R.B.d.R.)
| | - Denise Kusma Wosniaki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, PR, Brazil; (D.K.W.); (L.A.); (M.N.A.)
| | | | - Murilo Luz
- Erasto Gaertner Hospital, Curitiba 81520-060, PR, Brazil; (J.L.P.); (M.L.)
| | - Letusa Albrecht
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, PR, Brazil; (D.K.W.); (L.A.); (M.N.A.)
| | - Jeanine Marie Nardin
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 87013-250, PR, Brazil;
| | - Mateus Nobrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, PR, Brazil; (D.K.W.); (L.A.); (M.N.A.)
| | - Leonardo O. Reis
- UroScience, State University of Campinas, Unicamp, Campinas 13083-872, SP, Brazil
- ImmunOncology, Pontifical Catholic University of Campinas, PUC-Campinas, Campinas 13087-571, SP, Brazil
- UroGen, National Institute of Science, Technology and Innovation in Genitourinary Cancer (INCT), Campinas 13087-571, SP, Brazil
| | - Rodolfo Borges dos Reis
- Uro-Oncology Laboratory, Surgery and Anatomy Department, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14090-000, SP, Brazil; (K.B.C.A.C.); (R.B.d.R.)
- UroGen, National Institute of Science, Technology and Innovation in Genitourinary Cancer (INCT), Campinas 13087-571, SP, Brazil
| | - Dalila Lucíola Zanette
- Uro-Oncology Laboratory, Surgery and Anatomy Department, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14090-000, SP, Brazil; (K.B.C.A.C.); (R.B.d.R.)
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, PR, Brazil; (D.K.W.); (L.A.); (M.N.A.)
- UroGen, National Institute of Science, Technology and Innovation in Genitourinary Cancer (INCT), Campinas 13087-571, SP, Brazil
| |
Collapse
|
14
|
Mughal SS, Reiss Y, Felsberg J, Meyer L, Macas J, Schlue S, Starzetz T, Köhrer K, Fehm T, Müller V, Lamszus K, Schadendorf D, Helfrich I, Wikman H, Berghoff A, Brors B, Plate KH, Reifenberger G. Identification and characterization of tertiary lymphoid structures in brain metastases. Acta Neuropathol Commun 2025; 13:91. [PMID: 40319321 PMCID: PMC12049775 DOI: 10.1186/s40478-025-02007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/13/2025] [Indexed: 05/07/2025] Open
Abstract
Brain metastases (BrM) are the most common cancers in the brain and linked to poor prognosis. Given the high incidence and often limited treatment options, understanding the complexity of the BrM tumor microenvironment is crucial for the development of novel therapeutic strategies. We performed transcriptome-wide gene expression profiling combined with spatial immune cell profiling to characterize the tumor immune microenvironment in 95 patients with BrM from different primary tumors. We found that BrM from lung carcinoma and malignant melanoma showed overall higher immune cell infiltration as compared to BrM from breast carcinoma. RNA sequencing-based immune cell deconvolution revealed gene expression signatures indicative of tertiary lymphoid structures (TLS) in subsets of BrM, mostly from lung cancer and melanoma. This finding was corroborated by multiplex immunofluorescence staining of immune cells in BrM tissue sections. Detection of TLS signatures was more common in treatment-naïve BrM and associated with prolonged survival after BrM diagnosis in lung cancer patients. Our findings highlight the cellular diversity of the tumor immune microenvironment in BrM of different cancer types and suggest a role of TLS formation for BrM patient outcome.
Collapse
Affiliation(s)
- Sadaf S Mughal
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120, Heidelberg, Germany.
| | - Yvonne Reiss
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
| | - Lasse Meyer
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Silja Schlue
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Tatjana Starzetz
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
| | - Karl Köhrer
- Center for Biological and Medical Research (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, Center of Integrated Oncology ABCD, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 50, 45147, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iris Helfrich
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 50, 45147, Essen, Germany
- Department of Dermatology and Allergy, University Hospital of Munich, Ludwig-Maximilian-University (LMU), Frauenlobstrasse 9-11, 80337, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Anna Berghoff
- Department of Internal Medicine 1, Clinical Division of Oncology, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Medical Faculty and Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120, Heidelberg, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University, Heinrich-Hoffmann-Strasse 7, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Zhang C, Tu S, Liao Y, Shu Y, Fu M, Li J, Lei X. Prognosis and Chemotherapeutic Efficacy in Extrahepatic Cholangiocarcinoma With Lung Metastases. Cancer Rep (Hoboken) 2025; 8:e70236. [PMID: 40411398 PMCID: PMC12102729 DOI: 10.1002/cnr2.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 05/01/2025] [Accepted: 05/13/2025] [Indexed: 05/26/2025] Open
Abstract
OBJECTIVE Studies on lung metastases from extrahepatic cholangiocarcinoma (ECC) are rare. This study aims to fill this gap by analyzing the influencing factors, prognosis, and chemotherapeutic efficacy of ECC lung metastases, and to provide insights for optimizing medical care for patients with ECC lung metastases. METHODS We retrieved data from the Surveillance, Epidemiology and End Results (SEER) database for patients with metastatic ECC (stage M1) from 2018 to 2021. The study analyzed these characteristics using descriptive statistics. To calculate Hazard Ratios (HR), multivariate COX regression analyses were performed. Overall survival (OS) was estimated using the Kaplan-Meier method, and the survival of patients between groups was compared using the log-rank test. RESULTS A total of 762 people participated in the study, 50.4% of whom were men. At the time of diagnosis, 17.8% of patients had pulmonary metastases. 52.5% received chemotherapy. Multivariate COX analysis identified lung metastases as a significant risk factor for death from metastatic ECC (HR 1.64, CI 1.32-2.03, p < 0.001). Treatment with chemotherapy (HR 0.20, CI 0.17-0.25, p < 0.001) and female sex (HR 0.80, CI 0.67-0.94, p = 0.008) were associated with a better prognosis. Therefore, we further compared the prognosis and chemotherapy outcomes of male and female patients with ECC lung metastases. The median survival of male patients with and without lung metastases was 2 and 5 months, respectively (p = 0.016), whereas there was no significant difference in female patients (p = 0.19). Regardless of gender, patients with lung metastases had significantly worse OS even after receiving chemotherapy (p = 0.0065 in the male group and p = 0.0075 in the female group). Regardless of gender, patients with lung metastases who did not receive chemotherapy had significantly shorter overall survival than those who received chemotherapy. Not receiving chemotherapy vs. receiving chemotherapy (male: 1 month vs. 5 months, p < 0.0001; female: 2 months vs. 9 months, p < 0.0001). CONCLUSION Pulmonary metastasis is an important prognostic factor in ECC and is associated with poorer survival, especially in male patients. Therefore, preventive measures and effective control of lung metastases (e.g., chemotherapy), especially in male patients, may improve survival in patients with ECC.
Collapse
Affiliation(s)
- Chao Zhang
- The First Affiliated Hospital, Department of Hepatobiliary SurgeryHengyang Medical School, University of South ChinaHengyangHunanChina
| | - Shun Tu
- The First Affiliated Hospital, Department of Hepatobiliary SurgeryHengyang Medical School, University of South ChinaHengyangHunanChina
| | - Yanting Liao
- Department of Public HealthLeifeng Street Community Health Service CentreChangshaHunanChina
| | - Yaqiang Shu
- The First Affiliated Hospital, Department of Hepatobiliary SurgeryHengyang Medical School, University of South ChinaHengyangHunanChina
| | - Muyu Fu
- The First Affiliated Hospital, Department of Hepatobiliary SurgeryHengyang Medical School, University of South ChinaHengyangHunanChina
| | - Jiayue Li
- The First Affiliated Hospital, Department of Hepatobiliary SurgeryHengyang Medical School, University of South ChinaHengyangHunanChina
| | - Xiaohua Lei
- The First Affiliated Hospital, Department of Hepatobiliary SurgeryHengyang Medical School, University of South ChinaHengyangHunanChina
| |
Collapse
|
16
|
Pienta KJ, Goodin PL, Amend SR. Defeating lethal cancer: Interrupting the ecologic and evolutionary basis of death from malignancy. CA Cancer J Clin 2025; 75:183-202. [PMID: 40057846 PMCID: PMC12061633 DOI: 10.3322/caac.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 05/11/2025] Open
Abstract
Despite the advances in cancer prevention, early detection, and treatments, all of which have led to improved cancer survival, globally, there is an increased incidence in cancer-related deaths. Although each patient and each tumor is wholly unique, the tipping point to incurable disease is common across all patients: the dual capacity for cancers to metastasize and resist systemic treatment. The discovery of genetic mutations and epigenetic variation that emerges during cancer progression highlights that evolutionary and ecology principles can be used to understand how cancer evolves to a lethal phenotype. By applying such an eco-evolutionary framework, the authors reinterpret our understanding of the metastatic process as one of an ecologic invasion and define the eco-evolutionary paths of evolving therapy resistance. With this understanding, the authors draw from successful strategies optimized in evolutionary ecology to define strategic interventions with the goal of altering the evolutionary trajectory of lethal cancer. Ultimately, studying, understanding, and treating cancer using evolutionary ecology principles provides an opportunity to improve the lives of patients with cancer.
Collapse
Affiliation(s)
- Kenneth J. Pienta
- Urology, Oncology, Pharmacology and Molecular Sciences, and Chemical and Biomolecular EngineeringCancer Ecology Center at the Brady Urological InstituteJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Sarah R. Amend
- Urology and OncologyCancer Ecology Center at the Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
17
|
Yu XL, Zhang Q, Fan JY, Wu TX, Chen ZJ, Wang HJ, Yu XT, Tangthianchaichana J, Du SY, Lu Y. Polysaccharide-mediated combination therapy enhances anti-tumor effects by promoting the immune cycle of immunogenic cell death. Int J Biol Macromol 2025; 306:141323. [PMID: 39984083 DOI: 10.1016/j.ijbiomac.2025.141323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Due to their potent immunomodulatory effects, herbal polysaccharides, are used as immunomodulators in combination with other anti-tumor therapies, demonstrate potential in the treatment of tumors. METHODS In this paper, we simulated the immune cycle of immunogenic cell death (ICD) in vitro to investigate the regulatory mechanism of four different polysaccharides-mediated "immuno-photothermal" combination therapies on the immune cycle of ICD, and validated it in vivo. RESULTS The experimental results showed that the combination therapy strategies mediated by four different polysaccharides (excluding Poria cocos mushroom polysaccharides) could significantly increase the expression and release of ICD markers in tumor cells (4 T1), which was conducive to enhancing the "immune starting point" of ICD. For the "immune line/bridge", four different polysaccharides-mediated combination therapies significantly increased the number and percentage of mature dendritic cells (DCs) and promoted the proliferation and migration of DCs. For the "immune ending point", the number, proliferation, and migration recruitment of CD3+CD8+ cytotoxic T lymphocyte could significantly increase. CONCLUSIONS All four polysaccharides can positive modulate the dynamic process of the immune cycle and enhance anti-tumor efficacy. Highlighting the crucial role and mechanism of polysaccharides in combination therapy. Providing new ideas and rationale for polysaccharide-mediated anti-tumor combination therapy.
Collapse
Affiliation(s)
- Xiang-Long Yu
- Department of Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qin Zhang
- Department of Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Yi Fan
- Department of Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tian-Xin Wu
- Department of Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhi-Jun Chen
- Department of Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hao-Jie Wang
- Department of Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xing-Tai Yu
- Department of Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | | | - Shou-Ying Du
- Department of Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yang Lu
- Department of Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
18
|
Bayrak O, Alper M, Basbinar Y, Bayrak S. The role of thrombin in the paradoxical interplay of cancer metastasis and the vascular system: A driving dynamic. Biomed Pharmacother 2025; 186:118031. [PMID: 40215647 DOI: 10.1016/j.biopha.2025.118031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
The coagulation system plays a complex role in cancer therapy. Endothelial damage and tissue factor increased by chemotherapy initiate the coagulation cascade, producing active FXa and releasing thrombin. Thrombin triggers tumor growth and metastasis, leading to severe thromboembolic events in cancer patients. Direct thrombin inhibitors do not have the expected anti-metastatic effect as PAR-2 remains active and increases the risk of bleeding. Therefore, dual inhibition of thrombin by FXa inhibition and plasmin inhibition, which converts fibrin to fibrinogen, is targeted. Clinical studies show that the use of tranexamic acid in patients on NOAC therapy may be beneficial without increasing the risk of bleeding. This approach offers a promising strategy to provide an anti-metastatic effect in cancer treatment.
Collapse
Affiliation(s)
- Ozge Bayrak
- Dokuz Eylul University, Institute of Health Sciences, Department of Oncology, Izmir, Turkey
| | - Meltem Alper
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Yasemin Basbinar
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey
| | - Serdar Bayrak
- Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey; Dokuz Eylul University, Faculty of Medicine, Department of Cardiovascular Surgery, Izmir, Turkey.
| |
Collapse
|
19
|
Liu J, Yu Z, Liu Q, Dou C, Cao P, Xie X. A novel 5-differentially expressed gene (DEG) signature predicting the prognosis in patients with metastatic liver malignancies and the prognostic and therapeutic potential of SPP1. Int J Clin Oncol 2025; 30:956-973. [PMID: 40014188 DOI: 10.1007/s10147-025-02723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND This study aimed to identify differentially expressed genes (DEGs) that are associated with hepatocarcinogenesis and metastasis in hepatocellular carcinoma (HCC) and to explore their value in predicting overall survival (OS). The methods used included bioinformatics analysis of gene expression datasets and in vitro experiments using HCC cell lines. METHODS Gene expression profiles from metastatic and non-metastatic liver cancer specimens were analyzed using the limma R package. Functional enrichment was performed using Metascape. A prognostic 5-gene signature was constructed using the LASSO algorithm based on TCGA-LIHC data. Kaplan-Meier survival analysis assessed the association of these genes with clinical outcomes (DFI, DSS, OS, and PFS). In vitro, Huh7 and Hep3B cells were transfected with shRNA for SPP1 knockdown. Cell viability was measured with CCK-8 assays, and migration was assessed with Transwell and wound-healing assays. Protein expression was evaluated via western blotting. RESULTS The analysis of gene expression profiles led to the identification of 11 DEGs associated with immune response, phagocytosis, and cell migration. From these DEGs, the LASSO algorithm identified a 5-DEG signature (MASP1, MASP2, MUC1, TREM1, and SPP1) that was predictive of OS in liver cancer patients. Among the five genes, SPP1 was the most upregulated in cancer samples and was significantly associated with poorer outcomes, including DFI, DSS, OS, and PFS. In vitro experiments confirmed that SPP1 knockdown in Huh7 and Hep3B cells significantly inhibited cancer cell viability and migration. Western blot analysis showed alterations in key proteins, with a reduction in vimentin and Ki-67 and an increase in E-cadherin following SPP1 knockdown. CONCLUSION This study highlights the pivotal effect of SPP1 on HCC development and underscores its potential as a biomarker for the OS of liver cancer patients. The identified DEGs may serve as predictive markers for OS and potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zijian Yu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qiong Liu
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Chengyun Dou
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Peng Cao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Xia Xie
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
20
|
Shen C, Lin C, Qu F, Chen C, Shao Z, Jiang Y, Hu X, Di G. Genomic spectra of lymphovascular invasion in breast cancer. Chin J Cancer Res 2025; 37:138-153. [PMID: 40353081 PMCID: PMC12062984 DOI: 10.21147/j.issn.1000-9604.2025.02.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
Objective Lymphovascular invasion (LVI) is a crucial step in metastasis and is closely associated with poor prognosis in patients with breast cancer. However, its clinical and molecular characteristics remain insufficiently defined. We aimed to identify molecular targets for LVI-positive (LVI+) breast cancer and predict patient prognosis via the analysis of genomic variations using targeted sequencing. Methods We established a large-scale targeted sequencing cohort of 4,079 breast cancer samples, which included 3,159 early-stage and locally advanced patients with available LVI statuses. Comparisons of somatic mutation frequencies and germline pathogenic/likely pathogenic (P/LP) mutation frequencies, mutational signature analyses, and mutual exclusivity and co-occurrence analyses were performed to identify key genomic features involved in LVI+ patients. Additionally, Kaplan-Meier survival analysis was conducted to further explore the prognostic value of co-mutations in LVI+ cases. Results We observed that LVI+ patients with the hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) and triple-negative breast cancer (TNBC) subtypes exhibited worse disease-free survival. Notably, HR+/HER2- and HER2+ breast cancer patients with LVI displayed distinct genomic features compared with LVI- tumors. Specifically, LVI+ HR+/HER2- tumors exhibited greater frequencies of somatic mutations in TP53 and ESR1, germline BRCA2 P/LP variations, and an enrichment of clock-like single-base substitution (SBS)1 mutational signatures. In contrast, LVI+ HER2+ tumors demonstrated a higher incidence of somatic PIK3CA mutations and increased activity of the apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC)-associated SBS2 signature. Furthermore, we revealed that the co-mutation of TP53 and NF1 could serve as a potential prognostic marker for LVI+ HR+/HER2- patients. Conclusions Our findings provide a comprehensive overview of the genomic characteristics of LVI in breast cancer, thereby offering insights that may help in refining precision treatment strategies for LVI+ breast cancer patients.
Collapse
Affiliation(s)
- Chuhan Shen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Caijin Lin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feilin Qu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhiming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yizhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Genhong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Feigelman G, Simanovich E, Rahat MA. Serum EMMPRIN/CD147 promotes the lung pre-metastatic niche in a D2A1 mammary carcinoma mouse model. Front Immunol 2025; 16:1568578. [PMID: 40370456 PMCID: PMC12075191 DOI: 10.3389/fimmu.2025.1568578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Several types of cancer, including breast cancer, metastasize to the lung. However, before the disseminating tumor cells (DTCs) arrive there, the lung must be prepared as a hospitable environment for them, forming the pre-metastatic niche (PMN). It is now accepted that the primary tumor can release soluble mediators or extracellular vesicles that activate the PMN resident cells, recruit immune cells, promote angiogenesis, and remodel the extracellular matrix (ECM), even before the arrival of DTCs to the niche. However, not all the components of the tumor secretome are known. Here we demonstrate in a mouse model of breast cancer designed to generate lung PMN, that EMMPRIN, a multifunction protein and mediator of tumor-stroma cell interactions, is part of that secretome. To study the involvement of EMMPRIN in the generation of lung PMN, we knocked down its expression in D2A1 cells (D2A1-KD), treated the mice with the anti-EMMPRIN antibody developed in our lab (m161-pAb), or administered the recombinant EMMPRIN protein to healthy mice. We show that the primary tumor released elevated levels of EMMPRIN in mice implanted with paternal D2A1 cells (D2A1-WT), generating lung PMN by increasing VEGF, MMP-9 and TGFβ secretion, enhancing angiogenesis, activating fibroblasts, increasing neutrophils infiltration, and remodeling the ECM. These effects were inhibited in mice implanted with D2A1-KD cells or administered with m161-pAb. In healthy mice, the recombinant EMMRPIN recapitulated the effects of high EMMPRIN levels. Thus, EMMPRIN as part of the tumor secretome is sufficient to promote the lung PMN, and targeting it could potentially inhibit the metastatic cascade.
Collapse
Affiliation(s)
- Gabriele Feigelman
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
| | - Michal A. Rahat
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
22
|
Sundbom M. Potential metastatic mechanisms and clinical aspects in patients with non-gastrointestinal tumor metastasis to the upper gastrointestinal tract. J Gastrointest Oncol 2025; 16:786-790. [PMID: 40386600 PMCID: PMC12078834 DOI: 10.21037/jgo-2025-102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 05/20/2025] Open
Affiliation(s)
- Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Zhou Y, Cao P, Zhu Q. The regulatory role of m6A in cancer metastasis. Front Cell Dev Biol 2025; 13:1539678. [PMID: 40356596 PMCID: PMC12066624 DOI: 10.3389/fcell.2025.1539678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Metastasis remains a primary cause of cancer-related mortality, with its intricate mechanisms continuing to be uncovered through advancing research. Among the various regulatory processes involved, RNA modification has emerged as a critical epitranscriptomic mechanism influencing cancer metastasis. N6-methyladenosine (m6A), recognized as one of the most prevalent and functionally significant RNA modifications, plays a central role in the regulation of RNA metabolism. In this review, we explore the multifaceted role of m6A in the different stages of cancer metastasis, including epithelial-mesenchymal transition, invasion, migration, and colonization. In addition to summarizing the current state of our understanding, we offer insights into how m6A modifications modulate key oncogenic pathways, highlighting the implications of recent discoveries for therapeutic interventions. Furthermore, we critically assess the limitations of previous studies and propose areas for future research, including the potential for targeting m6A as a novel approach in anti-metastatic therapies. Our analysis provides a comprehensive understanding of the regulatory landscape of m6A in metastasis, offering directions for continued exploration in this rapidly evolving field.
Collapse
Affiliation(s)
- Ying Zhou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Cao
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Ugwuowo U, Faust B, Tang H, DiStasio M. Adequate capture of spatial heterogeneity of Ki-67 proliferative index in meningiomas requires multiple tissue sections. J Neuropathol Exp Neurol 2025:nlaf043. [PMID: 40257502 DOI: 10.1093/jnen/nlaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Affiliation(s)
- Ugochukwu Ugwuowo
- Clinical and Translational Research Accelerator, Yale School of Medicine, New Haven, CT, United States
| | - Bethany Faust
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Haiming Tang
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Marcello DiStasio
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
Gao C, Gao A, Jiang Y, Gao R, Guo Y, Peng Z, Jiang W, Zhang M, Zhou Z, Yan C, Fang W, Hu H, Zhu G, Zhang J. Hypoxia-induced phase separation of ZHX2 alters chromatin looping to drive cancer metastasis. Mol Cell 2025; 85:1525-1542.e10. [PMID: 40185097 DOI: 10.1016/j.molcel.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/12/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Hypoxia and dysregulated phase separation can both activate oncogenic transcriptomic profiles. However, whether hypoxia regulates transcription-associated phase separation remains unknown. Here, we find that zinc fingers and homeoboxes 2 (ZHX2) undergoes phase separation in response to hypoxia, promoting their occupancy on chromatin and activating a cluster of oncogene transcription that is enriched by metastatic genes distinct from the targets of hypoxia-inducible factor (HIF) and pathologically relevant to breast cancer. Hypoxia induces ZHX2 phase separation via a proline-rich intrinsically disordered region (IDR), enhancing phosphorylation of ZHX2 at S625 and S628 that incorporates CCCTC-binding factor (CTCF) in condensates to alter chromatin looping, consequently driving metastatic gene transcription and cancer metastasis. Our findings provide significant insight into oncogene activation and suggest a phase-separation-based therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Chuan Gao
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ang Gao
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yulong Jiang
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ronghui Gao
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yan Guo
- Lingang Laboratory, Shanghai 201210, China
| | - Zirou Peng
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Weiwei Jiang
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Mengyao Zhang
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zirui Zhou
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chaojun Yan
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wentong Fang
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | | | - Jing Zhang
- Department of Urology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Wuhan 430071, China.
| |
Collapse
|
26
|
Ivanova T, Sbirkov Y, Kazakova M, Sarafian V. Lysosomes and LAMPs as Autophagy Drivers of Drug Resistance in Colorectal Cancer. Cells 2025; 14:574. [PMID: 40277899 PMCID: PMC12025563 DOI: 10.3390/cells14080574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Colorectal cancer (CRC) is among the most malignant pathologies worldwide. A major factor contributing to the poor prognosis of neoplastic diseases is the development of drug resistance. It significantly reduces the utility of most therapeutic protocols and necessitates the search for novel biomarkers and treatment strategies to combat cancer. An evolutionarily conserved catabolic mechanism, autophagy maintains nutrient recycling and metabolic adaptation and is also closely related to carcinogenesis, playing a dual role. Autophagy inhibition can limit the growth of tumors and improve the response to cancer therapeutics. Lysosomes, key players in autophagy, are also considered promising targets for anticancer treatment. There are still insufficient data on the role of poorly studied glycoproteins related to autophagy, such as the lysosome-associated membrane glycoproteins (LAMPs). They can act as multifunctional molecules involved in a multitude of processes like autophagy and cancer development. In the current review, we summarize the recent data on the double-faceted role of autophagy in cancer with a focus on drug resistance in CRC and on the roles of lysosomes and LAMPs in these interconnected processes. Several lysosomotropic drugs are discussed as options to overcome cancer cell chemoresistance. The complex networks that underline defined autophagic pathways in the context of CRC carcinogenesis and the role of autophagy, especially of LAMPs as drivers of drug resistance, are outlined.
Collapse
Affiliation(s)
- Tsvetomira Ivanova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria; (Y.S.); (M.K.)
- Research Division of Molecular and Regenerative Medicine, Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
27
|
Dong H, Ye C, Ye X, Yan J, Ye G, Shao Y. The biological role and molecular mechanism of transfer RNA-derived small RNAs in tumor metastasis. Front Oncol 2025; 15:1560943. [PMID: 40265011 PMCID: PMC12011605 DOI: 10.3389/fonc.2025.1560943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Tumor metastasis is a significant contributor to increased cancer mortality. Transfer RNA-derived small RNAs (tsRNAs), a class of endogenous non-coding RNA molecules, play crucial functional roles in various physiological processes, including the regulation of transcription and reverse transcription, the modulation of translation processes, the modification of epigenetic inheritance, the regulation of the cell cycle, etc. Dysregulated tsRNAs are closely related to the occurrence and progression of human malignancies. Accumulating evidence indicates that the abnormal expression of tsRNAs is associated with tumor metastasis through a variety of mechanisms. Hence, we summarize the fundamental structure and biological functions of tsRNAs, with a focus on how tsRNAs influence the tumor metastasis process through downstream targets or the regulation of interactions between upstream and downstream molecules, thereby providing a novel perspective for targeted therapy for tumor metastasis.
Collapse
Affiliation(s)
- Haotian Dong
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chengyuan Ye
- Health Science Center, Ningbo University, Ningbo, China
| | - Xiaohan Ye
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
28
|
Zhang Y, Wang H, Zhan Z, Gan L, Bai O. Mechanisms of HDACs in cancer development. Front Immunol 2025; 16:1529239. [PMID: 40260239 PMCID: PMC12009879 DOI: 10.3389/fimmu.2025.1529239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Histone deacetylases (HDACs) are a class of epigenetic regulators that play pivotal roles in key biological processes such as cell proliferation, differentiation, metabolism, and immune regulation. Based on this, HDAC inhibitors (HDACis), as novel epigenetic-targeted therapeutic agents, have demonstrated significant antitumor potential by inducing cell cycle arrest, activating apoptosis, and modulating the immune microenvironment. Current research is focused on developing highly selective HDAC isoform inhibitors and combination therapy strategies tailored to molecular subtypes, aiming to overcome off-target effects and resistance issues associated with traditional broad-spectrum inhibitors. This review systematically elaborates on the multidimensional regulatory networks of HDACs in tumor malignancy and assesses the clinical translation progress of next-generation HDACis and their prospects in precision medicine, providing a theoretical framework and strategic reference for the development of epigenetic-targeted antitumor drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Haotian Wang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Zhumei Zhan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Gan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Out Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Jalali P, Shahmoradi A, Samii A, Mazloomnejad R, Hatamnejad MR, Saeed A, Namdar A, Salehi Z. The role of autophagy in cancer: from molecular mechanism to therapeutic window. Front Immunol 2025; 16:1528230. [PMID: 40248706 PMCID: PMC12003146 DOI: 10.3389/fimmu.2025.1528230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Autophagy is a cellular degradation process that plays a crucial role in maintaining metabolic homeostasis under conditions of stress or nutrient deprivation. This process involves sequestering, breaking down, and recycling intracellular components such as proteins, organelles, and cytoplasmic materials. Autophagy also serves as a mechanism for eliminating pathogens and engulfing apoptotic cells. In the absence of stress, baseline autophagy activity is essential for degrading damaged cellular components and recycling nutrients to maintain cellular vitality. The relationship between autophagy and cancer is well-established; however, the biphasic nature of autophagy, acting as either a tumor growth inhibitor or promoter, has raised concerns regarding the regulation of tumorigenesis without inadvertently activating harmful aspects of autophagy. Consequently, elucidating the mechanisms by which autophagy contributes to cancer pathogenesis and the factors determining its pro- or anti-tumor effects is vital for devising effective therapeutic strategies. Furthermore, precision medicine approaches that tailor interventions to individual patients may enhance the efficacy of autophagy-related cancer treatments. To this end, interventions aimed at modulating the fate of tumor cells by controlling or inducing autophagy substrates necessitate meticulous monitoring of these mediators' functions within the tumor microenvironment to make informed decisions regarding their activation or inactivation. This review provides an updated perspective on the roles of autophagy in cancer, and discusses the potential challenges associated with autophagy-related cancer treatment. The article also highlights currently available strategies and identifies questions that require further investigation in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Samii
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Afshin Namdar
- Program in Cell Biology, The Hospital for Sick Children Peter Gilgan Centre for Research and Learning, Toronto, ON, United States
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Xie T, Guo J, Wang W. The Long Noncoding RNA Gall Bladder Cancer-Associated Suppressor of Pyruvate Carboxylase Inhibits the Proliferation, Migration, and Invasion of Colorectal Cancer Cells and Induces Their Apoptosis. Biochem Genet 2025; 63:1719-1733. [PMID: 38609669 DOI: 10.1007/s10528-024-10786-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
This study aimed to determine the role of the long noncoding RNA (lncRNA) gall bladder cancer-associated suppressor of pyruvate carboxylase (SOD2-1) in the progression of colorectal cancer (CRC). A total of 23 pairs of specimens, including CRC tissues and adjacent normal tissues, were collected, and the expression of lncRNA SOD2-1 (lnc-SOD2-1) was measured. lnc-SOD2-1 function was examined using HCT15 and HCT116 cells. A lnc-SOD2-1 overexpression vector was designed and transfected into both cell lines. MTS and colony formation assays were used to determine cell viability. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays were performed to measure apoptosis. Cell migration and invasion were evaluated using the Transwell assay. Migration and invasion markers were validated using quantitative reverse transcription-polymerase chain reaction and western blot analysis. The results indicated that the expression of lnc-SOD2-1 was downregulated in CRC tissues. lnc-SOD2-1 overexpression evidently decreased cell viability and led to the formation of fewer cell colonies. lnc-SOD2-1 overexpression induced ~ twofold higher apoptosis than the control group. lnc-SOD2-1 overexpression reduced the proportion of migratory and invasive cells to 50% and 75% of the control group, respectively. lnc-SOD2-1 overexpression significantly decreased the expression of matrix metalloproteinase-2 and -9. In conclusion, lnc-SOD2-1 may act as a tumor suppressor that inhibits the proliferation, migration, and invasion of CRC cells and induces their apoptosis.
Collapse
Affiliation(s)
- Tingting Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianian Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou, 510260, China.
| |
Collapse
|
31
|
Wang P, Xu J, You W, Li J, Yu J, Jiang F, Zhang Z, Hu W, Li B. CYP24A1 Binding to FUS Maintains Tumor Properties by Regulating the miR-200c/ZEB1/EMT Axis. Cancer Sci 2025; 116:910-922. [PMID: 39777777 PMCID: PMC11967274 DOI: 10.1111/cas.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The active vitamin D-degrading enzyme (CYP24A1) is commonly overexpressed in various types of cancer, which is associated with poor prognosis in cancer patients. Recent studies highlight the antagonism of CYP24A1 toward the anticancer role of active vitamin D. However, the impact of CYP24A1 on tumorigenesis and its underlying mechanisms largely remains unexplored. This study also found that high CYP24A1 mRNA expressions were associated with poor prognosis in ovarian cancer and lung adenocarcinoma (LUAD) patients. Moreover, we demonstrated that the overexpression of CYP24A1 accelerated the proliferation, migration, and invasion of ovarian cancer and LUAD cancer cells in vitro. Furthermore, knockdown of CYP24A1 displayed an anticancer effector both in vitro and in vivo. Mechanically, 87-297 amino acid motif of CYP24A1 bound specifically to FUS protein, consequentially reducing FUS affinity for miR-200c. Considering FUS promotes gene silencing by binding to microRNA targets, a decrease in miR-200c levels led to a notable activation of its target ZEB1, resulting in the promotion of the epithelial-mesenchymal transition (EMT) process. In conclusion, FUS binding specifically by CYP24A1 impaired miR-200c-mediated ZEB1 silencing, thereby augmenting EMT progression and tumorigenesis. These findings elucidate a fundamental mechanism by which CYP24A1 operates as an oncogene, offering potential targets for therapeutic interventions in cancer treatment.
Collapse
Affiliation(s)
- Ping Wang
- Department of Occupational and Environmental Health, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Jiming Xu
- Department of Nutrition and Food Hygiene, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
- Department of Infectious Disease Surveillance and Early WarningQingdao Municipal Health CommissionQingdaoChina
| | - Weijing You
- Department of Nutrition and Food Hygiene, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
- Yantai Hi‐Tech Industrial Development Zone Center for Disease Control and PreventionYantaiChina
| | - Jie Li
- Department of Nutrition and Food Hygiene, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Jing Yu
- Department of Nutrition and Food Hygiene, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
- Department of Clinical Laboratory CenterThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Fei Jiang
- Department of Occupational and Environmental Health, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| |
Collapse
|
32
|
Köhler B, Brieger E, Brandstätter T, Hörterer E, Wilk U, Pöhmerer J, Jötten A, Paulitschke P, Broedersz CP, Zahler S, Rädler JO, Wagner E, Roidl A. Unraveling the metastasis-preventing effect of miR-200c in vitro and in vivo. Mol Oncol 2025; 19:1029-1053. [PMID: 39404181 PMCID: PMC11977663 DOI: 10.1002/1878-0261.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 04/09/2025] Open
Abstract
Advanced breast cancer, as well as ineffective treatments leading to surviving cancer cells, can result in the dissemination of these malignant cells from the primary tumor to distant organs. Recent research has shown that microRNA 200c (miR-200c) can hamper certain steps of the invasion-metastasis cascade. However, it is still unclear whether miR-200c expression alone is sufficient to prevent breast cancer cells from metastasis formation. Hence, we performed a xenograft mouse experiment with inducible miR-200c expression in MDA-MB 231 cells. The ex vivo analysis of metastatic sites in a multitude of organs, including lung, liver, brain, and spleen, revealed a dramatically reduced metastatic burden in mice with miR-200c-expressing tumors. A fundamental prerequisite for metastasis formation is the motility of cancer cells and, therefore, their migration. Consequently, we analyzed the effect of miR-200c on collective- and single-cell migration in vitro, utilizing MDA-MB 231 and MCF7 cell systems with genetically modified miR-200c expression. Analysis of collective-cell migration revealed confluence-dependent motility of cells with altered miR-200c expression. Additionally, scratch assays showed an enhanced predisposition of miR-200c-negative cells to leave cell clusters. The in-between stage of collective- and single-cell migration was validated using transwell assays, which showed reduced migration of miR-200c-positive cells. Finally, to measure migration at the single-cell level, a novel assay on dumbbell-shaped micropatterns was performed, which revealed that miR-200c critically determines confined cell motility. All of these results demonstrate that sole expression of miR-200c impedes metastasis formation in vivo and migration in vitro and highlights miR-200c as a metastasis suppressor in breast cancer.
Collapse
Affiliation(s)
- Bianca Köhler
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Emily Brieger
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Tom Brandstätter
- Department of Physics and AstronomyVrije Universiteit AmsterdamThe Netherlands
- Arnold‐Sommerfeld‐Center for Theoretical PhysicsLudwig‐Maximilians‐Universität MünchenGermany
| | - Elisa Hörterer
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Jana Pöhmerer
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Anna Jötten
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Philipp Paulitschke
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
- PHIO Scientific GmbHMunichGermany
| | - Chase P. Broedersz
- Department of Physics and AstronomyVrije Universiteit AmsterdamThe Netherlands
- Arnold‐Sommerfeld‐Center for Theoretical PhysicsLudwig‐Maximilians‐Universität MünchenGermany
| | - Stefan Zahler
- Pharmaceutical Biology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| |
Collapse
|
33
|
Yang J, Yamashita-Kanemaru Y, Morris BI, Contursi A, Trajkovski D, Xu J, Patrascan I, Benson J, Evans AC, Conti AG, Al-Deka A, Dahmani L, Avdic-Belltheus A, Zhang B, Okkenhaug H, Whiteside SK, Imianowski CJ, Wesolowski AJ, Webb LV, Puccio S, Tacconelli S, Bruno A, Di Berardino S, De Michele A, Welch HCE, Yu IS, Lin SW, Mitra S, Lugli E, van der Weyden L, Okkenhaug K, Saeb-Parsy K, Patrignani P, Adams DJ, Roychoudhuri R. Aspirin prevents metastasis by limiting platelet TXA 2 suppression of T cell immunity. Nature 2025; 640:1052-1061. [PMID: 40044852 PMCID: PMC12018268 DOI: 10.1038/s41586-025-08626-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/08/2025] [Indexed: 04/13/2025]
Abstract
Metastasis is the spread of cancer cells from primary tumours to distant organs and is the cause of 90% of cancer deaths globally1,2. Metastasizing cancer cells are uniquely vulnerable to immune attack, as they are initially deprived of the immunosuppressive microenvironment found within established tumours3. There is interest in therapeutically exploiting this immune vulnerability to prevent recurrence in patients with early cancer at risk of metastasis. Here we show that inhibitors of cyclooxygenase 1 (COX-1), including aspirin, enhance immunity to cancer metastasis by releasing T cells from suppression by platelet-derived thromboxane A2 (TXA2). TXA2 acts on T cells to trigger an immunosuppressive pathway that is dependent on the guanine exchange factor ARHGEF1, suppressing T cell receptor-driven kinase signalling, proliferation and effector functions. T cell-specific conditional deletion of Arhgef1 in mice increases T cell activation at the metastatic site, provoking immune-mediated rejection of lung and liver metastases. Consequently, restricting the availability of TXA2 using aspirin, selective COX-1 inhibitors or platelet-specific deletion of COX-1 reduces the rate of metastasis in a manner that is dependent on T cell-intrinsic expression of ARHGEF1 and signalling by TXA2 in vivo. These findings reveal a novel immunosuppressive pathway that limits T cell immunity to cancer metastasis, providing mechanistic insights into the anti-metastatic activity of aspirin and paving the way for more effective anti-metastatic immunotherapies.
Collapse
Affiliation(s)
- Jie Yang
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | | | | | - Annalisa Contursi
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Daniel Trajkovski
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Jingru Xu
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Jayme Benson
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Alberto G Conti
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Aws Al-Deka
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Layla Dahmani
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Baojie Zhang
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Stefania Tacconelli
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Bruno
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- A. B. Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Di Berardino
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessandra De Michele
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Suman Mitra
- Inserm UMR1277, CNRS UMR9020-CANTHER, Université de Lille, Lille University Hospital, Lille, France
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Paola Patrignani
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | |
Collapse
|
34
|
Xie S, Yang G, Wu J, Jiang L, Yuan C, Xu P, Huang M, Liu Y, Li J. In silico screening of natural products as uPAR inhibitors via multiple structure-based docking and molecular dynamics simulations. J Biomol Struct Dyn 2025; 43:3064-3075. [PMID: 38111151 DOI: 10.1080/07391102.2023.2295386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Cancer remains one of the most pressing challenges to global healthcare, exerting a significant impact on patient life expectancy. Cancer metastasis is a critical determinant of the lethality and treatment resistance of cancer. The urokinase-type plasminogen activator receptor (uPAR) shows great potential as a target for anticancer and antimetastatic therapies. In this work, we aimed to identify potential uPAR inhibitors by structural dynamics-based virtual screenings against a natural product library on four representative apo-uPAR structural models recently derived from long-timescale molecular dynamics (MD) simulations. Fifteen potential inhibitors (NP1-NP15) were initially identified through molecular docking, consensus scoring, and visual inspection. Subsequently, we employed MD-based molecular mechanics-generalized Born surface area (MM-GBSA) calculations to evaluate their binding affinities to uPAR. Structural dynamics analyses further indicated that all of the top 6 compounds exhibited stable binding to uPAR and interacted with the critical residues in the binding interface between uPAR and its endogenous ligand uPA, suggesting their potential as uPAR inhibitors by interrupting the uPAR-uPA interaction. We finally predicted the ADMET properties of these compounds. The natural products NP5, NP12, and NP14 with better binding affinities to uPAR than the uPAR inhibitors previously discovered by us were proven to be potentially orally active in humans. This work offers potential uPAR inhibitors that may contribute to the development of novel effective anticancer and antimetastatic therapeutics.
Collapse
Affiliation(s)
- Song Xie
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Guiqian Yang
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou, China
| | | | - Cai Yuan
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Peng Xu
- College of Chemistry, Fuzhou University, Fuzhou, China
| | | | - Yichang Liu
- School of Pharmacy, Nantong University, Nantong, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, China
| |
Collapse
|
35
|
Erin N, Tavşan E, Haksever S, Yerlikaya A, Riganti C. Targeting BMP-1 enhances anti-tumoral effects of doxorubicin in metastatic mammary cancer: common and distinct features of TGF-β inhibition. Breast Cancer Res Treat 2025; 210:563-574. [PMID: 39792296 PMCID: PMC11953206 DOI: 10.1007/s10549-024-07592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Mammary carcinoma is comprised heterogeneous groups of cells with different metastatic potential. 4T1 mammary carcinoma cells metastasized to heart (4THM), liver (4TLM) and brain (4TBM) and demonstrate cancer-stem cell phenotype. Using these cancer cells we found thatTGF-β is the top upstream regulator of metastatic process. In addition, secretion of bone morphogenetic protein 1 (BMP-1), which is crucial for the proteolytic release of TGF-β, was markedly high in metastatic mammary cancer cells compared to non-metastatic cells. Although TGF-β inhibitors are in clinical trials, systemic inhibition of TGF-β may produce heavy side effects. We here hypothesize that inhibition of BMP-1 proteolytic activity inhibits TGF-β activity and induces anti-tumoral effects. METHOD AND RESULTS Effects of specific BMP-1 inhibitor on liver and brain metastatic murine mammary cancer cells (4TLM and 4TBM), as well as on human mammary cancer MDA-MB-231 and MCF-7 cells, were examined and compared with the results of TGF-β inhibition. Inhibition of BMP-1 activity markedly suppressed proliferation of cancer cells and enhanced anti-tumoral effects of doxorubicin. Inhibition of BMP-1 activity but not of TGF-β activity decreased colony and spheroid formation. Differential effects of BMP-1 and TGF-β inhibitors on TGF-β secretion was also observed. CONCLUSIONS These results demonstrated for the first time that the inhibition of BMP-1 activity has therapeutic potential for treatment of metastatic mammary cancer and enhances the anti-tumoral effects of doxorubicin.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | - Esra Tavşan
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Seren Haksever
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Nizza 44, 10126, Turin, Italy
- Molecular Biotechnology Center "Guido Tarone", Via Nizza 44, 10126, Turin, Italy
- Interdepartmental Center "G.Scansetti" for the Study of Asbestos and Other Toxic Particulates, University of Torino, 10126, Turin, Italy
| |
Collapse
|
36
|
Tajabadi M. Application of Carbon Nanotubes in Breast Cancer Therapy. Drug Res (Stuttg) 2025; 75:89-93. [PMID: 31252436 DOI: 10.1055/a-0945-1469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Conjugated single-walled carbon nanotubes (SWNT) have been shown to be promising in cancer-targeted accumulation and is biocompatible, easily excreted, and possesses little toxicity. The present study aims at reviewing the recent advancements in carbon nanotubes especially SWNT for improving the treatment of breast cancer. Nanotube drug delivery system is a potential high efficacy therapy with minimum side effects for future tumor therapy with low doses of drug.
Collapse
Affiliation(s)
- Mahdis Tajabadi
- Student of Research Committee, Islamic Azad University of Medical Science, Tehran, Iran
| |
Collapse
|
37
|
Fu JY, Wen CT, Wu CF, Hsieh JCH, Chang PC, Hsieh MJ, Liu YH, Lin YJ, Chang SC, Wu CY. Integrating Pathologic Stage and Perioperative Circulating Tumor Cell Variations: Early Relapse Prediction Model for Resectable Non-Small Cell Lung Cancer. JCO Precis Oncol 2025; 9:e2400709. [PMID: 40294350 PMCID: PMC12052053 DOI: 10.1200/po-24-00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
PURPOSE The primary therapeutic objective for patients with resectable non-small cell lung cancer (NSCLC) is the prevention of disease relapse. This study aimed to examine the correlation between perioperative circulating tumor cell (CTC) variations and disease relapse. MATERIALS AND METHODS Ninety-nine patients with resectable NSCLC were enrolled and classified into cohort 0-1a and cohort 1b-4 on the basis of the presence of lymph node metastasis. CTC levels were measured, and their correlation with disease-free survival was analyzed. RESULTS In cohort 0-1a, patients with a CTC count difference between postoperative day 3 and postoperation of <2.75, and a difference between postoperative day 3 and postoperation day 1 of <-0.25, showed no disease relapse. In cohort 1b-4, patients with a CTC count difference between postoperative day 3 and postoperation ≥6.25 had the highest risk of relapse, with all patients experiencing relapse within 2 years. For those with a difference <6.25, most relapses were identified within 2 years postoperation. CONCLUSION The proposed relapse prediction model effectively identified patients with no risk for disease relapse in cohort 0-1a and those with the highest risk for relapse in cohort 1b-4. These results may assist physicians in focusing on and prescribing adjuvant treatment for patients with a higher relapse risk.
Collapse
Affiliation(s)
- Jui-Ying Fu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Tsung Wen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, New Taipei Municipal Tu-Cheng Hospital, New Taipei City, Taiwan
| | - Ching-Feng Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Jason Chia-Hsun Hsieh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal Tu-Cheng Hospital, New Taipei City, Taiwan
| | - Po-Chun Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ming-Ju Hsieh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yen-Hen Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Jr Lin
- Research Services Center for Health Information, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Chen Chang
- Research Services Center for Health Information, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Yang Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
38
|
Wu Y, Yu Y, Li D, Dai Y, Wu J, Zhang Z, Pan H, Chen W, Li R, Hu L. CDH1 genetic variants and its aberrant expression are the risk factors for colorectal cancer metastasis. BMC Gastroenterol 2025; 25:214. [PMID: 40169954 PMCID: PMC11963351 DOI: 10.1186/s12876-025-03797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
E-cadherin, encoded by the CDH1 gene, plays an essential role in epithelial cellular adhesion, and the loss of it has been reported to be associated with tumor progression and metastasis, potentially offer a glimpse in to the development of colorectal cancer. The present study aimed to explore effect of CDH1-160 polymorphism, CDH1 transcription and its protein E-cadherin expression on colorectal cancer, meanwhile uncovering the underlying mechanism. Specimens from cancer loci, adjacent cancer tissue, and distal normal tissue from colorectal cancer patients were collected for Hematoxylin-eosin staining to detect the histopathological change of colorectal mucosa. Direct sequencing and Quantitative Real-Time PCR were used to detect the CDH1 genotype and its mRNA expression, respectively. E-cadherin expression was detected using the ElivisionTM plus method. As a result, we found that the A allele of the CDH1-160 may be a protective gene against colorectal cancer, and the C > A polymorphism may regulate its transcription activity and expression of E-cadherin. The decrease of the CDH1 mRNA transcription level and the absence of E-cadherin on the cytomembrane may promote intestinal mucosal carcinogenesis and accelerate cancer cell metastasis. Deficiency of cytomembrane expression of E-cadherin protein may have some early warning signs for malignant lesions of the gut mucosa.
Collapse
Affiliation(s)
- Yunbo Wu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Ying Yu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Danyan Li
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yunkai Dai
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jianyu Wu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zijing Zhang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Huaigeng Pan
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weijing Chen
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Ruliu Li
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Ling Hu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
39
|
Gong XT, Dai XY, Cheng W, Li B, Liu J, Chen H, Wu M, Yang J, Liu B. Targeted High-Resolution 3D Imaging of Tumor Vasculatures at Different Stages Using Far-Red AIE Nanoparticles Compatible with Tissue Clearing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501144. [PMID: 39998288 DOI: 10.1002/adma.202501144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Indexed: 02/26/2025]
Abstract
The occurrence and progression of blood vessels plays a pivotal role in different stages of tumor development, while current imaging techniques exhibit limited sensitivity to capture the dynamic changes of vasculature at different tumor stages. This drawback hinders the comprehensive understanding of the tumor microenvironment, thereby impeding the development of efficacious therapeutic strategies. Herein, a high-resolution three-dimensional (3D) imaging technology is developed for mapping and analyzing vasculatures at different tumor stages using HA@TANP, a supramolecular assembly of far-red fluorescence nanoparticles with aggregation-induced emission (AIE), compatible with tissue clearing. The hyaluronic acid (HA) in HA@TANP specifically targets CD44 antigen of tumor vasculature, while the acrylic acid in HA@TANP is applied for temperature-induced polymerization to ensure the covalent attachment of AIE fluorophores. Additionally, tissue optical clearing technology boosts light penetration and imaging resolution in dense tumor tissues. This strategy allows for the quantitative analyses of vascular diameter, length, and straightness and their correlation with various responses to treatments. The findings contribute to a more comprehensive understanding of distinct tumor vascular stages, providing valuable insights for enhanced cancer diagnosis and therapies from a tumor vascular-targeted perspective.
Collapse
Affiliation(s)
- Xiao-Ting Gong
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xian-Yin Dai
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Wei Cheng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jiaqi Liu
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Hongjie Chen
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Min Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Jing Yang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
40
|
Chen P, Zhou JB, Chu XP, Feng YY, Zeng QB, Lei JH, Wong KP, Chan TI, Lam CW, Zhu WL, Chu WK, Hu F, Luo GH, Chan KI, Deng CX. Establishing a cryopreserved biobank of living tumor tissues for drug sensitivity testing. Bioact Mater 2025; 46:582-596. [PMID: 40061435 PMCID: PMC11889390 DOI: 10.1016/j.bioactmat.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/05/2024] [Accepted: 09/04/2024] [Indexed: 03/17/2025] Open
Abstract
The cryopreservation of cancer tissues to generate frozen libraries is a common practice used worldwide for storing patient samples for later applications. However, frozen samples stored by existing methods cannot be used for initiating living cell cultures, such as patient-derived tumor organoids (PDOs), which offer great potential for personalized treatment. To overcome this challenge, we developed a novel procedure for culturing PDOs using frozen live tumor tissues. We show that tumor specimens stored using this technique maintain their viability and can be successfully used to generate organoids even after long-term freezing, with an impressive success rate of 95.2 %. Importantly, we found that the structural features, tumor marker expression, and drug responses of organoids derived from frozen tissues are similar to those derived from fresh tissues. Moreover, organoids derived from frozen tissues can be routinely passaged and frozen, making them ideal for high-throughput drug screening at any time. Notably, cryopreserved tumor tissues can also be utilized in air-liquid interface (ALI) culture. This method allows for preserving the original tumor microenvironment, making it an invaluable resource for conducting tests on antitumor drug responses, including immune checkpoint inhibitors (ICIs). This innovation has the potential to enable the identification of potentially effective drugs for patients and facilitate the development of novel therapeutic drugs. Thus, we have established protocols for the long-term cryopreservation of cancer tissues to maintain their viability and microenvironment, which are useful for personalized therapy.
Collapse
Affiliation(s)
- Ping Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing-Bo Zhou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiang-Peng Chu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Yang-Yang Feng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Qi-Bing Zeng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Josh-Haipeng Lei
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Ka-Pou Wong
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | | | | | - Wen-Li Zhu
- Kiang Wu Hospital, Macau SAR 999078, China
| | | | - Feng Hu
- Kiang Wu Hospital, Macau SAR 999078, China
| | | | | | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| |
Collapse
|
41
|
Jia X, Wei H, Huang Y, Duan W, Liu L. Regulating the Cytotoxicity of Anticancer Drugs by Pillar[6]arene-based Host-Guest Complex. Chemistry 2025; 31:e202404763. [PMID: 39907974 DOI: 10.1002/chem.202404763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Abstract
Creating molecular-level host-guest complexes with properties responsive to endogenous substance stimuli-responsive as drug delivery systems, is critical for improving drug stability, reducing side effects, and amplifying therapeutic efficacy. Herein, a delivery system for the chemotherapeutic drug chlorambucil (CLB) was developed using the host-guest interaction with amino-pillar[6]arene (NP6). NP6 exhibits a high affinity for CLB (Ka=3.5×103 M-1), resulting in a 1 : 1 host-guest complex NP6@CLB. This complex not only effectively prevents premature drug leakage and improves drug stability but also significantly reduces the cytotoxicity of CLB on L-02 cells. Notably, NP6 also demonstrated superior complexation (Ka=3.6×103 M-1) with ATP, an endogenous substance in cells. During NP6@CLB delivery, ATP can compete with CLB to form a host-guest complex with NP6. This process blocks drug efflux while releasing CLB, thereby synergistically enhancing the antitumor effects on HeLa cells. This "one stone, two birds" design strategy-where host-guest complexes facilitate both direct drug delivery and synergistic enhancement of antitumor properties via ATP binding, opens a new perspective for constructing multifunctional supramolecular chemotherapeutic platforms based on pillar[n]arene.
Collapse
Affiliation(s)
- Xinyu Jia
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Haoyu Wei
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yan Huang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Traditional Medical & Pharmaceutical Science, Nanning, China
| | - Wengui Duan
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Luzhi Liu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, PR China
| |
Collapse
|
42
|
Xie S, Zhou Y, Zhu H, Xu X, Zhang H, Yuan C, Huang M, Xu P, Li J, Liu Y. Interface-driven structural evolution on diltiazem as novel uPAR inhibitors: from in silico design to in vitro evaluation. Mol Divers 2025; 29:1261-1274. [PMID: 38935305 DOI: 10.1007/s11030-024-10908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) emerges as a key target for anti-metastasis owing to its pivotal role in facilitating the invasive and migratory processes of cancer cells. Recently, we identified the uPAR-targeting anti-metastatic ability of diltiazem (22), a commonly used antihypertensive agent. Fine-tuning the chemical structures of known hits represents a vital branch of drug development. To develop novel anti-metastatic drugs, we performed an interface-driven structural evolution strategy on 22. The uPAR-targeting and anti-cancer abilities of this antihypertensive drug wereidentified by us recently. Based on in silico strategy, including extensive molecular dynamics (MD) simulations, hierarchical binding free energy predictions, and ADMET profilings, we designed, synthesized, and identified three new diltiazem derivatives (221-8, 221-57, and 221-68) as uPAR inhibitors. Indeed, all of these three derivatives exhibited uPAR-depending inhibitory activity against PC-3 cell line invasion at micromolar level. Particularly, derivatives 221-68 and 221-8 showed enhanced uPAR-dependent inhibitory activity against the tumor cell invasion compared to the original compound. Microsecond timesclae MD simulations demonstrated the optimized moiety of 221-68 and 221-8 forming more comprehensive interactions with the uPAR, highlighting the reasonability of our strategy. This work introduces three novel uPAR inhibitors, which not only pave the way for the development of effective anti-metastatic therapeutics, but also emphasize the efficacy and robustness of an in silico-based lead compound optimization strategy in drug design.
Collapse
Affiliation(s)
- Song Xie
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yang Zhou
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Hao Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xinyi Xu
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Han Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, China.
| | - Yichang Liu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
43
|
Chae S, Chae S, Kang TG, Kim SJ, Choi A. Optimization-Incorporated Deep Learning Strategy to Automate L3 Slice Detection and Abdominal Segmentation in Computed Tomography. Bioengineering (Basel) 2025; 12:367. [PMID: 40281727 PMCID: PMC12025211 DOI: 10.3390/bioengineering12040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
This study introduces a deep learning-based strategy to automatically detect the L3 slice and segment abdominal tissues from computed tomography (CT) images. Accurate measurement of muscle and fat composition at the L3 level is critical as it can serve as a prognostic biomarker for cancer diagnosis and treatment. However, current manual approaches are time-consuming and prone to class imbalance, since L3 slices constitute only a small fraction of the entire CT dataset. In this study, we propose an optimization-incorporated strategy that integrates augmentation ratio and class weight adjustment as correction design variables within deep learning models. In this retrospective study, the CT dataset was privately collected from 150 prostate cancer and bladder cancer patients at the Department of Urology of Gangneung Asan Hospital. A ResNet50 classifier was used to detect the L3 slice, while standard Unet, Swin-Unet, and SegFormer models were employed to segment abdominal tissues. Bayesian optimization determines optimal augmentation ratios and class weights, mitigating the imbalanced distribution of L3 slices and abdominal tissues. Evaluation of CT data from 150 prostate and bladder cancer patients showed that the optimized models reduced the slice detection error to approximately 0.68 ± 1.26 slices and achieved a Dice coefficient of up to 0.987 ± 0.001 for abdominal tissue segmentation-improvements over the models that did not consider correction design variables. This study confirms that balancing class distribution and properly tuning model parameters enhances performance. The proposed approach may provide reliable and automated biomarkers for early cancer diagnosis and personalized treatment planning.
Collapse
Affiliation(s)
- Seungheon Chae
- Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Seongwon Chae
- Department of Biomedical Engineering, College of Medical Convergence, Catholic Kwandong University, Gangneung 25601, Republic of Korea;
| | - Tae Geon Kang
- Institute for Trauma Research, College of Medicine, Korea University, Seoul 02708, Republic of Korea;
| | - Sung Jin Kim
- Department of Urology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung 25440, Republic of Korea
| | - Ahnryul Choi
- Department of Biomedical Engineering, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
44
|
Sun X, Hu X. Unveiling Matrix Metalloproteinase 13's Dynamic Role in Breast Cancer: A Link to Physical Changes and Prognostic Modulation. Int J Mol Sci 2025; 26:3083. [PMID: 40243781 PMCID: PMC11988641 DOI: 10.3390/ijms26073083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The biomechanical properties of the extracellular matrix (ECM) including its stiffness, viscoelasticity, collagen architecture, and temperature constitute critical biomechanical cues governing breast cancer progression. Matrix metalloproteinase 13 (MMP13) is an important marker of breast cancer and plays important roles in matrix remodelling and cell metastasis. Emerging evidence highlights MMP13 as a dynamic modulator of the ECM's physical characteristics through dual mechanoregulatory mechanisms. While MMP13-mediated collagen degradation facilitates microenvironmental softening, thus promoting tumour cell invasion, paradoxically, its crosstalk with cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) drives pathological stromal stiffening via aberrant matrix deposition and crosslinking. This biomechanical duality is amplified through feedforward loops with an epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) populations, mediated by signalling axes such as TGF-β/Runx2. Intriguingly, MMP13 exhibits context-dependent mechanomodulatory effects, demonstrating anti-fibrotic activity and inhibiting the metastasis of breast cancer. At the same time, angiogenesis and increased metabolism are important mechanisms through which MMP13 promotes a temperature increase in breast cancer. Targeting the spatiotemporal regulation of MMP13's mechanobiological functions may offer novel therapeutic strategies for disrupting the tumour-stroma vicious cycle.
Collapse
Affiliation(s)
- Xiaomeng Sun
- Queen Mary School, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China;
| | - Xiaojuan Hu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China;
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China
| |
Collapse
|
45
|
Li T, Li T, Liang Y, Yuan Y, Liu Y, Yao Y, Lei X. Colorectal cancer cells-derived exosomal miR-188-3p promotes liver metastasis by creating a pre-metastatic niche via activation of hepatic stellate cells. J Transl Med 2025; 23:369. [PMID: 40134019 PMCID: PMC11938777 DOI: 10.1186/s12967-025-06334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/01/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND/AIM Metastasis is the leading cause of mortality for colorectal cancer (CRC). Cancer-derived exosomes are widely recognized as the primary catalysts behind the development of pre-metastasis niche (PMN) in distal sites. However, the exact mechanism behind this process in CRC remains elusive. This study aimed to investigate the function and mechanisms underlying the role of exosomal miR-188-3p in activating hepatic stellate cells (HSCs) to develop the PMN and promote liver metastasis. METHODS We extracted exosomes from CRC cells using ultracentrifugation. Exosomes were identified using transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Exosome uptake was assessed using fluorescence tracing, exosome PKH67 staining, and real-time quantitative PCR. The effects of CRC cell-derived exosomes on HSCs migration were evaluated using Transwell migration and wound healing assays. Key differentially expressed miRNAs were screened from the GEO database, and bioinformatics prediction along with dual-luciferase reporter assays were used to identify downstream target genes of miR-188-3p. Downstream related proteins of the target genes were detected by Western blot. In vivo, the distribution of exosomes and activation of HSCs in the liver were explored by tail vein injection of exosomes into nude mice. Further, the impact of exosomal miR-188-3p on liver metastasis was investigated using a spleen injection liver metastasis model. Finally, the expression levels of miR-188-3p in exosomes from CRC patient plasma were determined by real-time quantitative PCR, and the relationship between the expression of miR-188-3p in plasma exosomes and CRC prognosis was analyzed. RESULTS The expression level of miR-188-3p within plasma exosomes demonstrated a statistically significant increase in CRC with liver metastasis compared to those without liver metastases. We also demonstrated the transferability of miR-188-3p from CRC cells to HSCs cells via the exosomes. Exosomal miR-188-3p plays a pivotal role in orchestrating the establishment of PMN through targeting PHLPP2 to activate HSCs before tumor metastasis. Exosomal miR-188-3p was found to actively foster in vivo metastasis of CRC. Additionally, plasma exosomal miR-188-3p potentially serves as a viable blood-based biomarker for CRLM. CONCLUSION Exosomal miR-188-3p derived from CRC cells can promote liver metastasis by activating HSCs to form a PMN through targeting PHLPP2 to activate the AKT/mTOR pathway. These results offer a new perspective on the mechanisms driving CRLM.
Collapse
Affiliation(s)
- Tao Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Taiyuan Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yahang Liang
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yuli Yuan
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yang Liu
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yao Yao
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiong Lei
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
46
|
Wang R, Wu J, Lin Y, Xiao Y, Yang B, Yao S, Pan T, Fu Z, Li S, Wang C, Zhu Y. An epitope-directed mRNA vaccine inhibits tumor metastasis through the blockade of MICA/B α1/2 shedding. Cell Rep Med 2025; 6:101981. [PMID: 39999840 PMCID: PMC11970329 DOI: 10.1016/j.xcrm.2025.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 11/27/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Antigenic peptide-based mRNA vaccines have been explored for immunotherapeutic use in various types of cancer because of their advantages in activating durable and specific immune responses. However, their role in modulating tumor metastasis is still unclear. Here, we identify a conserved linear epitope-based peptide, Ma3P, located in the proteolytic region of major histocompatibility complex (MHC) class I-related chain A (MICA) α3 and further design mCM10-L, an mRNA vaccine that encodes the carrier protein CRM197 and 10 tandem repeats of Ma3P. We demonstrate that vaccination with mCM10-L induces the production of specific antibodies that block MICA/B α1/2 shedding, activate CD8+ T cells and natural killer (NK) cells, and significantly inhibit MICA/B+ tumor metastasis in mice. Furthermore, mCM10-L stimulation triggers the production of specific antibodies to promote MICA/B-mediated immune killing in an in-vitro-interacting human organoid model and humanized mice. Our results indicate the potential clinical application prospects of the mCM10-L vaccine.
Collapse
Affiliation(s)
- Rui Wang
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifeng Lin
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yufei Xiao
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Yang
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Yao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianhui Pan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhixuan Fu
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Shuyu Li
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Caihua Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
47
|
Liu Z, Song H, Wang Z, Hu Y, Zhong X, Liu H, Zeng J, Ye Z, Ning W, Liang Y, Yuan S, Deng Z, Jin L, Mo J, Ren J, Yao M. A novel optimized orthotopic mouse model for brain metastasis with sustained cerebral blood circulation and capability of multiple delivery. Clin Exp Metastasis 2025; 42:19. [PMID: 40095206 PMCID: PMC11913983 DOI: 10.1007/s10585-025-10336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Brain metastasis is thought to be related to the high mortality and poor prognosis of lung cancer. Despite significant advances in the treatment of primary lung cancer, the unique microenvironment of the brain renders current therapeutic strategies largely ineffective against brain metastasis. The lack of effective drugs for brain metastasis treatment is primarily due to the incomplete understanding of the mechanisms underlying its initiation and progression. Currently, our understanding of brain metastasis remains limited, primarily due to the absence of appropriate models that can realistically simulate the entire process of tumor cell detachment from the primary site, circulation through the bloodstream, and eventual colonization of the brain. Therefore, there is a pressing need to develop more suitable lung cancer brain metastasis models that can effectively replicate these critical stages of metastasis. Here, based on the traditional carotid artery injection model, we established a novel orthotopic mouse model by using a light-controlled hydrogel to repair the puncture site on the carotid artery, with sustained cerebral blood circulation and the capability of multiple delivery cancer cell to mimic lung cancer brain metastasis. The optimized orthotopic mouse model significantly reduced cerebral ischemia and improved cerebral oxygenation by 60% compared to the traditional orthotopic mouse model, enhancing post-operative survival rates. It also showed a reduction in pro-inflammatory cytokines and featured less inflammatory and more resting states of microglial and astrocyte cells. Furthermore, the optimized orthotopic mouse model markedly increased the success rate and absolute number of the metastatic clones in the brain. Additionally, the multiple delivery model based on the optimized orthotopic mouse model substantially augmented the tumor clone number and formation rates compared to single injection in the optimized orthotopic mouse model. This model overcomes previous limitations by maintaining cerebral circulation, providing a more accurate simulation of the continuous entry of tumor cells into cerebral circulation. It offers a robust platform for studying the interactions of cancer cells with the brain microenvironment and testing new therapeutic approaches.
Collapse
Affiliation(s)
- Zihao Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Huisheng Song
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Zhenning Wang
- Department of Neurosurgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Yang Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Xiaoxuan Zhong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing andCommunication, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Zhiming Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Wenfeng Ning
- Ningyuan County People's Hospital, Yongzhou, 425699, Hunan, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing andCommunication, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Shengfang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Zijun Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Long Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing andCommunication, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jieying Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China.
| |
Collapse
|
48
|
Wang M, Yang J, Wang S, Gill H, Cheng H. Immunotherapy and the Tumor Microenvironment in Brain Metastases from Non-Small Cell Lung Cancer: Challenges and Future Directions. Curr Oncol 2025; 32:171. [PMID: 40136375 PMCID: PMC11941645 DOI: 10.3390/curroncol32030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Brain metastases (BMs) are a relatively common and severe complication in advanced non-small cell lung cancer (NSCLC), significantly affecting patient prognosis. Metastatic tumor cells can alter the brain tumor microenvironment (TME) to promote an immunosuppressive state, characterized by reduced infiltration of tumor-infiltrating lymphocytes (TILs), diminished expression of programmed death-ligand 1 (PD-L1), and changes in other proinflammatory factors and immune cell populations. Microglia, the resident macrophages of the brain, play a pivotal role in modulating the central nervous system (CNS) microenvironment through interactions with metastatic cancer cells, astrocytes, and infiltrating T cells. The M2 phenotype of microglia contributes to immunosuppression in BM via the activation of signaling pathways such as STAT3 and PI3K-AKT-mTOR. Recent advances have enhanced our understanding of the immune landscape of BMs in NSCLC, particularly regarding immune evasion within the CNS. Current immunotherapeutic strategies, including immune checkpoint inhibitors, have shown promise for NSCLC patients with BM, demonstrating intracranial activity and manageable safety profiles. Future research is warranted to further explore the molecular and immune mechanisms underlying BM, aiming to develop more effective treatments.
Collapse
Affiliation(s)
- Meng Wang
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.W.)
| | - Jihua Yang
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.W.)
| | - Shuai Wang
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.W.)
| | - Harjot Gill
- Department of Pathology, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Haiying Cheng
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.W.)
| |
Collapse
|
49
|
Hu S, Sun D, Tang L, Kong L, Liu Y, Liu F, Tang D, Lu X, Wang Y. Follicle-stimulating hormone peptide-conjugated liposomes in the treatment of epithelial ovarian cancer through the induction of M2-to-M1 macrophage repolarization. Int J Pharm 2025; 672:125334. [PMID: 39933608 DOI: 10.1016/j.ijpharm.2025.125334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION The silent killer epithelial ovarian cancer (EOC) is a lethal malignancy with high mortality rate and often diagnosed at an advanced stage. Traditional chemotherapy for EOC remains unsatisfactory as the tumor microenvironment (TME) is complicated and contains multiple factors such as tumor associated macrophages (TAMs). Therefore, a drug delivery system which codelivery chemotherapy drug and immune modulator for EOC treatment is urgently needed. METHODS Follicle-stimulating hormone peptide-conjugated paclitaxel and ginsenoside Rh2 codelivery liposomes (FSH@PTX-Rh2-Lips) were prepared in this study. FSH was decorated on the liposomal surface to enhance cellar uptake, PTX was used to kill cancer cells, and Rh2 was added to induce macrophages repolarization as well as a member material. The targeting, anti-tumor effect and impact on macrophage repolarization of FSH@PTX-Rh2-Lips were evaluated in vitro and in vivo. RESULTS With the ideal physicochemical properties, FSH@PTX-Rh2-Lips displayed increased cellular uptake, strong cytotoxicity to ID8 cells, inhibitory effect of tumor cell metastasis, and ability to induce macrophage repolarization from M2 to M1 in vitro. The tumor-bearing mice model suggested FSH@PTX-Rh2-Lips showed significant effect on antitumor and tumor recurrence, and the mechanism of FSH@PTX-Rh2-Lips in treatment of EOC was related to inhibiting tumor growth and inducing macrophage repolarization. CONCLUSION FSH@PTX-Rh2-Lips with function of affecting TAMs repolarization and altering the TME were successfully prepared and might offer an effective therapeutic strategy against EOC.
Collapse
Affiliation(s)
- Shengxia Hu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Dan Sun
- Department of Obstetrics and Gynecology, Dalian Women and Children's Medical Center (Group), Dalian, People's Republic of China
| | - Ling Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Fang Liu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Dongmei Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Xuhong Lu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China.
| | - Yuanyuan Wang
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China.
| |
Collapse
|
50
|
Kang HS, Lim HK, Jang WY, Cho JY. Anti-Colorectal Cancer Activity of Panax and Its Active Components, Ginsenosides: A Review. Int J Mol Sci 2025; 26:2593. [PMID: 40141242 PMCID: PMC11941759 DOI: 10.3390/ijms26062593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Colorectal cancer (CRC) poses a significant health burden worldwide and necessitates novel treatment approaches with fewer side effects than conventional chemotherapy. Many natural compounds have been tested as possible cancer treatments. Plants in the genus Panax have been widely studied due to their therapeutic potential for various diseases such as inflammatory disorders and cancers. Extracts from plants of genus Panax activate upstream signals, including those related to autophagy and the generation of reactive oxygen species, to induce intrinsic apoptosis in CRC cells. The root extract of Panax notoginseng (P. notoginseng) regulated the gut microbiota to enhance the T-cell-induced immune response against CRC. Protopanaxadiol (PPD)-type ginsenosides, especially Rh2, Rg3, Rb1, and Rb2, significantly reduced proliferation of CRC cells and tumor size in a xenograft mouse model, as well as targeting programmed death (PD)-1 to block the immune checkpoint of CRC cells. Moreover, modified nanocarriers with ginsenosides upregulated drug efficacy, showing that ginsenosides can also be utilized as drug carriers. An increasing body of studies has demonstrated the potential of the genus Panax in curing CRC. Ginsenosides are promising active compounds in the genus Panax, which can also support the activity of conventional cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.S.K.); (H.K.L.); (W.Y.J.)
| |
Collapse
|