1
|
Zhang J, Bao Y, Yu Z, Lin Y. Application and clinical translational value of a predictive model based on N 7-methylguanosine-related long non-coding RNAs in cervical squamous cell carcinoma. Oncol Lett 2025; 30:341. [PMID: 40438871 PMCID: PMC12117525 DOI: 10.3892/ol.2025.15087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/04/2025] [Indexed: 06/01/2025] Open
Abstract
Cervical squamous cell carcinoma (CSCC) is one of the most common gynecological malignancies affecting women globally. The present study aimed to develop a predictive model based on N7-methylguanosine-related long non-coding RNAs (lncRNAs) to evaluate risk stratification, analyze immune infiltration and guide the selection of sensitive drugs in CSCC. Pearson's correlation, univariate Cox and Least Absolute Shrinkage and Selection Operator regression analyses of transcriptome data from The Cancer Genome Atlas and the Genotype-Tissue Expression database were conducted to construct a prognostic risk prediction model for CSCC. The stability of the model was tested before evaluating its prognostic value in CSCC. Further analysis of enrichment, immune infiltration and drug resistance provided directions for clinical translation. The lncRNAs used to construct the model were validated using reverse transcription-quantitative PCR. The developed predictive model was stable and may hold notable clinical translational value for immunotherapy and drug selection in CSCC in the future.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Yingna Bao
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Zhilong Yu
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Yu Lin
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| |
Collapse
|
2
|
Xi W, Sun X, Wang M, Wang X, Li K, Jiang R, Jia X, Wang W. Identification of progression related LncRNAs in colorectal cancer aggressiveness. Sci Rep 2025; 15:17258. [PMID: 40383716 PMCID: PMC12086236 DOI: 10.1038/s41598-025-02096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
Colorectal cancer (CRC) progression involves complex molecular alterations, including the dysregulation of long non-coding RNAs (lncRNAs). In this study, we identified key progression-related lncRNAs in CRC by integrating transcriptomic data from TCGA and single-cell RNA sequencing (scRNA-seq). Differential expression analysis revealed numerous lncRNAs associated with CRC progression. To systematically prioritize these lncRNAs, we developed a scoring system incorporating multiple progression-related signatures, differential expression, and survival analysis. This approach identified 198 key lncRNAs, including both known (e.g., LINC01615) and novel candidates (e.g., AC007998.3). Experimental validation confirmed that LINC01615 was significantly upregulated in CRC tissues, whereas AC007998.3 was downregulated. Further analyses indicated that these lncRNAs influence CRC progression through cis-, trans-, and post-transcriptional regulation. Patients were classified into distinct molecular subgroups based on lncRNA expression, exhibiting significant differences in prognosis and immune microenvironment composition. The enrichment of progression-related lncRNAs among differentially expressed lncRNAs was statistically significant, reinforcing their functional relevance. Validation across independent datasets demonstrated the robustness of our findings. Our research provides novel insights into the molecular mechanisms underlying CRC progression and highlights the potential of progression-related lncRNAs as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Wei Xi
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Xinxin Sun
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Mingwei Wang
- Traditional Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250035, Shandong, China
| | - Xizi Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Kun Li
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Runze Jiang
- Traditional Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250035, Shandong, China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Wenxiao Wang
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China.
| |
Collapse
|
3
|
Preckwinkel P, Mir KUI, Otto FW, Elrewany H, Sinz A, Hüttelmaier S, Bley N, Gutschner T. Long Non-Coding RNAs and RNA-Binding Proteins in Pancreatic Cancer Development and Progression. Cancers (Basel) 2025; 17:1601. [PMID: 40427100 PMCID: PMC12110025 DOI: 10.3390/cancers17101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and is responsible for about 467,000 cancer deaths annually. An oftentimes asymptomatic early phase of this disease results in a delayed diagnosis, and patients often present with advanced disease. Current treatment options have limited survival benefits, and only a minor patient population carries actionable genomic alterations. Hence, innovative personalized treatment strategies that consider molecular, cellular and functional analyses are urgently needed for pancreatic cancer patients. However, the majority of the genetic alterations found in PDAC are currently undruggable, or patients' response is not as expected. Therefore, non-genomic biomarkers and alternative molecular targets should be considered in order to advance the clinical management of PDAC patients. In line with this, recent gene expression and single-cell transcriptome analyses have identified molecular subtypes and transcriptional cell states that affect disease progression and drug efficiency. In this review, we will introduce long non-coding RNAs (lncRNAs) as well as RNA-binding proteins (RBPs) that are able to modulate the transcriptome of a cell through diverse mechanisms, thereby contributing to disease progression. We will provide a brief overview about the general functions of lncRNAs and RBPs, respectively. Subsequently, we will highlight selected lncRNAs and RBPs that have been shown to play a role in PDAC development, progression and drug response. Finally, we will present strategies aiming to interfere with the expression and function of lncRNAs and RBPs.
Collapse
Affiliation(s)
- Pit Preckwinkel
- Section for RNA Biology and Pathogenesis, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Khursheed Ul Islam Mir
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.U.I.M.); (H.E.); (S.H.)
| | - Florian W. Otto
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.W.O.); (A.S.)
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Hend Elrewany
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.U.I.M.); (H.E.); (S.H.)
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.W.O.); (A.S.)
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.U.I.M.); (H.E.); (S.H.)
| | - Nadine Bley
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.U.I.M.); (H.E.); (S.H.)
| | - Tony Gutschner
- Section for RNA Biology and Pathogenesis, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| |
Collapse
|
4
|
Wang J, Liu ZX, Huang ZH, Wen J, Rao ZZ. Long non-coding RNA in the regulation of cell death in hepatocellular carcinoma. World J Clin Oncol 2025; 16:104061. [PMID: 40290684 PMCID: PMC12019274 DOI: 10.5306/wjco.v16.i4.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/02/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer, accounting for 90% of all cases. Currently, early diagnosis of HCC can be achieved through serum alpha-fetoprotein detection, B-ultrasound, and computed tomography scanning; however, their specificity and sensitivity are suboptimal. Despite significant advancements in HCC biomarker detection, the prognosis for patients with HCC remains unfavorable due to tumor heterogeneity and limited understanding of its pathogenesis. Therefore, it is crucial to explore more sensitive HCC biomarkers for improved diagnosis, monitoring, and management of the disease. Long non-coding RNA (lncRNA) serves as an auxiliary carrier of genetic information and also plays diverse intricate regulatory roles that greatly contribute to genome complexity. Moreover, investigating gene expression regulation networks from the perspective of lncRNA may provide insights into the diagnosis and prognosis of HCC. We searched the PubMed database for literature, comprehensively classified regulated cell death mechanisms and systematically reviewed research progress on lncRNA-mediated cell death pathways in HCC cells. Furthermore, we prospectively summarize its potential implications in diagnosing and treating HCC.
Collapse
Affiliation(s)
- Jiang Wang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zi-Xuan Liu
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhi-Hong Huang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhou-Zhou Rao
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410003, Hunan Province, China
| |
Collapse
|
5
|
Zhu J, Jian Z, Liu F, Le L. The emerging landscape of small nucleolar RNA host gene 10 in cancer mechanistic insights and clinical relevance. Cell Signal 2025; 127:111590. [PMID: 39798772 DOI: 10.1016/j.cellsig.2025.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Small nucleolar RNA host gene 10 (SNHG10) is a newly recognized long non-coding RNA (lncRNA) with significant implications in cancer biology. Abnormal expression of SNHG10 has been observed in various solid tumors and hematological malignancies. Research conducted in vivo and in vitro has revealed that SNHG10 plays a pivotal role in numerous biological processes, including cell proliferation, apoptosis, invasion and migration, drug resistance, energy metabolism, immune evasion, as well as tumor growth and metastasis. SNHG10 regulates tumor development through several mechanisms, such as competing with microRNA (miRNA) for binding sites, modulating various signaling pathways, influencing transcriptional activity, and affecting epigenetic regulation. The diverse biological functions and intricate mechanisms of SNHG10 highlight its considerable clinical relevance, positioning it as a potential pan-cancer biomarker and therapeutic target. This review aims to summarize the role of SNHG10 in tumorigenesis and cancer progression, clarify the molecular mechanisms at play, and explore its clinical significance in cancer diagnosis and prognosis prediction, along with its therapeutic potential.
Collapse
Affiliation(s)
- Jingyu Zhu
- Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Zihao Jian
- Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Fangteng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China.
| | - Lulu Le
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China.
| |
Collapse
|
6
|
John A, Almulla N, Elboughdiri N, Gacem A, Yadav KK, Abass AM, Alam MW, Wani AW, Bashir SM, Rab SO, Kumar A, Wani AK. Non-coding RNAs in Cancer: Mechanistic insights and therapeutic implications. Pathol Res Pract 2025; 266:155745. [PMID: 39637712 DOI: 10.1016/j.prp.2024.155745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Non-coding RNAs have gathered significant attention for their unique roles in biological regulation. Across a broad spectrum of developmental processes and diseases, particularly in human malignancies, ncRNAs play pivotal roles in regulatory mechanisms. MicroRNAs, long noncoding RNAs, and small nucleolar RNAs stand out among the diverse forms of ncRNAs that have been implicated in cancer. MiRNAs, classified as short non-coding RNAs, modulate gene expression by binding to messenger RNA molecules, thereby inhibiting their translation. Altered miRNA expression has been associated with the onset and progression of various malignancies, including lung, breast, and prostate cancer. In contrast, lncRNAs, characterized as longer ncRNAs, exert control over gene expression through various mechanisms, such as chromatin remodelling and gene silencing. This review offers a comprehensive examination of the numerous ncRNAs that have emerged as crucial regulators of gene expression, playing implicated roles in the initiation and progression of diverse cancers.
Collapse
Affiliation(s)
- Arjumand John
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Nuha Almulla
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Aout, Skikda 1955, Algeria
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 602105, Tamil Nadu, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Anass M Abass
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia; Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab 144411, India.
| |
Collapse
|
7
|
Chen C, Zhang Z, Liu Y, Hong W, Karahan H, Wang J, Li W, Diao L, Yu M, Saykin AJ, Nho K, Kim J, Han L. Comprehensive characterization of the transcriptional landscape in Alzheimer's disease (AD) brains. SCIENCE ADVANCES 2025; 11:eadn1927. [PMID: 39752483 PMCID: PMC11698078 DOI: 10.1126/sciadv.adn1927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Alzheimer's disease (AD) is the leading dementia among the elderly with complex origins. Despite extensive investigation into the AD-associated protein-coding genes, the involvement of noncoding RNAs (ncRNAs) and posttranscriptional modification (PTM) in AD pathogenesis remains unclear. Here, we comprehensively characterized the landscape of ncRNAs and PTM events in 1460 samples across six brain regions sourced from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study and Mayo cohorts, encompassing 33,321 long ncRNAs, 92,897 enhancer RNAs, 53,763 alternative polyadenylation events, and 900,221 A-to-I RNA editing events. We additionally identified 25,351 aberrantly expressed ncRNAs and altered PTM events associated with AD traits and further identified the corresponding protein-coding genes to construct regulatory networks. Furthermore, we developed a user-friendly data portal, ADatlas, facilitating users in exploring our results. Our study aims to establish a comprehensive data platform for ncRNAs and PTMs in AD to advance related research.
Collapse
Affiliation(s)
- Chengxuan Chen
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yuan Liu
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Wei Hong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meichen Yu
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Andrew J. Saykin
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Kwangsik Nho
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leng Han
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Xu X, Liu J, Fang C, Deng X, Zhu D, Jiang J, Wu C. NAALADL2-AS2 functions as a competing endogenous RNA to regulate apoptosis and drug resistance in DLBCL. Cancer Biol Ther 2024; 25:2432690. [PMID: 39575888 PMCID: PMC11587827 DOI: 10.1080/15384047.2024.2432690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024] Open
Abstract
To explore role of NAALADL2-AS2 as ceRNA in DLBCL. Fluorescence in situ hybridization was used to determine location of NAALADL2-AS2 in cells and to verify its expression in DLBCL tissues. The miRNAs interacting with NAALADL2-AS2 and related regulatory genes were identified by small interfering RNA (siRNA) assay, luciferase reporter assay, fluorescent quantitative polymerase chain reaction, western blotting. DLBCL cells transfected with NAALADL2-AS2 siRNA or control siRNA were treated with doxorubicin, rituximab at different concentrations alone or in combination. The growth curves, drug sensitivity changes of cells before and after transfection were detected by MTT assay, ATP-TCA drug sensitivity test. Cell proliferation was detected by BrdU cell proliferation assay, and apoptosis was detected by Annexin V-fluorescein isothiocyanate/propidium iodide staining. The effects and mechanisms of NAALADL2-AS2 on proliferation, apoptosis, drug resistance of DLBCL cells were studied at cellular level. We confirmed expression of NAALADL2-AS2 in both cytoplasm and nuclei of DLBCL cells. Additionally, we observed elevated levels of NAALADL2-AS2 in DLBCL tissues. We discovered that NAALADL2-AS2 functions as ceRNA to inhibit expression of miR-34a, miR-125a, whereas overexpression of NAALADL2-AS2 indirectly upregulates expression of BCL-2. Interfering with NAALADL2-AS2 promoted apoptosis in DLBCL cells, resulting in approximately a 40% increase in sensitivity to doxorubicin and rituximab. In vivo experiments further confirmed that targeting NAALADL2-AS2 effectively suppressed tumor growth, leading to upregulation of miR-34a and miR-125a, downregulation of BCL-2, and enhanced apoptosis in DLBCL cells, which significantly improved their sensitivity to doxorubicin and rituximab by approximately 50%. These results indicate that NAALADL2-AS2/miR-34a, miR-125a/BCL-2 networks hold promise as therapeutic targets for treatment of DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Apoptosis/drug effects
- Drug Resistance, Neoplasm/genetics
- Animals
- Cell Line, Tumor
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mice
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Cell Proliferation/drug effects
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- Xenograft Model Antitumor Assays
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of Integrated Chinese and Western Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Juan Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cheng Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu Deng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Danxia Zhu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
9
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z. Non-Coding RNAs in Breast Cancer: Diagnostic and Therapeutic Implications. Int J Mol Sci 2024; 26:127. [PMID: 39795985 PMCID: PMC11719911 DOI: 10.3390/ijms26010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression. Non-coding RNAs are part of an abundant family of single-stranded RNA molecules acting as key regulators in DNA replication, mRNA processing and translation, cell differentiation, growth, and overall genomic stability. In the context of breast cancer, non-coding RNAs are involved in cell cycle control and tumor cell migration and invasion, as well as treatment resistance. Alterations in non-coding RNA expression may contribute to the development and progression of breast cancer, making them promising biomarkers and targets for novel therapeutic approaches. Currently, the use of non-coding RNAs has not yet been applied to routine practice; however, their potential has been very well studied. The present review is a literature overview of current knowledge and its objective is to delineate the function of diverse classes of non-coding RNAs in breast cancer, with a particular emphasis on their potential utility as diagnostic and prognostic markers or as therapeutic targets and tools.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| |
Collapse
|
10
|
Luqman Ali S, Ali A, Ullah W, Alamri A, Mohammed Khatrawi E, Sagimova G, Almabayeva A, Rakhimzhanova F, Askarova G, Suleimenova F, Al-Mahrami N, Kumar Parida P. Exploring advanced genomic and immunoinformatics techniques for identifying drug and vaccine targets against SARS-CoV-2. J Genet Eng Biotechnol 2024; 22:100439. [PMID: 39674651 PMCID: PMC11615475 DOI: 10.1016/j.jgeb.2024.100439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/21/2024] [Accepted: 11/03/2024] [Indexed: 12/16/2024]
Abstract
The coronavirus that causes serious acute respiratory syndrome. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still a major problem in public health and biomedicine. Even if there is no cure for it, the infection is still progressing naturally, and the only time that optimal treatment choices, such as doxycycline, work is at the beginning of the infection. Our project is structured into two critical parts: the first focuses on the identification of potential drug targets, and the second on vaccine design, both aimed at exploring new ways to treat the disease. Initially, cytoplasmic proteins identified through subtractive analysis underwent comprehensive evaluation for potential drug targeting, focusing on metabolic pathways, homology prediction, drugability assessment, essentiality, and protein-protein interactions. Subsequently, surface proteins underwent rigorous assessment for allergenicity, antigenicity, physiochemical attributes, conserved regions, protein interactions, and identification of B and T cell epitopes. Molecular docking and immunological simulation analyses were then employed to develop and characterize a multi-epitope vaccine, integrating findings from the aforementioned evaluations. Findings from the study point to six proteins as potential critical therapeutic targets for SARS-CoV-2, each of which is involved in a distinct metabolic process. The reverse vaccinology analysis suggested that the following proteins could be used as vaccine candidates: sp|P05106, sp|O00187, sp|Q9NYK1, sp|P05556, sp|P09958, and sp|Q9HC29. Four multi-epitope vaccine named as SARS-COV-2-, C1, C2, C3, and C4 was designed by utilizing different adjuvants and eighteen B cell overlapped epitopes which were predicted from top ranked protiens. Based on immune simulation study, the vaccine exhibited adequate immune-reactivity and favorable encounters with toll-type receptors (TLR4, TLR8, HLA, etc ACE), Among them the SARS-COV-2-C2 showed best binding affinity of which all receptors. Findings from this study could be a game-changer in the quest to develop a vaccine and medication that effectively combat SARS-CoV-2. It is necessary to do additional experimental analyses, nevertheless.
Collapse
Affiliation(s)
- Syed Luqman Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Paksitan.
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Paksitan.
| | - Waseef Ullah
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Paksitan
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Elham Mohammed Khatrawi
- Department of Medical Microbiology and Immunology, Taibah University, College of Medicine, Madinah 42353, Saudi Arabia.
| | - Gulzira Sagimova
- Department of Human Anatomy, Astana Medical University, Astana 010000, Kazakhstan.
| | - Aigul Almabayeva
- Department of Human Anatomy, Astana Medical University, Astana 010000, Kazakhstan.
| | | | - Gulsum Askarova
- Department of Clinical Disciplines, Al Farabi Kazakh National University, Almaty 050000, Kazakhstan.
| | - Fatima Suleimenova
- Department of Human Anatomy, Astana Medical University, Astana 010000, Kazakhstan.
| | - Nabras Al-Mahrami
- Bioinformatician, National Genetic Center, Royal Hospital, Ministry of Health, Muscat, Oman
| | - Prasanta Kumar Parida
- Department of KIIT School of Rural Management, KIIT University, Bhubaneswar 751024, India
| |
Collapse
|
11
|
Luqman Ali S, Ali A, Ullah W, Alamri A, Mohammed Khatrawi E, Sagimova G, Almabayeva A, Rakhimzhanova F, Askarova G, Suleimenova F, Al-Mahrami N, Kumar Parida P. Exploring advanced genomic and immunoinformatics techniques for identifying drug and vaccine targets against SARS-CoV-2. J Genet Eng Biotechnol 2024; 22:100439. [DOI: https:/doi.org/10.1016/j.jgeb.2024.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Kohvakka A, Sattari M, Nättinen J, Aapola U, Gregorová P, Tammela TLJ, Uusitalo H, Sarin LP, Visakorpi T, Latonen L. Long noncoding RNA EPCART regulates translation through PI3K/AKT/mTOR pathway and PDCD4 in prostate cancer. Cancer Gene Ther 2024; 31:1536-1546. [PMID: 39147845 PMCID: PMC11489079 DOI: 10.1038/s41417-024-00822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
While hundreds of cancer-associated long noncoding RNAs (lncRNAs) have been discovered, their functional role in cancer cells is still largely a mystery. An increasing number of lncRNAs are recognized to function in the cytoplasm, e.g., as modulators of translation. Here, we investigated the detailed molecular identity and functional role of EPCART, a lncRNA we previously discovered to be a potential oncogene in prostate cancer (PCa). First, we interrogated the transcript structure of EPCART and then confirmed EPCART to be a non-peptide-coding lncRNA using in silico methods. Pathway analysis of differentially expressed protein-coding genes in EPCART knockout cells implied that EPCART modulates the translational machinery of PCa cells. EPCART was also largely located in the cytoplasm and at the sites of translation. With quantitative proteome analysis on EPCART knockout cells we discovered PDCD4, an inhibitor of protein translation, to be increased by EPCART reduction. Further studies indicated that the inhibitory effect of EPCART silencing on translation was mediated by reduced activation of AKT and inhibition of the mTORC1 pathway. Together, our findings identify EPCART as a translation-associated lncRNA that functions via modulation of the PI3K/AKT/mTORC1 pathway in PCa cells. Furthermore, we provide evidence for the prognostic potential of PDCD4 in PCa tumors in connection with EPCART.
Collapse
Affiliation(s)
- Annika Kohvakka
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520, Tampere, Finland
| | - Mina Sattari
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520, Tampere, Finland
| | - Janika Nättinen
- Eye and Vision Research Group, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Ulla Aapola
- Eye and Vision Research Group, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Pavlína Gregorová
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Teuvo L J Tammela
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520, Tampere, Finland
- Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Hannu Uusitalo
- Eye and Vision Research Group, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
- Tays Eye Centre, Tampere University Hospital, 33520, Tampere, Finland
| | - L Peter Sarin
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520, Tampere, Finland.
- Fimlab Laboratories Ltd, Tampere University Hospital, 00014, Tampere, Finland.
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
13
|
Dong Y, He Y, Geng Y, Wei M, Zhou X, Lian J, Hallajzadeh J. Autophagy-related lncRNAs and exosomal lncRNAs in colorectal cancer: focusing on lncRNA-targeted strategies. Cancer Cell Int 2024; 24:328. [PMID: 39342235 PMCID: PMC11439232 DOI: 10.1186/s12935-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a cellular process that involves the degradation and recycling of cellular components, including damaged proteins and organelles. It is an important mechanism for maintaining cellular homeostasis and has been implicated in various diseases, including cancer. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but instead play regulatory roles in gene expression. Emerging evidence suggests that lncRNAs can influence autophagy and contribute to the development and progression of colorectal cancer (CRC). Several lncRNAs have been identified as key players in modulating autophagy in CRC. The dysregulation of autophagy and non-coding RNAs (ncRNAs) in CRC suggests a complex interplay between these two factors in the pathogenesis of the disease. Modulating autophagy may sensitize cancer cells to existing therapies or improve the efficacy of new treatment approaches. Additionally, targeting specific lncRNAs involved in autophagy regulation could potentially be used as a therapeutic intervention to inhibit tumor growth, metastasis, and overcome drug resistance in CRC. In this review, a thorough overview is presented, encompassing the functions and underlying mechanisms of autophagy-related lncRNAs in a range of critical areas within tumor biology. These include cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, and radiation resistance.
Collapse
Affiliation(s)
- Yan Dong
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yiwei He
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yanna Geng
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Meimei Wei
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Xiaomei Zhou
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Jianlun Lian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
14
|
Wang J, Luo H, Yang L, Yuan H. ARAP1-AS1: a novel long non-coding RNA with a vital regulatory role in human cancer development. Cancer Cell Int 2024; 24:270. [PMID: 39090630 PMCID: PMC11295494 DOI: 10.1186/s12935-024-03435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have garnered significant attention in biomedical research due to their pivotal roles in gene expression regulation and their association with various human diseases. Among these lncRNAs, ArfGAP With RhoGAP Domain, Ankyrin Repeat, And PH Domain 1 - Antisense RNA 1 (ARAP1-AS1) has recently emerged as an novel oncogenic player. ARAP1-AS1 is prominently overexpressed in numerous solid tumors and wields influence by modulating gene expression and signaling pathways. This regulatory impact is realized through dual mechanisms, involving both competitive interactions with microRNAs and direct protein binding. ARAP1-AS1 assumes an important role in driving tumorigenesis and malignant tumor progression, affecting biological characteristics such as tumor expansion and metastasis. This paper provides a concise review of the regulatory role of ARAP1-AS1 in malignant tumors and discuss its potential clinical applications as a biomarker and therapeutic target. We also address existing knowledge gaps and suggest avenues for future research. ARAP1-AS1 serves as a prototypical example within the burgeoning field of lncRNA studies, offering insights into the broader landscape of non-coding RNA molecules. This investigation enhances our comprehension of the complex mechanisms that govern the progression of cancer.
Collapse
Affiliation(s)
- Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Lu Yang
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Huazhao Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi Province, 332007, P.R. China.
| |
Collapse
|
15
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
16
|
Adjeroh DA, Zhou X, Paschoal AR, Dimitrova N, Derevyanchuk EG, Shkurat TP, Loeb JA, Martinez I, Lipovich L. Challenges in LncRNA Biology: Views and Opinions. Noncoding RNA 2024; 10:43. [PMID: 39195572 DOI: 10.3390/ncrna10040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
This is a mini-review capturing the views and opinions of selected participants at the 2021 IEEE BIBM 3rd Annual LncRNA Workshop, held in Dubai, UAE. The views and opinions are expressed on five broad themes related to problems in lncRNA, namely, challenges in the computational analysis of lncRNAs, lncRNAs and cancer, lncRNAs in sports, lncRNAs and COVID-19, and lncRNAs in human brain activity.
Collapse
Affiliation(s)
- Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University (WVU), Morgantown, WV 26506, USA
| | - Xiaobo Zhou
- Department of Bioinformatics and Systems Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group, Federal University of Technology-Paraná-UTFPR, Curitiba 86300-000, Brazil
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | - Tatiana P Shkurat
- Department of Genetics, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Jeffrey A Loeb
- Department of Neurology and Rehabilitation, The Center for Clinical and Translational Science, The University of Illinois NeuroRepository, University of Illinois, Chicago, IL 60607, USA
| | - Ivan Martinez
- Department of Microbiology, Immunology & Cell Biology, WVU Cancer Institute, West Virginia University (WVU) School of Medicine, Morgantown, WV 26505, USA
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co., Ltd., Shenzhen 518000, China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| |
Collapse
|
17
|
Newsham I, Sendera M, Jammula SG, Samarajiwa SA. Early detection and diagnosis of cancer with interpretable machine learning to uncover cancer-specific DNA methylation patterns. Biol Methods Protoc 2024; 9:bpae028. [PMID: 38903861 PMCID: PMC11186673 DOI: 10.1093/biomethods/bpae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024] Open
Abstract
Cancer, a collection of more than two hundred different diseases, remains a leading cause of morbidity and mortality worldwide. Usually detected at the advanced stages of disease, metastatic cancer accounts for 90% of cancer-associated deaths. Therefore, the early detection of cancer, combined with current therapies, would have a significant impact on survival and treatment of various cancer types. Epigenetic changes such as DNA methylation are some of the early events underlying carcinogenesis. Here, we report on an interpretable machine learning model that can classify 13 cancer types as well as non-cancer tissue samples using only DNA methylome data, with 98.2% accuracy. We utilize the features identified by this model to develop EMethylNET, a robust model consisting of an XGBoost model that provides information to a deep neural network that can generalize to independent data sets. We also demonstrate that the methylation-associated genomic loci detected by the classifier are associated with genes, pathways and networks involved in cancer, providing insights into the epigenomic regulation of carcinogenesis.
Collapse
Affiliation(s)
- Izzy Newsham
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, United Kingdom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, United Kingdom
| | - Marcin Sendera
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, United Kingdom
- Jagiellonian University, Faculty of Mathematics and Computer Science, 30-348 Kraków, Poland
| | - Sri Ganesh Jammula
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
- MedGenome labs, Bengaluru, 560099, India
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, United Kingdom
- Imperial College London, Hammersmith Campus, London, W12 0NN, United Kingdom
| |
Collapse
|
18
|
Yang H, Zhao L, Li D, An C, Fang X, Chen Y, Liu J, Xiao T, Wang Z. Subtype-WGME enables whole-genome-wide multi-omics cancer subtyping. CELL REPORTS METHODS 2024; 4:100781. [PMID: 38761803 PMCID: PMC11228280 DOI: 10.1016/j.crmeth.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/05/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
We present an innovative strategy for integrating whole-genome-wide multi-omics data, which facilitates adaptive amalgamation by leveraging hidden layer features derived from high-dimensional omics data through a multi-task encoder. Empirical evaluations on eight benchmark cancer datasets substantiated that our proposed framework outstripped the comparative algorithms in cancer subtyping, delivering superior subtyping outcomes. Building upon these subtyping results, we establish a robust pipeline for identifying whole-genome-wide biomarkers, unearthing 195 significant biomarkers. Furthermore, we conduct an exhaustive analysis to assess the importance of each omic and non-coding region features at the whole-genome-wide level during cancer subtyping. Our investigation shows that both omics and non-coding region features substantially impact cancer development and survival prognosis. This study emphasizes the potential and practical implications of integrating genome-wide data in cancer research, demonstrating the potency of comprehensive genomic characterization. Additionally, our findings offer insightful perspectives for multi-omics analysis employing deep learning methodologies.
Collapse
Affiliation(s)
- Hai Yang
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Zhao
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongdong Li
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Congcong An
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyang Fang
- Cornell Tech, Cornell University, New York, NY 14853, USA
| | - Yiwen Chen
- Center for Continuing and Lifelong Education, National University of Singapore, Singapore 119077, Singapore
| | - Jingping Liu
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ting Xiao
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhe Wang
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
19
|
Martinez-Terroba E, Plasek-Hegde LM, Chiotakakos I, Li V, de Miguel FJ, Robles-Oteiza C, Tyagi A, Politi K, Zamudio JR, Dimitrova N. Overexpression of Malat1 drives metastasis through inflammatory reprogramming of the tumor microenvironment. Sci Immunol 2024; 9:eadh5462. [PMID: 38875320 DOI: 10.1126/sciimmunol.adh5462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Expression of the long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) correlates with tumor progression and metastasis in many tumor types. However, the impact and mechanism of action by which MALAT1 promotes metastatic disease remain elusive. Here, we used CRISPR activation (CRISPRa) to overexpress MALAT1/Malat1 in patient-derived lung adenocarcinoma (LUAD) cell lines and in the autochthonous K-ras/p53 LUAD mouse model. Malat1 overexpression was sufficient to promote the progression of LUAD to metastatic disease in mice. Overexpression of MALAT1/Malat1 enhanced cell mobility and promoted the recruitment of protumorigenic macrophages to the tumor microenvironment through paracrine secretion of CCL2/Ccl2. Ccl2 up-regulation was the result of increased global chromatin accessibility upon Malat1 overexpression. Macrophage depletion and Ccl2 blockade counteracted the effects of Malat1 overexpression. These data demonstrate that a single lncRNA can drive LUAD metastasis through reprogramming of the tumor microenvironment.
Collapse
Affiliation(s)
- Elena Martinez-Terroba
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Leah M Plasek-Hegde
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ioannis Chiotakakos
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Vincent Li
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | - Camila Robles-Oteiza
- Departments of Pathology and Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT 06511, USA
| | - Antariksh Tyagi
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06516, USA
| | - Katerina Politi
- Yale Cancer Center, Yale University, New Haven, CT 06511, USA
- Departments of Pathology and Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT 06511, USA
| | - Jesse R Zamudio
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Nadya Dimitrova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Cancer Center, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
20
|
Li Z, Yan H, Wang B, Wang H, Chen A, Zhu T, Liu J, Yu G, Kang M. High methylation of the same promoter of lncRNA ZNF582-AS1/ ZNF582 promotes malignant progression of esophageal cancer. Epigenomics 2024; 16:733-752. [PMID: 38869483 PMCID: PMC11318746 DOI: 10.1080/17501911.2024.2342229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/09/2024] [Indexed: 06/14/2024] Open
Abstract
Aim: This study aimed to investigate the functions of ZNF582-AS1 and ZNF582 in esophageal cancer (EC). Materials & methods: Bioinformatics analysis, qRT-PCR and western blot were used to analyze the expression levels. Biological functions were evaluated using cell-counting kit 8, colony formation, Transwell assays and flow cytometry. FISH was used to detect subcellular localization, and methylation-specific PCR determined gene methylation levels. Animal experiments validated the impact on tumor progression. Results: ZNF582-AS1 and ZNF582 were highly methylated and downregulated in EC. Overexpression of ZNF582-AS1 up-regulated the expression of ZNF582, thereby inhibiting EC cell viability and metastasis, promoting apoptosis and inhibiting tumor growth. Conclusion: Low expression of ZNF582-AS1/ZNF582 mediated by DNA hypermethylation facilitates the malignant progression of EC.
Collapse
Affiliation(s)
- Zhupeng Li
- Second Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Hefang Yan
- Department of Endocrinology, Rheumatology & immunology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Bin Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Haiyong Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Aixia Chen
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Jianjiang Liu
- Department of Radiotherapy, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Mingqiang Kang
- Second Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| |
Collapse
|
21
|
Kulaeva ED, Muzlaeva ES, Mashkina EV. mRNA-lncRNA gene expression signature in HPV-associated neoplasia and cervical cancer. Vavilovskii Zhurnal Genet Selektsii 2024; 28:342-350. [PMID: 38946889 PMCID: PMC11211991 DOI: 10.18699/vjgb-24-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 07/02/2024] Open
Abstract
Cervical cancer is one of the most frequent cancers in women and is associated with human papillomavirus (HPV) in 70 % of cases. Cervical cancer occurs because of progression of low-differentiated cervical intraepithelial neoplasia through grade 2 and 3 lesions. Along with the protein-coding genes, long noncoding RNAs (lncRNAs) play an important role in the development of malignant cell transformation. Although human papillomavirus is widespread, there is currently no well-characterized transcriptomic signature to predict whether this tumor will develop in the presence of HPV-associated neoplastic changes in the cervical epithelium. Changes in gene activity in tumors reflect the biological diversity of cellular phenotype and physiological functions and can be an important diagnostic marker. We performed comparative transcriptome analysis using open RNA sequencing data to assess differentially expressed genes between normal tissue, neoplastic epithelium, and cervical cancer. Raw data were preprocessed using the Galaxy platform. Batch effect correction, identification of differentially expressed genes, and gene set enrichment analysis (GSEA) were performed using R programming language packages. Subcellular localization of lncRNA was analyzed using Locate-R and iLoc-LncRNA 2.0 web services. 1,572 differentially expressed genes (DEGs) were recorded in the "cancer vs. control" comparison, and 1,260 DEGs were recorded in the "cancer vs. neoplasia" comparison. Only two genes were observed to be differentially expressed in the "neoplasia vs. control" comparison. The search for common genes among the most strongly differentially expressed genes among all comparison groups resulted in the identification of an expression signature consisting of the CCL20, CDKN2A, CTCFL, piR-55219, TRH, SLC27A6 and EPHA5 genes. The transcription level of the CCL20 and CDKN2A genes becomes increased at the stage of neoplastic epithelial changes and stays so in cervical cancer. Validation on an independent microarray dataset showed that the differential expression patterns of the CDKN2A and SLC27A6 genes were conserved in the respective gene expression comparisons between groups.
Collapse
Affiliation(s)
- E D Kulaeva
- Southern Federal University, Rostov-on-Don, Russia
| | - E S Muzlaeva
- Southern Federal University, Rostov-on-Don, Russia
| | - E V Mashkina
- Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
22
|
Guo S, Huang B, You Z, Luo Z, Xu D, Zhang J, Lin J. FOXD2-AS1 promotes malignant cell behavior in oral squamous cell carcinoma via the miR-378 g/CRABP2 axis. BMC Oral Health 2024; 24:625. [PMID: 38807101 PMCID: PMC11134640 DOI: 10.1186/s12903-024-04388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Oral squamous cell cancer (OSCC) is a prevalent malignancy in oral cavity, accounting for nearly 90% of oral malignancies. It ranks sixth among the most common types of cancer worldwide and is responsible for approximately 145,000 deaths each year. It is widely accepted that noncoding RNAs participate cancer development in competitive regulatory interaction, knowing as competing endogenous RNA (ceRNA) network, whereby long non-coding RNA (lncRNA) function as decoys of microRNAs to regulate gene expression. LncRNA FOXD2-AS1 was reported to exert an oncogenic role in OSCC. Nevertheless, the ceRNA network mediated by FOXD2-AS1 was not investigated yet. This study aimed to explore the effect of FOXD2-AS1 on OSCC cell process and the underlying ceRNA mechanism. METHODS FOXD2-AS1 expression in OSCC cells were determined via reverse transcription and quantitative polymerase chain reaction. Short hairpin RNA targeting FOXD2-AS1 was transfected into OSCC cells to silence FOXD2-AS1 expression. Then, loss-of-function experiments (n = 3 each assay) were performed to measure cell proliferation, apoptosis, migration, and invasion using colony formation, TdT-mediated dUTP Nick-End Labeling, wound healing and Transwell assays, respectively. RNA binding relation was verified by RNA immunoprecipitation and luciferase reporter assays. Rescue experiments were designed to validate whether FOXD2-AS1 affects cell behavior via the gene cellular retinoic acid binding protein 2 (CRABP2). Statistics were processed by GraphPad Prism 6.0 Software and SPSS software. RESULTS FOXD2-AS1 was significantly upregulated in Cal27 and SCC9 cells (6.8 and 6.4 folds). In response to FOXD2-AS1 knockout, OSCC cell proliferation, migration and invasion were suppressed (approximately 50% decrease) while OSCC cell apoptosis was enhanced (more than two-fold increase). FOXD2-AS1 interacted with miR-378 g to alter CRABP2 expression. CRABP2 upregulation partly rescued (*p < 0.05, **p < 0.01, ***p < 0.001) the inhibitory impact of FOXD2-AS1 depletion on malignant characteristics of OSCC cells. CONCLUSION FOXD2-AS1 enhances OSCC malignant cell behaviors by interacting with miR-378 g to regulate CRABP2 expression.
Collapse
Affiliation(s)
- Shaoyong Guo
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China.
| | - Bixia Huang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, 351100, China
| | - Zhisong You
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Zhenzhi Luo
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Da Xu
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Jieru Zhang
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Jialin Lin
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| |
Collapse
|
23
|
Qiu H, Jiang B, Chen Y, Lin Z, Zheng W, Cao X. Featured lncRNA-based signature for discriminating prognosis and progression of hepatocellular carcinoma. J Appl Genet 2024; 65:355-366. [PMID: 38347289 DOI: 10.1007/s13353-024-00836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/20/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in carcinogenesis and progression of hepatocellular carcinoma (HCC). This study aimed to identify a robust lncRNA signature for predicting the survival of HCC patients. We performed an integrated analysis of the lncRNA expression profiling in The Cancer Genome Atlas (TCGA)-liver hepatocellular carcinoma database to identify the prognosis-related lncRNA for the HCC. The HCC cohort was randomly divided into a training set (n = 250) and a testing set (n = 113). Following a two-step screening, we identified an 18-lncRNA signature risk score. The high-risk subgroups had significantly shorter survival time than the low-risk group in both the training set (P < 0.0001) and the testing set (P = 0.005). Stratification analysis revealed that the prognostic value of the lncRNA-based signature was independent of the tumor stage and pathologic stage. The area under the receiver operating characteristic curve (AUROC) of the 18-lncRNA signature risk score was 0.826 (95%CI, 0.764-0.888), 0.817 (95%CI, 0.759-0.876), and 0.799 (95%CI, 0.731-0.867) for 1-year, 3-year, and 5-year follow-up, respectively. Bioinformatics analyses indicated that the 18 lncRNA might mediate cell cycle, DNA replication processes, and canonical cancer-related pathways, in which MCM3AP-AS1 was a potential target for HCC. In conclusion, the 18-lncRNA signature was a robust predictive biomarker for the prognosis and progression of HCC.
Collapse
Affiliation(s)
- Huiyuan Qiu
- Medical School of Nantong University, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bo Jiang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, Jiangsu, China
| | - Yinqi Chen
- Medical School of Nantong University, Nantong, 226001, China
| | - Zhaoyi Lin
- Medical School of Nantong University, Nantong, 226001, China
| | - Wenjie Zheng
- Medical School of Nantong University, Nantong, 226001, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Xiaolei Cao
- Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
24
|
Sakurai K, Ito H. Multifaced roles of the long non-coding RNA DRAIC in cancer progression. Life Sci 2024; 343:122544. [PMID: 38458555 DOI: 10.1016/j.lfs.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Long non-coding RNAs (lncRNA) are functional RNAs, with over 200 nucleotides in length and lacking protein-coding potential. Studies have indicated that lncRNAs are important gene regulators under physiological conditions. Aberrant lncRNA expression is associated with the initiation and progression of various diseases, including cancers. High-throughput transcriptome analyses have revealed thousands of lncRNAs as putative tumor suppressors or promoters in various cancers, but the detailed molecular mechanisms of each lncRNA remain unclear. Downregulated RNA In Cancer, inhibitor of cell invasion and migration (DRAIC) (also known as LOC145837 and RP11-279F6.1) is a lncRNA that inhibits or promotes cancer progression with several modes of action. DRAIC was originally identified as a tumor-suppressive lncRNA in prostate adenocarcinoma. Subsequent studies also revealed that it has an anti-tumor role in glioblastoma, triple-negative breast cancer, and stomach adenocarcinoma. However, DRAIC exhibits oncogenic functions in other malignancies, such as lung adenocarcinoma and esophageal carcinoma, indicating its highly context-dependent effects on cancer progression and clinical outcomes. DRAIC and its associated pathways regulate various biological processes, including proliferation, invasion, metastasis, autophagy, and neuroendocrine function. This review introduces the multifaceted roles of DRAIC, particularly in cancer progression, and discusses its biological significance and clinical implications.
Collapse
Affiliation(s)
- Kouhei Sakurai
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
25
|
Ai JH, Wen YZ, Dai SJ, Zhang LD, Huang ZJ, Shi J. Exosomal lncRNA HEIH, an essential communicator for hepatocellular carcinoma cells and macrophage M2 polarization through the miR-98-5p/STAT3 axis. J Biochem Mol Toxicol 2024; 38:e23686. [PMID: 38549433 DOI: 10.1002/jbt.23686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Part of human long noncoding RNAs (lncRNAs) has been elucidated to play an essential role in the carcinogenesis and progression of hepatocellular carcinoma (HCC), a type of malignant tumor with poor outcomes. Tumor-derived exosomes harboring lncRNAs have also been implicated as crucial mediators to orchestrate biological functions among neighbor tumor cells. The recruitment of tumor-associated macrophages (TAMs) exerting M2-like phenotype usually indicates the poor prognosis. Yet, the precise involvement of tumor-derived lncRNAs in cross-talk with environmental macrophages has not been fully identified. In this study, we reported the aberrantly overexpressed HCC upregulated EZH2-associated lncRNA (HEIH) in tumor tissues and cell lines was positively correlated with poor prognosis, as well as enriched exosomal HEIH levels in blood plasma and cell supernatants. Besides, HCC cell-derived exosomes transported HEIH into macrophages for triggering macrophage M2 polarization, thereby in turn promoting the proliferation, migration, and invasion of HCC cells. Mechanistically, HEIH acted as a miRNA sponge for miR-98-5p to up-regulate STAT3, which was then further verified in the tumor xenograft models. Collectively, our study provides the evidence for recognizing tumor-derived exosomal lncRNA HEIH as a novel regulatory function through targeting miR-98-5p/STAT3 axis in environmental macrophages, which may shed light on the complicated tumor microenvironment among tumor and immune cells for HCC treatment.
Collapse
Affiliation(s)
- Jun-Hua Ai
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Yu-Zhong Wen
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Shi-Jie Dai
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Li-Dong Zhang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Zhong-Jing Huang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, P.R.China
| |
Collapse
|
26
|
Montero JJ, Trozzo R, Sugden M, Öllinger R, Belka A, Zhigalova E, Waetzig P, Engleitner T, Schmidt-Supprian M, Saur D, Rad R. Genome-scale pan-cancer interrogation of lncRNA dependencies using CasRx. Nat Methods 2024; 21:584-596. [PMID: 38409225 PMCID: PMC11009108 DOI: 10.1038/s41592-024-02190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
Although long noncoding RNAs (lncRNAs) dominate the transcriptome, their functions are largely unexplored. The extensive overlap of lncRNAs with coding and regulatory sequences restricts their systematic interrogation by DNA-directed perturbation. Here we developed genome-scale lncRNA transcriptome screening using Cas13d/CasRx. We show that RNA targeting overcomes limitations inherent to other screening methods, thereby considerably expanding the explorable space of the lncRNAome. By evolving the screening system toward pan-cancer applicability, it supports molecular and phenotypic data integration to contextualize screening hits or infer lncRNA function. We thereby addressed challenges posed by the enormous transcriptome size and tissue specificity through a size-reduced multiplexed gRNA library termed Albarossa, targeting 24,171 lncRNA genes. Its rational design incorporates target prioritization based on expression, evolutionary conservation and tissue specificity, thereby reconciling high discovery power and pan-cancer representation with scalable experimental throughput. Applied across entities, the screening platform identified numerous context-specific and common essential lncRNAs. Our work sets the stage for systematic exploration of lncRNA biology in health and disease.
Collapse
Affiliation(s)
- Juan J Montero
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany.
| | - Riccardo Trozzo
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Maya Sugden
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Alexander Belka
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Ekaterina Zhigalova
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Paul Waetzig
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
27
|
Malagoli G, Valle F, Barillot E, Caselle M, Martignetti L. Identification of Interpretable Clusters and Associated Signatures in Breast Cancer Single-Cell Data: A Topic Modeling Approach. Cancers (Basel) 2024; 16:1350. [PMID: 38611028 PMCID: PMC11011054 DOI: 10.3390/cancers16071350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Topic modeling is a popular technique in machine learning and natural language processing, where a corpus of text documents is classified into themes or topics using word frequency analysis. This approach has proven successful in various biological data analysis applications, such as predicting cancer subtypes with high accuracy and identifying genes, enhancers, and stable cell types simultaneously from sparse single-cell epigenomics data. The advantage of using a topic model is that it not only serves as a clustering algorithm, but it can also explain clustering results by providing word probability distributions over topics. Our study proposes a novel topic modeling approach for clustering single cells and detecting topics (gene signatures) in single-cell datasets that measure multiple omics simultaneously. We applied this approach to examine the transcriptional heterogeneity of luminal and triple-negative breast cancer cells using patient-derived xenograft models with acquired resistance to chemotherapy and targeted therapy. Through this approach, we identified protein-coding genes and long non-coding RNAs (lncRNAs) that group thousands of cells into biologically similar clusters, accurately distinguishing drug-sensitive and -resistant breast cancer types. In comparison to standard state-of-the-art clustering analyses, our approach offers an optimal partitioning of genes into topics and cells into clusters simultaneously, producing easily interpretable clustering outcomes. Additionally, we demonstrate that an integrative clustering approach, which combines the information from mRNAs and lncRNAs treated as disjoint omics layers, enhances the accuracy of cell classification.
Collapse
Affiliation(s)
- Gabriele Malagoli
- Institut Curie, Inserm U900, Mines ParisTech, PSL Research University, 75248 Paris, France; (G.M.); (E.B.)
- Physics Department, University of Turin and INFN, 10125 Turin, Italy;
| | - Filippo Valle
- Physics Department, University of Turin and INFN, 10125 Turin, Italy;
| | - Emmanuel Barillot
- Institut Curie, Inserm U900, Mines ParisTech, PSL Research University, 75248 Paris, France; (G.M.); (E.B.)
| | - Michele Caselle
- Physics Department, University of Turin and INFN, 10125 Turin, Italy;
| | - Loredana Martignetti
- Institut Curie, Inserm U900, Mines ParisTech, PSL Research University, 75248 Paris, France; (G.M.); (E.B.)
| |
Collapse
|
28
|
Al-Hawary SIS, Rodrigues P, Bangali H, Hassan ZF, Elawady A. The role of long noncoding RNA DGCR5 in cancers: Focus on molecular targets. Cell Biochem Funct 2024; 42:e3949. [PMID: 38379219 DOI: 10.1002/cbf.3949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Long noncoding RNAs (lncRNAs) are major components of cellular transcripts that are emerging as important players in various biological pathways. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis, and therapy. Studies have shown that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) with high specificity and accuracy has the potential to become biomarkers in cancers. LncRNA DGCR5 can be noninvasively extracted from body fluids, tissues, and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Now, the underlying mechanisms of lncRNAs such as DGCR5 were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. The DGCR5 lacks an appropriate animal model, which is necessary to gain greater knowledge of their functions. While some studies on the uses of DGCR5 have been carried out, the small sample size makes them unreliable. In this review, we presented a compilation of recent publications addressing the potential of lncRNA DGCR5 that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
29
|
Li D, Hu A. LINC-PINT suppresses breast cancer cell proliferation and migration via MEIS2/PPP3CC/NF-κB pathway by sponging miR-576-5p. Am J Med Sci 2024; 367:201-211. [PMID: 37660994 DOI: 10.1016/j.amjms.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/13/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Breast cancer (BCa) is the most frequent malignant tumor in women. Long non-coding RNAs (lncRNAs) have been acknowledged to exert critical regulating functions in various cancers. Long intergenic non-protein coding RNA, p53 induced transcript (LINC-PINT) has been reported to be a chemosensitizer and a tumor suppressor in BCa. However, its downstream molecular mechanism contributing to its tumor-suppressing role remains to be explored in BCa. METHODS LINC-PINT expression in BCa tissues and cells was measured using quantitative real-time polymerase chain reaction (RT-qPCR). The proliferation of transfected BCa cells was examined by counting kit-8 (CCK-8) and EdU assay. The migrating ability of indicate BCa cells was assessed by wound healing assays. Bioinformatics analysis and mechanism experiments such as RNA immunoprecipitation (RIP), RNA pull down assay, and luciferase reporter assay, were applied to demonstrate the downstream targets of LINC-PINT. RESULTS LINC-PINT was downregulated in BCa tissues and cell lines. Overexpression of LINC-PINT suppressed BCa cell proliferation and migration. LINC-PINT could interact with miR-576-5p to upregulate Meis homeobox 2 (MEIS2) that positively regulated protein phosphatase 3 catalytic subunit gamma (PPP3CC) by inactivating the nuclear factor-κB (NF-κB) pathway. CONCLUSIONS These findings elucidated the anti-tumor role of LINC-PINT in BCa via the miR-576-5p/MEIS2/PPP3CC/NF-κB axis, which suggested that LINC-PINT might serve as a potential therapeutic target for BCa.
Collapse
Affiliation(s)
- Daohong Li
- Department of Pathology, Henan Provincial People's Hospital, Jinshui District, Zhengzhou, Henan, China
| | - Aixia Hu
- Department of Pathology, Henan Provincial People's Hospital, Jinshui District, Zhengzhou, Henan, China.
| |
Collapse
|
30
|
Malgundkar SH, Tamimi Y. The pivotal role of long non-coding RNAs as potential biomarkers and modulators of chemoresistance in ovarian cancer (OC). Hum Genet 2024; 143:107-124. [PMID: 38276976 DOI: 10.1007/s00439-023-02635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological disease that is often diagnosed at later stages due to its asymptomatic nature and the absence of efficient early-stage biomarkers. Previous studies have identified genes with abnormal expression in OC that couldn't be explained by methylation or mutation, indicating alternative mechanisms of gene regulation. Recent advances in human transcriptome studies have led to research on non-coding RNAs (ncRNAs) as regulators of cancer gene expression. Long non-coding RNAs (lncRNAs), a class of ncRNAs with a length greater than 200 nucleotides, have been identified as crucial regulators of physiological processes and human diseases, including cancer. Dysregulated lncRNA expression has also been found to play a crucial role in ovarian carcinogenesis, indicating their potential as novel and non-invasive biomarkers for improving OC management. However, despite the discovery of several thousand lncRNAs, only one has been approved for clinical use as a biomarker in cancer, highlighting the importance of further research in this field. In addition to their potential as biomarkers, lncRNAs have been implicated in modulating chemoresistance, a major problem in OC. Several studies have identified altered lncRNA expression upon drug treatment, further emphasizing their potential to modulate chemoresistance. In this review, we highlight the characteristics of lncRNAs, their function, and their potential to serve as tumor markers in OC. We also discuss a few databases providing detailed information on lncRNAs in various cancer types. Despite the promising potential of lncRNAs, further research is necessary to fully understand their role in cancer and develop effective strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman.
| |
Collapse
|
31
|
Mahato RK, Bhattacharya S, Khullar N, Sidhu IS, Reddy PH, Bhatti GK, Bhatti JS. Targeting long non-coding RNAs in cancer therapy using CRISPR-Cas9 technology: A novel paradigm for precision oncology. J Biotechnol 2024; 379:98-119. [PMID: 38065367 DOI: 10.1016/j.jbiotec.2023.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
Cancer is the second leading cause of death worldwide, despite recent advances in its identification and management. To improve cancer patient diagnosis and care, it is necessary to identify new biomarkers and molecular targets. In recent years, long non-coding RNAs (lncRNAs) have surfaced as important contributors to various cellular activities, with growing proof indicating their substantial role in the genesis, development, and spread of cancer. Their unique expression profiles within specific tissues and their wide-ranging functionalities make lncRNAs excellent candidates for potential therapeutic intervention in cancer management. They are implicated in multiple hallmarks of cancer, such as uncontrolled proliferation, angiogenesis, and immune evasion. This review article explores the innovative application of CRISPR-Cas9 technology in targeting lncRNAs as a cancer therapeutic strategy. The CRISPR-Cas9 system has been widely applied in functional genomics, gene therapy, and cancer research, offering a versatile platform for lncRNA targeting. CRISPR-Cas9-mediated targeting of lncRNAs can be achieved through CRISPR interference, activation or the complete knockout of lncRNA loci. Combining CRISPR-Cas9 technology with high-throughput functional genomics makes it possible to identify lncRNAs critical for the survival of specific cancer subtypes, opening the door for tailored treatments and personalised cancer therapies. CRISPR-Cas9-mediated lncRNA targeting with other cutting-edge cancer therapies, such as immunotherapy and targeted molecular therapeutics can be used to overcome the drug resistance in cancer. The synergy of lncRNA research and CRISPR-Cas9 technology presents immense potential for individualized cancer treatment, offering renewed hope in the battle against this disease.
Collapse
Affiliation(s)
- Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Inderpal Singh Sidhu
- Department of Zoology, Sri Guru Gobind Singh College, Sector 26, Chandigarh, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
32
|
Gao X, Wang G, Zhang M, Zhang X, Zhang S, Long H. LINC01485 contributes to colorectal cancer progression by targeting miR-383-5p/KRT80 axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:398-408. [PMID: 37782686 DOI: 10.1002/tox.23983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are important in tumorigenesis and the development of multiple malignant human tumors, including colorectal cancer (CRC). We aimed to determine the regulatory mechanism of LINC01485 and its biological function in CRC. We estimated the expression of miR-383-5p, KRT80, and LINC01485 in CRC cells and tissues using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. The results were confirmed using RNA immunoprecipitation (RIP) and dual-luciferase assays. Binding relationships among miR-383-5p, LINC01485, and KRT80 were assessed. We explored the molecular mechanisms and functions of the LINC01485/miR-383-5p/KRT80 axis using CCK-8 and colony formation assays. Expression of the apoptotic markers Bcl-2 and Bax was quantified by western blotting, and the effects of LINC01485 on tumor development in vivo were investigated using xenograft tumors. Both LINC01485 and KRT80 were upregulated, whereas miR-383-5p was downregulated in CRC cells and tissues. Knockdown of LINC01485 attenuated CRC cell growth and xenograft tumor formation in vivo, whereas LINC01485 enhanced the proliferative capacity of CRC cells but inhibited apoptosis by sponging miR-383-5p to increase KRT80 expression in CRC cells. The regulatory molecular mechanism of the LINC01485/miR-383-5p/KRT80 axis plays a crucial role in CRC progression. Our findings highlight novel pathways and promising biomarkers for diagnostic and therapeutic application to patients with CRC.
Collapse
Affiliation(s)
- Xia Gao
- Department of Oncology, Wuhan Asia General Hospital, Wuhan, China
| | - Guangxin Wang
- Department of General Surgery, Wuhan Third Hospital, Wuhan, China
| | - Min Zhang
- Department of General Surgery, Wuhan Third Hospital, Wuhan, China
| | - Xinxin Zhang
- Department of General Surgery, Wuhan Third Hospital, Wuhan, China
| | - Shuosheng Zhang
- Department of General Surgery, Wuhan Third Hospital, Wuhan, China
| | - Haocheng Long
- Department of General Surgery, Wuhan Third Hospital, Wuhan, China
| |
Collapse
|
33
|
Yao X, Liu S, Xia H, Li H, Wang Z, Su L, Guo W, Chen H. Transcriptomic sequencing analysis of key long noncoding RNAs and mRNAs expression profiles in postoperative recurrence of hepatocellular carcinoma. Technol Health Care 2024; 32:735-747. [PMID: 37545269 DOI: 10.3233/thc-230123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Recurrence is the main cause of death in hepatocellular carcinoma (HCC) patients after liver resection. OBJECTIVE The long non-coding RNAs (lncRNAs) have been reported participated in progression and prognosis of HCC, however, the vital role of lncRNA in postoperative recurrence of HCC has rarely been systematically identified. METHODS RNA-sequencing (RNA-seq) was performed between orthotopic model of HCC and hepatoma postoperative recurrent model to comprehensively analyze the integrated transcriptome expression profiles of lncRNA and mRNA. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was then conducted to quantify the expression levels of DElncRNAs and their target mRNAs. RESULTS In our study, 211 lncRNAs (P-value < 0.05) and 1125 mRNAs (P-adjust < 0.05) were significantly differentially expressed (DE) between two groups. Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DElncRNAs and DEmRNAs were mainly enriched in lipid metabolism, including Arachidonic acid metabolism, PPAR signaling pathway, Steroid hormone biosynthesis, Linoleic acid metabolism, Inflammatory mediator regulation of TRP channels, and Fatty acid degradation. Furthermore, we constructed lncRNA-mRNA interaction networks and protein-protein interaction (PPI) network, and verified by qRT-PCR, suggesting that increased DEIncRNAs (XLOC_063499 and XLOC_042016) may prevent HCC recurrence after surgery by upregulating on targeted cytochrome P450 (CYP) family genes in the lipid metabolism pathway, such as cyp3a16, cyp3a44, cyp2c39, cyp2c40 and cyp2c68. CONCLUSION Overall, Our findings provided new insights for further investigation of biological function in lncRNA related HCC recurrence.
Collapse
Affiliation(s)
- Xiaohui Yao
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Shenzhen TCM Anorectal Hospital (Futian), Shenzhen, Guangdong, China
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shan Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huan Xia
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hanhan Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhijie Wang
- Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Le Su
- Department of Gynecology and Pediatrics, Traditional Chinese Medicine Hospital of Haizhu District, Guangzhou, Guangdong, China
| | - Wei Guo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hanrui Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Huang W, Xiong T, Zhao Y, Heng J, Han G, Wang P, Zhao Z, Shi M, Li J, Wang J, Wu Y, Liu F, Xi JJ, Wang Y, Zhang QC. Computational prediction and experimental validation identify functionally conserved lncRNAs from zebrafish to human. Nat Genet 2024; 56:124-135. [PMID: 38195860 PMCID: PMC10786727 DOI: 10.1038/s41588-023-01620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
Functional studies of long noncoding RNAs (lncRNAs) have been hindered by the lack of methods to assess their evolution. Here we present lncRNA Homology Explorer (lncHOME), a computational pipeline that identifies a unique class of long noncoding RNAs (lncRNAs) with conserved genomic locations and patterns of RNA-binding protein (RBP) binding sites (coPARSE-lncRNAs). Remarkably, several hundred human coPARSE-lncRNAs can be evolutionarily traced to zebrafish. Using CRISPR-Cas12a knockout and rescue assays, we found that knocking out many human coPARSE-lncRNAs led to cell proliferation defects, which were subsequently rescued by predicted zebrafish homologs. Knocking down coPARSE-lncRNAs in zebrafish embryos caused severe developmental delays that were rescued by human homologs. Furthermore, we verified that human, mouse and zebrafish coPARSE-lncRNA homologs tend to bind similar RBPs with their conserved functions relying on specific RBP-binding sites. Overall, our study demonstrates a comprehensive approach for studying the functional conservation of lncRNAs and implicates numerous lncRNAs in regulating vertebrate physiology.
Collapse
Affiliation(s)
- Wenze Huang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Tuanlin Xiong
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuting Zhao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jian Heng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ge Han
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Pengfei Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhihua Zhao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Ming Shi
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Juan Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Jiazhen Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yixia Wu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Shandong University, Qingdao, China
| | - Jianzhong Jeff Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
35
|
Salido-Guadarrama I, Romero-Cordoba SL, Rueda-Zarazua B. Multi-Omics Mining of lncRNAs with Biological and Clinical Relevance in Cancer. Int J Mol Sci 2023; 24:16600. [PMID: 38068923 PMCID: PMC10706612 DOI: 10.3390/ijms242316600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
In this review, we provide a general overview of the current panorama of mining strategies for multi-omics data to investigate lncRNAs with an actual or potential role as biological markers in cancer. Several multi-omics studies focusing on lncRNAs have been performed in the past with varying scopes. Nevertheless, many questions remain regarding the pragmatic application of different molecular technologies and bioinformatics algorithms for mining multi-omics data. Here, we attempt to address some of the less discussed aspects of the practical applications using different study designs for incorporating bioinformatics and statistical analyses of multi-omics data. Finally, we discuss the potential improvements and new paradigms aimed at unraveling the role and utility of lncRNAs in cancer and their potential use as molecular markers for cancer diagnosis and outcome prediction.
Collapse
Affiliation(s)
- Ivan Salido-Guadarrama
- Departamento de Bioinformatìca y Análisis Estadísticos, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Sandra L. Romero-Cordoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Biochemistry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Bertha Rueda-Zarazua
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
36
|
Liu Y, Zhang J, Cao F, Dong X, Li J, Cao Y, Li Z, Guo Y, Yan J, Liu Y, Zhao Q. N6-methyladenosine-mediated overexpression of long noncoding RNA ADAMTS9-AS2 triggers neuroblastoma differentiation via regulating LIN28B/let-7/MYCN signaling. JCI Insight 2023; 8:e165703. [PMID: 37991019 PMCID: PMC10721320 DOI: 10.1172/jci.insight.165703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
Neuroblastomas have shed light on the differentiation disorder that is associated with spontaneous regression or differentiation in the same tumor at the same time. Long noncoding RNAs (lncRNAs) actively participate in a broad spectrum of biological processes. However, the detailed molecular mechanisms underlying lncRNA regulation of differentiation in neuroblastomas remain largely unknown. Here, we sequenced clinical samples of ganglioneuroma, ganglioneuroblastoma, and neuroblastoma. We compared transcription profiles of neuroblastoma cells, ganglion cells, and intermediate state cells; verified the profiles in a retinoic acid-induced cell differentiation model and clinical samples; and screened out the lncRNA ADAMTS9 antisense RNA 2 (ADAMTS9-AS2), which contributed to neuroblastoma differentiation. ADAMTS9-AS2 upregulation in neuroblastoma cell lines inhibited proliferation and metastatic potential. Additional mechanistic studies illustrated that the interactions between ADAMTS9-AS2 and LIN28B inhibited the association between LIN28B and primary let-7 (pri-let-7) miRNA, then released pri-let-7 into cytoplasm to form mature let-7, resulting in the inhibition of oncogene MYCN activity that subsequently affected cancer stemness and differentiation. Furthermore, we showed that the observed differential expression of ADAMTS9-AS2 in neuroblastoma cells was due to N6-methyladenosine methylation. Finally, ADAMTS9-AS2 upregulation inhibited proliferation and cancer stem-like capabilities in vivo. Taken together, these results show that ADAMTS9-AS2 loss leads to malignant neuroblastoma by increasing metastasis and causing dysfunctional differentiation.
Collapse
Affiliation(s)
- Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jun Zhang
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fang Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaobao Dong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanna Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhanglin Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Guo
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
37
|
Ben-Tov Perry R, Tsoory M, Tolmasov M, Ulitsky I. Silc1 long noncoding RNA is an immediate-early gene promoting efficient memory formation. Cell Rep 2023; 42:113168. [PMID: 37742186 PMCID: PMC10636608 DOI: 10.1016/j.celrep.2023.113168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/30/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are expressed in many brain circuits and types of neurons; nevertheless, their functional significance for normal brain functions remains elusive. Here, we study the functions in the central nervous system of Silc1, an lncRNA we have shown previously to be important for neuronal regeneration in the peripheral nervous system. We found that Silc1 is rapidly and strongly induced in the hippocampus upon exposure to novelty and is required for efficient spatial learning. Silc1 production is important for induction of Sox11 (its cis-regulated target gene) throughout the CA1-CA3 regions and proper expression of key Sox11 target genes. Consistent with its role in neuronal plasticity, Silc1 levels decline during aging and in models of Alzheimer's disease. Overall, we describe a plasticity pathway in which Silc1 acts as an immediate-early gene to activate Sox11 and induce a neuronal growth-associated transcriptional program important for learning.
Collapse
Affiliation(s)
- Rotem Ben-Tov Perry
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Tolmasov
- Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
38
|
Modi A, Lopez G, Conkrite KL, Su C, Leung TC, Ramanan S, Manduchi E, Johnson ME, Cheung D, Gadd S, Zhang J, Smith MA, Guidry Auvil JM, Meshinchi S, Perlman EJ, Hunger SP, Maris JM, Wells AD, Grant SF, Diskin SJ. Integrative Genomic Analyses Identify LncRNA Regulatory Networks across Pediatric Leukemias and Solid Tumors. Cancer Res 2023; 83:3462-3477. [PMID: 37584517 PMCID: PMC10787516 DOI: 10.1158/0008-5472.can-22-3186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/07/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
Long noncoding RNAs (lncRNA) play an important role in gene regulation and contribute to tumorigenesis. While pan-cancer studies of lncRNA expression have been performed for adult malignancies, the lncRNA landscape across pediatric cancers remains largely uncharted. Here, we curated RNA sequencing data for 1,044 pediatric leukemia and extracranial solid tumors and integrated paired tumor whole genome sequencing and epigenetic data in relevant cell line models to explore lncRNA expression, regulation, and association with cancer. A total of 2,657 lncRNAs were robustly expressed across six pediatric cancers, including 1,142 exhibiting histotype-elevated expression. DNA copy number alterations contributed to lncRNA dysregulation at a proportion comparable to protein coding genes. Application of a multidimensional framework to identify and prioritize lncRNAs impacting gene networks revealed that lncRNAs dysregulated in pediatric cancer are associated with proliferation, metabolism, and DNA damage hallmarks. Analysis of upstream regulation via cell type-specific transcription factors further implicated distinct histotype-elevated and developmental lncRNAs. Integration of these analyses prioritized lncRNAs for experimental validation, and silencing of TBX2-AS1, the top-prioritized neuroblastoma-specific lncRNA, resulted in significant growth inhibition of neuroblastoma cells, confirming the computational predictions. Taken together, these data provide a comprehensive characterization of lncRNA regulation and function in pediatric cancers and pave the way for future mechanistic studies. SIGNIFICANCE Comprehensive characterization of lncRNAs in pediatric cancer leads to the identification of highly expressed lncRNAs across childhood cancers, annotation of lncRNAs showing histotype-specific elevated expression, and prediction of lncRNA gene regulatory networks.
Collapse
Affiliation(s)
- Apexa Modi
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Genomics and Computational Biology Graduate Group, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gonzalo Lopez
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Karina L. Conkrite
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tsz Ching Leung
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Sathvik Ramanan
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Elisabetta Manduchi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew E. Johnson
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daphne Cheung
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Samantha Gadd
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois 60208, USA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Malcolm A. Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Elizabeth J. Perlman
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois 60208, USA
| | - Stephen P. Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Divisions of Human Genetics and Endocrinology & Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
39
|
Zheng C, Wei Y, Zhang Q, Sun M, Wang Y, Hou J, Zhang P, Lv X, Su D, Jiang Y, Gumin J, Sahni N, Hu B, Wang W, Chen X, McGrail DJ, Zhang C, Huang S, Xu H, Chen J, Lang FF, Hu J, Chen Y. Multiomics analyses reveal DARS1-AS1/YBX1-controlled posttranscriptional circuits promoting glioblastoma tumorigenesis/radioresistance. SCIENCE ADVANCES 2023; 9:eadf3984. [PMID: 37540752 PMCID: PMC10403220 DOI: 10.1126/sciadv.adf3984] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The glioblastoma (GBM) stem cell-like cells (GSCs) are critical for tumorigenesis/therapeutic resistance of GBM. Mounting evidence supports tumor-promoting function of long noncoding RNAs (lncRNAs), but their role in GSCs remains poorly understood. By combining CRISPRi screen with orthogonal multiomics approaches, we identified a lncRNA DARS1-AS1-controlled posttranscriptional circuitry that promoted the malignant properties of GBM cells/GSCs. Depleting DARS1-AS1 inhibited the proliferation of GBM cells/GSCs and self-renewal of GSCs, prolonging survival in orthotopic GBM models. DARS1-AS1 depletion also impaired the homologous recombination (HR)-mediated double-strand break (DSB) repair and enhanced the radiosensitivity of GBM cells/GSCs. Mechanistically, DARS1-AS1 interacted with YBX1 to promote target mRNA binding and stabilization, forming a mixed transcriptional/posttranscriptional feed-forward loop to up-regulate expression of the key regulators of G1-S transition, including E2F1 and CCND1. DARS1-AS1/YBX1 also stabilized the mRNA of FOXM1, a master transcription factor regulating GSC self-renewal and DSB repair. Our findings suggest DARS1-AS1/YBX1 axis as a potential therapeutic target for sensitizing GBM to radiation/HR deficiency-targeted therapy.
Collapse
Affiliation(s)
- Caishang Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yunfei Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangdong Lv
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yujie Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX 77030, USA
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pediatric Neurosurgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Molecular and Cellular Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland, OH 44195, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, and Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Suyun Huang
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Han Xu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Neuroscience Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
40
|
Raeisi Vanani A, Asadpour S, Aramesh-Boroujeni Z, Mobini Dehkordi M. Studying the interaction between the new neodymium (Nd) complex with the ligand of 1,10-phenanthroline with FS-DNA and BSA. Front Chem 2023; 11:1208503. [PMID: 37601904 PMCID: PMC10433770 DOI: 10.3389/fchem.2023.1208503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
To learn more about the chemotherapeutic and pharmacokinetic properties of a neodymium complex containing 1,10-phenanthroline (dafone), In vitro binding was investigated with bovine serum albumin and fish-salmon DNA, using a variety of molecular modeling research and biophysical approaches. A variety of spectroscopic techniques including fluorescence and absorption were used to investigate the interplay between DNA/BSA and the neodymium complex. The findings revealed that the Nd complex had a high affinity for BSA and DNA interplays through van der Waals powers. In addition, the binding of the Nd complex to FS-DNA mainly in the groove binding mode clearly reflects with iodide quenching studies, ethidium bromide (EtBr) exclusion assay, ionic strength effect, and viscosity studies. It was observed that the Nd complex binds to FS-DNA through a minor groove with 3.81 × 105 (M-1). Also, Kb for BSA at 298 K was 5.19×105 (M-1), indicating a relatively high affinity of the Nd complex for DNA and BSA. In addition, a competitive study of a docking investigation revealed that the neodymium complex interacts at BSA site III. The results obtained from the binding calculations are well consistent with the experimental findings. Also, cytotoxicity studies of Nd complex were performed in MCF-7 and A-549 cell lines and the results show that this new complex has a selective inhibitory effect on the growth of various cancer cells.
Collapse
Affiliation(s)
- Ahmad Raeisi Vanani
- Department of Chemistry, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Saeid Asadpour
- Department of Chemistry, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
41
|
Ahmad M, Weiswald LB, Poulain L, Denoyelle C, Meryet-Figuiere M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk. J Exp Clin Cancer Res 2023; 42:173. [PMID: 37464436 PMCID: PMC10353155 DOI: 10.1186/s13046-023-02741-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer is the main cause of death worldwide and metastasis is a major cause of poor prognosis and cancer-associated mortality. Metastatic conversion of cancer cells is a multiplex process, including EMT through cytoskeleton remodeling and interaction with TME. Tens of thousands of putative lncRNAs have been identified, but the biological functions of most are still to be identified. However, lncRNAs have already emerged as key regulators of gene expression at transcriptional and post-transcriptional level to control gene expression in a spatio-temporal fashion. LncRNA-dependent mechanisms can control cell fates during development and their perturbed expression is associated with the onset and progression of many diseases including cancer. LncRNAs have been involved in each step of cancer cells metastasis through different modes of action. The investigation of lncRNAs different roles in cancer metastasis could possibly lead to the identification of new biomarkers and innovative cancer therapeutic options.
Collapse
Affiliation(s)
- Mohammad Ahmad
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- Biochemistry Division, Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 14000, Egypt
| | - Louis-Bastien Weiswald
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Laurent Poulain
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Christophe Denoyelle
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Matthieu Meryet-Figuiere
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
42
|
Liu D, Lu X, Huang W, Zhuang W. Long non-coding RNAs in non-small cell lung cancer: implications for EGFR-TKI resistance. Front Genet 2023; 14:1222059. [PMID: 37456663 PMCID: PMC10349551 DOI: 10.3389/fgene.2023.1222059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common types of malignant tumors as well as the leading cause of cancer-related deaths in the world. The application of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has dramatically improved the prognosis of NSCLC patients who harbor EGFR mutations. However, despite an excellent initial response, NSCLC inevitably becomes resistant to EGFR-TKIs, leading to irreversible disease progression. Hence, it is of great significance to shed light on the molecular mechanisms underlying the EGFR-TKI resistance in NSCLC. Long non-coding RNAs (lncRNAs) are critical gene modulators that are able to act as oncogenes or tumor suppressors that modulate tumorigenesis, invasion, and metastasis. Recently, extensive evidence demonstrates that lncRNAs also have a significant function in modulating EGFR-TKI resistance in NSCLC. In this review, we present a comprehensive summary of the lncRNAs involved in EGFR-TKI resistance in NSCLC and focus on their detailed mechanisms of action, including activation of alternative bypass signaling pathways, phenotypic transformation, intercellular communication in the tumor microenvironment, competing endogenous RNAs (ceRNAs) networks, and epigenetic modifications. In addition, we briefly discuss the limitations and the clinical implications of current lncRNAs research in this field.
Collapse
Affiliation(s)
- Detian Liu
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaolin Lu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wentao Huang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
43
|
Li Y, Chen B, Jiang X, Li Y, Wang X, Huang S, Wu X, Xiao Y, Shi D, Huang X, He L, Chen X, Ouyang Y, Li J, Song L, Lin C. A Wnt-induced lncRNA-DGCR5 splicing switch drives tumor-promoting inflammation in esophageal squamous cell carcinoma. Cell Rep 2023; 42:112542. [PMID: 37210725 DOI: 10.1016/j.celrep.2023.112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Alternative splicing (AS) is a critical mechanism for the aberrant biogenesis of long non-coding RNA (lncRNA). Although the role of Wnt signaling in AS has been implicated, it remains unclear how it mediates lncRNA splicing during cancer progression. Herein, we identify that Wnt3a induces a splicing switch of lncRNA-DGCR5 to generate a short variant (DGCR5-S) that correlates with poor prognosis in esophageal squamous cell carcinoma (ESCC). Upon Wnt3a stimulation, active nuclear β-catenin acts as a co-factor of FUS to facilitate the spliceosome assembly and the generation of DGCR5-S. DGCR5-S inhibits TTP's anti-inflammatory activity by protecting it from PP2A-mediated dephosphorylation, thus fostering tumor-promoting inflammation. Importantly, synthetic splice-switching oligonucleotides (SSOs) disrupt the splicing switch of DGCR5 and potently suppress ESCC tumor growth. These findings uncover the mechanism for Wnt signaling in lncRNA splicing and suggest that the DGCR5 splicing switch may be a targetable vulnerability in ESCC.
Collapse
Affiliation(s)
- Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Boyu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xingyu Jiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yudong Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xin Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuxia Wu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lixin He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
44
|
Erber J, Herndler-Brandstetter D. Regulation of T cell differentiation and function by long noncoding RNAs in homeostasis and cancer. Front Immunol 2023; 14:1181499. [PMID: 37346034 PMCID: PMC10281531 DOI: 10.3389/fimmu.2023.1181499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) increase in genomes of complex organisms and represent the largest group of RNA genes transcribed in mammalian cells. Previously considered only transcriptional noise, lncRNAs comprise a heterogeneous class of transcripts that are emerging as critical regulators of T cell-mediated immunity. Here we summarize the lncRNA expression landscape of different T cell subsets and highlight recent advances in the role of lncRNAs in regulating T cell differentiation, function and exhaustion during homeostasis and cancer. We discuss the different molecular mechanisms of lncRNAs and highlight lncRNAs that can serve as novel targets to modulate T cell function or to improve the response to cancer immunotherapies by modulating the immunosuppressive tumor microenvironment.
Collapse
|
45
|
Kapinova A, Mazurakova A, Halasova E, Dankova Z, Büsselberg D, Costigliola V, Golubnitschaja O, Kubatka P. Underexplored reciprocity between genome-wide methylation status and long non-coding RNA expression reflected in breast cancer research: potential impacts for the disease management in the framework of 3P medicine. EPMA J 2023; 14:249-273. [PMID: 37275549 PMCID: PMC10236066 DOI: 10.1007/s13167-023-00323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early events in the process of carcinogenesis. To this end, long non-coding RNAs (lncRNAs) are recognized as potent epigenetic modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones' methylation. In turn, the methylation status of DNA, RNA, and histones can affect the level of lncRNAs expression demonstrating the reciprocity of mechanisms involved. Furthermore, lncRNAs might undergo methylation in response to actual medical conditions such as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence, strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically analyzed. Contextually, the article aims at:consolidating the accumulated knowledge on both-the genome-wide methylation status and corresponding lncRNA expression patterns in BC andhighlighting the potential benefits of this consolidated multi-professional approach for advanced BC management. Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Erika Halasova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | | | - Olga Golubnitschaja
- Predictive, Preventive, and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
46
|
Wozniak M, Czyz M. lncRNAs-EZH2 interaction as promising therapeutic target in cutaneous melanoma. Front Mol Biosci 2023; 10:1170026. [PMID: 37325482 PMCID: PMC10265524 DOI: 10.3389/fmolb.2023.1170026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Melanoma is the most lethal skin cancer with increasing incidence worldwide. Despite a great improvement of diagnostics and treatment of melanoma patients, this disease is still a serious clinical problem. Therefore, novel druggable targets are in focus of research. EZH2 is a component of the PRC2 protein complex that mediates epigenetic silencing of target genes. Several mutations activating EZH2 have been identified in melanoma, which contributes to aberrant gene silencing during tumor progression. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are molecular "address codes" for EZH2 silencing specificity, and targeting lncRNAs-EZH2 interaction may slow down the progression of many solid cancers, including melanoma. This review summarizes current knowledge regarding the involvement of lncRNAs in EZH2-mediated gene silencing in melanoma. The possibility of blocking lncRNAs-EZH2 interaction in melanoma as a novel therapeutic option and plausible controversies and drawbacks of this approach are also briefly discussed.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
47
|
Zhao J, Xu J, Wu M, Wang W, Wang M, Yang L, Cai H, Xu Q, Chen C, Lobie PE, Zhu T, Han X. LncRNA H19 Regulates Breast Cancer DNA Damage Response and Sensitivity to PARP Inhibitors via Binding to ILF2. Int J Mol Sci 2023; 24:ijms24119157. [PMID: 37298108 DOI: 10.3390/ijms24119157] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Although DNA damage repair plays a critical role in cancer chemotherapy, the function of lncRNAs in this process remains largely unclear. In this study, in silico screening identified H19 as an lncRNA that potentially plays a role in DNA damage response and sensitivity to PARP inhibitors. Increased expression of H19 is correlated with disease progression and with a poor prognosis in breast cancer. In breast cancer cells, forced expression of H19 promotes DNA damage repair and resistance to PARP inhibition, whereas H19 depletion diminishes DNA damage repair and increases sensitivity to PARP inhibitors. H19 exerted its functional roles via direct interaction with ILF2 in the cell nucleus. H19 and ILF2 increased BRCA1 stability via the ubiquitin-proteasome proteolytic pathway via the H19- and ILF2-regulated BRCA1 ubiquitin ligases HUWE1 and UBE2T. In summary, this study has identified a novel mechanism to promote BRCA1-deficiency in breast cancer cells. Therefore, targeting the H19/ILF2/BRCA1 axis might modulate therapeutic approaches in breast cancer.
Collapse
Affiliation(s)
- Junsong Zhao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Junchao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mingming Wu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Miaomiao Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Leiyan Yang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huayong Cai
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute and Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Tao Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xinghua Han
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
48
|
Chen W, Bai Z, Bai W, Wang W, Guo J, Guo M, Sai Y, Shi J, Wu J. LncTUG1 contributes to the progression of hepatocellular carcinoma via the miR-144-3p/RRAGD axis and mTOR/S6K pathway. Sci Rep 2023; 13:7500. [PMID: 37160972 PMCID: PMC10170139 DOI: 10.1038/s41598-023-33976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a symptomatic disease involed multi-stage program. Here, we elucidated the molecular mechanism of LncTUG1 in the regulation of HCC evolvement. And that may in all likelyhood supply a innovative latent target for HCC's diagnoses and prognosis. LncRNA TUG1, miR-144-3p, RRAGD and mTOR signaling pathway were screened as target genes in the database, and their expression levels at the cytological level were verified utilized qRT-PCR, Western Blot and immunohistochemistry. Then, we adopted CCK-8, Transwell and flow cytometry assays to estimate cell proliferation, invasion and apoptosis. By use of luciferase reporter assay, the relationships of LncRNA TUG1, miR-144-3p and RRAGD was confirmed. In addition, the LncRNA TUG1-miR-144-3p-RRAGD-mTOR signaling pathway in HCC cells was verified adopted rescue experiment and confirmed by xenotransplantation animal experiment. LncTUG1 in HCC tissues from three databases were identified and further verified through qRT-PCR in HCC cells (Huh7, Hep3B). Knockdown the LncTUG1 could increase apoptosis and inhibite invasion and proliferation in HCC cells. Using inhibitors and activators of the mTOR/S6K pathway, LncTUG1 was confirmed to regulate HCC progression by the mTOR/S6K pathway. Luciferase reporter assay demonstrated that TUG1 negatively regulates miR-144-3p. Furthermore, miR-144-3p negativly regulates RRAGD by way of interacting with the 3'UTR of the RRAGD mRNA in HCC utilized luciferase reporter assay. In vivo, we also discovered that neoplasm weight and tumor volume reduced significantly in subcutaneous xenograft nude mouse models derived from sh-LncTUG1-expressing Huh7 cells. And the expressions of p-mTOR, p-S6K and RRAGD were decreased obviously while the miR144-3p increased in subcutaneous xenograft nude mouse models. In a word, the research suggests that LncTUG1 targets miR-144-3p while miR-144-3p binds to RRAGD mRNA, which induces mTOR/S6K pathway activation and promotes the progression of HCC.
Collapse
Affiliation(s)
- Weixi Chen
- Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Zekun Bai
- Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Wen Bai
- Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Wei Wang
- Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Jiapei Guo
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Mengnan Guo
- Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Yingying Sai
- Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Jun Shi
- Tangshan Nanhu Hospital, Tangshan, 063000, China
| | - Jinghua Wu
- Tangshan Maternal and Child Health Care Hospital, North China University of Science and Technology, Tangshan, 063000, China.
| |
Collapse
|
49
|
Mitra R, Adams CM, Eischen CM. Decoding the lncRNAome Across Diverse Cellular Stresses Reveals Core p53-effector Pan-cancer Suppressive lncRNAs. CANCER RESEARCH COMMUNICATIONS 2023; 3:842-859. [PMID: 37377895 PMCID: PMC10173889 DOI: 10.1158/2767-9764.crc-22-0473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 06/29/2023]
Abstract
Despite long non-coding RNAs (lncRNAs) emerging as key contributors to malignancies, their transcriptional regulation, tissue-type expression under different conditions, and functions remain largely unknown. Developing a combined computational and experimental framework, which integrates pan-cancer RNAi/CRISPR screens, and genomic, epigenetic, and expression profiles (including single-cell RNA sequencing), we report across multiple cancers, core p53-transcriptionally regulated lncRNAs, which were thought to be primarily cell/tissue-specific. These lncRNAs were consistently directly transactivated by p53 with different cellular stresses in multiple cell types and associated with pan-cancer cell survival/growth suppression and patient survival. Our prediction results were verified through independent validation datasets, our own patient cohort, and cancer cell experiments. Moreover, a top predicted p53-effector tumor-suppressive lncRNA (we termed PTSL) inhibited cell proliferation and colony formation by modulating the G2 regulatory network, causing G2 cell-cycle arrest. Therefore, our results elucidated previously unreported, high-confidence core p53-targeted lncRNAs that suppress tumorigenesis across cell types and stresses. Significance Identification of pan-cancer suppressive lncRNAs transcriptionally regulated by p53 across different cellular stresses by integrating multilayered high-throughput molecular profiles. This study provides critical new insights into the p53 tumor suppressor by revealing the lncRNAs in the p53 cell-cycle regulatory network and their impact on cancer cell growth and patient survival.
Collapse
Affiliation(s)
- Ramkrishna Mitra
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Clare M. Adams
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christine M. Eischen
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
50
|
Ngum JA, Tatang FJ, Toumeni MH, Nguengo SN, Simo USF, Mezajou CF, Kameni C, Ngongang NN, Tchinda MF, Dongho Dongmo FF, Akami M, Ngane Ngono AR, Tamgue O. An overview of natural products that modulate the expression of non-coding RNAs involved in oxidative stress and inflammation-associated disorders. Front Pharmacol 2023; 14:1144836. [PMID: 37168992 PMCID: PMC10165025 DOI: 10.3389/fphar.2023.1144836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Oxidative stress is a state in which oxidants are produced in excess in the body's tissues and cells, resulting in a biological imbalance amid the generation of reactive oxygen and nitrogen species (RONS) from redox reactions. In case of insufficient antioxidants to balance, the immune system triggers signaling cascades to mount inflammatory responses. Oxidative stress can have deleterious effects on major macromolecules such as lipids, proteins, and nucleic acids, hence, Oxidative stress and inflammation are among the multiple factors contributing to the etiology of several disorders such as diabetes, cancers, and cardiovascular diseases. Non-coding RNAs (ncRNAs) which were once referred to as dark matter have been found to function as key regulators of gene expression through different mechanisms. They have dynamic roles in the onset and development of inflammatory and oxidative stress-related diseases, therefore, are potential targets for the control of those diseases. One way of controlling those diseases is through the use of natural products, a rich source of antioxidants that have drawn attention with several studies showing their involvement in combating chronic diseases given their enormous gains, low side effects, and toxicity. In this review, we highlighted the natural products that have been reported to target ncRNAs as mediators of their biological effects on oxidative stress and several inflammation-associated disorders. Those natural products include Baicalein, Tanshinone IIA, Geniposide, Carvacrol/Thymol, Triptolide, Oleacein, Curcumin, Resveratrol, Solarmargine, Allicin, aqueous extract or pulp of Açai, Quercetin, and Genistein. We also draw attention to some other compounds including Zanthoxylum bungeanum, Canna genus rhizome, Fuzi-ganjiang herb pair, Aronia melanocarpa, Peppermint, and Gingerol that are effective against oxidative stress and inflammation-related disorders, however, have no known effect on ncRNAs. Lastly, we touched on the many ncRNAs that were found to play a role in oxidative stress and inflammation-related disorders but have not yet been investigated as targets of a natural product. Shedding more light into these two last points of shadow will be of great interest in the valorization of natural compounds in the control and therapy of oxidative stress- and inflammation-associated disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ousman Tamgue
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| |
Collapse
|