1
|
Naldi L, Peri A, Fibbi B. Apelin/APJ: Another Player in the Cancer Biology Network. Int J Mol Sci 2025; 26:2986. [PMID: 40243599 PMCID: PMC11988549 DOI: 10.3390/ijms26072986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The apelinergic system exerts multiple biological activities in human pathologies, including cancer. Overactivation of apelin/APJ, which has been detected in many malignant tumors, and the strong correlation with progression-free and overall survival, suggested the role of an oncogene for the apelin gene. Emerging evidence sheds new light on the effects of apelin on cellular functions and homeostasis in cancer cells and supports a direct role for this pathway on different hallmarks of cancer: "sustaining proliferative signaling", "resisting cell death", "activating invasion and metastasis", "inducing/accessing vasculature", "reprogramming cellular metabolism", "avoiding immune destruction" and "tumor-promoting inflammation", and "enabling replicative immortality". This article reviews the currently available literature on the intracellular processes regulated by apelin/APJ, focusing on those pathways correlated with tumor development and progression. Furthermore, the association between the activity of the apelinergic axis and the resistance of cancer cells to oncologic treatments (chemotherapy, immunotherapy, radiation) suggests apelin/APJ as a possible target to potentiate traditional therapies, as well as to develop diagnostic and prognostic applications. This issue will be also covered in the review.
Collapse
Affiliation(s)
- Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy; (L.N.); (B.F.)
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
2
|
Christodoulou S, Katsaraki K, Vassiliu P, Danias N, Michalopoulos N, Tzikos G, Sideris DC, Arkadopoulos N. High Intratumoral i-tRF-Gly GCC Expression Predicts Short-Term Relapse and Poor Overall Survival of Colorectal Cancer Patients, Independent of the TNM Stage. Biomedicines 2023; 11:1945. [PMID: 37509584 PMCID: PMC10377136 DOI: 10.3390/biomedicines11071945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer (CRC), one of the most prevalent types of cancer, requires the discovery of new tumor biomarkers for accurate patient prognosis. In this work, the prognostic value of the tRNA fragment i-tRF-GlyGCC in CRC was examined. Total RNA extraction from 211 CRC patient cancer tissue specimens and 83 adjacent normal tissues was conducted. Each RNA extract was subjected to in vitro polyadenylation and reverse transcription. A real-time quantitative PCR assay was used to quantify i-tRF-GlyGCC in all samples. Extensive biostatics analysis showed that i-tRF-GlyGCC levels in CRC tissues were significantly lower than in matched normal colorectal tissues. Additionally, the disease-free survival (DFS) and overall survival (OS) time intervals were considerably shorter in CRC patients with high i-tRF-GlyGCC expression. i-tRF-GlyGCC expression maintained its prognostic value independently of other established prognostic factors, as shown by the multivariate Cox regression analysis. Additionally, survival analysis after TNM stage stratification revealed that higher i-tRF-GlyGCC levels were linked to shorter DFS time intervals in patients with TNM stage II tumors, as well as an increased probability of having a worse OS for patients in TNM stage II. In conclusion, i-tRF-GlyGCC has the potential to be a useful molecular tissue biomarker in CRC, independent of other clinicopathological variables.
Collapse
Affiliation(s)
- Spyridon Christodoulou
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panteleimon Vassiliu
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Danias
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Michalopoulos
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Georgios Tzikos
- Propaedeutic Department of Surgery, University General Hospital "AHEPA", Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
3
|
Christodoulou S, Sotiropoulou CD, Vassiliu P, Danias N, Arkadopoulos N, Sideris DC. MicroRNA-675-5p Overexpression Is an Independent Prognostic Molecular Biomarker of Short-Term Relapse and Poor Overall Survival in Colorectal Cancer. Int J Mol Sci 2023; 24:9990. [PMID: 37373137 DOI: 10.3390/ijms24129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is the main cause of cancer-related deaths globally, highlighting the importance of accurate biomarkers for early detection and accurate prognosis. MicroRNAs (miRNAs) have emerged as effective cancer biomarkers. The aim of this study was to investigate the prognostic potential of miR-675-5p as a molecular prognostic biomarker in CRC. For this reason, a quantitative PCR assay was developed and applied to determine miR-675-5p expression in cDNAs from 218 primary CRC and 90 paired normal colorectal tissue samples. To assess the significance of miR-675-5p expression and its association with patient outcome, extensive biostatistical analysis was performed. miR-675-5p expression was found to be significantly downregulated in CRC tissue samples compared to that in adjacent normal colorectal tissues. Moreover, high miR-675-5p expression was associated with shorter disease-free (DFS) and overall survival (OS) in CRC patients, while it maintained its unfavorable prognostic value independently of other established prognostic factors. Furthermore, TNM stage stratification demonstrated that higher miR-675-5p levels were associated with shorter DFS and OS intervals, particularly in patients with CRC of TNM stage II or III. In conclusion, our findings suggest that miR-675-5p overexpression constitutes a promising molecular biomarker of unfavorable prognosis in CRC, independent of other established prognostic factors, including TNM staging.
Collapse
Affiliation(s)
- Spyridon Christodoulou
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Christina D Sotiropoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panteleimon Vassiliu
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Danias
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
4
|
miR-15a-5p enhances the malignant phenotypes of colorectal cancer cells through the STAT3/TWIST1 and PTEN/AKT signaling pathways by targeting SIRT4. Cell Signal 2023; 101:110517. [PMID: 36332797 DOI: 10.1016/j.cellsig.2022.110517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) continues to represent one of the major causes of cancer-related mortality and morbidity. MicroRNAs (miRNAs) are confirmed to be involved in modulating substential biological processes by affecting the expression of targeted genes, including carcinogenesis. In the present study, the expression pattern and functional roles of microRNA-15a-5p (miR-15a-5p) in CRC cells were investigated. The data from TCGA database indicated that miR-15a-5p is highly expressed in CRC tissues. Moreover, ectopic expression of miR-15a-5p facilitated the proliferation, migration, and invasion of CRC cells. Furthermore, bioinformatic analysis combinating with dual-luciferase assay revealed that SIRT4 acts as a crucial target of miR-15a-5p. Accordingly, overexpression of SIRT4 suppresses the miR-15a-5p-mediated enhancement in the proliferation, migration, and invasion of CRC cells, while the opposite phenotypes were observed after inhibition of SIRT4. Moreover, we further revealed that miR-15a-5p restrained the expression of SIRT4 to exacerbate the malignant phenotypes by modulating STAT3/TWIST1 and PETN/AKT signaling in CRC cells. Alternatively, inhibition of the miR-15a-5p/SIRT4 axis enhanced the chemosensitivity of 5-fluorouracil- and oxaliplatin-resistant HCT116 cells. Altogether, our evidence suggests that miR-15a-5p plays an essential role in promoting the proliferation, migration, and chemoresistance of CRC cells via targeting SIRT4 to modulate STAT3/TWIST1 and PETN/AKT signaling, which may serve as a promising therapeutic target for CRC therapy.
Collapse
|
5
|
Li Y, Li D, Yang Y, Wang J. miR-15a-5p regulates liver cancer cell migration, apoptosis and cell cycle progression by targeting transcription factor E2F3. Crit Rev Eukaryot Gene Expr 2022; 32:1-10. [DOI: 10.1615/critreveukaryotgeneexpr.2022042503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol 2022; 2257:293-310. [PMID: 34432285 DOI: 10.1007/978-1-0716-1170-8_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Breast cancer has five major immune types; luminal A, luminal B, HER2, Basal-like, and normal-like. Cells produce a family of protein called heat shock proteins (Hsps) in response to exposure to thermal and other proteotoxic stresses play essential roles in cancer metabolism and this large family shows a diverse set of Hsp involvement in different breast cancer immune types. Recently, Hsp members categorized according to their immune type roles. Hsp family consists of several subtypes formed by molecular weight; Hsp70, Hsp90, Hsp100, Hsp40, Hsp60, and small molecule Hsps. Cancer cells employ Hsps as survival factors since most of these proteins prevent apoptosis. Several studies monitored Hsp roles in breast cancer cells and reported Hsp27 involvement in drug resistance, Hsp70 in tumor cell transformation-progression, and interaction with p53. Furthermore, the association of Hsp90 with steroid receptors and signaling proteins in patients with breast cancer directed research to focus on Hsp-based treatments. miRNAs are known to play key roles in all types of cancer that are upregulated or downregulated in cancer which respectively referred to as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs may be used to classify, diagnose, and predict different cancer types. It is clear that miRNAs play regulatory roles in gene expression and this work reveals miRNA correlation to Hsp depending on specific breast cancer immune types. Deregulation of specific Hsp genes in breast cancer subtypes allows for identification of new targets for drug design and cancer treatment. Here, we performed miRNA network analysis by recruiting Hsp genes detected in breast cancer subtypes and reviewed some of the miRNAs related to aforementioned Hsp genes.
Collapse
Affiliation(s)
- Mehmet Taha Yildiz
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Nazlı Irmak Giritlioğlu
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Banu Bayram
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey.
- Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
7
|
Chen D, Yang X, Liu M, Zhang Z, Xing E. Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Ther 2021; 28:1256-1268. [PMID: 33402729 PMCID: PMC8636266 DOI: 10.1038/s41417-020-00291-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Multiple myeloma (MM) is a malignant disease of plasma cells with complex pathology, causing significant morbidity due to its end-organ destruction. The outcomes of patients with myeloma have significantly improved in the past couple of decades with the introduction of novel agents, such as proteasome inhibitors, immunomodulators, and monoclonal antibodies. However, MM remains incurable and presents considerable individual heterogeneity. MicroRNAs (miRNAs) are short, endogenous noncoding RNAs of 19-22 nucleotides that regulate gene expression at the posttranscriptional level. Numerous studies have shown that miRNA deregulation is closely related to MM pathology, including tumor initiation, progression, metastasis, prognosis, and drug response, which make the complicated miRNA network an attractive and marvelous area of investigation for novel anti-MM therapeutic approaches. Herein, we mainly summarized the current knowledge on the roles of miRNAs, which are of great significance in regulating pathological factors involved in MM progressions, such as bone marrow microenvironment, methylation, immune regulation, genomic instability, and drug resistance. Meanwhile, their potential as novel prognostic biomarkers and therapeutic targets was also discussed.
Collapse
Affiliation(s)
- Dan Chen
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Xinhong Yang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Min Liu
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| | - Enhong Xing
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| |
Collapse
|
8
|
Wu S, Yang S, Qu H. circ_CHFR regulates ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by miR-15a-5p/EGFR axis in human brain microvessel endothelial cells. Open Life Sci 2021; 16:1053-1063. [PMID: 34676300 PMCID: PMC8483062 DOI: 10.1515/biol-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/29/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) is a significant risk factor for various brain vascular diseases. Circular RNA (circRNA) is involved in the pathogenesis of brain vascular diseases. This study revealed the roles of circ_CHFR in ox-LDL-mediated cell proliferation, apoptosis, and endothelial-to-mesenchymal transition (EndoMT). Our results showed that circ_CHFR and EGFR expressions were dramatically upregulated, while miR-15a-5p expression was downregulated in ox-LDL-induced human brain microvessel endothelial cells (HBMECs) relative to control groups. circ_CHFR knockdown hindered the effects of ox-LDL exposure on cell proliferation, cell cycle, apoptosis, and EndoMT in HBMECs, whereas these impacts were abolished by miR-15a-5p inhibitor. In addition, circ_CHFR functioned as a sponge of miR-15a-5p and miR-15a-5p bound to EGFR. Thus, we concluded that circ_CHFR silencing hindered ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by downregulating EGFR expression through sponging miR-15a-5p in HBMECs. Our findings provide a new mechanism for studying circRNA-directed therapy in ox-LDL-induced human brain vascular diseases.
Collapse
Affiliation(s)
- Shanwu Wu
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| | - Sheng Yang
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| | - Hongyan Qu
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| |
Collapse
|
9
|
Yuan JH, Xie LS, Zhu YH, Wang XH, Zhang YJ, Wang XJ. Combination of neutrophil gelatinase-associated lipocalin and matrix metalloproteinase-9 are biomarkers for the detection of colon tubular adenocarcinoma. World J Gastrointest Oncol 2021; 13:1506-1517. [PMID: 34721781 PMCID: PMC8529926 DOI: 10.4251/wjgo.v13.i10.1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tubular adenocarcinoma of the colon, which originates from the epithelium of the glands, is a major health concern worldwide. However, it is difficult to detect at an early stage. The lack of biomarkers is a main barrier to the diagnosis and treatment of tubular adenocarcinoma. Neutrophil gelatinase-associated lipocalin (NGAL) is a secreted protein that induces the expression of matrix metalloproteinase-9 (MMP-9) and is involved in various tumors. NGAL and MMP-9 have been reported to be associated with tumorigenesis and development. They may have potential as biomarkers for diagnosis of tubular adenocarcinoma of the colon.
AIM To determine whether NGAL and MMP-9 can be used as potential biomarkers to indicate the progression of tubular adenocarcinoma of the colon.
METHODS Samples were collected from surgically excised tissue from various patients. The content of pro-gastrin-releasing peptide (pro-GRP) in the serum was measured by an electrochemiluminescence immunoassay. The expression patterns of NGAL and MMP-9 and the relationship between NGAL and MMP-9 were examined by quantitative real-time PCR, Western blotting and immunohistochemical analysis.
RESULTS In this study, we found that NGAL and MMP-9 can be used as biomarkers for the detection of tubular adenocarcinoma of the colon and that their combination improved diagnostic accuracy. By analyzing the expression of NGAL in tubular adenocarcinoma at different levels, we found that NGAL expression was significantly upregulated in primary tubular adenocarcinoma tissues compared with normal tissues. The upregulation of NGAL expression was strongly correlated with both the degree of differentiation and the disease stage (I–III), indicating that NGAL could serve as a diagnostic biomarker for tubular adenocarcinoma. When using NGAL as a biomarker for diagnosis, the accuracy was similar to that achieved with the widely used biomarker pro-GRP, suggesting that NGAL is reliable. Moreover, the expression of MMP-9 was also strongly correlated with the differentiation stage, demonstrating that MMP-9 could be used as a biomarker to indicate the progression of tubular adenocarcinoma of the colon. More importantly, the combination of NGAL and MMP-9 produced a more accurate diagnosis of tubular adenocarcinoma, and these results were further confirmed by immunohistochemical analysis of tissue sections.
CONCLUSION Our study demonstrated that both NGAL and MMP-9 can be used as biomarkers for the diagnosis of colon tubular adenocarcinoma and that the results could be further improved by combining them.
Collapse
Affiliation(s)
- Jun-Hua Yuan
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Li-Shuang Xie
- Medical Records Room, Yinan County People’s Hospital, Yinan 276399, Shandong Province, China
| | - Yu-Hua Zhu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Xiao-Hua Wang
- Department of Infectious Diseases and Liver Diseases, Jinan Infectious Disease Hospital, Shandong University School of Medicine, Jinan 250021, Shandong Province, China
| | - Yi-Jing Zhang
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Xiao-Jun Wang
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
10
|
Exosomal DLX6-AS1 from hepatocellular carcinoma cells induces M2 macrophage polarization to promote migration and invasion in hepatocellular carcinoma through microRNA-15a-5p/CXCL17 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:177. [PMID: 34039401 PMCID: PMC8152341 DOI: 10.1186/s13046-021-01973-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Background Hepatocellular carcinoma (HCC) cells-secreted exosomes (exo) could stimulate M2 macrophage polarization and promote HCC progression, but the related mechanism of long non-coding RNA distal-less homeobox 6 antisense 1 (DLX6-AS1) with HCC-exo-mediated M2 macrophage polarization is largely ambiguous. Thereafter, this research was started to unearth the role of DLX6-AS1 in HCC-exo in HCC through M2 macrophage polarization and microRNA (miR)-15a-5p/C-X-C motif chemokine ligand 17 (CXCL17) axis. Methods DLX6-AS1, miR-15a-5p and CXCL17 expression in HCC tissues and cells were tested. Exosomes were isolated from HCC cells with overexpressed DLX6-AS1 and co-cultured with M2 macrophages. MiR-15a-5p/CXCL17 down-regulation assays were performed in macrophages. The treated M2 macrophages were co-cultured with HCC cells, after which cell migration, invasion and epithelial mesenchymal transition were examined. The targeting relationships between DLX6-AS1 and miR-15a-5p, and between miR-15a-5p and CXCL17 were explored. In vivo experiment was conducted to detect the effect of exosomal DLX6-AS1-induced M2 macrophage polarization on HCC metastasis. Results Promoted DLX6-AS1 and CXCL17 and reduced miR-15a-5p exhibited in HCC. HCC-exo induced M2 macrophage polarization to accelerate migration, invasion and epithelial mesenchymal transition in HCC, which was further enhanced by up-regulated DLX6-AS1 but impaired by silenced DLX6-AS1. Inhibition of miR-15a-5p promoted M2 macrophage polarization to stimulate the invasion and metastasis of HCC while that of CXCL17 had the opposite effects. DLX6-AS1 mediated miR-15a-5p to target CXCL17. DLX6-AS1 from HCC-exo promoted metastasis in the lung by inducing M2 macrophage polarization in vivo. Conclusion DLX6-AS1 from HCC-exo regulates CXCL17 by competitively binding to miR-15a-5p to induce M2 macrophage polarization, thus promoting HCC migration, invasion and EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01973-z.
Collapse
|
11
|
Liu Z, Tao B, Li L, Liu P, Xia K, Zhong C. LINC00511 knockdown suppresses glioma cell malignant progression through miR-15a-5p/AEBP1 axis. Brain Res Bull 2021; 173:82-96. [PMID: 33992709 DOI: 10.1016/j.brainresbull.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND A strong relationship between long intergenic non-protein coding RNA 511 (LINC00511) and glioma has been previously reported but the mechanism of LINC00511 in glioma is yet to be determined. This study examined the mechanism of LINC00511 in glioma. METHODS The expression of LINC00511 in glioma was determined by bioinformatics analysis and real-time quantitative PCR (RT-qPCR) analysis. The target relationship between genes was predicted by starBase, TargetScan, and was verified by dual-luciferase. Subsequently, siRNA targeting LINC00511 (siLINC00511) and miR-15a-5p mimic were transfected into glioma cells to examine the effect on biological characteristics using cell counting kit-8, clone formation, flow cytometry, wound-healing, and transwell. MiR-15a-5p inhibitor and AEBP1 were used for in vitro rescue experiments, and tumorigenesis assay and immunohistochemical assays were performed for in vivo experiments. Epithelial-mesenchymal transition (EMT) and p65 phosphorylation were examined by Western blot. RESULTS LINC00511 was predicted and verified to be up-regulated in glioma. SiLINC00511 suppressed cell viability, proliferation, migration and invasion, accelerated apoptosis of glioma cells. Mechanically, siLINC00511 promoted E-cadherin expression but suppressed N-cadherin and Snail expressions. MiR-15a-5p bound to LINC00511, and miR-15a-5p inhibitor partially reversed the effect and regulation of siLINC00511 on glioma cells. AEBP1, a target gene of miR-15a-5p, could activate p65 phosphorylation to promote EMT protein expression and partially reverse the inhibitory effect of miR-15a-5p mimic on the malignant phenotype of glioma cells. SiLINC00511 inhibited tumor growth, down-regulated miR-15a-5p expression and up-regulated AEBP1 and Ki67 expressions in vivo. CONCLUSION LINC00511 knockdown inhibits glioma cell progression via miR-15a-5p/AEBP1 axis.
Collapse
Affiliation(s)
- Zhen Liu
- Neurosurgery Department, Nanyang Second General Hospital, China
| | - Bei Tao
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, China
| | - Linkun Li
- Neurosurgery Department, Nanyang Second General Hospital, China
| | - Pin Liu
- Science and Education Department, The Fourth People's Hospital of Nanyang, China
| | - Kaiguo Xia
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, China; Sichuan Clinical Research Center for Neurosurgery, China; Laboratory of Neurological Diseases and Brain Function, China
| | - Chuanhong Zhong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, China; Sichuan Clinical Research Center for Neurosurgery, China; Laboratory of Neurological Diseases and Brain Function, China.
| |
Collapse
|
12
|
Wang H, Yang Q, Li J, Chen W, Jin X, Wang Y. MicroRNA-15a-5p inhibits endometrial carcinoma proliferation, invasion and migration via downregulation of VEGFA and inhibition of the Wnt/β-catenin signaling pathway. Oncol Lett 2021; 21:310. [PMID: 33732386 PMCID: PMC7905532 DOI: 10.3892/ol.2021.12570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Endometrial carcinoma (EC) is one of the most common malignant gynecological tumors. Dysregulation of microRNAs (miRNAs/miRs) is frequently identified in human tumors, playing key regulatory roles in tumor growth and metastasis. The present study aimed to explore the functions and potential mechanisms of miR-15a-5p in EC progression. RT-qPCR was used to detect the expression levels of miR-15a-5p and vascular endothelial growth factor A (VEGFA) mRNA. Western blot analysis was performed to examine the expression of related proteins. Functional assays, including proliferation and Transwell assays were performed to determine the roles of miR-15a-5p in EC progression. TargetScan and luciferase reporter assays were used to explore the potential target genes of miR-15a-5p. The results revealed that miR-15a-5p was underexpressed in EC tissue samples in comparison with that in matched normal tissue samples. The expression level of miR-15a-5p was associated with the clinicopathologic characteristics of EC patients. Notably, both in vitro and in vivo assays revealed that miR-15a-5p upregulation significantly inhibited EC growth and metastasis. Furthermore, bioinformatics analysis and dual luciferase reporter assay indicated that VEGFA was a candidate target of miR-15a-5p. Mechanistic investigation revealed that miR-15a-5p inhibited EC development via regulation of Wnt/β-catenin pathway and targeting of VEGFA. In summary, the present results demonstrated that miR-15a-5p could inhibit EC development and may serve as a promising therapeutic biomarker in EC.
Collapse
Affiliation(s)
- Honggang Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Qingju Yang
- Department of Gynaecology, Linyi People's Hospital, Dezhou, Shandong 251500, P.R. China
| | - Jieping Li
- Department of Anesthesiology, Qingdao Hospital of Traditional Chinese Medicine, Qingdao University, Qingdao, Shandong 266033, P.R. China
| | - Wenping Chen
- Department of Cardiothoracic Surgery, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Xiao Jin
- Department of Rehabilitation Medicine, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Yaowen Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
13
|
Dos Santos IL, Penna KGBD, Dos Santos Carneiro MA, Libera LSD, Ramos JEP, Saddi VA. Tissue micro-RNAs associated with colorectal cancer prognosis: a systematic review. Mol Biol Rep 2021; 48:1853-1867. [PMID: 33598796 DOI: 10.1007/s11033-020-06075-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC) is a multifactorial disease commonly diagnosed worldwide, with high mortality rates. Several studies demonstrate important associations between differential expression of micro-RNAs (miRs) and the prognosis of CRC. The present study aimed to identify differentially expressed tissue miRs associated with prognostic factors in CRC patients, through a systematic review of the Literature. Using the PubMed database, Cochrane Library and Web of Science, studies published in English evaluating miRs differentially expressed in tumor tissue and significantly associated with the prognostic aspects of CRC were selected. All the included studies used RT-PCR (Taqman or SYBR Green) for miR expression analysis and the period of publication was from 2009 to 2018. A total of 115 articles accomplished the inclusion criteria and were included in the review. The studies investigated the expression of 100 different miRs associated with prognostic aspects in colorectal cancer patients. The most frequent oncogenic miRs investigated were miR-21, miR-181a, miR-182, miR-183, miR-210 and miR-224 and the hyperexpression of these miRs was associated with distant metastasis, lymph node metastasis and worse survival in patients with CRC. The most frequent tumor suppressor miRs were miR-126, miR-199b and miR-22 and the hypoexpression of these miRs was associated with distant metastasis, worse prognosis and a higher risk of disease relapse (worse disease-free survival). Specific tissue miRs are shown to be promising prognostic biomarkers in patients with CRC, given their strong association with the prognostic aspects of these tumors, however, new studies are necessary to establish the sensibility and specificity of the individual miRs in order to use them in clinical practice.
Collapse
Affiliation(s)
- Igor Lopes Dos Santos
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil.
| | - Karlla Greick Batista Dias Penna
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| | | | | | - Jéssica Enocencio Porto Ramos
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| | - Vera Aparecida Saddi
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| |
Collapse
|
14
|
Wang H, Xing J, Wang W, Lv G, He H, Lu Y, Sun M, Chen H, Li X. Molecular Characterization of the Oncogene BTF3 and Its Targets in Colorectal Cancer. Front Cell Dev Biol 2021; 8:601502. [PMID: 33644029 PMCID: PMC7905040 DOI: 10.3389/fcell.2020.601502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and leading causes of cancer mortality worldwide, and the prognosis of patients with CRC remains unsatisfactory. Basic transcription factor 3 (BTF3) is an oncogene and hazardous prognosticator in CRC. Although two distinct functional mechanisms of BTF3 in different cancer types have been reported, its role in CRC is still unclear. In this study, we aimed to molecularly characterize the oncogene BTF3 and its targets in CRC. Here, we first identified the transcriptional targets of BTF3 by applying combined RNA-Seq and ChIP-Seq analysis, identifying CHD1L as a transcriptional target of BTF3. Thereafter, we conducted immunoprecipitation (IP)-MS and E3 ubiquitin ligase analysis to identify potential interacting targets of BTF3 as a subunit of the nascent-polypeptide-associated complex (NAC). The analysis revealed that BTF3 might also inhibit E3 ubiquitin ligase HERC2-mediated p53 degradation. Finally, miRNAs targeting BTF3 were predicted and validated. Decreased miR-497-5p expression is responsible for higher levels of BTF3 post-transcriptionally. Collectively, we concluded that BTF3 is an oncogene, and there may exist a transcription factor and NAC-related proteolysis mechanism in CRC. This study provides a comprehensive basis for understanding the oncogenic mechanisms of BTF3 in CRC.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Wei Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Guifen Lv
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Haiyan He
- Department of Digestive Endoscopy, Changhai Hospital, Shanghai, China
| | - Yeqing Lu
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Mei Sun
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Haiyan Chen
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Xu Li
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
15
|
Song C, Wang X, Zhao X, Ai J, Qi Y, Chen A. MicroRNA-325-3p contributes to colorectal carcinoma by targeting cytokeratin 18. Oncol Lett 2021; 21:248. [PMID: 33664812 PMCID: PMC7882876 DOI: 10.3892/ol.2021.12509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common malignant tumors. The present study aimed to investigate a non-invasive molecular marker that can evaluate the diagnosis and potential molecular mechanism of CRC. Microarray assays and reverse transcription-quantitative PCR analysis demonstrated that microRNA (miR)-325-3p expression was significantly increased in both tissues and serum samples of patients with CRC. In addition, miR-325-3p expression in the tissues and serum was significantly associated with differentiation, TNM stage and lymph node metastasis. The results of the dual-luciferase reporter assay and western blot analysis revealed that cytokeratin 18 (CK18) is a target gene of miR-325-3p. Furthermore, treatment with transforming growth factor (TGF)-β increased miR-325-3p expression in a time-dependent manner. Conversely, TGF-β decreased CK18 expression at 48 and 72 h. Western blot analysis demonstrated that TGF-β1 significantly decreased the expression of the epithelial marker, CK18, and increased the expression of the mesenchymal markers, α-SMA and vimentin. Notably, these effects were reversed following inhibition of miR-325-3p expression. Taken together, the results of the present study suggest that miR-325-3p is a key regulator of TGF-β-induced CK18 downregulation. Thus, elevated levels of miR-325-3p is an important factor affecting epithelial-to-mesenchymal transition, and is likely to be a molecular marker in the progression of CRC and act as a potential therapeutic target.
Collapse
Affiliation(s)
- Chuanfang Song
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiujie Wang
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xinxin Zhao
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jiang Ai
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yixuan Qi
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Aidong Chen
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
16
|
Guo K, Qi D, Huang B. LncRNA MEG8 promotes NSCLC progression by modulating the miR-15a-5p-miR-15b-5p/PSAT1 axis. Cancer Cell Int 2021; 21:84. [PMID: 33526036 PMCID: PMC7852147 DOI: 10.1186/s12935-021-01772-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common tumor with severe morbidity and high mortality. Long non-coding RNAs (lncRNAs) as crucial regulators participate in multiple cancer progressions. However, the role of lncRNA MEG8 in the development of NSCLC remains unclear. Here, we aimed to investigate the effect of lncRNA MEG8 on the progression of NSCLC and the underlying mechanism. METHODS Cell proliferation was analyzed by EdU assays. The impacts of lncRNA MEG8, miR-15a-5p, and miR-15b-5p on cell invasion and migration of NSCLC were assessed by transwell assay. The luciferase reporter gene assay was performed using the Dual-luciferase Reporter Assay System. The effect of lncRNA MEG8, miR-15a-5p, and miR-15b-5p on tumor growth was evaluated in nude mice of Balb/c in vivo. RESULTS We revealed that the expression levels of MEG8 were elevated in the NSCLC patient tissues compared to that in adjacent normal tissues. The expression of MEG8 was negatively relative to that of miR-15a-5p and miR-15b-5p in the NSCLC patient tissues. The expression of MEG8 was upregulated, while miR-15a-5p and miR-15b-5p were downregulated in NSCLC cell lines. The depletion of MEG8 inhibited NSCLC cell proliferation, migration, and invasion in vitro. MEG8 contributed to NSCLC progression by targeting miR-15a-5p/miR-15b-5p in vitro. LncRNA MEG8 contributes to tumor growth of NSCLC via the miR-15a/b-5p/PSAT1 axis in vivo. Thus, we concluded that lncRNA MEG8 promotes NSCLC progression by modulating the miR-15a/b-5p/PSAT1 axis. CONCLUSIONS Our findings demonstrated that lncRNA MEG8 plays a critical role in NSCLC development. LncRNA MEG8, miR-15a-5p, miR-15b-5p, and PSAT1 may serve as potential targets for NSCLC therapy.
Collapse
Affiliation(s)
- Kai Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Renming Street #5-2, Guta District, Jinzhou City, Liaoning Province, 121000, People's Republic of China
| | - Di Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Renming Street #5-2, Guta District, Jinzhou City, Liaoning Province, 121000, People's Republic of China
| | - Bo Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Renming Street #5-2, Guta District, Jinzhou City, Liaoning Province, 121000, People's Republic of China.
| |
Collapse
|
17
|
Inokuchi K, Ochiya T, Matsuzaki J. Extracellular miRNAs for the Management of Barrett's Esophagus and Esophageal Adenocarcinoma: A Systematic Review. J Clin Med 2020; 10:E117. [PMID: 33396321 PMCID: PMC7795564 DOI: 10.3390/jcm10010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Esophageal adenocarcinoma (EAC), the major histologic type of esophageal cancer (EC) in Western countries, is a disease with a poor prognosis, primarily due to usual diagnosis at an advanced stage. The prevalence of EAC has increased in recent years, both in Western countries and in Asia. Barrett's esophagus (BE) is a precursor lesion of EAC. Therefore, early detection and proper management of BE and EAC is important to improve prognosis. Here, we systematically summarize current knowledge about the potential utility of extracellular microRNAs (miRNAs), which are thought to be non-invasive biomarkers for many diseases, for these purposes. A search of the PubMed and Embase databases identified 22 papers about extracellular miRNAs that have potential utility for management of EAC. Among them, 19 were EAC-related and ten were BE-related; some of these dealt with both conditions. The articles included studies reporting diagnosis, prognosis, and treatment responses. Multiple papers report dysregulation of miR-194-5p in BE and miR-21-5p, -25-3p, and -93-5p in EAC. Although it will take time to utilize these miRNAs in clinical practice, they are likely to be useful non-invasive markers in the future.
Collapse
Affiliation(s)
- Kazumi Inokuchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan;
| | - Juntaro Matsuzaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan;
| |
Collapse
|
18
|
Fekete JT, Welker Á, Győrffy B. miRNA Expression Signatures of Therapy Response in Squamous Cell Carcinomas. Cancers (Basel) 2020; 13:cancers13010063. [PMID: 33379285 PMCID: PMC7794682 DOI: 10.3390/cancers13010063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary miRNAs play role in various diseases and can also modulate therapy response. Our aim was to identify predictive miRNAs in platinum treated squamous cell carcinomas (SCC). Using a set of 266 squamous cancer samples we uncovered 16, 103, and 9 miRNAs correlated to chemotherapy response in the cervical, head and neck, and lung squamous cell carcinomas, respectively. By employing a logistic regression model, a signature comprising a set of six miRNAs was established capable to predict chemotherapy response with an AUC of 0.897. Our results show common molecular features of SCC tumors and pinpoint the most important miRNAs related to treatment outcome. Abstract Introduction: Squamous cell carcinomas (SCC) are a major subgroup of malignant tumors with a platinum-based first-line systematic chemotherapy. miRNAs play a role in various diseases and modulate therapy response as well. The aim of this study was to identify predictive miRNAs in platinum-treated SCCs. Methods: miRNA expression data of platinum-treated head and neck (HNSC), cervical (CESC) and lung (LUSC) cancer were collected from the TCGA repositories. Treatment response was defined based on presence or absence of disease progression at 18 months. Responder and nonresponder cohorts were compared using Mann–Whitney and Receiver Operating Characteristic tests. Logistic regression was developed to establish a predictive miRNA signature. Significance was set at FDR < 5%. Results: The integrated database includes 266 SCC patient samples with platinum-based therapy and available follow-up. We uncovered 16, 103, and 9 miRNAs correlated to chemotherapy response in the CESC, HNSC, and LUSC cohorts, respectively. Eight miRNAs overlapped between the CESC and HNSC subgroups, and three miRNAs overlapped between the LUSC and HNSC subgroups. We established a logistic regression model in HNSC and CESC which included six miRNAs: hsa-miR-5586 (Exp (B): 2.94, p = 0.001), hsa-miR-632 (Exp (B): 10.75, p = 0.002), hsa-miR-2355 (Exp (B): 0.48, p = 0.004), hsa-miR-642a (Exp (B): 2.22, p = 0.01), hsa-miR-101-2 (Exp (B): 0.39, p = 0.013) and hsa-miR-6728 (Exp (B): 0.21, p = 0.016). The model using these miRNAs was able to predict chemotherapy resistance with an AUC of 0.897. Conclusions: We performed an analysis of RNA-seq data of squamous cell carcinomas samples and identified significant miRNAs correlated to the response against platinum-based therapy in cervical, head and neck, and lung tumors.
Collapse
Affiliation(s)
- János Tibor Fekete
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary;
- Research Center for Natural Sciences, Momentum Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2., H-1117 Budapest, Hungary;
| | - Ágnes Welker
- Research Center for Natural Sciences, Momentum Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2., H-1117 Budapest, Hungary;
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary;
- Research Center for Natural Sciences, Momentum Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2., H-1117 Budapest, Hungary;
- Correspondence:
| |
Collapse
|
19
|
Kong F, Li X, Li S, Sheng D, Li W, Song M. MicroRNA-15a-5p promotes the proliferation and invasion of T98G glioblastoma cells via targeting cell adhesion molecule 1. Oncol Lett 2020; 21:103. [PMID: 33376536 PMCID: PMC7751353 DOI: 10.3892/ol.2020.12364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is a type of malignant tumor occurring in the brain that severely influences the life of affected individuals. GBM cells are highly infiltrative, which is one of the main obstacles in the treatment of the disease. Numerous microRNAs (miRNAs/miRs) are associated with the development of GBM. However, the effects of miR-15a-5p on GBM remain elusive. In the present study, reverse transcription-quantitative PCR and western blot analysis were applied for the detection of RNA and protein levels, respectively. Cell Counting Kit-8 and Transwell assays were performed to examine cell proliferation and invasion, respectively. TargetScan 7.1 and dual-luciferase reporter assay were utilized for the prediction and verification of the association between miRNAs and mRNAs. The present study revealed that miR-15a-5p expression was upregulated in the GBM T98G cell line. The results further demonstrated that, through the inhibition of cell adhesion molecule 1 expression and the promotion of Akt phosphorylation, miR-15a-5p was able to promote GBM cell proliferation and invasion. Overall, the present findings revealed a novel mechanism responsible for the development of GBM and provided an experimental basis for the diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Fanqiang Kong
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiaoqing Li
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Shuhong Li
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Dan Sheng
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wenhu Li
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Mingming Song
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
20
|
Zhou F, Liu Z, Cai H, Miao Z, Wei F, Song C. Role of microRNA-15a-5p/TNFAIP3-interacting protein 2 axis in acute lung injury induced by traumatic hemorrhagic shock. Exp Ther Med 2020; 20:2. [PMID: 32934667 PMCID: PMC7471858 DOI: 10.3892/etm.2020.9130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the role of microRNA (miR)-15a-5p in the pathogenesis of acute lung injury induced by traumatic hemorrhagic shock (THS), and to explore the underlying molecular mechanism. The expression level of miR-15a-5p was detected using reverse transcription-quantitative (RT-qPCR) and the association between miR-15a-5p and TNFAIP3-interacting protein 2 (TNIP2) was revealed using TargetScan and dual luciferase reporter assays. To investigate the effect of miR-15a-5p on THS-induced acute lung injury, a THS rat model was established. Lung capillary permeability and lung edema were then determined. Moreover, proinflammatory factors in the bronchoalveolar lavage fluid (BALF) and serum of the THS rat model were detected using ELISA. In addition, protein levels in the current study were measured via western blotting. It was revealed that miR-15a-5p was significantly upregulated in both patients with THS and samples from the THS rat model. TNIP2 represents a direct target of miR-15a-5p, and it was downregulated in both patients with THS and the THS rat model. Further analyses indicated that downregulation of miR-15a-5p significantly relieved acute lung injury induced by THS, evidenced by a decreased ratio of Evan's blue dye (EBD) in the BALF to EBD in plasma of THS rats, decreased lung permeability index and reduced lung wet/dry ratio. Inhibition of miR-15a-5p also decreased THS-induced upregulation of pro-inflammatory factors. Furthermore, the data revealed that THS-induced NF-κB activation in the lung tissues of rats was inhibited by miR-15a-5p knockdown. Moreover, it was demonstrated that all the effects of miR-15a-5p on THS rats were ablated following TNIP2 silencing. Taken together, the data of the current study indicate that miR-15a-5p downregulation serves a protective role in THS-induced acute lung injury via directly targeting TNIP2.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhizhen Liu
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Huazhong Cai
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhenjun Miao
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Faxing Wei
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chao Song
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
21
|
Pantazis TL, Giotakis AI, Karamagkiolas S, Giotakis I, Konstantoulakis M, Liakea A, Misiakos EP. Low expression of miR-20b-5p indicates favorable prognosis in laryngeal squamous cell carcinoma, especially in patients with non-infiltrated regional lymph nodes. Am J Otolaryngol 2020; 41:102563. [PMID: 32521298 DOI: 10.1016/j.amjoto.2020.102563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Tumor recurrence and distant metastasis are very common in laryngeal squamous cell carcinoma (LSCC). In this study, we examined the potential prognostic value of microRNA-20b-5p (miR-20b-5p), a component of the tumor-related miR-106a/363 cluster. MATERIALS AND METHODS Total RNA was purified from 105 tissue specimens resected from patients having undergone surgical treatment for primary LSCC. After in vitro polyadenylation and reverse transcription, a sensitive real-time quantitative polymerase chain reaction (qPCR) methodology was applied for the relative quantification of miR-20b-5p levels. Then, we proceeded with biostatistical analysis, seeking to assess the prognostic value of miR-20b-5p expression in LSCC. RESULTS miR-20b-5p positivity constitutes a predictor of inferior DFS and OS in LSCC (P < 0.001 and P = 0.002, respectively). The significant prognostic value of miR-20b-5p expression status seems to be independent of tumor size, histological grade, and TNM stage, as revealed by the multivariate bootstrap Cox regression analysis. Kaplan-Meier survival analysis showed also that miR-20b-5p expression status can stratify LSCC patients with non-infiltrated regional lymph nodes (N0) into two subgroups with distinct prognosis (P = 0.004 and P = 0.004, respectively). CONCLUSIONS The miR-20b-5p expression status is a promising molecular tissue biomarker in LSCC, with an independent prognostic value, and thus merits further validation in larger cohorts of patients.
Collapse
Affiliation(s)
- Theodwros-Leonidas Pantazis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Aris I Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Karamagkiolas
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Manousos Konstantoulakis
- First Department of Propaedeutic Surgery, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aliki Liakea
- First Department of Pathology, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - Evangelos P Misiakos
- Third Department of Surgery, University General Hospital "Attikon", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Wu H, Tian X, Zhu C. Knockdown of lncRNA PVT1 inhibits prostate cancer progression in vitro and in vivo by the suppression of KIF23 through stimulating miR-15a-5p. Cancer Cell Int 2020; 20:283. [PMID: 32624708 PMCID: PMC7330980 DOI: 10.1186/s12935-020-01363-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) greatly threatens men's lives, with high incidence and mortality. Recently, the research of long non-coding RNAs (lncRNAs) has made breakthroughs in the development of human cancers. This study aimed to figure out the role and action mechanism of lncRNA PVT1 (PVT1) in PCa. METHODS The expression of PVT1, microRNA-15a-5p (miR-15a-5p) and kinesin family member 23 (KIF23) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration and invasion were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry and transwell assays, respectively. The protein levels of KIF23 and proliferation, apoptosis, and epithelial-mesenchymal transition (EMT)-related markers were quantified by western blot. The relationship between miR-15a-5p and PVT1 or KIF23 was predicted by starBase v2.0 and verified by dual-luciferase reporter assay. Xenograft assay was conducted to determine the role of PVT1 in vivo. RESULTS The expression of PVT1 and KIF23 was enhanced, while miR-15a-5p expression was reduced in PCa tissues and cells. PVT1 interference inhibited proliferation, migration and invasion but promoted apoptosis of PCa cells. MiR-15a-5p was a target of PVT1, and KIF23 was a target of miR-15a-5p. The inhibition of miR-15a-5p reversed the effects of PVT1 interference and suppressed the roles of KIF23 knockdown. KIF23 expression was regulated by PVT1 through miR-15a-5p. PVT1 interference blocked PCa progression in vivo. CONCLUSION PVT1 knockdown had effects on the progression of PCa by inhibiting the expression of KIF23 via enriching miR-15a-5p in vitro and in vivo, suggesting that PVT1 might be a novel biomarker for the treatment of PCa.
Collapse
Affiliation(s)
- Huijuan Wu
- Department of Telemedicine and Internet Medical Center, The Huaihe Hospital of Henan University, No. 115 Ximen Avenue, Kaifeng, 475000 Henan China
| | - Xin Tian
- Department of Urology Surgery, The Huaihe Hospital of Henan University, Kaifeng, Henan China
| | - Chaoyang Zhu
- Department of Urology Surgery, The Huaihe Hospital of Henan University, Kaifeng, Henan China
| |
Collapse
|
23
|
Li N, Pan J, Liu W, Li Y, Li F, Liu M. MicroRNA-15a-5p serves as a potential biomarker and regulates the viability and apoptosis of hippocampus neuron in children with temporal lobe epilepsy. Diagn Pathol 2020; 15:46. [PMID: 32384924 PMCID: PMC7206675 DOI: 10.1186/s13000-020-00944-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/26/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is the most common type of epilepsy, usually starting in childhood. The dysregulation of microRNAs (miRNAs) has been identified in neurological disorders. The current study investigated the expression level and clinical significance of miR-15a-5p in TLE children, and explored its function in regulating cell behaviors of hippocampal neurons. METHODS The expression level of miR-15a-5p was examined in the serum of 63 TLE children. Primary hippocampal cells were cultured in magnesium-free medium to mimic TLE condition in children. The effect of miR-15a-5p on the viability and apoptosis of hippocampus neuron was assessed using MTT or flow cytometric apoptosis assay. RESULTS TLE children had significantly low expression of miR-15a-5p. MiR-15a-5p was of great value for the diagnosis of TLE in children, with high specificity and sensitivity. The expression level of miR-15a-5p was decreased significantly in hippocampal cells treated in the magnesium-free medium. Overexpression of miR-15a-5p attenuated TLE-induced reduction for cell viability, and reversed the cell apoptosis induced by TLE. CONCLUSIONS MiR-15a-5p is downregulated in children with TLE, and overexpression of miR-15a-5p promoted the viability and inhibited the apoptosis of hippocampal neuron. MiR-15a-5p may be a promising biomarker for the diagnosis of children TLE.
Collapse
Affiliation(s)
- Na Li
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, 262500, P.R. China
| | - Jingmei Pan
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, 262500, P.R. China
| | - Wei Liu
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, 262500, P.R. China
| | - Yuanyuan Li
- Department of Medical Image, Yidu Central Hospital of Weifang, Weifang, Shandong, 262500, P.R. China
| | - Feng Li
- Department of Emergency Surgery, Weifang People's Hospital, No. 151, Guangwen Street, Weifang, Shandong, 261000, P.R. China.
| | - Min Liu
- Department of Medical Insurance, Weifang Maternal and Child Health Care Hospital, Weifang, Shandong, 261021, P.R. China.
| |
Collapse
|
24
|
Zhu Y, Zhang X, Wang L, Zhu X, Xia Z, Xu L, Xu J. FENDRR suppresses cervical cancer proliferation and invasion by targeting miR-15a/b-5p and regulating TUBA1A expression. Cancer Cell Int 2020; 20:152. [PMID: 32398968 PMCID: PMC7204253 DOI: 10.1186/s12935-020-01223-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background Previous literature has revealed long non-coding RNAs (lncRNAs) are crucial regulators for cell functions and gene expression. LncRNA fetal-lethal non-coding developmental regulatory RNA (FENDRR) was reported as a biological suppressor in several types of human cancers, yet relevant mechanisms and biological effects of FENDRR with regards to cervical cancer (CC) are not explored until now. Methods In this study, quantitative real-time polymerase chain reaction (qRT-PCR) analysis detected gene expression in tissues and cells. Gain- or loss-of-function experiments revealed the biological effects of FENDRR and miR-15a/b-5p on CC cell functions. Bioinformatics tools were used to predict the relevant genes. Mechanism experiments including RNA immunoprecipitation (RIP) assay, pull down assay and luciferase reporter assay depicted the binding situation and coexistence of indicated genes. Results FENDRR was downregulated in CC tissues and cells, which suppressed CC progression. MiR-15a-5p and miR-15b-5p shared binding sites with FENDRR and had interaction with FENDRR. Tubulin alpha1A (TUBA1A) was downregulated in CC tissues and positively modulated by FENDRR. TUBA1A was the target of miR-15a/b-5p. TUBA1A silencing rescued the effect of FENDRR overexpression on CC cell growth and migration. Conclusion FENDRR inhibits CC progression through upregulating TUBA1A in a miR-15a/b-5p-dependent manner.
Collapse
Affiliation(s)
- Yunheng Zhu
- 1Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, No.170 Xinsong Road, Minhang District, Shanghai, 201199 China
| | - Xiaohua Zhang
- Minhang District Maternal and Child Health Hospital, Shanghai, 201102 China
| | - Lifeng Wang
- 1Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, No.170 Xinsong Road, Minhang District, Shanghai, 201199 China
| | - Xiuxiang Zhu
- 1Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, No.170 Xinsong Road, Minhang District, Shanghai, 201199 China
| | - Ziyin Xia
- 1Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, No.170 Xinsong Road, Minhang District, Shanghai, 201199 China
| | - Ling Xu
- 1Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, No.170 Xinsong Road, Minhang District, Shanghai, 201199 China
| | - Jun Xu
- 1Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, No.170 Xinsong Road, Minhang District, Shanghai, 201199 China
| |
Collapse
|
25
|
Li Y, Lin Q, Chang S, Zhang R, Wang J. Vitamin D3 mediates miR-15a-5p inhibition of liver cancer cell proliferation via targeting E2F3. Oncol Lett 2020; 20:292-298. [PMID: 32565955 PMCID: PMC7285896 DOI: 10.3892/ol.2020.11572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D3 has been demonstrated to suppress the development and progression of liver cancer, but the mechanism is unclear. The effects of vitamin D3 and microRNA (miR)-15a-5p on liver cancer cells were investigated in the present study using MTT and colony formation assays, flow cytometry, western blotting and reverse transcription-quantitative PCR. A dual-luciferase reporter assay was performed to determine whether E2F transcription factor 3 (E2F3) was a target of miR-15a-5p. The effects of silencing the E2F3 gene expression in liver cancer cells were investigated using a small interfering RNA. Vitamin D3 suppressed liver cancer cell proliferation, induced apoptosis and increased miR-15a-5p expression. Treatment with the miR-15a-5p mimics significantly suppressed liver cancer cell proliferation compared with that of the controls. Bioinformatics analysis and a dual-luciferase reporter assay demonstrated that E2F3 was a target of miR-15a-5p and that silencing E2F3 inhibited liver cancer cell proliferation. Therefore, Vitamin D3 suppressed cell proliferation by miR-15a-5p-mediated silencing of E2F3 gene expression. These findings suggested a role for vitamin D3 and E2F3 targeting as potential novel liver cancer therapies.
Collapse
Affiliation(s)
- Yulong Li
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China.,Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qiang Lin
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Su'E Chang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Rong Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jingjie Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
26
|
Rana S, Espinosa-Diez C, Ruhl R, Chatterjee N, Hudson C, Fraile-Bethencourt E, Agarwal A, Khou S, Thomas CR, Anand S. Differential regulation of microRNA-15a by radiation affects angiogenesis and tumor growth via modulation of acid sphingomyelinase. Sci Rep 2020; 10:5581. [PMID: 32221387 PMCID: PMC7101391 DOI: 10.1038/s41598-020-62621-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/17/2020] [Indexed: 12/28/2022] Open
Abstract
Activation of acid sphingomyelinase (SMPD1) and the generation of ceramide is a critical regulator of apoptosis in response to cellular stress including radiation. Endothelial SMPD1 has been shown to regulate tumor responses to radiation therapy. We show here that the SMPD1 gene is regulated by a microRNA (miR), miR-15a, in endothelial cells (ECs). Standard low dose radiation (2 Gy) upregulates miR-15a and decreases SMPD1 levels. In contrast, high dose radiation (10 Gy and above) decreases miR-15a and increases SMPD1. Ectopic expression of miR-15a decreases both mRNA and protein levels of SMPD1. Mimicking the effects of high dose radiation with a miR-15a inhibitor decreases cell proliferation and increases active Caspase-3 & 7. Mechanistically, inhibition of miR-15a increases inflammatory cytokines, activates caspase-1 inflammasome and increases Gasdermin D, an effector of pyroptosis. Importantly, both systemic and vascular-targeted delivery of miR-15a inhibitor decreases angiogenesis and tumor growth in a CT26 murine colorectal carcinoma model. Taken together, our findings highlight a novel role for miR mediated regulation of SMPD1 during radiation responses and establish proof-of-concept that this pathway can be targeted with a miR inhibitor.
Collapse
Affiliation(s)
- Shushan Rana
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Cristina Espinosa-Diez
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Rebecca Ruhl
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Namita Chatterjee
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Clayton Hudson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Eugenia Fraile-Bethencourt
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Anupriya Agarwal
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.,Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Sokchea Khou
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Sudarshan Anand
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA. .,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
27
|
Kalioraki MA, Artemaki PI, Sklirou AD, Kontos CK, Adamopoulos PG, Papadopoulos IN, Trougakos IP, Scorilas A. Heat shock protein beta 3 (HSPB3) is an unfavorable molecular biomarker in colorectal adenocarcinoma. Mol Carcinog 2019; 59:116-125. [PMID: 31709619 DOI: 10.1002/mc.23133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Small heat shock proteins (sHSPs) participate in numerous cellular functions including cell signaling, differentiation, and apoptosis. Deregulation of the physiological expression level of sHSPs has been associated with several malignancies. Heat shock protein beta 3 (HSPB3) is the third member of the sHSP family in human and is mainly expressed in skeletal and smooth muscles. In this study, we investigated the potential prognostic significance of HSPB3 expression in colorectal adenocarcinoma, the most frequent type of colorectal cancer. For this purpose, we isolated total RNA from 188 colorectal adenocarcinoma specimens and 68 paired noncancerous ones. After reverse transcription of 2 μg total RNA, we quantified HSPB3 levels by using an in-house-developed real-time quantitative polymerase chain reaction method, based on the SYBR Green chemistry. Comparison of HSPB3 levels among 68 pairs of colorectal tumors and their adjacent noncancerous mucosae uncovered the downregulation of HSPB3 expression in the majority of malignant colorectal tumors. More importantly, high HSPB3 expression is associated with poor relapse-free survival (RFS) and overall survival (OS) of patients with colorectal adenocarcinoma. Multivariable Cox regression analysis revealed that HSPB3 overexpression could serve as an adverse prognostic biomarker in colorectal adenocarcinoma, independent of tumor location, histological grade, and TNM stage. Patients' stratification according to tumor location, histological grade, and TNM stage revealed that high HSPB3 messenger RNA expression retains its unfavorable prognostic potential regarding OS, in particular groups of patients with substantially different prognosis. In conclusion, high HSPB3 expression is associated with poor RFS and OS of patients with colorectal adenocarcioma, independently of clinicopathological prognosticators.
Collapse
Affiliation(s)
- Maria-Anna Kalioraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Pinelopi I Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia D Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Papachristopoulou G, Malachias A, Devetzi M, Kamouza E, Scorilas A, Xynopoulos D, Talieri M. Uncovering the clinical impact of kallikrein-related peptidase 5 (KLK5) mRNA expression in the colorectal adenoma-carcinoma sequence. Clin Chem Lab Med 2019; 57:1251-1260. [PMID: 30759066 DOI: 10.1515/cclm-2018-1010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Background Kallikrein-related peptidases (KLKs) are a subgroup of serine proteases located on chromosome 19q13.3. Most KLKs have been extensively studied as potential biomarkers for several carcinomas and other diseases. KLK5 was originally identified from a keratinocyte library, and its enzyme was purified from the stratum corneum of human skin. KLK5 was shown to be differentially expressed in a variety of endocrine tumors, although it is not as yet examined widely in colorectal cancer (CRC). Methods In this study, we quantitatively assessed the mRNA expression status of KLK5 in 197 colorectal tissues from 133 patients (70 cancerous and their paired normal colonic mucosa for 64 of them, as well as 63 colorectal adenomas) by quantitative real-time PCR (qPCR) using TaqMan probes. Statistical analysis evaluated the results. Results It was shown that KLK5 expression is reduced following the histologically non-cancerous-adenoma sequence (p<0.001), whereas it is increased during the sequence adenoma-carcinoma (p<0.001). Furthermore, KLK5 positive expression is associated with positive nodal status (p=0.022), advanced tumor stage (p=0.038) and high histological grade (p=0.033). Cox univariate analysis revealed that KLK5 positive expression is associated with disease-free survival (DFS) (p=0.028) and overall survival (OS) of patients (p=0.048). Kaplan-Meyer survival models showed that patients with positive KLK5 expression have lower DFS (p=0.009) and OS (p=0.019). Receiver operating characteristic (ROC) analysis demonstrated for first time that KLK5 expression had significant discriminatory values between cancer and adenoma tissues (area under the curve [AUC] 0.77; 95% confidence interval [CI]=0.69-0.85, p=0.03). Conclusions KLK5 mRNA expression may be useful for the differentiation of CRC from colorectal adenoma and represents a potential unfavorable prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Georgia Papachristopoulou
- Department of Pathology, "Saint Savvas" Cancer Hospital of Athens, Athens, Greece.,Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos Malachias
- Department of Gastroenterology, "Saint Savvas" Cancer Hospital of Athens, Athens, Greece
| | - Marina Devetzi
- Department of Cellular Physiology, G. Papanicolaou Research Center of Oncology, "Saint Savvas" Cancer Hospital of Athens, Athens, Greece
| | - Evdoxia Kamouza
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Xynopoulos
- Department of Gastroenterology, "Saint Savvas" Cancer Hospital of Athens, Athens, Greece
| | - Maroulio Talieri
- Department of Cellular Physiology, G. Papanicolaou Research Center of Oncology, "Saint Savvas" Cancer Hospital of Athens, Athens, Greece
| |
Collapse
|
29
|
Karamagkiolas S, Giotakis I, Kyrodimos E, Giotakis EI, Kataki A, Karagianni F, Lazaris AM. Expression of vimentin (VIM) and metastasis-associated 1 (MTA1) protein in laryngeal squamous cell carcinoma are associated with prognostic outcome of patients. Am J Otolaryngol 2019; 40:487-493. [PMID: 30979652 DOI: 10.1016/j.amjoto.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Laryngeal squamous cell carcinoma (LSCC), a common type of head and neck cancer, is associated with high rates of metastasis and recurrence. In this study, we investigated the potential combinatorial prognostic value of NOTCH1, Vimentin (VIM), and Metastasis-associated 1 (MTA1) protein in LSCC, using immunohistochemistry. MATERIALS AND METHODS Tissue specimens from 69 patients with LSCC were immunohistochemically evaluated for the protein expression of NOTCH1, VIM, and MTA1. Then, biostatistical analysis was performed, in order to assess the prognostic value of the expression of each one of these proteins. RESULTS NOTCH1 expression status was not a significant prognosticator in LSCC, as shown in Kaplan-Meier survival analysis. On the contrary, both VIM and MTA1 seem to have an important prognostic potential, independently of TNM staging and histological grade of the tumor. In fact, positive VIM expression was shown to predict patients' relapse and poor outcome regarding patients' overall survival, in contrast with MTA1, the positive expression of which predicts higher disease-free survival (DFS) and overall survival (OS) rates in LSCC. CONCLUSIONS VIM and MTA1 constitute potential tumor biomarkers in LSCC and could be integrated into a multiparametric prognostic model. Undoubtedly, their prognostic value needs further validation in larger cohorts of LSCC patients.
Collapse
Affiliation(s)
- Sotirios Karamagkiolas
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimios Kyrodimos
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos I Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Agapi Kataki
- First Department of Propaedeutic Surgery, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Fani Karagianni
- First Department of Propaedeutic Surgery, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas M Lazaris
- Department of Vascular Surgery, University General Hospital "Attikon", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Tsiakanikas P, Kontos CK, Kerimis D, Papadopoulos IN, Scorilas A. High microRNA-28-5p expression in colorectal adenocarcinoma predicts short-term relapse of node-negative patients and poor overall survival of patients with non-metastatic disease. Clin Chem Lab Med 2019; 56:990-1000. [PMID: 29688883 DOI: 10.1515/cclm-2017-0430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/17/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) may function either as oncogenes or tumor suppressors and are heavily involved in the initiation and progression of cancer, and in metastasis of tumor cells. MicroRNA-28-5p (miR-28-5p) targets several cancer-related genes and is hence involved in cell proliferation, migration, invasion and epithelial-mesenchymal transition. In this study, we investigated the potential diagnostic and prognostic significance of miR-28-5p expression in colorectal adenocarcinoma, the most frequent type of colorectal cancer (CRC). METHODS Therefore, we isolated total RNA from 182 colorectal adenocarcinoma specimens and 86 paired non-cancerous colorectal mucosae. After polyadenylation of 2 μg total RNA and its reverse transcription using an oligo-dT-adapter primer, we quantified miR-28-5p levels using an in-house-developed reverse-transcription real-time quantitative polymerase chain reaction (RT-qPCR) method, based on the SYBR Green chemistry. RESULTS Comparison of miR-28-5p levels among 86 pairs of colorectal tumors and their adjacent non-cancerous mucosae uncovered the downregulation of miR-28-5p expression in the majority of malignant colorectal tumors. More importantly, high miR-28-5p expression predicts poor disease-free survival (DFS) and overall survival (OS) of colorectal adenocarcinoma patients. Multivariate Cox regression analysis revealed that miR-28-5p overexpression is a significant predictor of poor prognosis in colorectal adenocarcinoma, independent of tumor size, histological grade, TNM staging, radiotherapy and chemotherapy. Interestingly, strong miR-28-5p expression retains its predictive potential regarding relapse among patients with negative regional lymph nodes, and predicts poor OS in patients diagnosed with non-metastatic colorectal adenocarcinoma. CONCLUSIONS High miR-28-5p expression predicts poor DFS and OS of colorectal adenocarcinoma patients, independently of clinicopathological prognosticators and standard patient treatment, including radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kerimis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece, Phone: +30 2107274306, Fax: +30 2107274158
| |
Collapse
|
31
|
Prognostic Value of MicroRNA-15a in Human Cancers: A Meta-Analysis and Bioinformatics. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2063823. [PMID: 31061821 PMCID: PMC6466945 DOI: 10.1155/2019/2063823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
Background Although several studies have proved the relationship between the prognostic value of miRNA-15a and different types of cancer, the result remains controversial. Thus, a meta-analysis was conducted to clarify the prognostic value of miRNA-15a expression level in human cancers. Methods We enrolled appropriate literature by searching the databases of PubMed, Embase, and Web of Science. Subsequently, we extracted HRs and their 95% CIs and calculated pooled results of miRNA-15a for overall survival (OS) and disease-free survival (DFS). Besides, subgroup analysis, sensitivity analysis, and publication bias were also revealed in this study. We also further validated this meta-analysis using the Kaplan-Meier plotter database. Result 10 studies, including 1616 patients, were embraced in our meta-analysis. The result showed the lower expression of miRNA-15a significantly predicted adverse OS (HR=2.17, 95% CI: 1.41-3.34), but there is no significant association between the expressing level and DFS in cancer patient (HR=2.04, 95% CI: 0.60-6.88). Based on Kaplan-Meier plotter database, we found the same results in bladder Carcinoma, head-neck squamous cell carcinoma, liver hepatocellular carcinoma, lung squamous cell carcinoma, pancreatic ductal adenocarcinoma, rectum adenocarcinoma, stomach adenocarcinoma, and uterine corpus endometrial carcinoma, but opposite results were found in cervical squamous cell carcinoma and esophageal carcinoma. Conclusion Low expressing levels of miRNA-15a indicated poor OS, while miRNA-15a can be used as a prediction biomarker in different cancer types.
Collapse
|
32
|
Duan ZX, Huang P, Tu C, Liu Q, Li SQ, Long ZL, Li ZH. MicroRNA-15a-5p Regulates the Development of Osteoarthritis by Targeting PTHrP in Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3904923. [PMID: 30949498 PMCID: PMC6425345 DOI: 10.1155/2019/3904923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS A growing body of research has demonstrated that the degeneration of chondrocytes is the primary cause of osteoarthritis (OA). Parathyroid hormone-related protein (PTHrP) can alleviate the degeneration of chondrocytes via promotion of chondrocyte proliferation and inhibition of terminal differentiation, but the underlying mechanism remains unknown. This study aimed to identify the microRNAs (miRNAs) that may target PTHrP and regulate the proliferation and terminal differentiation of chondrocytes. METHODS Bioinformatic analysis was used to predict which miRNAs target PTHrP. We collected human knee cartilage specimens to acquire the primary chondrocytes, which we then used to test the expression and function of the targeted miRNAs. To explore the effects of miR-15a-5p on the putative binding sites, specific mimics or inhibitors were transfected into the chondrocytes. Furthermore, a dual-luciferase reporter gene assay and chondrocyte degeneration-related factors were used to verify the possible mechanism. RESULTS The expression of PTHrP was upregulated in the OA chondrocytes, whilst miR-15a-5p was downregulated in the OA chondrocytes. A negative correlation was observed between PTHrP and miR-15a-5p. The knockdown of miR-15a-5p promoted the growth of chondrocytes and inhibited calcium deposition, whilst overexpression of miR-15a-5p reversed this trend. The effect of miR-15a-5p overexpression was neutralised by PTHrP. Dual-luciferase reporter assays revealed that PTHrP can be used as a novel targeting molecule for miR-15a-5p. CONCLUSIONS miR-15a-5p promotes the degeneration of chondrocytes by targeting PTHrP and, in addition to helping us understand the development of OA, may be a potential biomarker of OA.
Collapse
Affiliation(s)
- Zhi-xi Duan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha 410011, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha 410011, China
| | - Qing Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha 410011, China
| | - Shuang-qing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha 410011, China
| | - Ze-ling Long
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha 410011, China
| | - Zhi-hong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha 410011, China
| |
Collapse
|
33
|
Expression Analysis of miR-29b in Malignant and Benign Breast Tumors: A Promising Prognostic Biomarker for Invasive Ductal Carcinoma With a Possible Histotype-Related Expression Status. Clin Breast Cancer 2018; 18:305-312.e3. [DOI: 10.1016/j.clbc.2017.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/02/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022]
|
34
|
Adamopoulos PG, Tsiakanikas P, Scorilas A. Kallikrein-related peptidases and associated microRNAs as promising prognostic biomarkers in gastrointestinal malignancies. Biol Chem 2018; 399:821-836. [DOI: 10.1515/hsz-2017-0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Gastrointestinal (GI) malignancies represent a wide spectrum of diseases of the GI tract and its accessory digestive organs, including esophageal (EC), gastric (GC), hepatocellular, pancreatic (PC) and colorectal cancers (CRC). Malignancies of the GI system are responsible for nearly 30% of cancer-related morbidity and approximately 40% of cancer-related mortality, worldwide. For this reason, the discovery of novel prognostic biomarkers that can efficiently provide a better prognosis, risk assessment and prediction of treatment response is an imperative need. Human kallikrein-related peptidases (KLKs) are a subgroup of trypsin and chymotrypsin-like serine peptidases that have emerged as promising prognosticators for many human types of cancer, being aberrantly expressed in cancerous tissues. The aberrant expression of KLKs in human malignancies is often regulated by KLK/microRNAs (miRNAs) interactions, as many miRNAs have been found to target KLKs and therefore alter their expression levels. The biomarker utility of KLKs has been elucidated not only in endocrine-related human malignancies, including those of the prostate and breast, but also in GI malignancies. The main purpose of this review is to summarize the existing information regarding the prognostic significance of KLKs in major types of GI malignancies and highlight the regulatory role of miRNAs on the expression levels of KLKs in these types of cancer.
Collapse
Affiliation(s)
- Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| |
Collapse
|
35
|
Kourtis A, Adamopoulos PG, Papalois A, Iliopoulos DC, Babis GC, Scorilas A. Quantitative analysis and study of the mRNA expression levels of apoptotic genes BCL2, BAX and BCL2L12 in the articular cartilage of an animal model of osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:243. [PMID: 30069445 DOI: 10.21037/atm.2018.05.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Given that apoptosis of chondrocytes is one of the most important factors related to the pathogenesis of osteoarthritis (OA), the recent research interest adds progress not only to the knowledge of the molecular signals that mediate apoptosis but also to find new therapeutic targets. This study attempts to investigate the differential expression of BCL2 family genes in the articular cartilage of an experimental animal model of OA. Methods In total, 26 New Zealand white rabbits underwent an anterior cruciate ligament transaction, 26 more were subjected to a placebo surgery and 18 specimens constituted the control non-operated group. Thirteen weeks later, samples of cartilage from the osteoarthritic and non-osteoarthritic knees were collected and subjected to analysis of the BCL2, BAX and BCL2L12 gene expression at the mRNA level. Results Installed osteoarthritic alterations of varied intensity and of grade 1 up to grade 5, were confirmed according to the OARSI system. Contrary to the physiologically healthy samples, in the osteoarthritic samples the mRNA expression levels of BAX and BCL2L12 genes were found significantly upregulated by signals which can activate apoptosis. However, the difference between BCL2 mRNA expression levels in healthy and osteoarthritic samples was not supported statistically. Conclusions Since apoptosis is the main feature of the cartilage degeneration in OA, the effective inhibition of apoptosis of chondrocytes can provide novel and interesting therapeutic strategies for the treatment of OA. Therefore, BAX and BCL2L12 are highlighted as potential therapeutic targets in OA.
Collapse
Affiliation(s)
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - George C Babis
- Second Orthopaedic Department, National and Kapodistrian University of Athens Medical School, Konstantopouleio General Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Diamantopoulos MA, Tsiakanikas P, Scorilas A. Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:241. [PMID: 30069443 DOI: 10.21037/atm.2018.06.10] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) constitute a heterogeneous group of RNA molecules in terms of biogenesis, biological function as well as length and structure. These biological molecules have gained attention recently as a potentially crucial layer of tumor cell progression or regulation. ncRNAs are expressed in a broad spectrum of tumors, and they play an important role not only in maintaining but also in promoting cancer development and progression. Recent discoveries have revealed that ncRNAs may act as key signal transduction mediators in tumor signaling pathways by interacting with RNA or proteins. These results reinforce the hypothesis, that ncRNAs constitute therapeutic targets, and point out their clinical potential as stratification markers. The major purpose of this review is to mention the emergence of the importance of ncRNAs, as molecules which are correlated with cancer, and to discuss their clinical implicit as prognostic diagnostic indicators, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Adamopoulos PG, Theodoropoulou MC, Scorilas A. Alternative Splicing Detection Tool-a novel PERL algorithm for sensitive detection of splicing events, based on next-generation sequencing data analysis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:244. [PMID: 30069446 DOI: 10.21037/atm.2018.06.32] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Next-generation sequencing (NGS) can provide researchers with high impact information regarding alternative splice variants or transcript identifications. However, the enormous amount of data acquired from NGS platforms make the analysis of alternative splicing events hard to accomplish. For this reason, we designed the "Alternative Splicing Detection Tool" (ASDT), an algorithm that is capable of identifying alternative splicing events, including novel ones from high-throughput NGS data. ASDT is available as a PERL script at http://aias.biol.uoa.gr/~mtheo and can be executed on any system with PERL installed. In addition to the detection of annotated and novel alternative splicing events from high-throughput NGS data, ASDT can also analyze the intronic regions of genes, thus enabling the detection of novel cryptic exons residing in annotated introns, extensions of previously annotated exons, or even intron retentions. Consequently, ASDT demonstrates many innovative and unique features that can efficiently contribute to alternative splicing analysis of NGS data.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Margarita C Theodoropoulou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou, Lamia, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| |
Collapse
|
38
|
Gao S, Zhao ZY, Wu R, Zhang Y, Zhang ZY. Prognostic value of microRNAs in colorectal cancer: a meta-analysis. Cancer Manag Res 2018; 10:907-929. [PMID: 29750053 PMCID: PMC5935085 DOI: 10.2147/cmar.s157493] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Numerous studies have shown that miRNA levels are closely related to the survival time of patients with colon, rectal, or colorectal cancer (CRC). However, the outcomes of different investigations have been inconsistent. Accordingly, a meta-analysis was conducted to study associations among the three types of cancers. Materials and methods Studies published in English that estimated the expression levels of miRNAs with survival curves in CRC were identified until May 20, 2017 by online searches in PubMed, Embase, Web of Science, and the Cochrane Library by two independent authors. Pooled HRs with 95% CIs were used to estimate the correlation between miRNA expression and overall survival. Results A total of 63 relevant articles regarding 13 different miRNAs, with 10,254 patients were ultimately included. CRC patients with high expression of blood miR141 (HR 2.52, 95% CI 1.68-3.77), tissue miR21 (HR 1.31, 95% CI 1.12-1.53), miR181a (HR 1.52, 95% CI 1.26-1.83), or miR224 (HR 2.12, 95% CI 1.04-4.34), or low expression of tissue miR126 (HR 1.55, 95% CI 1.24-1.93) had significantly poor overall survival (P<0.05). Conclusion In general, blood miR141 and tissue miR21, miR181a, miR224, and miR126 had significant prognostic value. Among these, blood miR141 and tissue miR224 were strong biomarkers of prognosis for CRC.
Collapse
Affiliation(s)
- Song Gao
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Zhi-Ying Zhao
- School of Computer Science and Engineering, Northeastern University, Shenyang
| | - Rong Wu
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Yue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Yong Zhang
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| |
Collapse
|