1
|
Yuan Y, Li Y, Wu X, Bo J, Zhang L, Zhang J, Hu Y, Chen Y, Zeng Y, Wei X, Zhang H. POH1 induces Smad3 deubiquitination and promotes lung cancer metastasis. Cancer Lett 2024; 582:216526. [PMID: 38061486 DOI: 10.1016/j.canlet.2023.216526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Smad3 is the key mediator of TGF-β1-triggered signal transduction and the related biological responses, promoting cell invasion and metastasis in various cancers, including lung cancer. However, the deubiquitinase stabilizing Smad3 remains unknown. In this study, we present a paradigm in which POH1 is identified as a novel deubiquitinase of Smad3 that plays a tumor-promoting role in lung adenocarcinoma (LUAD) by regulating Smad3 stability. POH1 markedly increased Smad3 protein levels and prolonged its half-life. POH1 directly interacted and colocalized with Smad3, leading to the removal of poly-deubiquitination of Smad3. Functionally, POH1 facilitated cell proliferation, migration, and invasion by stabilizing Smad3. Importantly, POH1 also promoted liver metastasis of lung cancer cells. The protein levels of both POH1 and Smad3 were raised in the tumor tissues of patients with LUAD, which predicts poor prognosis. Collectively, we demonstrate that POH1 acts as an oncoprotein by enhancing TGF-β1/Smad3 signaling and TGF-β1-mediated metastasis of lung cancer.
Collapse
Affiliation(s)
- Yang Yuan
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yixiao Li
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Wu
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jinsuo Bo
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Ye Hu
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yining Chen
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yiyan Zeng
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaofan Wei
- Department of Human Anatomy, Histology and Embryology, Program for Cancer and Cell Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Shenzhen University School of Medicine, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Lv SL, Guo P, Zou JR, Chen RS, Luo LY, Huang DQ. Prognostic significance and relationship of SMAD3 phospho-isoforms and VEGFR-1 in gastric cancer: A clinicopathological study. World J Gastrointest Oncol 2024; 16:118-132. [PMID: 38292835 PMCID: PMC10824111 DOI: 10.4251/wjgo.v16.i1.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The TGF-β/SMAD3 and VEGFR-1 signaling pathways play important roles in gastric cancer metastasis. SMAD3 phosphorylation is a crucial prognostic marker in gastric cancer. AIM To determine the prognostic value and relationship of SMAD3 phospho-isoforms and VEGFR-1 in gastric cancer. METHODS This was a single-center observational study which enrolled 98 gastric cancer patients and 82 adjacent normal gastric tissues from patients aged 32-84 years (median age 65) between July 2006 and April 2007. Patients were followed up until death or the study ended (median follow-up duration of 28.5 mo). The samples were used to generate tissue microarrays (TMAs) for immunohistochemical (IHC) staining. The expressions of TGF-β1, pSMAD3C(S423/425), pSMAD3L(S204), and VEGFR-1 in gastric cancer (GC) tumor tissue and normal tissue were measured by IHC staining using TMAs obtained from 98 GC patients. Prognosis and survival information of the patients was recorded by Outdo Biotech from May 2007 to July 2015. The relationship between TGF-β1, pSMAD3C(S423/425), pSMAD3L(S204), and VEGFR-1 protein expression levels was analyzed using Pearson's correlation coefficient. The relationship between protein expression levels and clinicopathological parameters was analyzed using the Chi-squared test. A survival curve was generated using the Kaplan-Meier survival analysis. RESULTS TGFβ-1 and VEGFR-1 expression was significantly upregulated in gastric cancer tissue compared to adjacent non-cancerous tissue. The positive expression of phosphorylated isoforms of Smad3 varied depending on the phosphorylation site [pSMAD3C(S423/425): 51.0% and pSMAD3L(S204): 31.6%]. High expression of pSMAD3L(S204) was significantly correlated with larger tumors (P = 0.038) and later N stages (P = 0.035). Additionally, high expression of VEGFR-1 was closely correlated with tumor size (P = 0.015) and pathological grading (P = 0.013). High expression of both pSMAD3L(S204) and VEGFR-1 was associated with unfavorable outcomes in terms of overall survival (OS). Multivariate analysis indicated that high expression of pSMAD3L(S204) and VEGFR-1 were independent risk factors for prognosis in GC patients. VEGFR-1 protein expression was correlated with TGF-β1 (r = 0.220, P = 0.029), pSMAD3C(S423/425) (r = 0.302, P = 0.002), and pSMAD3L(S204) (r = 0.201, P = 0.047), respectively. Simultaneous overexpression of pSMAD3L(S204) and VEGFR-1 was associated with poor OS in gastric cancer patients. CONCLUSION Co-upregulation of pSMAD3L(S204) and VEGFR-1 can serve as a predictive marker for poor gastric cancer prognosis, and pSMAD3L(204) may be involved in enhanced gastric cancer metastasis in a VEGFR-1-dependent manner.
Collapse
Affiliation(s)
- Shi-Lin Lv
- Hospital of Gastroenterology, Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Pei Guo
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, Guangdong Province, China
| | - Jun-Rong Zou
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Ren-Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ling-Yu Luo
- Hospital of Gastroenterology, Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - De-Qiang Huang
- Hospital of Gastroenterology, Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
3
|
Huang Z, Zhang C, Zhu K, Hu J, Xu E, Ma X, Wang Y, Zhu Y, Zhu J. (E)-SIS3 suppressed osteosarcoma progression via promoting cell apoptosis, arresting cell cycle, and regulating the tumor immune microenvironment. Drug Dev Res 2023; 84:1751-1763. [PMID: 37784254 DOI: 10.1002/ddr.22120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Osteosarcoma is a prevalent malignant bone tumor with a poor prognosis. Mothers against decapentaplegic homolog 3 (Smad3) present as a therapeutic target in antitumor treatment, whereas its functions in the osteosarcoma have not been well explored. In the current study, we aimed to investigate the effects of Smad3 in the progression of osteosarcoma. The tumor immune single-cell hub 2 website was used for graph-based visualization of Smad3 status in osteosarcoma single-cell database. Western Blot was applied to detect the expression of Smad3 protein in cell lines. Colony formation and cell counting kit-8 assays were used to evaluate cell proliferation. Transwell and wound healing assays were used to detect the migration and invasion abilities of cells. Cell apoptosis rates and cell cycle changes were explored by using flow cytometry analysis. The xenograft tumor growth model was applied to explore the effect in tumor growth after Smad3 blockage in vivo. Moreover, to confirm the potential mechanism of Smad3's effects on osteosarcoma, bioinformatics analysis was performed in TARGET-Osteosarcoma and GSE19276 databases. Our study found that the Smad3 protein is overexpressed in 143B and U2OS cells, suppressing the expression of Smad3 protein in osteosarcoma cells by Smad3 target inhibitor (E)-SIS3 or lentivirus can inhibit the proliferation, migration, invasion, promote cell apoptosis, arrest cell G1 cycle in osteosarcoma cells in vitro, and suppress tumor growth in vivo. Furthermore, the bioinformatics analysis demonstrated that high expression of Smad3 is closely associated with low immune status in TARGET-Osteosarcoma and GSE19276 databases. Our study suggested that Smad3 could contribute positively to osteosarcoma progression via the regulation of tumor immune microenvironment, and Smad3 may represent as an valuable potential therapeutic target in osteosarcoma therapy.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Orthopaedic, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunlin Zhang
- Department of Orthopaedic, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kunpeng Zhu
- Department of Orthopaedic, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianping Hu
- Department of Orthopaedic, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Enjie Xu
- Department of Orthopaedic, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolong Ma
- Department of Orthopaedic, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongjie Wang
- Department of Orthopaedic, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yurun Zhu
- Department of Orthopaedic, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiazhuang Zhu
- Department of Orthopaedic, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Hypoxia Selectively Increases a SMAD3 Signaling Axis to Promote Cancer Cell Invasion. Cancers (Basel) 2022; 14:cancers14112751. [PMID: 35681731 PMCID: PMC9179584 DOI: 10.3390/cancers14112751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Transforming growth factor β (TGFβ) plays a paradoxical role in cancer, first inhibiting then promoting its progression, a duality that poses a real challenge for the development of effective TGFβ-targeted therapies. The major TGFβ downstream effectors, SMAD2 and SMAD3, display both distinct and overlapping functions and accumulating evidence suggests that their activation ratio may contribute to the dual effect of TGFβ. However, the mechanisms responsible for their selective activation remain poorly understood. Here, we provide experimental evidence that hypoxia induces the pro-invasive arm of TGFβ signaling through a selective increase in SMAD3 interaction with SMAD-Anchor for Receptor Activation (SARA). This event relies on HDAC6-dependent SMAD3 bioavailability, as well as increased SARA recruitment to EEA1+ endosomes. A motility gene expression study indicated that SMAD3 selectively increased the expression of ITGB2 and VIM, two genes that were found to be implicated in hypoxia-induced cell invasion and associated with tumor progression and metastasis in cohorts of cancer patients. Furthermore, CAM xenograft assays show the significant benefit of selective inhibition of the SMAD3 signaling pathway as opposed to global TGFβ inhibition in preventing tumor progression. Overall, these results suggest that fine-tuning of the pro-invasive HDAC6-SARA-SMAD3 axis could be a better strategy towards effective cancer treatments.
Collapse
|
5
|
Yu J, Dong Y, Tang W, Pan H, Lv L, Long T, Zhou Q, Qi J, Liu J, Ding G, Yin J, Tan L. The Relationship Between Single Nucleotide Polymorphisms of SMAD3/SMAD6 and Risk of Esophageal Squamous Cell Carcinoma in Chinese Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:355-363. [PMID: 32904644 PMCID: PMC7457549 DOI: 10.2147/pgpm.s250076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
Background The TGF-β signal pathways play a key role in the development and promotion of squamous cell carcinoma (SCC). The pathway is mediated by the SMAD family proteins that include SMAD3 and SMAD6. Our study aimed to evaluate the relationship between single nucleotide polymorphism (SNP) of SMAD3/SMAD6 and susceptibility to esophageal squamous cell carcinoma (ESCC) in the Chinese population. Patients and Methods This was a hospital-based case-control study compromised of 1043 ESCC patients and 1315 non-cancer patients. Seven SMAD3/SMAD6 (rs8028147, rs3743343, rs3743342, rs8025774, rs8031440, rs803167, and rs34643453) SNPs were selected and used to evaluate their correlation with ESCC susceptibility. Genetic model tests, stratified analyses, linkage disequilibrium analyses, and haplotype analyses were performed in our study. Results Participants with SMAD3 rs3743342 C>T, rs8025774 C>T, rs8031440 G>A or rs8031627 G>A had a significantly higher risk of ESCC. This was more evident in males, older patients (>63 years), smokers, and non-alcohol drinking participants. Linkage disequilibrium analyses further revealed that there were strong correlations between SMAD3 rs3743342 C>T, rs8025774 C>T, rs8031440 G>A, and rs8031627 G>A. In the same line, haplotype analyses revealed that SMAD3 ACCCGGSMAD6A and SMAD3AGCCGGSMAD6A were associated with less susceptibility to ESCC while SMAD3ATTTAASMAD6A was associated with a higher risk of ESCC. Conclusion SNPs of SMAD3 were related to higher susceptibility to ESCC. As such, they may contribute to the development of viable strategies for early diagnosis and treatment of ESCC. However, more detailed association mechanisms between SMAD3/SMAD6 SNPs and ESCC need further experiments to prove.
Collapse
Affiliation(s)
- Jinjie Yu
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yunpeng Dong
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Huiwen Pan
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Tao Long
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Qiang Zhou
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Junqing Qi
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Jianchao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Negative Control of Cell Migration by Rac1b in Highly Metastatic Pancreatic Cancer Cells Is Mediated by Sequential Induction of Nonactivated Smad3 and Biglycan. Cancers (Basel) 2019; 11:cancers11121959. [PMID: 31817656 PMCID: PMC6966648 DOI: 10.3390/cancers11121959] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Expression of the small GTPase, Ras-related C3 botulinum toxin substrate 1B (RAC1B), a RAC1-related member of the Rho GTPase family, in tumor tissues of pancreatic ductal adenocarcinoma (PDAC) has been shown previously to correlate positively with patient survival, but the underlying mechanism(s) and the target genes involved have remained elusive. Screening of a panel of established PDAC-derived cell lines by immunoblotting indicated that both RAC1B and Mothers against decapentaplegic homolog 3 (SMAD3) were more abundantly expressed in poorly metastatic and well-differentiated lines as opposed to highly metastatic, poorly differentiated ones. Both siRNA-mediated RAC1B knockdown in the transforming growth factor (TGF)-β-sensitive PDAC-derived cell lines, Panc1 and PaCa3, or CRISPR/Cas-mediated knockout of exon 3b of RAC1 in Panc1 cells resulted in a dramatic decrease in the expression of SMAD3. Unexpectedly, the knockdown of SMAD3 reproduced the promigratory activity of a RAC1B knockdown in Panc1 and PaCa3, but not in TGF-β-resistant BxPC3 and Capan1 cells, while forced expression of SMAD3 alone was able to mimic the antimigratory effect of ectopic RAC1B overexpression in Panc1 cells. Moreover, overexpression of SMAD3 was able to rescue Panc1 cells from the RAC1B knockdown-induced increase in cell migration, while knockdown of SMAD3 prevented the RAC1B overexpression-induced decrease in cell migration. Using pharmacological and dominant-negative inhibition of SMAD3 C-terminal phosphorylation, we further show that the migration-inhibiting effect of SMAD3 is independent of its activation by TGF-β. Finally, we provide evidence that the antimigratory program of RAC1B-SMAD3 in Panc1 cells is executed through upregulation of the migration and TGF-β inhibitor, biglycan (BGN). Together, our data suggest that a RAC1B-SMAD3-BGN axis negatively controls cell migration and that SMAD3 can induce antimigratory genes, i.e., BGN independent of its role as a signal transducer for TGF-β. Therefore, targeting this novel pathway for activation is a potential therapeutic strategy in highly metastatic PDAC to interfere with invasion and metastasis.
Collapse
|
7
|
Paul D, Dixit A, Srivastava A, Tripathi M, Prakash D, Sarkar C, Ramanujam B, Banerjee J, Chandra PS. Altered transforming growth factor beta/SMAD3 signalling in patients with hippocampal sclerosis. Epilepsy Res 2018; 146:144-150. [DOI: 10.1016/j.eplepsyres.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 08/18/2018] [Indexed: 01/10/2023]
|