1
|
Aronson WJ, Grogan T, Liang P, Jardack P, Liddell AR, Perez C, Elashoff D, Said J, Cohen P, Marks LS, Henning SM. High Omega-3, Low Omega-6 Diet With Fish Oil for Men With Prostate Cancer on Active Surveillance: The CAPFISH-3 Randomized Clinical Trial. J Clin Oncol 2025; 43:800-809. [PMID: 39671538 PMCID: PMC11869882 DOI: 10.1200/jco.24.00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/20/2024] [Accepted: 10/30/2024] [Indexed: 12/15/2024] Open
Abstract
PURPOSE Men on active surveillance (AS) for prostate cancer are extremely interested in dietary changes or supplements to prevent progression of their disease. We sought to determine whether a high omega-3, low omega-6 fatty acid diet with fish oil capsules (D + FO) decreases proliferation (Ki-67) in prostate biopsies in men with prostate cancer on AS over a 1-year time period. METHODS In this phase II, prospective randomized trial, men (N = 100) with grade group 1 or 2 prostate cancer who elected AS were randomly assigned to the D + FO or a control group. Same-site prostate biopsies were obtained at baseline and 1 year. The primary end point was the change in Ki-67 index from baseline to 1 year from same-site biopsies compared between the groups. RESULTS The Ki-67 index decreased in the D + FO group by approximately 15% from baseline to 1 year (1.34% at baseline, 1.14% at 1 year) and increased in the control group by approximately 24% from baseline to 1 year (1.23% at baseline, 1.52% at 1 year), resulting in a statistically significant difference in the change of Ki-67 index between the groups (95% CI, 2% to 52%, P = .043). There was no significant difference in the secondary outcomes grade group, tumor length, Decipher genomic score, or prostate-specific antigen between the two groups. Four patients in the D + FO group were withdrawn from the trial because of adverse events related to the FO. CONCLUSION A high omega-3, low omega-6 diet with FO for 1 year resulted in a significant reduction in Ki-67 index, a biomarker for prostate cancer progression, metastasis, and death. These findings support future phase III trials incorporating this intervention in men on AS.
Collapse
Affiliation(s)
- William J. Aronson
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- VA Medical Center Greater Los Angeles Healthcare System, Los Angeles, California
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles; California
| | - Pei Liang
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Patricia Jardack
- Clinical Translational Science Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles; California
| | - Amana R. Liddell
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Claudia Perez
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles; California
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles; California
| | - Jonathan Said
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Leonard S. Marks
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Susanne M. Henning
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Moon H, Mori H, Chen J, Patino A, Penzvalto Z, Ramamurthy K, Choi J, McPherson JD, Snyder JC, Cardiff RD, Borowsky AD. Adaptive selection of p53 mutation metaplastic phenotypes in estrogen-independent progression of ER+ tumors: A mechanism for acquired resistance to hormonal therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636128. [PMID: 39975183 PMCID: PMC11838473 DOI: 10.1101/2025.02.02.636128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Estrogen receptor positive (ER + ) subtypes of mammary adenocarcinoma comprise 79% of all breast cancer diagnosis and 67% of all breast cancer mortality. The paucity of models of ER + mammary cancer that mimic human disease and response to treatment has limited critical preclinical study of mechanisms and new therapies for ER + breast cancer. The Stat1 knockout, 129S6/SvEvTac-Stat1 tm1Rds ( Stat1 -/- ), females develop luminal type FoxA1 + , ER + , and PR + mammary carcinomas after prolonged latencies. Initial studies showed that a cell line derived from a Stat1-/- mammary carcinoma was tumorigenic in syngeneic mice, but non-tumorigenic in ovariectomized (Ovx) mice. Here, data shows that Ovx performed after SSM2 tumors establish growth results in ovarian hormone independent growth. The viable post-Ovx tumors were primarily composed of metaplastic CK14 + basal type cells with a high percentage p53 immunohistochemistry (IHC) positive "mutation pattern", rather than the original luminal type tumors with low percent "wild type" pattern p53. Comparing whole exome sequences of ER + Stat1 -/- mammary tumors before and after Ovx, revealed basal keratins, mesenchymal (EMT) phenotypes, and unique mutation profiles in genes, including Trp53 and Prlr, in the estrogen-independent tumors. Our experimental findings are consistent with the clinical evidence of tumor heterogeneity of ER + breast cancers in patients in recent whole genome sequencing studies. Similarly, spontaneous Stat1-/- tumors with high percentage p53 "mutation pattern" were more basaloid and grew rapidly after Ovx, while retaining high expression of ER and FoxA1. This study demonstrates that the STAT1 -/- , ER + estrogen dependent breast cancers can become resistant to through clonal selection of mammary cells comprised of metaplastic p53 + /CK14 + basaloid cells.
Collapse
|
3
|
Campbell MJ, Wolf DM, Yau C, Brown-Swigart L, Wulfkuhle J, Gallagher IR, Zhu Z, Bolen J, Vandenberg S, Hoyt C, Mori H, Borowsky A, Sit L, Perlmutter J, Asare SM, Nanda R, Liu MC, Yee D, DeMichele AM, Hylton NM, Pusztai L, Berry DA, Hirst GL, Petricoin EF, Veer LV, Esserman L. Multi-platform biomarkers of response to an immune checkpoint inhibitor in the neoadjuvant I-SPY 2 trial for early-stage breast cancer. Cell Rep Med 2024; 5:101799. [PMID: 39510069 PMCID: PMC11604542 DOI: 10.1016/j.xcrm.2024.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/13/2024] [Accepted: 09/29/2024] [Indexed: 11/15/2024]
Abstract
Only a subset of patients with breast cancer responds to immune checkpoint blockade (ICB). To better understand the underlying mechanisms, we analyze pretreatment biopsies from patients in the I-SPY 2 trial who receive neoadjuvant ICB using multiple platforms to profile the tumor microenvironment. A variety of immune cell populations and markers of immune/cytokine signaling associate with pathologic complete response (pCR). Interestingly, these differ by breast cancer receptor subtype. Measures of the spatial distributions of immune cells within the tumor microenvironment, in particular colocalization or close spatial proximity of PD-1+ T cells with PD-L1+ cells (immune and tumor cells), are significantly associated with response in the overall cohort as well as the in the triple negative (TN) and HR+HER2- subtypes. Our findings indicate that biomarkers associated with immune cell signaling, immune cell densities, and spatial metrics are predictive of neoadjuvant ICB efficacy in breast cancer.
Collapse
Affiliation(s)
- Michael J Campbell
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lamorna Brown-Swigart
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julie Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Isela R Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Zelos Zhu
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer Bolen
- Biospecimen Resource Program (BIOS), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Scott Vandenberg
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Hidetoshi Mori
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA 95616, USA
| | - Alexander Borowsky
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA 95616, USA; Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Laura Sit
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Smita M Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Rita Nanda
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Minetta C Liu
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Douglas Yee
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela M DeMichele
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nola M Hylton
- Department of Radiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lajos Pusztai
- Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | | | - Gillian L Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Laura Van't Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Wang ZR, Zhang CZ, Ding Z, Li YZ, Yin JH, Li N. Establishing prognostic models for intrahepatic cholangiocarcinoma based on immune cells. World J Gastrointest Oncol 2024; 16:4092-4103. [DOI: 10.4251/wjgo.v16.i10.4092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective. Tumor-associated immune cells are critical for tumor development and progression. The main goal of this study was to establish models based on tumor-associated immune cells for predicting the overall survival of patients undergoing surgery for ICC.
AIM To establish 1-year and 3-year prognostic models for ICC after surgical resection.
METHODS Immunohistochemical staining was performed for CD4, CD8, CD20, pan-cytokeratin (CK), and CD68 in tumors and paired adjacent tissues from 141 patients with ICC who underwent curative surgery. Selection of variables was based on regression diagnostic procedures and goodness-of-fit tests (PH assumption). Clinical parameters and pathological diagnoses, combined with the distribution of immune cells in tumors and paired adjacent tissues, were utilized to establish 1- and 3-year prognostic models.
RESULTS This is an important application of immune cells in the tumor microenvironment. CD4, CD8, CD20, and CK were included in the establishment of our prognostic model by stepwise selection, whereas CD68 was not significantly associated with the prognosis of ICC. By integrating clinical data associated with ICC, distinct prognostic models were derived for 1- and 3-year survival outcomes using variable selection. The 1-year prediction model yielded a C-index of 0.76 95% confidence interval (95%CI): 0.65-0.87 and the 3-year prediction model produced a C-index of 0.69 (95%CI: 0.65-0.73). Internal validation yielded a C-index of 0.761 (95%CI: 0.669-0.853) for the 1-year model and 0.693 (95%CI: 0.642-0.744) for the 3-year model.
CONCLUSION We developed Cox regression models for 1-year and 3-year survival predictions of patients with ICC who underwent resection, which has positive implications for establishing a more comprehensive prognostic model for ICC based on tumor immune microenvironment and immune cell changes in the future.
Collapse
Affiliation(s)
- Zhuo-Ran Wang
- Department of Hepatic Surgery I (Ward I) Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Navy Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Navy Medical University, Shanghai 200433, China
- Department of Epidemiology, Faculty of Navy Medicine, Navy Medical University, Shanghai 200433, China
| | - Cun-Zhen Zhang
- Department of Hepatic Surgery I (Ward I) Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhan Ding
- Key Laboratory of Biological Defense, Ministry of Education, Navy Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Navy Medical University, Shanghai 200433, China
- Department of Epidemiology, Faculty of Navy Medicine, Navy Medical University, Shanghai 200433, China
| | - Yi-Zhuo Li
- Department of Oncology, 905 Hospital of People’s Liberation Army Navy, Shanghai 200050, China
| | - Jian-Hua Yin
- Key Laboratory of Biological Defense, Ministry of Education, Navy Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Navy Medical University, Shanghai 200433, China
- Department of Epidemiology, Faculty of Navy Medicine, Navy Medical University, Shanghai 200433, China
| | - Nan Li
- Department of Hepatic Surgery I (Ward I) Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
5
|
Setayesh T, Hu Y, Vaziri F, Wei D, Wan YJY. The spatial impact of a Western diet in enriching Galectin-1-regulated Rho, ECM, and SASP signaling in a novel MASH-HCC mouse model. Biomark Res 2024; 12:122. [PMID: 39402682 PMCID: PMC11476289 DOI: 10.1186/s40364-024-00660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) arising from metabolic dysfunction-associated steatohepatitis (MASH) presents a significant clinical challenge, particularly given the prevalence of the Western diet (WD). The influence of diet on the tumor microenvironment remains poorly understood. Galectin-1 (Gal-1) is a biomarker for HCC and has a crucial role in liver carcinogenesis. Our previous studies demonstrated that silencing Gal-1 effectively treats mouse HCC. However, the impacts of a WD on Gal-1 signaling on MASH to HCC progression are unknown, and this study addresses these knowledge gaps. METHODS We developed a novel MASH-HCC mouse model. Using spatial transcriptomics and multiplex immunohistochemistry (IHC), we studied the effects of a WD on the liver and tumor microenvironment. By modulating Gal-1 expression through silencing and overexpression, we explored the location-specific impacts of WD on Gal-1 signaling. RESULTS Pathways such as Rho signaling, extracellular matrix (ECM) remodeling, and senescence-associated secretory phenotypes (SASP) were prominently activated in WD-induced metabolic dysfunction-associated fatty liver disease (MAFLD) and MASH-HCC, compared to healthy livers controls. Furthermore, Rho GTPase effectors, ECM remodeling, neutrophil degranulation, cellular stress, and cell cycle pathways were consistently enriched in human and mouse MASH-HCC. Spatially, these pathways were enriched in the tumor and tumor margins of mouse MASH-HCC. Additionally, there was a notable increase in CD11c and PD-L1-positive cells from non-tumor tissues to the tumor margin and inside the tumor of MASH-HCC, suggesting compromised immune surveillance due to WD intake. Moreover, MASH-HCC exhibited significant Gal-1 induction in N-Cadherin-positive cells, indicating enhanced epithelial-to-mesenchymal transition (EMT). Modulating Gal-1 expression in MASH-HCC further established its specific roles in regulating Rho signaling and SASP in the tumor margin and non-tumor tissues in MASH-HCC. CONCLUSION WD intake significantly influences vital cellular processes involved in Gal-1-mediated signaling, including Rho signaling and ECM remodeling, in the tumor microenvironment, thereby contributing to the development of MASH-HCC.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Farzam Vaziri
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Dongguang Wei
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA.
| |
Collapse
|
6
|
Love NR, Williams C, Killingbeck EE, Merleev A, Saffari Doost M, Yu L, McPherson JD, Mori H, Borowsky AD, Maverakis E, Kiuru M. Melanoma progression and prognostic models drawn from single-cell, spatial maps of benign and malignant tumors. SCIENCE ADVANCES 2024; 10:eadm8206. [PMID: 38996022 PMCID: PMC11244543 DOI: 10.1126/sciadv.adm8206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Melanoma clinical outcomes emerge from incompletely understood genetic mechanisms operating within the tumor and its microenvironment. Here, we used single-cell RNA-based spatial molecular imaging (RNA-SMI) in patient-derived archival tumors to reveal clinically relevant markers of malignancy progression and prognosis. We examined spatial gene expression of 203,472 cells inside benign and malignant melanocytic neoplasms, including melanocytic nevi and primary invasive and metastatic melanomas. Algorithmic cell clustering paired with intratumoral comparative two-dimensional analyses visualized synergistic, spatial gene signatures linking cellular proliferation, metabolism, and malignancy, validated by protein expression. Metastatic niches included up-regulation of CDK2 and FABP5, which independently predicted poor clinical outcome in 473 patients with melanoma via Cox regression analysis. More generally, our work demonstrates a framework for applying single-cell RNA-SMI technology toward identifying gene regulatory landscapes pertinent to cancer progression and patient survival.
Collapse
Affiliation(s)
- Nick R Love
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Claire Williams
- NanoString Technologies, a Bruker Company, Seattle, WA 98109, USA
| | | | - Alexander Merleev
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | | | - Lan Yu
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - John D McPherson
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Hidetoshi Mori
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| |
Collapse
|
7
|
Vaziri F, Setayesh T, Hu Y, Ravindran R, Wei D, Wan YJY. BCG as an Innovative Option for HCC Treatment: Repurposing and Mechanistic Insights. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308242. [PMID: 38308164 PMCID: PMC11005731 DOI: 10.1002/advs.202308242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Indexed: 02/04/2024]
Abstract
This study investigates Bacillus Calmette-Guérin (BCG) as a potential treatment for hepatocellular carcinoma (HCC), a condition often associated with unfavorable treatment outcomes. Exploiting BCG's recognized immune-boosting properties, preclinical trials are conducted using HCC mice, with a single subcutaneous dose of BCG administered post-tumor formation. Results indicate that BCG treatment effectively diminishes tumor burden and extends survival in both male and female HCC mice. Positive influences on hepatic fibrosis and metabolism are observed, leading to a reduction in lipid levels. Spatial analysis underscores BCG's tumor-specific effects, inducing the enrichment of metabolic pathways and inhibiting various cancer-related pathways. Furthermore, BCG promotes immune cell infiltration, including CD4+, CD8+ T cells, and M1 macrophages, in both v-akt murine thymoma viral oncogene homolog 1(AKT)/neutoblastoma RAS viral oncogene homolog (RAS) and β-catenin positive HCC models. Interestingly, blocking T cells, trained immunity, and Interferon-γ (IFN-γ) function reverses BCG's anti-HCC effects. In conclusion, BCG emerges as a promising treatment option for HCC, characterized by a favorable safety profile and efficacy in inhibiting fibrosis, improving metabolism, and engaging both trained immunity and T cells in therapeutic mechanisms.
Collapse
Affiliation(s)
- Farzam Vaziri
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Ying Hu
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Resmi Ravindran
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Dongguang Wei
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| |
Collapse
|
8
|
Agioti S, Zaravinos A. Immune Cytolytic Activity and Strategies for Therapeutic Treatment. Int J Mol Sci 2024; 25:3624. [PMID: 38612436 PMCID: PMC11011457 DOI: 10.3390/ijms25073624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Intratumoral immune cytolytic activity (CYT), calculated as the geometric mean of granzyme-A (GZMA) and perforin-1 (PRF1) expression, has emerged as a critical factor in cancer immunotherapy, with significant implications for patient prognosis and treatment outcomes. Immune checkpoint pathways, the composition of the tumor microenvironment (TME), antigen presentation, and metabolic pathways regulate CYT. Here, we describe the various methods with which we can assess CYT. The detection and analysis of tumor-infiltrating lymphocytes (TILs) using flow cytometry or immunohistochemistry provide important information about immune cell populations within the TME. Gene expression profiling and spatial analysis techniques, such as multiplex immunofluorescence and imaging mass cytometry allow the study of CYT in the context of the TME. We discuss the significant clinical implications that CYT has, as its increased levels are associated with positive clinical outcomes and a favorable prognosis. Moreover, CYT can be used as a prognostic biomarker and aid in patient stratification. Altering CYT through the different methods targeting it, offers promising paths for improving treatment responses. Overall, understanding and modulating CYT is critical for improving cancer immunotherapy. Research into CYT and the factors that influence it has the potential to transform cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Stephanie Agioti
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| |
Collapse
|
9
|
Jahangir CA, Page DB, Broeckx G, Gonzalez CA, Burke C, Murphy C, Reis-Filho JS, Ly A, Harms PW, Gupta RR, Vieth M, Hida AI, Kahila M, Kos Z, van Diest PJ, Verbandt S, Thagaard J, Khiroya R, Abduljabbar K, Haab GA, Acs B, Adams S, Almeida JS, Alvarado-Cabrero I, Azmoudeh-Ardalan F, Badve S, Baharun NB, Bellolio ER, Bheemaraju V, Blenman KRM, Fujimoto LBM, Burgues O, Chardas A, Cheang MCU, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Portela FLD, Deman F, Demaria S, Dudgeon SN, Elghazawy M, Fernandez-Martín C, Fineberg S, Fox SB, Giltnane JM, Gnjatic S, Gonzalez-Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hewitt S, Horlings HM, Husain Z, Irshad S, Janssen EAM, Kataoka TR, Kawaguchi K, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Akturk G, Scott E, Kovács A, Lænkholm AV, Lang-Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Madabhushi A, Maley SK, Narasimhamurthy VM, Marks DK, McDonald ES, Mehrotra R, Michiels S, Kharidehal D, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault-Llorca F, Perera RD, Pinard CJ, Pinto-Cardenas JC, Pruneri G, Pusztai L, Rajpoot NM, Rapoport BL, Rau TT, Ribeiro JM, et alJahangir CA, Page DB, Broeckx G, Gonzalez CA, Burke C, Murphy C, Reis-Filho JS, Ly A, Harms PW, Gupta RR, Vieth M, Hida AI, Kahila M, Kos Z, van Diest PJ, Verbandt S, Thagaard J, Khiroya R, Abduljabbar K, Haab GA, Acs B, Adams S, Almeida JS, Alvarado-Cabrero I, Azmoudeh-Ardalan F, Badve S, Baharun NB, Bellolio ER, Bheemaraju V, Blenman KRM, Fujimoto LBM, Burgues O, Chardas A, Cheang MCU, Ciompi F, Cooper LAD, Coosemans A, Corredor G, Portela FLD, Deman F, Demaria S, Dudgeon SN, Elghazawy M, Fernandez-Martín C, Fineberg S, Fox SB, Giltnane JM, Gnjatic S, Gonzalez-Ericsson PI, Grigoriadis A, Halama N, Hanna MG, Harbhajanka A, Hart SN, Hartman J, Hewitt S, Horlings HM, Husain Z, Irshad S, Janssen EAM, Kataoka TR, Kawaguchi K, Khramtsov AI, Kiraz U, Kirtani P, Kodach LL, Korski K, Akturk G, Scott E, Kovács A, Lænkholm AV, Lang-Schwarz C, Larsimont D, Lennerz JK, Lerousseau M, Li X, Madabhushi A, Maley SK, Narasimhamurthy VM, Marks DK, McDonald ES, Mehrotra R, Michiels S, Kharidehal D, Minhas FUAA, Mittal S, Moore DA, Mushtaq S, Nighat H, Papathomas T, Penault-Llorca F, Perera RD, Pinard CJ, Pinto-Cardenas JC, Pruneri G, Pusztai L, Rajpoot NM, Rapoport BL, Rau TT, Ribeiro JM, Rimm D, Vincent-Salomon A, Saltz J, Sayed S, Hytopoulos E, Mahon S, Siziopikou KP, Sotiriou C, Stenzinger A, Sughayer MA, Sur D, Symmans F, Tanaka S, Taxter T, Tejpar S, Teuwen J, Thompson EA, Tramm T, Tran WT, van der Laak J, Verghese GE, Viale G, Wahab N, Walter T, Waumans Y, Wen HY, Yang W, Yuan Y, Bartlett J, Loibl S, Denkert C, Savas P, Loi S, Stovgaard ES, Salgado R, Gallagher WM, Rahman A. Image-based multiplex immune profiling of cancer tissues: translational implications. A report of the International Immuno-oncology Biomarker Working Group on Breast Cancer. J Pathol 2024; 262:271-288. [PMID: 38230434 PMCID: PMC11288342 DOI: 10.1002/path.6238] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chowdhury Arif Jahangir
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - David B Page
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Glenn Broeckx
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
- Centre for Oncological Research (CORE), MIPPRO, Faculty of Medicine, Antwerp University, Antwerp, Belgium
| | - Claudia A Gonzalez
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Caoimbhe Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Clodagh Murphy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, Ml, USA
| | - Rajarsi R Gupta
- Department of Biomedical informatics, Stony Brook University, Stony Brook, NY, USA
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Akira I Hida
- Department of Pathology, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Mohamed Kahila
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer, Vancouver, British Columbia, Canada
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
- Johns Hopkins Oncology Center, Baltimore, MD, USA
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jeppe Thagaard
- Technical University of Denmark, Kgs. Lyngby, Denmark
- Visiopharm A/S, Hørsholm, Denmark
| | - Reena Khiroya
- Department of Cellular Pathology, University College Hospital, London, UK
| | - Khalid Abduljabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | | | - Balazs Acs
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, Manhattan, NY, USA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | | | | | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory University Winship Cancer Institute, Atlanta, GA, USA
| | | | - Enrique R Bellolio
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | | | - Kim RM Blenman
- Department of internal Medicine Section of Medical Oncology and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Computer Science, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | | | - Octavio Burgues
- Pathology Department, Hospital Cliníco Universitario de Valencia/lncliva, Valencia, Spain
| | - Alexandros Chardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Maggie Chon U Cheang
- Head of Integrative Genomics Analysis in Clinical Trials, ICR-CTSU, Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Francesco Ciompi
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lee AD Cooper
- Department of Pathology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Germán Corredor
- Biomedical Engineering Department, Emory University, Atlanta, GA, USA
| | | | - Frederik Deman
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Pathology, Weill Cornell Medicine, New York NY, USA
| | - Sarah N Dudgeon
- Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Mahmoud Elghazawy
- University of Surrey, Guildford, UK
- Ain Shams University, Cairo, Egypt
| | - Claudio Fernandez-Martín
- Institute Universitario de Investigatión en Tecnología Centrada en el Ser Humano, HUMAN-tech, Universitat Politècnica de València, Valencia, Spain
| | - Susan Fineberg
- Montefiore Medical Center and the Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Medicine Hem/One, and Pathology, Tisch Cancer Institute – Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | | | - Anita Grigoriadis
- Cancer Bioinformatics, Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- The Breast Cancer Now Research Unit Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Steven N Hart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Johan Hartman
- Tehran University of Medical Sciences, Tehran, Iran
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hugo M Horlings
- Division of Pathology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | - Sheeba Irshad
- King's College London & Guys & St Thomas NHS Trust London, UK
| | - Emiel AM Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | | | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Andrey I Khramtsov
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Umay Kiraz
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Pawan Kirtani
- Histopathology, Aakash Healthcare Super Speciality Hospital, New Delhi, India
| | - Liudmila L Kodach
- Department of Pathology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Konstanty Korski
- Data, Analytics and Imaging, Product Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Guray Akturk
- Translational Molecular Biomarkers, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Ely Scott
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, USA
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne-Vibeke Lænkholm
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
- Department of Surgical Pathology, University of Copenhagen, Copenhagen, Denmark
| | - Corinna Lang-Schwarz
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Denis Larsimont
- Institut Jules Bordet Université Libre de Bruxelles, Brussels, Belgium
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Marvin Lerousseau
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM U900, Paris, France
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Radiology and Imaging Sciences, Biomedical Informatics, Pathology, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sai K Maley
- NRG Oncology/NSABP Foundation, Pittsburgh, PA, USA
| | | | - Douglas K Marks
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Elizabeth S McDonald
- Breast Cancer Translational Research Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Mehrotra
- Indian Cancer Genomic Atlas, Pune, India
- Centre for Health, Innovation and Policy Foundation, Noida, India
| | - Stefan Michiels
- Office of Biostatistics and Epidemiology, Gustave Roussy, Oncostat U1018, Inserm, University Paris-Saclay, Ligue Contre le Cancer labeled Team, Villejuif France
| | - Durga Kharidehal
- Department of Pathology, Narayana Medical College and Hospital, Nellore, India
| | - Fayyaz ul Amir Afsar Minhas
- Tissue Image Analytics Centre, Warwick Cancer Research Centre, PathLAKE Consortium, Department of Computer Science, University of Warwick, Coventry, UK
| | - Shachi Mittal
- Department of Chemical Engineering, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - David A Moore
- CRUK Lung Cancer Centre of Excellence, UCL and Cellular Pathology Department UCLH, London, UK
| | - Shamim Mushtaq
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Hussain Nighat
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Raipur, India
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Clinical Pathology, Drammen Sykehus, Vestre Viken HF, Drammen, Norway
| | - Frederique Penault-Llorca
- Service de Pathologie et Biopathologie, Centre Jean PERRIN, INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Rashindrie D Perera
- School of Electrical, Mechanical and Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Christopher J Pinard
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Oncology, Lakeshore Animal Health Partners, Mississauga, Ontario, Canada
- Centre for Advancing Responsible and Ethical Artificial Intelligence (CARE-AI), University of Guelph, Guelph, Ontario, Canada
| | | | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Lajos Pusztai
- Yale Cancer Center, Yale University, New Haven, CT, USA
- Department of Medical Oncology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | | - Bernardo Leon Rapoport
- The Medical Oncology Centre of Rosebank Johannesburg South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Tilman T Rau
- Institute of Pathology, University Hospital Düsseldorf and Heinrich-Heine-University, Düsseldorf Germany
| | | | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theranostic Medicine, Institut Curie, University Paris-Sciences et Lettres, Paris, France
| | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook Medicine, New York NY, USA
| | - Shahin Sayed
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | - Evangelos Hytopoulos
- Department of Pathology, Aga Khan University, Nairobi, Kenya
- iRhythm Technologies Inc., San Francisco, CA, USA
| | - Sarah Mahon
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Kalliopi P Siziopikou
- Department of Pathology, Section of Breast Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Medical Oncology Department Institut Jules Bordet Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Centers for Personalized Medicine (ZPM), Heidelberg, Germany
| | | | - Daniel Sur
- Department of Medical Oncology, University of Medicine and Pharmacy “luliu Hatieganu ”, Cluj-Napoca, Romania
| | - Fraser Symmans
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jonas Teuwen
- Al for Oncology Lab, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Trine Tramm
- Department of Pathology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - William T Tran
- Department of Radiation Oncology, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jeroen van der Laak
- Head of Integrative Genomics Analysis in Clinical Trials, ICR-CTSU, Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Gregory E Verghese
- Cancer Bioinformatics, Faculty of Life Sciences and Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
- The Breast Cancer Now Research Unit Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Giuseppe Viale
- Department of Pathology, European Institute of Oncology & University of Milan, Milan, Italy
| | - Noorul Wahab
- Tissue Image Analytics Centre, Department of Computer Science, University of Wanwick Coventry, UK
| | - Thomas Walter
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM U900, Paris, France
| | | | - Hannah Y Wen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wentao Yang
- Fudan Medical University Shanghai Cancer Center, Shanghai, PR China
| | - Yinyin Yuan
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sibylle Loibl
- Department of Medicine and Research, German Breast Group, Neu-lsenburg Germany
| | - Carsten Denkert
- Institut für Pathologie, Philipps-Universität Marburg und Universitätsklinikum Marburg, Marburg, Germany
| | - Peter Savas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Roberto Salgado
- Department of Pathology PA, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Arman Rahman
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Liu Y, Kim ES, Guo H. Hepatitis B virus-related hepatocellular carcinoma exhibits distinct intratumoral microbiota and immune microenvironment signatures. J Med Virol 2024; 96:e29485. [PMID: 38377167 PMCID: PMC10916714 DOI: 10.1002/jmv.29485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Emerging evidence supports a high prevalence of cancer type-specific microbiota residing within tumor tissues. The intratumoral microbiome in hepatocellular carcinoma (HCC), especially in viral (hepatitis B virus [HBV]/hepatitis C virus [HCV]) HCC, has not been well characterized for their existence, composition, distribution, and biological functions. We report herein a finding of specific microbial signature in viral HCC as compared to non-HBV/non-HCV (NBNC) HCC. However, the significantly diverse tumor microbiome was only observed in HBV-related HCC, and Cutibacterium was identified as the representative taxa biomarker. Biological function of the unique tumor microbiota in modulating tumor microenvironment (TME) was characterized by using formalin-fixed paraffin-embedded (FFPE) tissue-based multiplex immunofluorescence histochemistry (mIFH) allowing simultaneous in situ detection of the liver cancer cells surrounded with high/low density of microbiota, and the infiltrating immune cells. In HBV_HCC, the intratumoral microbiota are positively associated with increased tumor-infiltrating CD8+ T lymphocytes, but not the CD56+ NK cells. Two subtypes of myeloid-derived suppressor cells (MDSCs): monocytic MDSCs and polymorphonuclear MDSCs, were also found to be positively correlated with the intratumoral microbiota in HBV_HCC, indicating an inhibitory role of these microbial species in antitumor immunity and the contribution to the liver TME in combination of chronic viral hepatitis during HCC development.
Collapse
Affiliation(s)
- Yuanjie Liu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
- Cancer Microbiome Facility, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine
| | - Elena S. Kim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine
| |
Collapse
|
11
|
Ng J, Pan E, Johnston A, Ribera NT, Kersbergen A, Hess JB, Best SA, Tsui E, Steinfort D, Sutherland KD. A Multiplexed Approach to Assess Small Cell Lung Cancer Subtype Heterogeneity in Primary and Patient-Derived Tumor Samples. Methods Mol Biol 2024; 2806:117-138. [PMID: 38676800 DOI: 10.1007/978-1-0716-3858-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Unlocking the heterogeneity of cancers is crucial for developing therapeutic approaches that effectively eradicate disease. As our understanding of markers specific to cancer subclones or subtypes expands, there is a growing demand for advanced technologies that enable the simultaneous investigation of multiple targets within an individual tumor sample. Indeed, multiplex approaches offer distinct benefits, particularly when tumor specimens are small and scarce. Here we describe the utility of two fluorescence-based multiplex approaches; fluorescent Western blots, and multiplex immunohistochemistry (Opal™) staining to interrogate heterogeneity, using small cell lung cancer as an example. Critically, the coupling of Opal™ staining with advanced image quantitation, permits the dissection of cancer cell phenotypes at a single cell level. These approaches can be applied to patient biopsies and/or patient-derived xenograft (PDX) models and serve as powerful methodologies for assessing tumor cell heterogeneity in response to therapy or between metastatic lesions across diverse tissue sites.
Collapse
Affiliation(s)
- Jin Ng
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Emma Pan
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Alex Johnston
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Nina Tubau Ribera
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ariena Kersbergen
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jonas B Hess
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah A Best
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ellen Tsui
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Daniel Steinfort
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Monjazeb AM, Daly ME, Luxardi G, Maverakis E, Merleev AA, Marusina AI, Borowsky A, Mirhadi A, Shiao SL, Beckett L, Chen S, Eastham D, Li T, Vick LV, McGee HM, Lara F, Garcia L, Morris LA, Canter RJ, Riess JW, Schalper KA, Murphy WJ, Kelly K. Atezolizumab plus stereotactic ablative radiotherapy for medically inoperable patients with early-stage non-small cell lung cancer: a multi-institutional phase I trial. Nat Commun 2023; 14:5332. [PMID: 37658083 PMCID: PMC10474145 DOI: 10.1038/s41467-023-40813-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is a standard-of-care for medically-inoperable-early-stage non-small cell lung cancer (NSCLC). One third of patients progress and chemotherapy is rarely used in this population. We questioned if addition of the immune-checkpoint-inhibitor (ICI) atezolizumab to standard-of-care SABR can improve outcomes. We initiated a multi-institutional single-arm phase I study (NCT02599454) enrolling twenty patients with the primary endpoint of maximum tolerated dose (MTD); secondary endpoints of safety and efficacy; and exploratory mechanistic correlatives. Treatment is well tolerated and full dose atezolizumab (1200 mg) is the MTD. Efficacy signals include early responses (after 2 cycles of ICI, before initiation of SABR) in 17% of patients. Biomarkers of functional adaptive immunity, including T cell activation in the tumor and response to ex-vivo stimulation by circulating T cells, are highly predictive of benefit. These results require validation and are being tested in a phase III randomized trial.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amin Mirhadi
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | | | - Shuai Chen
- UC Davis Health, Sacramento, CA, 95817, USA
| | - David Eastham
- David Grant USAF Medical Center, Travis AFB, Fairfield, CA, 93405, USA
| | | | | | | | | | | | | | | | | | | | | | - Karen Kelly
- UC Davis Health, Sacramento, CA, 95817, USA
- International Association for the Study of Lung Cancer, Denver, CO, 80202, USA
| |
Collapse
|
13
|
Kammer MN, Mori H, Rowe DJ, Chen SC, Vasiukov G, Atwater T, Senosain MF, Antic S, Zou Y, Chen H, Peikert T, Deppen S, Grogan EL, Massion PP, Dubinett S, Lenburg M, Borowsky A, Maldonado F. Tumoral Densities of T-Cells and Mast Cells Are Associated With Recurrence in Early-Stage Lung Adenocarcinoma. JTO Clin Res Rep 2023; 4:100504. [PMID: 37674811 PMCID: PMC10477685 DOI: 10.1016/j.jtocrr.2023.100504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Lung cancer is the deadliest cancer in the United States and worldwide, and lung adenocarcinoma (LUAD) is the most prevalent histologic subtype in the United States. LUAD exhibits a wide range of aggressiveness and risk of recurrence, but the biological underpinnings of this behavior are poorly understood. Past studies have focused on the biological characteristics of the tumor itself, but the ability of the immune response to contain tumor growth represents an alternative or complementary hypothesis. Emerging technologies enable us to investigate the spatial distribution of specific cell types within the tumor nest and characterize this immune response. This study aimed to investigate the association between immune cell density within the primary tumor and recurrence-free survival (RFS) in stage I and II LUAD. Methods This study is a prospective collection with retrospective evaluation. A total of 100 patients with surgically resected LUAD and at least 5-year follow-ups, including 69 stage I and 31 stages II tumors, were enrolled. Multiplexed immunohistochemistry panels for immune markers were used for measurement. Results Cox regression models adjusted for sex and EGFR mutation status revealed that the risk of recurrence was reduced by 50% for the unit of one interquartile range (IQR) change in the tumoral T-cell (adjusted hazard ratio per IQR increase = 0.50, 95% confidence interval: 0.27-0.93) and decreased by 64% in mast cell density (adjusted hazard ratio per IQR increase = 0.36, confidence interval: 0.15-0.84). The analyses were reported without the type I error correction for the multiple types of immune cell testing. Conclusions Analysis of the density of immune cells within the tumor and surrounding stroma reveals an association between the density of T-cells and RFS and between mast cells and RFS in early-stage LUAD. This preliminary result is a limited study with a small sample size and a lack of an independent validation set.
Collapse
Affiliation(s)
- Michael N. Kammer
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hidetoshi Mori
- Department of Pathology, University of California, Davis, Davis, California
| | - Dianna J. Rowe
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Georgii Vasiukov
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thomas Atwater
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Maria Fernanda Senosain
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sanja Antic
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yong Zou
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tobias Peikert
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Steve Deppen
- Division of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Eric L. Grogan
- VA Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Pierre P. Massion
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Steve Dubinett
- David Geffen School of Medicine at The University of California Los Angeles (UCLA), Los Angeles, California
| | - Marc Lenburg
- School of Medicine, Boston University, Boston, Massachusetts
| | - Alexander Borowsky
- Department of Pathology, University of California, Davis, Davis, California
| | - Fabien Maldonado
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
14
|
Cruz SM, Sholevar CJ, Judge SJ, Darrow MA, Iranpur KR, Farley LE, Lammers M, Razmara AM, Dunai C, Gingrich AA, Persky J, Mori H, Thorpe SW, Monjazeb AM, Murphy WJ, Canter RJ. Intratumoral NKp46 + natural killer cells are spatially distanced from T and MHC-I + cells with prognostic implications in soft tissue sarcoma. Front Immunol 2023; 14:1230534. [PMID: 37545516 PMCID: PMC10401426 DOI: 10.3389/fimmu.2023.1230534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Soft tissue sarcomas (STS) are rare, heterogenous malignancies with an unmet need for novel immunotherapies. Tumor infiltrating lymphocytes (TILs) have been linked with favorable outcomes in STS patients, though the contribution of natural killer (NK) cells and spatial relationships of TILs with MHC-I expressing cells lacks detailed characterization. Experimental design Using archived and prospectively collected specimens, we evaluated intratumoral NK cells by immunohistochemistry (IHC), flow cytometry, and immunofluorescence (IF). We assessed spatial localization of NK and T cells by multiplex IF, analyzing the effects of MHC-I expression status on NK and T cell clustering. Results Both intratumoral NKp46 and CD56dim expression were associated with significantly improved overall survival (P=0.05), while higher infiltrates of CD56bright NK cells predicted a worse prognosis (P=0.05). The presence of intratumoral NK cells was inversely proportional to CD3+ T cells. Spatial analyses showed NK cells preferentially clustering close to other NK cells with sparse CD3+ T and CD8+ T cells in range (P<0.0001). Additionally, CD3+ T and CD8+ T cells showed significantly greater co-localization with MHC-I+ cells, compared to NK cells (P<0.0001). After neoadjuvant radiotherapy, there was greater CD8 clustering, while after neoadjuvant chemotherapy, there was overall lower TIL clustering. Conclusion Intratumoral NK cells are prognostic in STS and localize closer to MHC-I- cells than T cells. Although both NK and T cells are associated with improved survival in STS, their differential distribution in the TME based on MHC-I expression status may serve as a biomarker for improved immunotherapy treatment selection.
Collapse
Affiliation(s)
- Sylvia M. Cruz
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Cyrus J. Sholevar
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Sean J. Judge
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Morgan A. Darrow
- Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, United States
| | - Khurshid R. Iranpur
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Lauren E. Farley
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Marshall Lammers
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Aryana M. Razmara
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Alicia A. Gingrich
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | - Julia Persky
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Hidetoshi Mori
- Center for Immunology and Infectious Diseases, University of California, Davis, Sacramento, CA, United States
| | - Steven W. Thorpe
- Orthopedic Surgery, University of California, Davis, Sacramento, CA, United States
| | - Arta M. Monjazeb
- Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - William J. Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
15
|
Daroonpan P, Ouchi R, Zhang C, Nagai S, Nishii N, Kashima Y, Tsushima F, Harada H, Hamagaki M, Ikeda T, Aida J, Kaomongkolgit R, Azuma M. Personal immune profiles: Diversity and prognostic value for oral tongue squamous cell carcinoma evaluated by comprehensive immune parameter analyses with multiplex immunofluorescence. Oral Oncol 2023; 143:106458. [PMID: 37329869 DOI: 10.1016/j.oraloncology.2023.106458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Understanding the tumor immune microenvironment is becoming increasingly necessary for risk prediction and treatment selection. In particular, oral cancer has various immunosuppressive characteristics in the tumor microenvironment. Therefore, we comprehensively assessed the immune profiles of oral tongue squamous cell carcinoma (OTSCC). MATERIALS AND METHODS Multiplex immunofluorescence and tissue imaging analyses were performed to evaluate immune profiles at the invasive tumor front of 60 OTSCC surgical specimens. We analyzed 58 immune parameters including the density and proportion (%) of total leukocytes (Leu) and T cells, six subsets of T and myeloid cells, and the expression of programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1). RESULTS The density, proportion, and location of CD45+ Leu, three T cell subsets (CD8+, Foxp3-CD4+ conventional, and Foxp3+CD4+ regulatory T cells), CD163-CD68+ M1 and CD163+CD68+ M2 macrophages, and neutrophils were highly variable at the individual level. The density and proportion of M2 macrophages were significantly lower in the T1 stage group. Risk prediction analyses for recurrence and/or metastasis (R/M) showed that R/M (+) T1 cases had significantly higher M2 density and percentages. CONCLUSIONS The immune profiles of OTSCC patients are diverse and cannot be predicted from clinicopathological information alone. The M2 macrophage abundance is a potential candidate biomarker for R/M in the early stage of OTSCC. Personal immune profiling may provide beneficial information for risk prediction and treatment selection.
Collapse
Affiliation(s)
- Pissacha Daroonpan
- Departments of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Department of Oral Diagnosis, Naresuan University, Tha Pho, Mueang Phitsanulok District, Phitsanulok 65000, Thailand
| | - Ryo Ouchi
- Departments of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Chenyang Zhang
- Departments of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Shigenori Nagai
- Departments of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Naoto Nishii
- Departments of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yoshihisa Kashima
- Departments of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Fumihiko Tsushima
- Departments of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Hiroyuki Harada
- Departments of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Miwako Hamagaki
- Departments of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Tohru Ikeda
- Departments of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Jun Aida
- Departments of Oral Health Promotion, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Ruchadaporn Kaomongkolgit
- Department of Oral Diagnosis, Naresuan University, Tha Pho, Mueang Phitsanulok District, Phitsanulok 65000, Thailand
| | - Miyuki Azuma
- Departments of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
16
|
Talhouni S, Fadhil W, Mongan NP, Field L, Hunter K, Makhsous S, Maciel-Guerra A, Kaur N, Nestarenkaite A, Laurinavicius A, Willcox BE, Dottorini T, Spendlove I, Jackson AM, Ilyas M, Ramage JM. Activated tissue resident memory T-cells (CD8+CD103+CD39+) uniquely predict survival in left sided "immune-hot" colorectal cancers. Front Immunol 2023; 14:1057292. [PMID: 37251410 PMCID: PMC10213916 DOI: 10.3389/fimmu.2023.1057292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Characterization of the tumour immune infiltrate (notably CD8+ T-cells) has strong predictive survival value for cancer patients. Quantification of CD8 T-cells alone cannot determine antigenic experience, as not all infiltrating T-cells recognize tumour antigens. Activated tumour-specific tissue resident memory CD8 T-cells (TRM) can be defined by the co-express of CD103, CD39 and CD8. We investigated the hypothesis that the abundance and localization of TRM provides a higher-resolution route to patient stratification. Methods A comprehensive series of 1000 colorectal cancer (CRC) were arrayed on a tissue microarray, with representative cores from three tumour locations and the adjacent normal mucosa. Using multiplex immunohistochemistry we quantified and determined the localization of TRM. Results Across all patients, activated TRM were an independent predictor of survival, and superior to CD8 alone. Patients with the best survival had immune-hot tumours heavily infiltrated throughout with activated TRM. Interestingly, differences between right- and left-sided tumours were apparent. In left-sided CRC, only the presence of activated TRM (and not CD8 alone) was prognostically significant. Patients with low numbers of activated TRM cells had a poor prognosis even with high CD8 T-cell infiltration. In contrast, in right-sided CRC, high CD8 T-cell infiltration with low numbers of activated TRM was a good prognosis. Conclusion The presence of high intra-tumoural CD8 T-cells alone is not a predictor of survival in left-sided CRC and potentially risks under treatment of patients. Measuring both high tumour-associated TRM and total CD8 T-cells in left-sided disease has the potential to minimize current under-treatment of patients. The challenge will be to design immunotherapies, for left-sided CRC patients with high CD8 T-cells and low activate TRM,that result in effective immune responses and thereby improve patient survival.
Collapse
Affiliation(s)
- Shahd Talhouni
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Wakkas Fadhil
- Academic Unit of Translational Medical Sciences, School of Medicine, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Mongan
- School of Veterinary Medicine and Sciences, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lara Field
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Kelly Hunter
- Birmingham Tissue Analytics, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sogand Makhsous
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Nayandeep Kaur
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Ausrine Nestarenkaite
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Benjamin E. Willcox
- Birmingham Tissue Analytics, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Ian Spendlove
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Andrew M. Jackson
- Host-Tumour Interactions Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mohammad Ilyas
- Academic Unit of Translational Medical Sciences, School of Medicine, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Judith M. Ramage
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| |
Collapse
|
17
|
Lee RY, Ng CW, Rajapakse MP, Ang N, Yeong JPS, Lau MC. The promise and challenge of spatial omics in dissecting tumour microenvironment and the role of AI. Front Oncol 2023; 13:1172314. [PMID: 37197415 PMCID: PMC10183599 DOI: 10.3389/fonc.2023.1172314] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
Growing evidence supports the critical role of tumour microenvironment (TME) in tumour progression, metastases, and treatment response. However, the in-situ interplay among various TME components, particularly between immune and tumour cells, are largely unknown, hindering our understanding of how tumour progresses and responds to treatment. While mainstream single-cell omics techniques allow deep, single-cell phenotyping, they lack crucial spatial information for in-situ cell-cell interaction analysis. On the other hand, tissue-based approaches such as hematoxylin and eosin and chromogenic immunohistochemistry staining can preserve the spatial information of TME components but are limited by their low-content staining. High-content spatial profiling technologies, termed spatial omics, have greatly advanced in the past decades to overcome these limitations. These technologies continue to emerge to include more molecular features (RNAs and/or proteins) and to enhance spatial resolution, opening new opportunities for discovering novel biological knowledge, biomarkers, and therapeutic targets. These advancements also spur the need for novel computational methods to mine useful TME insights from the increasing data complexity confounded by high molecular features and spatial resolution. In this review, we present state-of-the-art spatial omics technologies, their applications, major strengths, and limitations as well as the role of artificial intelligence (AI) in TME studies.
Collapse
Affiliation(s)
- Ren Yuan Lee
- Singapore Thong Chai Medical Institution, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chan Way Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
18
|
Perry LM, Cruz SM, Kleber KT, Judge SJ, Darrow MA, Jones LB, Basmaci UN, Joshi N, Settles ML, Durbin-Johnson BP, Gingrich AA, Monjazeb AM, Carr-Ascher J, Thorpe SW, Murphy WJ, Eisen JA, Canter RJ. Human soft tissue sarcomas harbor an intratumoral viral microbiome which is linked with natural killer cell infiltrate and prognosis. J Immunother Cancer 2023; 11:e004285. [PMID: 36599469 PMCID: PMC9815021 DOI: 10.1136/jitc-2021-004285] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Groundbreaking studies have linked the gut microbiome with immune homeostasis and antitumor immune responses. Mounting evidence has also demonstrated an intratumoral microbiome, including in soft tissue sarcomas (STS), although detailed characterization of the STS intratumoral microbiome is limited. We sought to characterize the intratumoral microbiome in patients with STS undergoing preoperative radiotherapy and surgery, hypothesizing the presence of a distinct intratumoral microbiome with potentially clinically significant microbial signatures. METHODS We prospectively obtained tumor and stool samples from adult patients with non-metastatic STS using a strict sterile collection protocol to minimize contamination. Metagenomic classification was used to estimate abundance using genus and species taxonomic levels across all classified organisms, and data were analyzed with respect to clinicopathologic factors. RESULTS Fifteen patients were enrolled. Most tumors were located at an extremity (67%) and were histologic grade 3 (87%). 40% were well-differentiated/dedifferentiated liposarcoma histology. With a median follow-up of 24 months, 4 (27%) patients developed metastases, and 3 (20%) died. Despite overwhelming human DNA (>99%) intratumorally, we detected a small but consistent proportion of bacterial DNA (0.02-0.03%) in all tumors, including Proteobacteria, Bacteroidetes, and Firmicutes, as well as viral species. In the tumor microenvironment, we observed a strong positive correlation between viral relative abundance and natural killer (NK) infiltration, and higher NK infiltration was associated with superior metastasis-free and overall survival by immunohistochemical, flow cytometry, and multiplex immunofluorescence analyses. CONCLUSIONS We prospectively demonstrate the presence of a distinct and measurable intratumoral microbiome in patients with STS at multiple time points. Our data suggest that the STS tumor microbiome has prognostic significance with viral relative abundance associated with NK infiltration and oncologic outcome. Additional studies are warranted to further assess the clinical impact of these findings.
Collapse
Affiliation(s)
- Lauren M Perry
- Surgery, University of California Davis, Sacramento, California, USA
| | - Sylvia M Cruz
- Surgery, University of California Davis, Sacramento, California, USA
| | - Kara T Kleber
- Surgery, University of California Davis, Sacramento, California, USA
| | - Sean J Judge
- Surgery, University of California Davis, Sacramento, California, USA
| | - Morgan A Darrow
- Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, USA
| | - Louis B Jones
- Orthopedics, Baylor Scott & White Health, Dallas, TX, Usa
| | - Ugur N Basmaci
- Surgery, University of California Davis, Sacramento, California, USA
| | - Nikhil Joshi
- Bioinformatics Core, University of California Davis Genome Center, Davis, California, USA
| | - Matthew L Settles
- Bioinformatics Core, University of California Davis Genome Center, Davis, California, USA
| | | | - Alicia A Gingrich
- Surgery, University of California Davis, Sacramento, California, USA
| | - Arta Monir Monjazeb
- Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Janai Carr-Ascher
- Medicine, University of California Davis, Sacramento, California, USA
| | - Steve W Thorpe
- Orthopedic Surgery, University of California Davis, Sacramento, California, USA
| | - William J Murphy
- Medicine, University of California Davis, Sacramento, California, USA
- Dermatology, University of California Davis, Davis, California, USA
| | - Jonathan A Eisen
- Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
| | - Robert J Canter
- Surgery, University of California Davis, Sacramento, California, USA
| |
Collapse
|
19
|
Wrobel J, Harris C, Vandekar S. Statistical Analysis of Multiplex Immunofluorescence and Immunohistochemistry Imaging Data. Methods Mol Biol 2023; 2629:141-168. [PMID: 36929077 DOI: 10.1007/978-1-0716-2986-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Advances in multiplexed single-cell immunofluorescence (mIF) and multiplex immunohistochemistry (mIHC) imaging technologies have enabled the analysis of cell-to-cell spatial relationships that promise to revolutionize our understanding of tissue-based diseases and autoimmune disorders. Multiplex images are collected as multichannel TIFF files; then denoised, segmented to identify cells and nuclei, normalized across slides with protein markers to correct for batch effects, and phenotyped; and then tissue composition and spatial context at the cellular level are analyzed. This chapter discusses methods and software infrastructure for image processing and statistical analysis of mIF/mIHC data.
Collapse
Affiliation(s)
- Julia Wrobel
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Coleman Harris
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Kuczkiewicz-Siemion O, Sokół K, Puton B, Borkowska A, Szumera-Ciećkiewicz A. The Role of Pathology-Based Methods in Qualitative and Quantitative Approaches to Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14153833. [PMID: 35954496 PMCID: PMC9367614 DOI: 10.3390/cancers14153833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Immunotherapy has become the filar of modern oncological treatment, and programmed death-ligand 1 expression is one of the primary immune markers assessed by pathologists. However, there are still some issues concerning the evaluation of the marker and limited information about the interaction between the tumour and associated immune cells. Recent studies have focused on cancer immunology to try to understand the complex tumour microenvironment, and multiplex imaging methods are more widely used for this purpose. The presented article aims to provide an overall review of a different multiplex in situ method using spectral imaging, supported by automated image-acquisition and software-assisted marker visualisation and interpretation. Multiplex imaging methods could improve the current understanding of complex tumour-microenvironment immunology and could probably help to better match patients to appropriate treatment regimens. Abstract Immune checkpoint inhibitors, including those concerning programmed cell death 1 (PD-1) and its ligand (PD-L1), have revolutionised the cancer therapy approach in the past decade. However, not all patients benefit from immunotherapy equally. The prediction of patient response to this type of therapy is mainly based on conventional immunohistochemistry, which is limited by intraobserver variability, semiquantitative assessment, or single-marker-per-slide evaluation. Multiplex imaging techniques and digital image analysis are powerful tools that could overcome some issues concerning tumour-microenvironment studies. This novel approach to biomarker assessment offers a better understanding of the complicated interactions between tumour cells and their environment. Multiplex labelling enables the detection of multiple markers simultaneously and the exploration of their spatial organisation. Evaluating a variety of immune cell phenotypes and differentiating their subpopulations is possible while preserving tissue histology in most cases. Multiplexing supported by digital pathology could allow pathologists to visualise and understand every cell in a single tissue slide and provide meaning in a complex tumour-microenvironment contexture. This review aims to provide an overview of the different multiplex imaging methods and their application in PD-L1 biomarker assessment. Moreover, we discuss digital imaging techniques, with a focus on slide scanners and software.
Collapse
Affiliation(s)
- Olga Kuczkiewicz-Siemion
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
- Correspondence: (O.K.-S.); (A.S.-C.)
| | - Kamil Sokół
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Beata Puton
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Correspondence: (O.K.-S.); (A.S.-C.)
| |
Collapse
|
21
|
Swiderska-Syn M, Mir-Pedrol J, Oles A, Schleuger O, Salvador AD, Greiner SM, Seward C, Yang F, Babcock BR, Shen C, Wynn DT, Sanchez-Mejias A, Gershon TR, Martin V, McCrea HJ, Lindsey KG, Krieg C, Rodriguez-Blanco J. Noncanonical activation of GLI signaling in SOX2 + cells drives medulloblastoma relapse. SCIENCE ADVANCES 2022; 8:eabj9138. [PMID: 35857834 PMCID: PMC9299538 DOI: 10.1126/sciadv.abj9138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/03/2022] [Indexed: 05/04/2023]
Abstract
SRY (sex determining region Y)-box 2 (SOX2)-labeled cells play key roles in chemoresistance and tumor relapse; thus, it is critical to elucidate the mechanisms propagating them. Single-cell transcriptomic analyses of the most common malignant pediatric brain tumor, medulloblastoma (MB), revealed the existence of astrocytic Sox2+ cells expressing sonic hedgehog (SHH) signaling biomarkers. Treatment with vismodegib, an SHH inhibitor that acts on Smoothened (Smo), led to increases in astrocyte-like Sox2+ cells. Using SOX2-enriched MB cultures, we observed that SOX2+ cells required SHH signaling to propagate, and unlike in the proliferative tumor bulk, the SHH pathway was activated in these cells downstream of Smo in an MYC-dependent manner. Functionally different GLI inhibitors depleted vismodegib-resistant SOX2+ cells from MB tissues, reduced their ability to further engraft in vivo, and increased symptom-free survival. Our results emphasize the promise of therapies targeting GLI to deplete SOX2+ cells and provide stable tumor remission.
Collapse
Affiliation(s)
- Marzena Swiderska-Syn
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Júlia Mir-Pedrol
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Alexander Oles
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Olga Schleuger
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - April D. Salvador
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sean M. Greiner
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Cara Seward
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Fan Yang
- Molecular Oncology Program, The Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Benjamin R. Babcock
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chen Shen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Daniel T. Wynn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Avencia Sanchez-Mejias
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Vanesa Martin
- Department of Anatomy and Cell Biology, University of Oviedo, Oviedo, Asturias 33006, Spain
| | - Heather J. McCrea
- Department of Clinical Neurological Surgery, University of Miami, Miami, FL 33136, USA
| | - Kathryn G. Lindsey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jezabel Rodriguez-Blanco
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
22
|
Multiplex Tissue Imaging: Spatial Revelations in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14133170. [PMID: 35804939 PMCID: PMC9264815 DOI: 10.3390/cancers14133170] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is the leading cause of death worldwide, and the overall aging of the population results in an increased risk of a cancer diagnosis during a person’s lifetime. Diagnosis and treatment at an early stage will typically increase the chances of survival. Tumors can develop therapy resistance, and it is difficult to predict how individual patients will respond to therapy. Most studies that aim to resolve this problem have focused on studying the composition and characteristics of dissociated tumors, while ignoring the role of cell localization and interactions within the tumor microenvironment. In the past decade, technological innovations have enabled multiplex imaging analyses of intact tumors to study localization and interaction parameters, which can be used as biomarkers, or can be correlated with treatment responses and clinical outcomes. Abstract The tumor microenvironment is a complex ecosystem containing various cell types, such as immune cells, fibroblasts, and endothelial cells, which interact with the tumor cells. In recent decades, the cancer research field has gained insight into the cellular subtypes that are involved in tumor microenvironment heterogeneity. Moreover, it has become evident that cellular interactions in the tumor microenvironment can either promote or inhibit tumor development, progression, and drug resistance, depending on the context. Multiplex spatial analysis methods have recently been developed; these have offered insight into how cellular crosstalk dynamics and heterogeneity affect cancer prognoses and responses to treatment. Multiplex (imaging) technologies and computational analysis methods allow for the spatial visualization and quantification of cell–cell interactions and properties. These technological advances allow for the discovery of cellular interactions within the tumor microenvironment and provide detailed single-cell information on properties that define cellular behavior. Such analyses give insights into the prognosis and mechanisms of therapy resistance, which is still an urgent problem in the treatment of multiple types of cancer. Here, we provide an overview of multiplex imaging technologies and concepts of downstream analysis methods to investigate cell–cell interactions, how these studies have advanced cancer research, and their potential clinical implications.
Collapse
|
23
|
Yaseen Z, Gide TN, Conway JW, Potter AJ, Quek C, Hong AM, Long GV, Scolyer RA, Wilmott JS. Validation of an Accurate Automated Multiplex Immunofluorescence Method for Immuno-Profiling Melanoma. Front Mol Biosci 2022; 9:810858. [PMID: 35664673 PMCID: PMC9160303 DOI: 10.3389/fmolb.2022.810858] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Multiplex immunofluorescence staining enables the simultaneous detection of multiple immune markers in a single tissue section, and is a useful tool for the identification of specific cell populations within the tumour microenvironment. However, this technology has rarely been validated against standard clinical immunohistology, which is a barrier for its integration into clinical practice. This study sought to validate and investigate the accuracy, precision and reproducibility of a multiplex immunofluorescence compared with immunohistochemistry (IHC), including tissue staining, imaging and analysis, in characterising the expression of immune and melanoma markers in both the tumour and its microenvironment. Traditional chromogenic IHC, single-plex immunofluorescence and multiplex immunofluorescence were each performed on serial tissue sections of a formalin-fixed paraffin-embedded (FFPE) tissue microarray containing metastatic melanoma specimens from 67 patients. The panel included the immune cell markers CD8, CD68, CD16, the immune checkpoint PD-L1, and melanoma tumour marker SOX10. Slides were stained with the Opal™ 7 colour Kit (Akoya Biosciences) on the intelliPATH autostainer (Biocare Medical) and imaged using the Vectra 3.0.5 microscope. Marker expression was quantified using Halo v.3.2.181 (Indica Labs). Comparison of the IHC and single-plex immunofluorescence revealed highly significant positive correlations between the cell densities of CD8, CD68, CD16, PD-L1 and SOX10 marker positive cells (Spearman’s rho = 0.927 to 0.750, p < 0.0001). Highly significant correlations were also observed for all markers between single-plex immunofluorescence and multiplex immunofluorescence staining (Spearman’s rho >0.9, p < 0.0001). Finally, correlation analysis of the three multiplex replicates revealed a high degree of reproducibility between slides (Spearman’s rho >0.940, p < 0.0001). Together, these data highlight the reliability and validity of multiplex immunofluorescence in accurately profiling the tumour and its associated microenvironment using FFPE metastatic melanoma specimens. This validated multiplex panel can be utilised for research evaluating melanoma and its microenvironment, such as studies performed to predict patient response or resistance to immunotherapies.
Collapse
Affiliation(s)
- Zarwa Yaseen
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Tuba N. Gide
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jordan W. Conway
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Alison J. Potter
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Angela M. Hong
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- GenesisCare, Radiation Oncology, Mater Hospital, Sydney, NSW, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, Sydney, NSW, Australia
- Mater Hospital, Sydney, NSW, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: James S. Wilmott,
| |
Collapse
|
24
|
Badve SS, Gökmen-Polar Y. Protein Profiling of Breast Cancer for Treatment Decision-Making. Am Soc Clin Oncol Educ Book 2022; 42:1-9. [PMID: 35580295 DOI: 10.1200/edbk_351207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The increasing use of neoadjuvant therapy has resulted in therapeutic decisions being made on the basis of diagnostic needle core biopsy. For many patients, this method might yield the only fragment of tumor available for biomarker analysis, necessitating judicious use. Many multiplex protein analytic methods have been developed that employ fluorescence or other tags to overcome the limitations of immunohistochemistry while still retaining the spatial annotation. Interpretation of the data can be difficult because of the limitations of the human eye. Computational deconvolution of the signals may be necessary for some of these methods to enable identification of cell-specific localization and coexpression of biomarkers. Herein, we present the different methods that are coming of age and their application in cancer research, with a focus on breast cancer. We also discuss the limitations, which include high costs and long turnaround times. The methods are also based on the premise that preanalytical factors will have identical impact on all proteins analyzed. There is a need to establish standards to normalize the data and enable cross-sample comparisons. In spite of these limitations, the multiplex technologies are extremely valuable discovery tools and can provide novel insights into the biology of cancer and mechanisms of drug resistance.
Collapse
Affiliation(s)
- Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| |
Collapse
|
25
|
Effector memory cytotoxic CD3 +/CD8 +/CD45RO + T cells are predictive of good survival and a lower risk of recurrence in triple-negative breast cancer. Mod Pathol 2022; 35:601-608. [PMID: 34839351 DOI: 10.1038/s41379-021-00973-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) with high tumour-infiltrating lymphocytes (TILs) has been associated with a promising prognosis. To better understand the prognostic value of immune cell subtypes in TNBC, we characterised TILs and the interaction between tumour cells and immune cell subtypes. A total of 145 breast cancer tissues were stained by multiplex immunofluorescence (mIF), including panel 1 (PD-L1, PD-1, CD3, CD8, CD68 and CK) and panel 2 (Foxp3, Granzyme B, CD45RO, CD3, CD8 and CK). Phenotypes were analysed and quantified by pathologists using InForm software. We found that in the ER-negative (ER <1% and HER2-negative) group and the ER/PR-low positive (ER 1-9% and HER2-negative) group, 11.2% and 7.1% of patients were PD-L1+ by the tumour cell score, 29.0% and 28.6% were PD-L1+ by the modified immune cell score and 30.8% and 32.1% were PD-L1+ by the combined positive score. We combined ER-negative and ER/PR-low positive cases for the survival analysis since a 10% cut-off is often used in clinical practice for therapeutic purposes. The densities of PD-L1+ tumour cells (HR: 0.366, 95% CI: 0.138-0.970; p = 0.043) within the tumour compartment and CD3+ immune cells in the total area (tumour and stromal compartments combined) (HR: 0.213, 95% CI: 0.070-0.642; p = 0.006) were favourable prognostic biomarkers for overall survival (OS) in TNBC. The density of effector/memory cytotoxic T cells (CD3+CD8+CD45RO+) in the tumour compartment was an independent prognostic biomarker for OS (HR: 0.232, 95% CI: 0.086-0.628; p = 0.004) and DFS (HR: 0.183, 95% CI: 0.1301-0.744; p = 0.009) in TNBC. Interestingly, spatial data suggested that patients with a higher density of PD-L1+ tumour cells had shorter cell-cell distances from tumour cells to cytotoxic T cells (p < 0.01). In conclusion, we found that phenotyping tumour immune cells by mIF is highly informative in understanding the immune microenvironment in TNBC. PD-L1+ tumour cells, total T cells and effector/memory cytotoxic T cells are promising prognostic biomarkers in TNBC.
Collapse
|
26
|
Dissecting Tumor-Immune Microenvironment in Breast Cancer at a Spatial and Multiplex Resolution. Cancers (Basel) 2022; 14:cancers14081999. [PMID: 35454904 PMCID: PMC9026731 DOI: 10.3390/cancers14081999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The tumor immune microenvironment (TIME) is an important player in breast cancer pathophysiology. Surrogates for antitumor immune response have been explored as predictive biomarkers to immunotherapy, though with several limitations. Immunohistochemistry for programmed death ligand 1 suffers from analytical problems, immune signatures are devoid of spatial information and histopathological evaluation of tumor infiltrating lymphocytes exhibits interobserver variability. Towards improved understanding of the complex interactions in TIME, several emerging multiplex in situ methods are being developed and gaining much attention for protein detection. They enable the simultaneous evaluation of multiple targets in situ, detection of cell densities/subpopulations as well as estimations of functional states of immune infiltrate. Furthermore, they can characterize spatial organization of TIME—by cell-to-cell interaction analyses and the evaluation of distribution within different regions of interest and tissue compartments—while digital imaging and image analysis software allow for reproducibility of the various assays. In this review, we aim to provide an overview of the different multiplex in situ methods used in cancer research with special focus on breast cancer TIME at the neoadjuvant, adjuvant and metastatic setting. Spatial heterogeneity of TIME and importance of longitudinal evaluation of TIME changes under the pressure of therapy and metastatic progression are also addressed.
Collapse
|
27
|
Nachmanson D, Officer A, Mori H, Gordon J, Evans MF, Steward J, Yao H, O'Keefe T, Hasteh F, Stein GS, Jepsen K, Weaver DL, Hirst GL, Sprague BL, Esserman LJ, Borowsky AD, Stein JL, Harismendy O. The breast pre-cancer atlas illustrates the molecular and micro-environmental diversity of ductal carcinoma in situ. NPJ Breast Cancer 2022; 8:6. [PMID: 35027560 PMCID: PMC8758681 DOI: 10.1038/s41523-021-00365-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Microenvironmental and molecular factors mediating the progression of Breast Ductal Carcinoma In Situ (DCIS) are not well understood, impeding the development of prevention strategies and the safe testing of treatment de-escalation. We addressed methodological barriers and characterized the mutational, transcriptional, histological, and microenvironmental landscape across 85 multiple microdissected regions from 39 cases. Most somatic alterations, including whole-genome duplications, were clonal, but genetic divergence increased with physical distance. Phenotypic and subtype heterogeneity was frequently associated with underlying genetic heterogeneity and regions with low-risk features preceded those with high-risk features according to the inferred phylogeny. B- and T-lymphocytes spatial analysis identified three immune states, including an epithelial excluded state located preferentially at DCIS regions, and characterized by histological and molecular features of immune escape, independently from molecular subtypes. Such breast pre-cancer atlas with uniquely integrated observations will help scope future expansion studies and build finer models of outcomes and progression risk.
Collapse
Affiliation(s)
- Daniela Nachmanson
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Adam Officer
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Hidetoshi Mori
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, School of Medicine, University of California Davis, 2315 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Jonathan Gordon
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Mark F Evans
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Joseph Steward
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA
| | - Huazhen Yao
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Thomas O'Keefe
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Farnaz Hasteh
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Gary S Stein
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Donald L Weaver
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Gillian L Hirst
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd St, San Francisco, CA, 94158, USA
| | - Brian L Sprague
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Surgery, University of Vermont, Burlington, VT, 05405, USA
| | - Laura J Esserman
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd St, San Francisco, CA, 94158, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, School of Medicine, University of California Davis, 2315 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Janet L Stein
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Olivier Harismendy
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA.
| |
Collapse
|
28
|
Chang S, Cao Y. The ROCK inhibitor Y-27632 ameliorates blood-spinal cord barrier disruption by reducing tight junction protein degradation via the MYPT1-MLC2 pathway after spinal cord injury in rats. Brain Res 2021; 1773:147684. [PMID: 34634287 DOI: 10.1016/j.brainres.2021.147684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 02/04/2023]
Abstract
The blood-spinal cord barrier (BSCB) is a physiological barrier between the blood and spinal cord parenchyma. This study aims to determine whether Y-27632, a Rho-associated protein kinase (ROCK) inhibitor, can protect the BSCB using in vivo models. The Evans blue fluorescence assay was used to detect leakage of the BSCB. Western blotting was used to define alterations in ROCK-related and tight junction (TJ) protein expression. Immunofluorescence triple-staining was used to evaluate histologic alterations in TJs. Locomotor function was evaluated using the open-field test, the Basso-Beattie-Bresnahan score, and footprint analysis. Two peaks of BSCB leakage after spinal cord injury (SCI) occurred at 24 h and 5 days. The ROCK inhibitor reduced the BSCB leakage at the second peak after SCI. Moreover, the ROCK inhibitor ameliorated the integrity of the BSCB and improved motor function recovery after SCI by regulating the phosphorylation of myosin phosphatase subunit-1 (MYPT1) and cofilin. ROCK inhibitors might protect the BSCB, which provides a new strategy for transitioning SCI treatment from the bench to bedside.
Collapse
Affiliation(s)
- Sheng Chang
- Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou 215123, Jiangsu Province, China; Department of Orthopedics, the First Affiliated Hospital of Jinzhou Medical, China; University, 5-2 Renmin Street, Guta District, Jinzhou 121000, Liaoning Province, China.
| | - Yang Cao
- Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou 215123, Jiangsu Province, China; Department of Orthopedics, the First Affiliated Hospital of Jinzhou Medical, China; University, 5-2 Renmin Street, Guta District, Jinzhou 121000, Liaoning Province, China.
| |
Collapse
|
29
|
Creed JH, Wilson CM, Soupir AC, Colin-Leitzinger CM, Kimmel GJ, Ospina OE, Chakiryan NH, Markowitz J, Peres LC, Coghill A, Fridley BL. spatialTIME and iTIME: R package and Shiny application for visualization and analysis of immunofluorescence data. Bioinformatics 2021; 37:4584-4586. [PMID: 34734969 PMCID: PMC8652029 DOI: 10.1093/bioinformatics/btab757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/10/2021] [Accepted: 10/29/2021] [Indexed: 01/19/2023] Open
Abstract
Summary Multiplex immunofluorescence (mIF) staining combined with quantitative digital image analysis is a novel and increasingly used technique that allows for the characterization of the tumor immune microenvironment (TIME). Generally, mIF data is used to examine the abundance of immune cells in the TIME; however, this does not capture spatial patterns of immune cells throughout the TIME, a metric increasingly recognized as important for prognosis. To address this gap, we developed an R package spatialTIME that enables spatial analysis of mIF data, as well as the iTIME web application that provides a robust but simplified user interface for describing both abundance and spatial architecture of the TIME. The spatialTIME package calculates univariate and bivariate spatial statistics (e.g. Ripley’s K, Besag’s L, Macron’s M and G or nearest neighbor distance) and creates publication quality plots for spatial organization of the cells in each tissue sample. The iTIME web application allows users to statistically compare the abundance measures with patient clinical features along with visualization of the TIME for one tissue sample at a time. Availability and implementation spatialTIME is implemented in R and can be downloaded from GitHub (https://github.com/FridleyLab/spatialTIME) or CRAN. An extensive vignette for using spatialTIME can also be found at https://cran.r-project.org/web/packages/spatialTIME/index.html. iTIME is implemented within a R Shiny application and can be accessed online (http://itime.moffitt.org/), with code available on GitHub (https://github.com/FridleyLab/iTIME). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jordan H Creed
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Christopher M Wilson
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Alex C Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA.,Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Gregory J Kimmel
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Oscar E Ospina
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Lauren C Peres
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anna Coghill
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
30
|
Pang L, Ernst M, Huynh J. Development of a Multiplex Immunohistochemistry Workflow to Investigate the Immune Microenvironment in Mouse Models of Inflammatory Bowel Disease and Colon Cancer. Int J Mol Sci 2021; 22:ijms222011001. [PMID: 34681666 PMCID: PMC8539370 DOI: 10.3390/ijms222011001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Multiplex immunohistochemistry (mIHC) enables simultaneous staining of multiple immune markers on a single tissue section. Mounting studies have demonstrated the versatility of mIHC in evaluating immune infiltrates in different diseases and the tumour microenvironment (TME). However, the majority of published studies are limited to the analysis of human patient samples. Performing mIHC on formalin-fixed paraffin-embedded (FFPE) mouse tissues, particularly with sensitive antigens, remain challenging. The aim of our study was to develop a robust and reproducible protocol to uncover the immune landscape in mouse FFPE tissues. Effective antibody stripping while maintaining sensitivity to antigens and tissue adhesion to the glass slide is critical in developing an mIHC panel to allow successive rounds of staining. Thus, we identified a highly efficient stripping method that preserves signal intensity and antigenicity to allow multiple rounds of staining. We subsequently optimised an mIHC workflow with antibodies specific against CD4, CD8α, FOXP3 and B220 to identify distinct T and B cell populations on mouse FFPE tissues. Lastly, the application of this mIHC panel was validated in a mouse model of inflammatory bowel cancer, two allograft mouse models of spontaneous colon adenocarcinoma and a sporadic mouse model of colon cancer. Together, these demonstrate the utility of the aforementioned protocol in establishing the quantity and spatial localisation of immune cells in different pathological tissues.
Collapse
|
31
|
Challenges and Opportunities in the Statistical Analysis of Multiplex Immunofluorescence Data. Cancers (Basel) 2021; 13:cancers13123031. [PMID: 34204319 PMCID: PMC8233801 DOI: 10.3390/cancers13123031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Immune modulation is considered a hallmark of cancer initiation and progression, and has offered promising opportunities for therapeutic manipulation. Multiplex immunofluorescence (mIF) technology has enabled the tumor immune microenvironment (TIME) to be studied at an increased scale, in terms of both the number of markers and the number of samples. Another benefit of mIF technology is the ability to measure not only the abundance but also the spatial location of multiple cells types within a tissue sample simultaneously, allowing for assessment of the co-localization of different types of immune markers. Thus, the use of mIF technologies have enable researchers to characterize patient, clinical, and tumor characteristics in the hope of identifying patients whom might benefit from immunotherapy treatments. In this review we outline some of the challenges and opportunities in the statistical analyses of mIF data to study the TIME. Abstract Immune modulation is considered a hallmark of cancer initiation and progression. The recent development of immunotherapies has ushered in a new era of cancer treatment. These therapeutics have led to revolutionary breakthroughs; however, the efficacy of immunotherapy has been modest and is often restricted to a subset of patients. Hence, identification of which cancer patients will benefit from immunotherapy is essential. Multiplex immunofluorescence (mIF) microscopy allows for the assessment and visualization of the tumor immune microenvironment (TIME). The data output following image and machine learning analyses for cell segmenting and phenotyping consists of the following information for each tumor sample: the number of positive cells for each marker and phenotype(s) of interest, number of total cells, percent of positive cells for each marker, and spatial locations for all measured cells. There are many challenges in the analysis of mIF data, including many tissue samples with zero positive cells or “zero-inflated” data, repeated measurements from multiple TMA cores or tissue slides per subject, and spatial analyses to determine the level of clustering and co-localization between the cell types in the TIME. In this review paper, we will discuss the challenges in the statistical analysis of mIF data and opportunities for further research.
Collapse
|
32
|
van Amerongen R, Kordon EC, Koledova Z. Connecting the Dots: Mammary Gland and Breast Cancer at Single Cell Resolution. J Mammary Gland Biol Neoplasia 2021; 26:1-2. [PMID: 34125362 DOI: 10.1007/s10911-021-09492-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023] Open
Affiliation(s)
- Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Edith C Kordon
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
33
|
Monkkonen T, Traustadóttir GÁ, Koledova Z. Unraveling the Breast: Advances in Mammary Biology and Cancer Methods. J Mammary Gland Biol Neoplasia 2020; 25:233-236. [PMID: 33479879 PMCID: PMC7819143 DOI: 10.1007/s10911-020-09476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 11/06/2022] Open
Abstract
The field of mammary gland biology and breast cancer research encompasses a wide range of topics and scientific questions, which span domains of molecular, cell and developmental biology, cancer research, and veterinary and human medicine, with interdisciplinary overlaps to non-biological domains. Accordingly, mammary gland and breast cancer researchers employ a wide range of molecular biology methods, in vitro techniques, in vivo approaches as well as in silico analyses. The list of techniques is ever-expanding; together with the refinement of established, staple techniques in the field, new technologies keep emerging thanks to technological advances and scientific creativity. This issue of the Journal of Mammary Gland Biology and Neoplasia represents a compilation of original articles and reviews focused on methods used in mammary gland biology and breast cancer research.
Collapse
Affiliation(s)
- Teresa Monkkonen
- Department of Pathology, University of California, San Francisco, USA
| | - Gunnhildur Ásta Traustadóttir
- Stem Cell Research Unit, Department of Anatomy, Faculty of Medicine, School of Health Sciences, Biomedical Center, University of Iceland, Reykjavík, Iceland
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|