1
|
An J, Kurilov R, Peccerella T, Bergmann F, Edderkaoui M, Lim A, Zhou X, Pfütze K, Schulz A, Wolf S, Hu K, Springfeld C, Mughal SS, Zezlina L, Fortunato F, Beyer G, Mayerle J, Roth S, Hulkkonen J, Merz D, Ei S, Mehrabi A, Loos M, Al-Saeedi M, Michalski CW, Büchler MW, Hackert T, Brors B, Pandol SJ, Bailey P, Neoptolemos JP. Metavert synergises with standard cytotoxics in human PDAC organoids and is associated with transcriptomic signatures of therapeutic response. Transl Oncol 2024; 49:102109. [PMID: 39217851 PMCID: PMC11402625 DOI: 10.1016/j.tranon.2024.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Despite some recent advances, pancreatic ductal adenocarcinoma (PDAC) remains a growing oncological challenge. New drugs capable of targeting more than one oncogenic pathway may be one way to improve patient outcomes. This study characterizes the effectiveness of Metavert a first-in-class dual inhibitor of GSK3-β and histone deacetylase in treating PDAC as a single agent or in combination with standard cytotoxics. METHODS Thirty-six Patient-Derived Organoids (hPDOs) characterised by RNASeq and whole exome sequencing were treated with Metavert alone or in combination with standard cytotoxics. Transcriptomic signatures (TS) representing sensitivity to Metavert alone or sensitivity to Metavert + irinotecan (IR) were evaluated in 47 patient samples, chemo-naïve in 26 and post-chemotherapy in 21 (gemcitabine=5; FOLFIRINOX=14, both=2) with companion multiplexed immunofluorescence and RNASeq data. RESULTS Metavert combined with gemcitabine, irinotecan, 5FU, oxaliplatin, and paclitaxel was synergistic in the hPDOs. Basal-subtype hPDOs were more sensitive to Metavert alone whereas the Metavert+IR combination exhibited synergy in Classical-subtype hPDOs with increased apoptosis and autophagy. hPDO-derived TS evaluated in PDAC tissues demonstrated that Metavert-TSHi samples were enriched for mRNA splicing and DNA repair processes; they were associated with Basal-like tissues but also with GATA6+ve-chemo-naïve samples and were higher following gemcitabine but not FOLFIRINOX treatment. In contrast, Metavert+IR-TSHI samples were enriched for TP53 pathways; they were associated with Classical-like pretreatment samples and with GATA6+ve/KRT17+ve hybrid cell types following FOLFIRINOX, but not gemcitabine treatment, and were unrelated to transcriptional subtypes. CONCLUSIONS Metavert as a single agent and in combination with irinotecan offers novel strategies for treating pancreatic cancer.
Collapse
Affiliation(s)
- Jingyu An
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Roma Kurilov
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany
| | - Teresa Peccerella
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center and University of California at Los Angeles, Thalians W204 8700 Beverly Blvd. Los Angeles, California CA 90048, United States
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center and University of California at Los Angeles, Thalians W204 8700 Beverly Blvd. Los Angeles, California CA 90048, United States
| | - Xu Zhou
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Katrin Pfütze
- Sample Processing Laboratory, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Angela Schulz
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Wolf
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai Hu
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - Sadaf S Mughal
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany
| | - Lenart Zezlina
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany
| | - Franco Fortunato
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Georg Beyer
- Department of Internal Medicine II, Ludwig-Maximilians-University of Munich, Germany
| | - Julia Mayerle
- Department of Internal Medicine II, Ludwig-Maximilians-University of Munich, Germany
| | - Susanne Roth
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Johannes Hulkkonen
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Daniela Merz
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Shigenori Ei
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Arianeb Mehrabi
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Martin Loos
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Mohammed Al-Saeedi
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Christoph W Michalski
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Markus W Büchler
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany; Botton-Champalimaud Pancreatic Cancer Centre, Lisbon, Portugal
| | - Thilo Hackert
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany; Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Medical Faculty and Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, Heidelberg 69120, Germany; National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg 69120, Germany
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center and University of California at Los Angeles, Thalians W204 8700 Beverly Blvd. Los Angeles, California CA 90048, United States
| | - Peter Bailey
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany; Botton-Champalimaud Pancreatic Cancer Centre, Lisbon, Portugal.
| | - John P Neoptolemos
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany; Botton-Champalimaud Pancreatic Cancer Centre, Lisbon, Portugal.
| |
Collapse
|
2
|
Sharma D, Adnan D, Abdel-Reheem MK, Anafi RC, Leary DD, Bishehsari F. Circadian transcriptome of pancreatic adenocarcinoma unravels chronotherapeutic targets. JCI Insight 2024; 9:e177697. [PMID: 38716727 PMCID: PMC11141942 DOI: 10.1172/jci.insight.177697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 06/02/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer characterized by a poor outcome and an increasing incidence. A significant majority (>80%) of newly diagnosed cases are deemed unresectable, leaving chemotherapy as the sole viable option, though with only moderate success. This necessitates the identification of improved therapeutic options for PDA. We hypothesized that there are temporal variations in cancer-relevant processes within PDA tumors, offering insights into the optimal timing of drug administration - a concept termed chronotherapy. In this study, we explored the presence of the circadian transcriptome in PDA using patient-derived organoids and validated these findings by comparing PDA data from The Cancer Genome Atlas with noncancerous healthy pancreas data from GTEx. Several PDA-associated pathways (cell cycle, stress response, Rho GTPase signaling) and cancer driver hub genes (EGFR and JUN) exhibited a cancer-specific rhythmic pattern intricately linked to the circadian clock. Through the integration of multiple functional measurements for rhythmic cancer driver genes, we identified top chronotherapy targets and validated key findings in molecularly divergent pancreatic cancer cell lines. Testing the chemotherapeutic efficacy of clinically relevant drugs further revealed temporal variations that correlated with drug-target cycling. Collectively, our study unravels the PDA circadian transcriptome and highlights a potential approach for optimizing chrono-chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Mostafa K. Abdel-Reheem
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Ron C. Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel D. Leary
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Gastroenterology and
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
3
|
Grygoryev D, Ekstrom T, Manalo E, Link JM, Alshaikh A, Keith D, Allen-Petersen BL, Sheppard B, Morgan T, Soufi A, Sears RC, Kim J. Sendai virus is robust and consistent in delivering genes into human pancreatic cancer cells. Heliyon 2024; 10:e27221. [PMID: 38463758 PMCID: PMC10923719 DOI: 10.1016/j.heliyon.2024.e27221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly intratumorally heterogeneous disease that includes several subtypes and is highly plastic. Effective gene delivery to all PDAC cells is essential for modulating gene expression and identifying potential gene-based therapeutic targets in PDAC. Most current gene delivery systems for pancreatic cells are optimized for islet or acinar cells. Lentiviral vectors are the current main gene delivery vectors for PDAC, but their transduction efficiencies vary depending on pancreatic cell type, and are especially poor for the classical subtype of PDAC cells from both primary tumors and cell lines. Methods We systemically compare transduction efficiencies of glycoprotein G of vesicular stomatitis virus (VSV-G)-pseudotyped lentiviral and Sendai viral vectors in human normal pancreatic ductal and PDAC cells. Results We find that the Sendai viral vector gives the most robust gene delivery efficiency regardless of PDAC cell type. Therefore, we propose using Sendai viral vectors to transduce ectopic genes into PDAC cells.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Taelor Ekstrom
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Elise Manalo
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Jason M. Link
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Amani Alshaikh
- The University of Edinburgh, Centre for Regenerative Medicine, Institute of Regeneration and Repair, Institute of Stem Cell Research, Edinburgh, UK
- King Abdulaziz City for Science and Technology, Health Sector (KACST), Riyadh, Saudi Arabia
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Brittany L. Allen-Petersen
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Brett Sheppard
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
- Department of Surgery, Oregon Health & Science University School of Medicine, USA
| | - Terry Morgan
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
- Department of Pathology, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| | - Abdenour Soufi
- The University of Edinburgh, Centre for Regenerative Medicine, Institute of Regeneration and Repair, Institute of Stem Cell Research, Edinburgh, UK
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| |
Collapse
|
4
|
Iniyaval S, Saravanan V, Mai CW, Ramalingan C. Tetrazolopyrimidine-tethered phenothiazine molecular hybrids: synthesis, biological and molecular docking studies. NEW J CHEM 2024; 48:13384-13396. [DOI: 10.1039/d3nj05817d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
Abstract
Molecular hybrids integrating phenothiazine and tetrazolopyrimidine structural motifs were designed, synthesized through a one-pot multi-component reaction and, evaluated for their radical scavenging, cytotoxicity and molecular docking studies.
Collapse
Affiliation(s)
- Shunmugam Iniyaval
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| | - Vadivel Saravanan
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Chennan Ramalingan
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| |
Collapse
|
5
|
Rana M, Kansal RG, Bisunke B, Fang J, Shibata D, Bajwa A, Yang J, Glazer ES. Bromo- and Extra-Terminal Domain Inhibitors Induce Mitochondrial Stress in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2023; 22:936-946. [PMID: 37294884 PMCID: PMC10527726 DOI: 10.1158/1535-7163.mct-23-0149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
Identifying novel, unique, and personalized molecular targets for patients with pancreatic ductal adenocarcinoma (PDAC) remains the greatest challenge in altering the biology of fatal tumors. Bromo- and extra-terminal domain (BET) proteins are activated in a noncanonical fashion by TGFβ, a ubiquitous cytokine in the PDAC tumor microenvironment (TME). We hypothesized that BET inhibitors (BETi) represent a new class of drugs that attack PDAC tumors via a novel mechanism. Using a combination of patient and syngeneic murine models, we investigated the effects of the BETi drug BMS-986158 on cellular proliferation, organoid growth, cell-cycle progression, and mitochondrial metabolic disruption. These were investigated independently and in combination with standard cytotoxic chemotherapy (gemcitabine + paclitaxel [GemPTX]). BMS-986158 reduced cell viability and proliferation across multiple PDAC cell lines in a dose-dependent manner, even more so in combination with cytotoxic chemotherapy (P < 0.0001). We found that BMS-986158 reduced both human and murine PDAC organoid growth (P < 0.001), with associated perturbations in the cell cycle leading to cell-cycle arrest. BMS-986158 disrupts normal cancer-dependent mitochondrial function, leading to aberrant mitochondrial metabolism and stress via dysfunctional cellular respiration, proton leakage, and ATP production. We demonstrated mechanistic and functional data that BETi induces metabolic mitochondrial dysfunction, abrogating PDAC progression and proliferation, alone and in combination with systemic cytotoxic chemotherapies. This novel approach improves the therapeutic window in patients with PDAC and offers another treatment approach distinct from cytotoxic chemotherapy that targets cancer cell bioenergetics.
Collapse
Affiliation(s)
- Manjul Rana
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Rita G. Kansal
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Bijay Bisunke
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN
| | - David Shibata
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Amandeep Bajwa
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN
- Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, St. Jude Children’s Research Hospital, Memphis, TN
| | - Evan S. Glazer
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
6
|
Ekeuku SO, Etim EP, Pang KL, Chin KY, Mai CW. Vitamin E in the management of pancreatic cancer: A scoping review. World J Gastrointest Oncol 2023; 15:943-958. [PMID: 37389119 PMCID: PMC10302993 DOI: 10.4251/wjgo.v15.i6.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 06/14/2023] Open
Abstract
Pancreatic cancer is the leading cause of cancer mortality worldwide. Research investigating effective management strategies for pancreatic cancer is ongoing. Vitamin E, consisting of both tocopherol and tocotrienol, has demonstrated debatable effects on pancreatic cancer cells. Therefore, this scoping review aims to summarize the effects of vitamin E on pancreatic cancer. In October 2022, a literature search was conducted using PubMed and Scopus since their inception. Original studies on the effects of vitamin E on pancreatic cancer, including cell cultures, animal models and human clinical trials, were considered for this review. The literature search found 75 articles on this topic, but only 24 articles met the inclusion criteria. The available evidence showed that vitamin E modulated proliferation, cell death, angiogenesis, metastasis and inflammation in pancreatic cancer cells. However, the safety and bioavailability concerns remain to be answered with more extensive preclinical and clinical studies. More in-depth analysis is necessary to investigate further the role of vitamin E in the management of pancreatic cancers.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Effiong Paul Etim
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Johor, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Poh AR, Ernst M. Functional roles of SRC signaling in pancreatic cancer: Recent insights provide novel therapeutic opportunities. Oncogene 2023:10.1038/s41388-023-02701-x. [PMID: 37120696 DOI: 10.1038/s41388-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis. We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting SRC in pancreatic cancer.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| |
Collapse
|
8
|
Looi CK, Gan LL, Sim W, Hii LW, Chung FFL, Leong CO, Lim WM, Mai CW. Histone Deacetylase Inhibitors Restore Cancer Cell Sensitivity towards T Lymphocytes Mediated Cytotoxicity in Pancreatic Cancer. Cancers (Basel) 2022; 14:3709. [PMID: 35954379 PMCID: PMC9367398 DOI: 10.3390/cancers14153709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite medical advancements, the prognosis of pancreatic ductal adenocarcinoma (PDAC) has not improved significantly over the past 50 years. By utilising the large-scale genomic datasets available from the Australia Pancreatic Cancer Project (PACA-AU) and The Cancer Genomic Atlas Project (TCGA-PAAD), we studied the immunophenotype of PDAC in silico and identified that tumours with high cytotoxic T lymphocytes (CTL) killing activity were associated with favourable clinical outcomes. Using the STRING protein-protein interaction network analysis, the identified differentially expressed genes with low CTL killing activity were associated with TWIST/IL-6R, HDAC5, and EOMES signalling. Following Connectivity Map analysis, we identified 44 small molecules that could restore CTL sensitivity in the PDAC cells. Further high-throughput chemical library screening identified 133 inhibitors that effectively target both parental and CTL-resistant PDAC cells in vitro. Since CTL-resistant PDAC had a higher expression of histone proteins and its acetylated proteins compared to its parental cells, we further investigated the impact of histone deacetylase inhibitors (HDACi) on CTL-mediated cytotoxicity in PDAC cells in vitro, namely SW1990 and BxPC3. Further analyses revealed that givinostat and dacinostat were the two most potent HDAC inhibitors that restored CTL sensitivity in SW1990 and BxPC3 CTL-resistant cells. Through our in silico and in vitro studies, we demonstrate the novel role of HDAC inhibition in restoring CTL resistance and that combinations of HDACi with CTL may represent a promising therapeutic strategy, warranting its further detailed molecular mechanistic studies and animal studies before embarking on the clinical evaluation of these novel combined PDAC treatments.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-L.G.)
| | - Li-Lian Gan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-L.G.)
- Clinical Research Centre, Hospital Tuanku Ja’afar Seremban, Ministry of Health Malaysia, Seremban 70300, Malaysia
| | - Wynne Sim
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Ling-Wei Hii
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- AGTC Genomics, Kuala Lumpur 57000, Malaysia
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200127, China
| |
Collapse
|
9
|
Liew HS, Mai CW, Zulkefeli M, Madheswaran T, Kiew LV, Pua LJW, Hii LW, Lim WM, Low ML. Novel Gemcitabine-Re(I) Bisquinolinyl Complex Combinations and Formulations With Liquid Crystalline Nanoparticles for Pancreatic Cancer Photodynamic Therapy. Front Pharmacol 2022; 13:903210. [PMID: 35873548 PMCID: PMC9299370 DOI: 10.3389/fphar.2022.903210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
With less than 10% of 5-year survival rate, pancreatic ductal adenocarcinoma (PDAC) is known to be one of the most lethal types of cancer. Current literature supports that gemcitabine is the first-line treatment of PDAC. However, poor cellular penetration of gemcitabine along with the acquired and intrinsic chemoresistance of tumor against it often reduced its efficacy and hence necessitates the administration of high gemcitabine dose during chemotherapy. Photodynamic therapy (PDT), a more selective and minimally invasive treatment, may be used synergistically with gemcitabine to reduce the doses utilized and dose-related side effects. This study reports the synergistic use of Re(I) bisquinolinyl complex, a transition metal complex photosensitizer with gemcitabine against PDAC. Re(I) bisquinolinyl complex was found to act synergistically with gemcitabine against PDAC in vitro at various ratios. With the aim to enhance cellular uptake and therapeutic efficiency, the Re(I) bisquinolinyl complex and gemcitabine were encapsulated into liquid crystalline nanoparticles (LCNPs) system. The formulations were found to produce homogeneous drug-loaded LCNPs (average size: 159-173 nm, zeta potential +1.06 to -10 mV). Around 70% of gemcitabine and 90% of the Re(I) bisquinolinyl complex were found to be entrapped efficiently in the formulated LCNPs. The release rate of gemcitabine or/and the Re(I) bisquinolinyl complex loaded into LCNPs was evaluated in vitro, and the hydrophilic gemcitabine was released at a faster rate than the lipophilic Re(I) complex. LCNPs loaded with gemcitabine and Re(I) bisquinolinyl complex in a 1:1 ratio illustrated the best anti-cancer activity among the LCNP formulations (IC50 of BxPC3: 0.15 μM; IC50 of SW 1990: 0.76 μM) through apoptosis. The current findings suggest the potential use of transition metal-based photosensitizer as an adjunctive agent for gemcitabine-based chemotherapy against PDAC and the importance of nano-formulation in such application.
Collapse
Affiliation(s)
- Hui Shan Liew
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Mohd Zulkefeli
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | | | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lesley Jia Wei Pua
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ling Wei Hii
- Centre for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Wei Meng Lim
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - May Lee Low
- Centre for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Chan ZY, Krishnan P, Hii LW, Mai CW, Leong CO, Low YY, Wong SK, Ting KN, Yong KT, Lim KH. Unusual diarylheptanoid-phenylpropanoid adducts and diarylheptanoid alkaloids from Pellacalyx saccardianus. PHYTOCHEMISTRY LETTERS 2021; 46:36-44. [DOI: 10.1016/j.phytol.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Nalairndran G, Chung I, Abdul Razack AH, Chung FF, Hii L, Lim W, Looi CK, Mai C, Leong C. Inhibition of Janus Kinase 1 synergizes docetaxel sensitivity in prostate cancer cells. J Cell Mol Med 2021; 25:8187-8200. [PMID: 34322995 PMCID: PMC8419172 DOI: 10.1111/jcmm.16684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy and is the fifth leading cause of cancer mortality among men globally. Docetaxel-based therapy remains the first-line treatment for metastatic castration-resistant prostate cancer. However, dose-limiting toxicity including neutropenia, myelosuppression and neurotoxicity is the major reason for docetaxel dose reductions and fewer cycles administered, despite a recent study showing a clear survival benefit with increased total number of docetaxel cycles in PCa patients. Although previous studies have attempted to improve the efficacy and reduce docetaxel toxicity through drug combination, no drug has yet demonstrated improved overall survival in clinical trial, highlighting the challenges of improving the activity of docetaxel monotherapy in PCa. Herein, we identified 15 lethality hits for which inhibition could enhance docetaxel sensitivity in PCa cells via a high-throughput kinome-wide loss-of-function screen. Further drug-gene interactions analyses identified Janus kinase 1 (JAK1) as a viable druggable target with existing experimental inhibitors and FDA-approved drugs. We demonstrated that depletion of endogenous JAK1 enhanced docetaxel-induced apoptosis in PCa cells. Furthermore, inhibition of JAK1/2 by baricitinib and ruxolitinib synergizes docetaxel sensitivity in both androgen receptor (AR)-negative DU145 and PC3 cells, but not in the AR-positive LNCaP cells. In contrast, no synergistic effects were observed in cells treated with JAK2-specific inhibitor, fedratinib, suggesting that the synergistic effects are mainly mediated through JAK1 inhibition. In conclusion, the combination therapy with JAK1 inhibitors and docetaxel could be a useful therapeutic strategy in the treatment of prostate cancers.
Collapse
Affiliation(s)
- Geetha Nalairndran
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Ivy Chung
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- University of Malaya Cancer Research InstituteFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | | | - Felicia Fei‐Lei Chung
- Mechanisms of Carcinogenesis Section (MCA)Epigenetics Group (EGE)International Agency for Research on Cancer World Health OrganizationLyon CEDEX 08France
| | - Ling‐Wei Hii
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Wei‐Meng Lim
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Chin King Looi
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Chun‐Wai Mai
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterDepartment of UrologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Chee‐Onn Leong
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| |
Collapse
|
12
|
Chen N, Zheng Q, Wan G, Guo F, Zeng X, Shi P. Impact of posttranslational modifications in pancreatic carcinogenesis and treatments. Cancer Metastasis Rev 2021; 40:739-759. [PMID: 34342796 DOI: 10.1007/s10555-021-09980-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer (PC) is a highly aggressive cancer, with a 9% 5-year survival rate and a high risk of recurrence. In part, this is because PC is composed of heterogeneous subgroups with different biological and functional characteristics and personalized anticancer treatments are required. Posttranslational modifications (PTMs) play an important role in modifying protein functions/roles and are required for the maintenance of cell viability and biological processes; thus, their dysregulation can lead to disease. Different types of PTMs increase the functional diversity of the proteome, which subsequently influences most aspects of normal cell biology or pathogenesis. This review primarily focuses on ubiquitination, SUMOylation, and NEDDylation, as well as the current understanding of their roles and molecular mechanisms in pancreatic carcinogenesis. Additionally, we briefly summarize studies and clinical trials on PC treatments to advance our knowledge of drugs available to target the ubiquitination, SUMOylation, and NEDDylation PTM types. Further investigation of PTMs could be a critical field of study in relation to PC, as they have been implicated in the initiation and progression of many other types of cancer.
Collapse
Affiliation(s)
- Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
- Department of Cell Biology & University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Guoqing Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China
| | - Feng Guo
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
13
|
Chan ZY, Krishnan P, Modaresi SM, Hii LW, Mai CW, Lim WM, Leong CO, Low YY, Wong SK, Yong KT, Leong AZX, Lee MK, Ting KN, Lim KH. Monomeric, Dimeric, and Trimeric Tropane Alkaloids from Pellacalyx saccardianus. JOURNAL OF NATURAL PRODUCTS 2021; 84:2272-2281. [PMID: 34342431 DOI: 10.1021/acs.jnatprod.1c00374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Seven new tropane alkaloids, including five monomeric (1-5), one dimeric (6), and one trimeric (7) 3α-nortropane ester, along with two known monomeric nortropane alkaloids (8 and 9), were isolated from the leaves and bark of Pellacalyx saccardianus. Their structures, including the absolute configuration of the enantiomeric pair of (±)-6, were elucidated by comprehensive spectroscopic analyses. Alkaloids 6 and 7 showed cytotoxicity toward human pancreatic cancer cell lines (AsPC-1, BxPC3, PANC-1, and SW1990). Alkaloids 1, 4, and 9 induced a smooth muscle relaxation effect comparable to that of atropine (Emax 106.1 ± 7.5%, 97.0 ± 5.2%, 100.9 ± 1.4%, 111.7 ± 1.7%, respectively) on isolated rat tracheal rings.
Collapse
Affiliation(s)
- Zi-Yang Chan
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Premanand Krishnan
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | | | | | - Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | | | | | - Yun-Yee Low
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Soon-Kit Wong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kien-Thai Yong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Alyssa Zi-Xin Leong
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Mei-Kee Lee
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Kang-Nee Ting
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| |
Collapse
|
14
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
15
|
Mehta S, Bhimani N, Gill AJ, Samra JS, Sahni S, Mittal A. Serum Biomarker Panel for Diagnosis and Prognosis of Pancreatic Ductal Adenocarcinomas. Front Oncol 2021; 11:708963. [PMID: 34290990 PMCID: PMC8287202 DOI: 10.3389/fonc.2021.708963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Patients with pancreatic ductal adenocarcinoma (PDAC) have late diagnosis which results in poor prognosis. Currently, surgical resection is the only option for curative intent. Identifying high-risk features for patients with aggressive PDAC is essential for accurate diagnosis, prognostication, and personalised care due to the disease burden and risk of recurrence despite surgical resection. A panel of three biomarkers identified in tumour tissue (S100A4, Ca125 and Mesothelin) have shown an association with poor prognosis and overall survival. The diagnostic and prognostic value of the serum concentration of this particular biomarker panel for patients with PDAC has not been previously studied. Methods Retrospectively collected blood samples of PDAC patients (n =120) and healthy controls (n =80) were evaluated for the serum concentration of select biomarkers - S100A4, S100A2, Ca-125, Ca 19-9 and mesothelin. Statistical analyses were performed for diagnostic and prognostic correlation. Results A panel of four biomarkers (S100A2, S100A4, Ca-125 and Ca 19-9) achieved high diagnostic potential (AUROC 0.913). Three biomarkers (S100A4, Ca-125 and Ca 19-9) correlated with poor overall survival in a univariable model (p < 0.05). PDAC patients with abnormal levels of 2 or more biomarkers in their serum demonstrated significantly lower survival compared to patients with abnormal levels of one or less biomarker (p < 0.05). Conclusion and Impact The identified biomarker panels have shown the potential to diagnose PDAC patients and stratify patients based on their prognostic outcomes. If independently validated, this may lead to the development of a diagnostic and prognosticating blood test for PDAC.
Collapse
Affiliation(s)
- Shreya Mehta
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Nazim Bhimani
- Upper Gastro Intestinal (GI) Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, Sydney, NSW, Australia
| | - Anthony J Gill
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Jaswinder S Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Upper Gastro Intestinal (GI) Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, Sydney, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Upper Gastro Intestinal (GI) Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, Sydney, NSW, Australia.,Australian Pancreatic Centre, Sydney, NSW, Australia
| |
Collapse
|
16
|
Liew K, Yu GQS, Wei Pua LJ, Wong LZ, Tham SY, Hii LW, Lim WM, OuYong BM, Looi CK, Mai CW, Fei-Lei Chung F, Tan LP, Ahmad M, Soo-Beng Khoo A, Leong CO. Parallel genome-wide RNAi screens identify lymphocyte-specific protein tyrosine kinase (LCK) as a targetable vulnerability of cell proliferation and chemoresistance in nasopharyngeal carcinoma. Cancer Lett 2021; 504:81-90. [PMID: 33587980 DOI: 10.1016/j.canlet.2021.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 02/05/2023]
Abstract
Despite recent in advances in the management of nasopharyngeal carcinoma (NPC), development of targeted therapy remains challenging particularly in patients with recurrent or metastatic disease. To search for clinically relevant targets for the treatment of NPC, we carried out parallel genome-wide functional screens to identified essential genes that are required for NPC cells proliferation and cisplatin resistance. We identified lymphocyte-specific protein tyrosine kinase (LCK) as a key vulnerability of both proliferation and cisplatin resistance. Depletion of endogenous LCK or treatment of cells with LCK inhibitor induced tumor-specific cell death and synergized cisplatin sensitivity in EBV-positive C666-1 and EBV-negative SUNE1 cells. Further analyses demonstrated that LCK is regulating the proliferation and cisplatin resistance through activation of signal transducer and activator of transcription 5 (STAT5). Taken together, our study provides a molecular basis for targeting LCK and STAT5 signaling as potential druggable targets for the management of NPC.
Collapse
Affiliation(s)
- Kitson Liew
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Gibson Qi Sheng Yu
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Lesley Jia Wei Pua
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia; School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Li Zhe Wong
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Shiau Ying Tham
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Ling-Wei Hii
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia; School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Brian Ming OuYong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Chin King Looi
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE), International Agency for Research on Cancer World Health Organization, Lyon CEDEX 08, France
| | - Lu Ping Tan
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Munirah Ahmad
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Alan Soo-Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia; Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia.
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Maniam G, Mai CW, Zulkefeli M, Fu JY. Co-encapsulation of gemcitabine and tocotrienols in nanovesicles enhanced efficacy in pancreatic cancer. Nanomedicine (Lond) 2021; 16:373-389. [PMID: 33543651 DOI: 10.2217/nnm-2020-0374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023] Open
Abstract
Aim: To synthesize niosomes co-encapsulating gemcitabine (GEM) and tocotrienols, and physicochemically characterize and evaluate the antipancreatic effects of the nanoformulation on Panc 10.05, SW 1990, AsPC-1 and BxPC-3 cells. Materials & methods: Niosomes-entrapping GEM and tocotrienols composed of Span 60, cholesterol and D-α-tocopheryl polyethylene glycol 1000 succinate were produced by Handjani-Vila and film hydration methods. Results: The film hydration produced vesicles measuring 161.9 ± 0.5 nm, approximately 50% smaller in size than Handjani-Vila method, with maximum entrapment efficiencies of 20.07 ± 0.22% for GEM and 34.52 ± 0.10% for tocotrienols. In Panc 10.05 cells, GEM's antiproliferative effect was enhanced 2.78-fold in combination with tocotrienols. Niosomes produced a significant ninefold enhancement in cytotoxicity of the combination, supported by significantly higher cellular uptake of GEM in the cells. Conclusion: This study is a proof of concept on the synthesis of dual-drug niosomes and their efficacy on pancreatic cancer cells in vitro.
Collapse
Affiliation(s)
- Geetha Maniam
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- Product Development & Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, Malaysia
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- Centre for Cancer & Stem Cells Research, Institute for Research, Development & Innovation, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mohd Zulkefeli
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ju-Yen Fu
- Product Development & Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, Malaysia
| |
Collapse
|
18
|
Affiliation(s)
- Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Looi CK, Hii LW, Ngai SC, Leong CO, Mai CW. The Role of Ras-Associated Protein 1 (Rap1) in Cancer: Bad Actor or Good Player? Biomedicines 2020; 8:334. [PMID: 32906721 PMCID: PMC7555474 DOI: 10.3390/biomedicines8090334] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 02/05/2023] Open
Abstract
Metastasis is known as the most life-threatening event in cancer patients. In principle, the immune system can prevent tumor development. However, dysfunctional T cells may fail to eliminate the tumor cells effectively and provide additional survival advantages for tumor proliferation and metastasis. Constitutive activation of Ras-associated protein1 (Rap1) has not only led to T cell anergy, but also inhibited autophagy and supported cancer progression through various oncogenic events. Inhibition of Rap1 activity with its negative regulator, Rap1GAP, impairs tumor progression. However, active Rap1 reduces tumor invasion in some cancers, indicating that the pleiotropic effects of Rap1 signaling in cancers could be cancer-specific. All in all, targeting Rap1 signaling and its regulators could potentially control carcinogenesis, metastasis, chemoresistance and immune evasion. Rap1GAP could be a promising therapeutic target in combating cancer.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
| | - Ling-Wei Hii
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia;
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
20
|
Gan LL, Hii LW, Wong SF, Leong CO, Mai CW. Molecular Mechanisms and Potential Therapeutic Reversal of Pancreatic Cancer-Induced Immune Evasion. Cancers (Basel) 2020; 12:1872. [PMID: 32664564 PMCID: PMC7408947 DOI: 10.3390/cancers12071872] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer ranks high among the causes of cancer-related mortality. The prognosis of this grim condition has not improved significantly over the past 50 years, despite advancement in imaging techniques, cancer genetics and treatment modalities. Due to the relative difficulty in the early detection of pancreatic tumors, as low as 20% of patients are eligible for potentially curative surgery; moreover, chemotherapy and radiotherapy (RT) do not confer a great benefit in the overall survival of the patients. Currently, emerging developments in immunotherapy have yet to bring a significant clinical advantage among pancreatic cancer patients. In fact, pancreatic tumor-driven immune evasion possesses one of the greatest challenges leading to immunotherapeutic resistance. Most of the immune escape pathways are innate, while poor priming of hosts' immune response and immunoediting constitute the adaptive immunosuppressive machinery. In this review, we extensively discuss the pathway perturbations undermining the anti-tumor immunity specific to pancreatic cancer. We also explore feasible up-and-coming therapeutic strategies that may restore immunity and address therapeutic resistance, bringing hope to eliminate the status quo in pancreatic cancer prognosis.
Collapse
Affiliation(s)
- Li-Lian Gan
- School of Postgraduate Study, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-L.G.); (L.-W.H.)
| | - Ling-Wei Hii
- School of Postgraduate Study, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-L.G.); (L.-W.H.)
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Shew-Fung Wong
- School of Medicine, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Environmental and Population Health, Institute for Research, Development and Innovation (IRDI), International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
21
|
Gasparello J, Gambari L, Papi C, Rozzi A, Manicardi A, Corradini R, Gambari R, Finotti A. High Levels of Apoptosis Are Induced in the Human Colon Cancer HT-29 Cell Line by Co-Administration of Sulforaphane and a Peptide Nucleic Acid Targeting miR-15b-5p. Nucleic Acid Ther 2020; 30:164-174. [DOI: 10.1089/nat.2019.0825] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Andrea Rozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Sivaramakarthikeyan R, Iniyaval S, Saravanan V, Lim WM, Mai CW, Ramalingan C. Molecular Hybrids Integrated with Benzimidazole and Pyrazole Structural Motifs: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies. ACS OMEGA 2020; 5:10089-10098. [PMID: 32391496 PMCID: PMC7203960 DOI: 10.1021/acsomega.0c00630] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
Synthesis of a series of benzimidazole-ornamented pyrazoles, 6a-6j has been obtained from arylhydrazine and aralkyl ketones via a multistep synthetic strategy. Among them, a hybrid-possessing para-nitrophenyl moiety connected to a pyrazole scaffold (6a) exerted the highest anti-inflammatory activity, which is superior to the standard, diclofenac sodium. While executing the 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, a hybrid-possessing para-bromophenyl unit integrated at the pyrazole structural motif (6i) exhibited the highest activity among the hybrids examined. Besides, evaluation of anticancer potency of the synthesized hybrids revealed that the one containing a para-fluorophenyl unit tethered at the pyrazole nucleus (6h) showed the highest activity against both the pancreatic cancer cells (SW1990 and AsPCl) investigated. Considerable binding affinity between B-cell lymphoma and the hybrid, 6h has been reflected while performing molecular docking studies (-8.65 kcal/mol). The outcomes of the investigation expose that these hybrids could be used as effective intermediates to construct more potent biological agents.
Collapse
Affiliation(s)
- Ramar Sivaramakarthikeyan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| | - Shunmugam Iniyaval
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| | - Vadivel Saravanan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| | - Wei-Meng Lim
- School
of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit
Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School
of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit
Jalil, Kuala Lumpur 57000, Malaysia
- Center
for Cancer and Stem Cell Research, Institute for Research, Development
and Innovation (IRDI), International Medical
University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chennan Ramalingan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| |
Collapse
|
23
|
Hii LW, Chung FFL, Mai CW, Yee ZY, Chan HH, Raja VJ, Dephoure NE, Pyne NJ, Pyne S, Leong CO. Sphingosine Kinase 1 Regulates the Survival of Breast Cancer Stem Cells and Non-stem Breast Cancer Cells by Suppression of STAT1. Cells 2020; 9:886. [PMID: 32260399 PMCID: PMC7226795 DOI: 10.3390/cells9040886] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) represent rare tumor cell populations capable of self-renewal, differentiation, and tumor initiation and are highly resistant to chemotherapy and radiotherapy. Thus, therapeutic approaches that can effectively target CSCs and tumor cells could be the key to efficient tumor treatment. In this study, we explored the function of SPHK1 in breast CSCs and non-CSCs. We showed that RNAi-mediated knockdown of SPHK1 inhibited cell proliferation and induced apoptosis in both breast CSCs and non-CSCs, while ectopic expression of SPHK1 enhanced breast CSC survival and mammosphere forming efficiency. We identified STAT1 and IFN signaling as key regulatory targets of SPHK1 and demonstrated that an important mechanism by which SPHK1 promotes cancer cell survival is through the suppression of STAT1. We further demonstrated that SPHK1 inhibitors, FTY720 and PF543, synergized with doxorubicin in targeting both breast CSCs and non-CSCs. In conclusion, we provide important evidence that SPHK1 is a key regulator of cell survival and proliferation in breast CSCs and non-CSCs and is an attractive target for the design of future therapies.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE) International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Chun Wai Mai
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Zong Yang Yee
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Hong Hao Chan
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Vijay Joseph Raja
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA; (V.J.R.); (N.E.D.)
| | - Noah Elias Dephoure
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA; (V.J.R.); (N.E.D.)
| | - Nigel J. Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK; (N.J.P.); (S.P.)
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK; (N.J.P.); (S.P.)
| | - Chee-Onn Leong
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
24
|
Hii LW, Chung FFL, Soo JSS, Tan BS, Mai CW, Leong CO. Histone deacetylase (HDAC) inhibitors and doxorubicin combinations target both breast cancer stem cells and non-stem breast cancer cells simultaneously. Breast Cancer Res Treat 2020; 179:615-629. [PMID: 31784862 DOI: 10.1007/s10549-019-05504-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/22/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE Breast cancer stem cells (CSCs) are a small subpopulation of cancer cells that have high capability for self-renewal, differentiation, and tumor initiation. CSCs are resistant to chemotherapy and radiotherapy, and are responsible for cancer recurrence and metastasis. METHODS By utilizing a panel of breast cancer cells and mammospheres culture as cell-based screening platforms, we performed high-throughput chemical library screens to identify agents that are effective against breast CSCs and non-CSCs. The hit molecules were paired with conventional chemotherapy to evaluate the combinatorial treatment effects on breast CSCs and non-CSCs. RESULTS We identified a total of 193 inhibitors that effectively targeting both breast CSCs and non-CSCs. We observed that histone deacetylase inhibitors (HDACi) synergized conventional chemotherapeutic agents (i.e., doxorubicin and cisplatin) in targeting breast CSCs and non-CSCs simultaneously. Further analyses revealed that quisinostat, a potent inhibitor for class I and II HDACs, potentiated doxorubicin-induced cytotoxicity in both breast CSCs and non-CSCs derived from the basal-like (MDA-MB-468 and HCC38), mesenchymal-like (MDA-MB-231), and luminal-like breast cancer (MCF-7). It was also observed that the basal-like breast CSCs and non-CSCs were more sensitive to the co-treatment of quisinostat with doxorubicin compared to that of the luminal-like breast cancer subtype. CONCLUSION In conclusion, this study demonstrates the potential of HDACi as therapeutic options, either as monotherapy or in combination with chemotherapeutics against refractory breast cancer.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
- School of Postgraduate Studies and Research, International Medical University, 126, Jalan Jalil Perkasa 19, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE), International Agency for Research on Cancer World Health Organization, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Jaslyn Sian-Siu Soo
- Cancer Research Malaysia, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Boon Shing Tan
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, 126, Jalan Jalil Perkasa 19, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, 57000, Bukit Jalil, Kuala Lumpur, Malaysia.
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, 126, Jalan Jalil Perkasa 19, 57000, Bukit Jalil, Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Krishnan KG, Kumar CU, Lim WM, Mai CW, Thanikachalam PV, Ramalingan C. Novel cyanoacetamide integrated phenothiazines: Synthesis, characterization, computational studies and in vitro antioxidant and anticancer evaluations. J Mol Struct 2020; 1199:127037. [DOI: 10.1016/j.molstruc.2019.127037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Sivaramakarthikeyan R, Iniyaval S, Lim WM, Hii LW, Mai CW, Ramalingan C. Pyrazolylphenanthroimidazole heterocycles: synthesis, biological and molecular docking studies. NEW J CHEM 2020; 44:19612-19622. [DOI: 10.1039/d0nj02214d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
Abstract
The synthesis of a series of novel pyrazolylphenanthroimidazoles 6a–6j has been accomplished utilizing a multi-step synthetic protocol, and characterized through physical and spectral techniques.
Collapse
Affiliation(s)
- Ramar Sivaramakarthikeyan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Shunmugam Iniyaval
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Wei-Meng Lim
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
| | - Ling-Wei Hii
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
| | - Chun-Wai Mai
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
- Center for Cancer and Stem Cell Research
| | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| |
Collapse
|
27
|
Sivaramakarthikeyan R, Karuppasamy A, Iniyaval S, Padmavathy K, Lim WM, Mai CW, Ramalingan C. Phenothiazine and amide-ornamented novel nitrogen heterocyclic hybrids: synthesis, biological and molecular docking studies. NEW J CHEM 2020; 44:4049-4060. [DOI: 10.1039/c9nj05489h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synthesis of phenothiazine and amide-ornamented nitrogen heterocycles (25–34) has been accomplished utilizing a multi-step synthetic protocol and the structures have been established based on physical and spectral techniques.
Collapse
Affiliation(s)
- Ramar Sivaramakarthikeyan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Ayyanar Karuppasamy
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Shunmugam Iniyaval
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Krishnaraj Padmavathy
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Wei-Meng Lim
- School of Pharmacy
- International Medical University
- Malaysia
| | - Chun-Wai Mai
- School of Pharmacy
- International Medical University
- Malaysia
- Center for Cancer and Stem Cell Research
- Institute for Research
| | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| |
Collapse
|
28
|
Hii LW, Lim SHE, Leong CO, Chin SY, Tan NP, Lai KS, Mai CW. The synergism of Clinacanthus nutans Lindau extracts with gemcitabine: downregulation of anti-apoptotic markers in squamous pancreatic ductal adenocarcinoma. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:257. [PMID: 31521140 PMCID: PMC6744713 DOI: 10.1186/s12906-019-2663-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Clinacanthus nutans extracts have been consumed by the cancer patients with the hope that the extracts can kill cancers more effectively than conventional chemotherapies. Our previous study reported its anti-inflammatory effects were caused by inhibiting Toll-like Receptor-4 (TLR-4) activation. However, we are unsure of its anticancer effect, and its interaction with existing chemotherapy. METHODS We investigated the anti-proliferative efficacy of polar leaf extracts (LP), non-polar leaf extracts (LN), polar stem extract (SP) and non-polar stem extracts (SN) in human breast, colorectal, lung, endometrial, nasopharyngeal, and pancreatic cancer cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assay. The most potent extracts was tested along with gemcitabine using our established drug combination analysis. The effect of the combinatory treatment in apoptosis were quantified using enzyme-linked immunosorbent assay (ELISA), Annexin V assay, antibody array and immunoblotting. Statistical significance was analysed using one-way analysis of variance (ANOVA) and post hoc Dunnett's test. A p-value of less than 0.05 (p < 0.05) was considered statistical significance. RESULTS All extracts tested were not able to induce potent anti-proliferative effects. However, it was found that pancreatic ductal adenocarcinoma, PDAC (AsPC1, BxPC3 and SW1990) were the cell lines most sensitive cell lines to SN extracts. This is the first report of C. nutans SN extracts acting in synergy with gemcitabine, the first line chemotherapy for pancreatic cancer, as compared to conventional monotherapy. In the presence of SN extracts, we can reduce the dose of gemcitabine 2.38-5.28 folds but still maintain the effects of gemcitabine in PDAC. SN extracts potentiated the killing of gemcitabine in PDAC by apoptosis. Bax was upregulated while bcl-2, cIAP-2, and XIAP levels were downregulated in SW1990 and BxPC3 cells treated with gemcitabine and SN extracts. The synergism was independent of TLR-4 expression in pancreatic cancer cells. CONCLUSION These results provide strong evidence of C. nutans extracts being inefficacious as monotherapy for cancer. Hence, it should not be used as a total substitution for any chemotherapy agents. However, SN extracts may synergise with gemcitabine in the anti-tumor mechanism.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000 Malaysia
| | - Swee-Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Seri Kembangan, 43400 Selangor Malaysia
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000 Malaysia
- Centre for Cancer and Stem Cells Research, Institute for Research Development and Innovation, International Medical University, Kuala Lumpur, 57000 Malaysia
| | - Swee-Yee Chin
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Ngai-Paing Tan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, 43400 Selangor Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Seri Kembangan, Selangor Malaysia
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cells Research, Institute for Research Development and Innovation, International Medical University, Kuala Lumpur, 57000 Malaysia
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Parkin A, Man J, Timpson P, Pajic M. Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: from mechanism to therapy. FEBS J 2019; 286:3510-3539. [PMID: 31330086 PMCID: PMC6771888 DOI: 10.1111/febs.15011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/26/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer, a disease with extremely poor prognosis, has been notoriously resistant to virtually all forms of treatment. The dynamic crosstalk that occurs between tumour cells and the surrounding stroma, frequently mediated by intricate Src/FAK signalling, is increasingly recognised as a key player in pancreatic tumourigenesis, disease progression and therapeutic resistance. These important cues are fundamental for defining the invasive potential of pancreatic tumours, and several components of the Src and downstream effector signalling have been proposed as potent anticancer therapeutic targets. Consequently, numerous agents that block this complex network are being extensively investigated as potential antiinvasive and antimetastatic therapeutic agents for this disease. In this review, we will discuss the latest evidence of Src signalling in PDAC progression, fibrotic response and resistance to therapy. We will examine future opportunities for the development and implementation of more effective combination regimens, targeting key components of the oncogenic Src signalling axis, and in the context of a precision medicine-guided approach.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Jennifer Man
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Paul Timpson
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| |
Collapse
|
30
|
Keenan AB, Wojciechowicz ML, Wang Z, Jagodnik KM, Jenkins SL, Lachmann A, Ma'ayan A. Connectivity Mapping: Methods and Applications. Annu Rev Biomed Data Sci 2019. [DOI: 10.1146/annurev-biodatasci-072018-021211] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Connectivity mapping resources consist of signatures representing changes in cellular state following systematic small-molecule, disease, gene, or other form of perturbations. Such resources enable the characterization of signatures from novel perturbations based on similarity; provide a global view of the space of many themed perturbations; and allow the ability to predict cellular, tissue, and organismal phenotypes for perturbagens. A signature search engine enables hypothesis generation by finding connections between query signatures and the database of signatures. This framework has been used to identify connections between small molecules and their targets, to discover cell-specific responses to perturbations and ways to reverse disease expression states with small molecules, and to predict small-molecule mimickers for existing drugs. This review provides a historical perspective and the current state of connectivity mapping resources with a focus on both methodology and community implementations.
Collapse
Affiliation(s)
- Alexandra B. Keenan
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan L. Wojciechowicz
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zichen Wang
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kathleen M. Jagodnik
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sherry L. Jenkins
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Lachmann
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
31
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer-Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [PMID: 30314681 DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer (PC) is an aggressive carcinoma and the fourth cause of cancer deaths in Western countries. Although surgery is the most effective therapeutic option for PC, the management of unresectable, locally advanced disease is highly challenging. Our improved understanding of pancreatic tumor biology and associated pathways has led to the development of various treatment modalities that can control the metastatic spread of PC. This review intends to present trials of small molecule tyrosine kinase inhibitors (TKIs) in PC management and the troubles encountered due to inevitable acquired resistance to TKIs.
Collapse
Affiliation(s)
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Saikrishna Lakkakula
- Department of Zoology, Visvodaya Government Degree College, Venkatagiri, AP-524132, India
| | - Sujatha Peela
- Department of Biotechnology, Dr.B.R.Ambedkar University, Srikakulam, Andhra Pradesh, India
| | - Nagendra Sastry Yarla
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, AP- 500004, India
| | | | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA.
| |
Collapse
|
32
|
Looi CK, Chung FFL, Leong CO, Wong SF, Rosli R, Mai CW. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J Exp Clin Cancer Res 2019; 38:162. [PMID: 30987642 PMCID: PMC6463646 DOI: 10.1186/s13046-019-1153-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/22/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal type of cancers, with an overall five-year survival rate of less than 5%. It is usually diagnosed at an advanced stage with limited therapeutic options. To date, no effective treatment options have demonstrated long-term benefits in advanced pancreatic cancer patients. Compared with other cancers, pancreatic cancer exhibits remarkable resistance to conventional therapy and possesses a highly immunosuppressive tumor microenvironment (TME). MAIN BODY In this review, we summarized the evidence and unique properties of TME in pancreatic cancer that may contribute to its resistance towards immunotherapies as well as strategies to overcome those barriers. We reviewed the current strategies and future perspectives of combination therapies that (1) promote T cell priming through tumor associated antigen presentation; (2) inhibit tumor immunosuppressive environment; and (3) break-down the desmoplastic barrier which improves tumor infiltrating lymphocytes entry into the TME. CONCLUSIONS It is imperative for clinicians and scientists to understand tumor immunology, identify novel biomarkers, and optimize the position of immunotherapy in therapeutic sequence, in order to improve pancreatic cancer clinical trial outcomes. Our collaborative efforts in targeting pancreatic TME will be the mainstay of achieving better clinical prognosis among pancreatic cancer patients. Ultimately, pancreatic cancer will be a treatable medical condition instead of a death sentence for a patient.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE) International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Shew-Fung Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Rozita Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Sri Kembangan, Selangor Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Sivaramakarthikeyan R, Iniyaval S, Padmavathy K, Liew HS, Looi CK, Mai CW, Ramalingan C. Phenothiazine and amide-ornamented dihydropyridines viaa molecular hybridization approach: design, synthesis, biological evaluation and molecular docking studies. NEW J CHEM 2019; 43:17046-17057. [DOI: 10.1039/c9nj03394g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of novel phenothiazinyldihydropyridine dicarboxamides7a–7jwas synthesized by adopting a multi-step synthetic strategy and characterized through physical and spectral techniques.
Collapse
Affiliation(s)
- Ramar Sivaramakarthikeyan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education, (Deemed to be University)
- India
| | - Shunmugam Iniyaval
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education, (Deemed to be University)
- India
| | - Krishnaraj Padmavathy
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education, (Deemed to be University)
- India
| | - Hui-Shan Liew
- School of Postgraduate Studies
- International Medical University
- Malaysia
| | - Chin-King Looi
- School of Postgraduate Studies
- International Medical University
- Malaysia
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- International Medical University
- Malaysia
- Centre for Cancer and Stem Cell Research
| | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education, (Deemed to be University)
- India
| |
Collapse
|
34
|
Padmavathy K, Krishnan KG, Kumar CU, Sathiyaraj E, Sivaramakarthikeyan R, Lim WM, Mai CW, Ramalingan C. Novel acrylamide/acrylonitrile-tethered carbazoles: synthesis, structural, biological, and density functional theory studies. NEW J CHEM 2019; 43:13418-13429. [DOI: 10.1039/c9nj02170a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The design and synthesis of novel carbazole-based heterocyclic chemical entities as anticancer agents were accomplished.
Collapse
Affiliation(s)
- Krishnaraj Padmavathy
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| | - Kannan Gokula Krishnan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| | - Chandran Udhaya Kumar
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| | - Ethiraj Sathiyaraj
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| | - Ramar Sivaramakarthikeyan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| | - Wei-Meng Lim
- School of Pharmacy, International Medical University
- Bukit Jalil
- Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University
- Bukit Jalil
- Malaysia
- Center for Cancer and Stem Cell Research
- Institute for Research
| | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| |
Collapse
|
35
|
Murthy S, Hazli UHAM, Kong KW, Mai CW, Leong CO, Rahman NA, Lo KM, Chee CF. Identification of Novel Sesamol Dimers with Unusual Methylenedioxy Ring-Opening Skeleton and Evaluation of Their Antioxidant and Cytotoxic Activities. Curr Org Synth 2019; 16:1166-1173. [PMID: 31984923 DOI: 10.2174/1570179416666191003095253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/01/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Sesamol is a widely used antioxidant for the food and pharmaceutical industries. The oxidation products of this compound may be accumulated in foods or ingested. Little is known about its effect on human health. OBJECTIVE It is of great interest to identify the oxidation products of sesamol that may be beneficial to humans. This study was undertaken to identify the oxidation products of sesamol and investigate their antioxidant and cytotoxic activities. MATERIALS AND METHODS Using the ferricyanide oxidation approach, four oxidation products of sesamol (2, 3, 20 & 21) have been identified. Structural elucidation of these compounds was established on the basis of their detailed NMR spectroscopic analysis, mass spectrometry and x-ray crystallography. Additionally, a formation mechanism of compound 20 was proposed based on high-resolution mass spectrometry-fragmentation method. The antioxidant activities of these compounds were determined by the DPPH, FRAP, and ABTS assays. The in vitro antiproliferative activity of these compounds was evaluated against a panel of human cancer cell lines as well as non-cancerous cells. RESULTS Two oxidation products of sesamol were found to contain an unusual methylenedioxy ring-opening skeleton, as evidenced by spectroscopic and x-ray crystallographic data. Among all compounds, 20 displayed impressive antiproliferative activities against a panel of human cancer cell lines yet remained non-toxic to noncancerous cells. The antioxidant activities of compound 20 are significantly weaker than sesamol as determined by the DPPH, FRAP, and ABTS assays. CONCLUSION The oxidation products of sesamol could be a valuable source of bioactive molecules. Compound 20 may be used as a potential lead molecule for cancer studies.
Collapse
Affiliation(s)
- Sudtha Murthy
- Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Ummi H A M Hazli
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kin W Kong
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Noorsaadah A Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kong M Lo
- 8Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, Selangor, Malaysia
| | - Chin F Chee
- Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Krishnan KG, Ashothai P, Padmavathy K, Lim WM, Mai CW, Thanikachalam PV, Ramalingan C. Hydrazide-integrated carbazoles: synthesis, computational, anticancer and molecular docking studies. NEW J CHEM 2019; 43:12069-12077. [DOI: 10.1039/c9nj01912j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel carbazolylmethylene isonictinohydrazides have been synthesized as anticancer agents against pancreatic cancer cells.
Collapse
Affiliation(s)
- Kannan Gokula Krishnan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | | | - Krishnaraj Padmavathy
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Wei-Meng Lim
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
| | - Chun-Wai Mai
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
- Center for Cancer and Stem Cell Research
| | | | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| |
Collapse
|
37
|
Cacabelos R, Carril JC, Sanmartín A, Cacabelos P. Pharmacoepigenetic Processors: Epigenetic Drugs, Drug Resistance, Toxicoepigenetics, and Nutriepigenetics. PHARMACOEPIGENETICS 2019:191-424. [DOI: 10.1016/b978-0-12-813939-4.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Maniam G, Mai CW, Zulkefeli M, Dufès C, Tan DMY, Fu JY. Challenges and Opportunities of Nanotechnology as Delivery Platform for Tocotrienols in Cancer Therapy. Front Pharmacol 2018; 9:1358. [PMID: 30534071 PMCID: PMC6276840 DOI: 10.3389/fphar.2018.01358] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023] Open
Abstract
Plant-derived phytonutrients have emerged as health enhancers. Tocotrienols from the vitamin E family gained high attention in recent years due to their multi-targeted biological properties, including lipid-lowering, neuroprotection, anti-inflammatory, antioxidant, and anticancer effects. Despite well-defined mechanism of action as an anti-cancer agent, their clinical use is hampered by poor pharmacokinetic profile and low oral bioavailability. Delivery systems based on nanotechnology were proven to be advantageous in elevating the delivery of tocotrienols to tumor sites for enhanced efficacy. To date, preclinical development of nanocarriers for tocotrienols include niosomes, lipid nanoemulsions, nanostructured lipid carriers (NLCs) and polymeric nanoparticles. Active targeting was explored via the use of transferrin as targeting ligand in niosomes. In vitro, nanocarriers were shown to enhance the anti-proliferative efficacy and cellular uptake of tocotrienols in cancer cells. In vivo, improved bioavailability of tocotrienols were reported with NLCs while marked tumor regression was observed with transferrin-targeted niosomes. In this review, the advantages and limitations of each nanocarriers were critically analyzed. Furthermore, a number of key challenges were identified including scale-up production, biological barriers, and toxicity profiles. To overcome these challenges, three research opportunities were highlighted based on rapid advancements in the field of nanomedicine. This review aims to provide a wholesome perspective for tocotrienol nanoformulations in cancer therapy directed toward effective clinical translation.
Collapse
Affiliation(s)
- Geetha Maniam
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Malaysia
- Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Malaysia
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia
- Centre for Cancer and Stem Cells Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Malaysia
| | - Mohd Zulkefeli
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Doryn Meam-Yee Tan
- Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ju-Yen Fu
- Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Malaysia
| |
Collapse
|