1
|
Huang Y, Guo H, Liu Y, Jin W, Palanisamy CP, Pei J, Oz F, Abd El-Aty AM. Effects of Natural Polysaccharides on the Gut Microbiota Related to Human Metabolic Health. Mol Nutr Food Res 2025:e202400792. [PMID: 40207751 DOI: 10.1002/mnfr.202400792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 04/11/2025]
Abstract
Natural polysaccharides (NPs) are sugar chains bound by glycosidic bonds that are composed of at least 10 monosaccharides and have broad biological activity. The human body microbiome is a complex ecosystem that plays a role in host metabolism, immunity, and other important life activities. Numerous studies have demonstrated an obvious relationship between the gut flora and the occurrence of many human diseases. Many studies have reviewed and investigated the effects of polysaccharides on the microbiome, but the underlying mechanisms remain unclear. Most of these studies have focused on the effects of NPs on microbes, as they are important "foods" for the intestinal flora. However, polysaccharides can also affect microbes by improving gut homeostasis. Therefore, the purpose of this review is to introduce recent research that looks at how NPs affect microbiomes by directly acting as fermentation substrates and enhancing gut homeostasis. In addition, this study provides a succinct summary of NP extraction, purification, and structural characteristics, as well as a discussion of their structure‒activity correlations. This study also sheds light on future directions and obstacles in the use of NPs with protective properties, with the aim of providing insights into their potential applications in disease treatment.
Collapse
Affiliation(s)
- Yigang Huang
- Shaanxi Province Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Hongfei Guo
- Shaanxi Province Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Yuchen Liu
- Shaanxi Province Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Wengang Jin
- Shaanxi Province Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Chella Perumal Palanisamy
- Center for Global Health Research, Saveetha Medical College and Hospital (SMCH), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai-602105, Tamil Nadu, India
| | - Jinjin Pei
- Shaanxi Province Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
- College of Food Science and Technology, Guangdong Ocean University, ZhanJiang, China
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Beamer MA, Furuta S. Redefining Cell Culture Using a 3D Flipwell Co-culture System: A Mimetic for Gut Architecture and Dynamics In Vitro. Curr Protoc 2025; 5:e70107. [PMID: 39964099 PMCID: PMC11834368 DOI: 10.1002/cpz1.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Gut mucosae are composed of stratified layers of microbes, a selectively permeable mucus, an epithelial lining, and connective tissue homing immune cells. Studying cellular and chemical interactions between the gut mucosal components has been limited without a good model system. We have engineered a three-dimensional (3D) multi-cellular co-culture system we coined "3D Flipwell system" using cell culture inserts stacked against each other. This system allows an assessment of the impact of a gut mucosal environmental change on interactions between gut bacteria, epithelia, and immune cells. As such, this system can be utilized in examining the effects of exogenous stimuli, such as dietary nutrients, bacterial infection, and drugs, on the gut mucosa that could predetermine how these stimuli might influence the rest of body. Here, we describe the methods of construction and application of the new 3D Flipwell system we utilized previously in assessing the crosstalk between the gut mucosa and macrophage polarization. We demonstrate the physiological responses of different components of the co-cultures to Sepiapterin (SEP), the precursor of the nitric oxide synthase cofactor tetrahydrobiopterin (BH4). We reported previously that SEP induces a pro-immunogenic shift of macrophages having acquired an immune suppressive phenotype. We also showed that SEP induces a defense mechanism of commensal gut bacteria. The protocol describing the assembly and use of the 3D Flipwell co-culture system herein would grant its utility in evaluating the concurrent effects of pharmacologic and microbiologic stimuli on gut mucosal components. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: 3D Flipwell construction, assembly, and collagen coating Basic Protocol 2: Flipwell cell seeding and cell culture Basic Protocol 3: Addition of bacterial culture to the Flipwell system Basic Protocol 4: Flipwell disassembly for scanning electron microscopy (SEM) studies Basic Protocol 5: Immunofluorescence antibody staining for confocal microscopy.
Collapse
Affiliation(s)
- Maria A. Beamer
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of MichiganAnn ArborMichigan
| | - Saori Furuta
- MetroHealth Medical CenterCase Western Reserve University School of Medicine, Case Comprehensive Cancer CenterClevelandOhio
| |
Collapse
|
3
|
Zhang S, Zhou R, Xie X, Xiong S, Li L, Li Y. Polysaccharides from Lycium barbarum, yam, and sunflower ameliorate colitis in a structure and intrinsic flora-dependent manner. Carbohydr Polym 2025; 349:122905. [PMID: 39643421 DOI: 10.1016/j.carbpol.2024.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Polysaccharides have been suggested to ameliorate metabolic diseases. However, their differential colitis-mitigating effects in mouse models with different colony structures remain poorly understood. Therefore, this study investigated the effects of polysaccharides from Lycium barbarum (LBP), sunflower (SP), and yam (YP) on colitis in C57BL/6 J (B6) mice born via vaginal delivery (VD) and in both caesarean section (CS)- and VD-born Institute of Cancer Research (ICR) mice. LBP was mainly composed of glucose (30.2 %), galactose (27.5 %), and arabinose (26.9 %). The main components of SP and YP were galacturonic acid (75.8 %) and glucose (98.1 %), respectively. Interestingly, LBP effectively alleviated body weight loss, reduced inflammatory cytokine levels, and restored intestinal barrier function in all three mouse models. Moreover, LBP decreased the abundance of norank_f__norank_o__Clostridia_UCG-014, Coriobacteriaceae_UCG-002, and norank_f_Eubacterium_coprostanoligenes_group in B6 mice, and the abundance of these genera positively correlated with pro-inflammatory cytokine levels. LBP increased the abundance of Lactobacillus, which was positively correlated with the levels of the protective factor, IL-10, in CS-born ICR mice. Collectively, our study suggests the potential application of LBP in the treatment of ulcerative colitis. We also provide an alternative method for restoring intestinal homeostasis in CS-born offspring.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoran Xie
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shanshan Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Yarahmadi A, Afkhami H, Javadi A, Kashfi M. Understanding the complex function of gut microbiota: its impact on the pathogenesis of obesity and beyond: a comprehensive review. Diabetol Metab Syndr 2024; 16:308. [PMID: 39710683 PMCID: PMC11664868 DOI: 10.1186/s13098-024-01561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Obesity is a multifactorial condition influenced by genetic, environmental, and microbiome-related factors. The gut microbiome plays a vital role in maintaining intestinal health, increasing mucus creation, helping the intestinal epithelium mend, and regulating short-chain fatty acid (SCFA) production. These tasks are vital for managing metabolism and maintaining energy balance. Dysbiosis-an imbalance in the microbiome-leads to increased appetite and the rise of metabolic disorders, both fuel obesity and its issues. Furthermore, childhood obesity connects with unique shifts in gut microbiota makeup. For instance, there is a surge in pro-inflammatory bacteria compared to children who are not obese. Considering the intricate nature and variety of the gut microbiota, additional investigations are necessary to clarify its exact involvement in the beginnings and advancement of obesity and related metabolic dilemmas. Currently, therapeutic methods like probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), dietary interventions like Mediterranean and ketogenic diets, and physical activity show potential in adjusting the gut microbiome to fight obesity and aid weight loss. Furthermore, the review underscores the integration of microbial metabolites with pharmacological agents such as orlistat and semaglutide in restoring microbial homeostasis. However, more clinical tests are essential to refine the doses, frequency, and lasting effectiveness of these treatments. This narrative overview compiles the existing knowledge on the multifaceted role of gut microbiota in obesity and much more, showcasing possible treatment strategies for addressing these health challenges.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Ali Javadi
- Department of Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Park B, Kim JY, Riffey OF, Walsh TJ, Johnson J, Donohoe DR. Crosstalk between butyrate oxidation in colonocyte and butyrate-producing bacteria. iScience 2024; 27:110853. [PMID: 39310762 PMCID: PMC11416512 DOI: 10.1016/j.isci.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
The composition of gut microbiota, including butyrate-producing bacteria (BPB), is influenced by diet and physiological conditions. As such, given the importance of butyrate as an energetic substrate in colonocytes, it is unclear whether utilization of this substrate by the host would enhance BPB levels, thus defining a host-microbiome mutualistic relationship based on cellular metabolism. Here, it is shown through using a mouse model that lacks short-chain acyl dehydrogenase (SCAD), which is the first enzyme in the beta-oxidation pathway for short-chain fatty acids (SCFAs), that there is a significant diminishment in BPB at the phylum, class, species, and genus level compared to mice that have SCAD. Furthermore, SCAD-deficient mice do not show a prebiotic response from dietary fiber. Thus, oxidation of SCFAs by the host, which includes butyrate, is important in promoting BPB. These data help define the functional importance of diet-microbiome-host interactions toward microbiome composition, as it relates to function.
Collapse
Affiliation(s)
- Bohye Park
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA
| | - Ji Yeon Kim
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA
| | - Olivia F. Riffey
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Triston J. Walsh
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jeremiah Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Dallas R. Donohoe
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
6
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Han A, Yang M, Chen B, Cao G, Xu J, Meng T, Liu Y, Wang Z, Zhou Y, Xu N, Han W, Sun H, Mei Q, Zhu L, Xiong M. Microbiome and its relevance to indigenous inflammatory bowel diseases in China. Gene 2024; 909:148257. [PMID: 38367851 DOI: 10.1016/j.gene.2024.148257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract with an unknown etiology. Although dysbiosis is implicated in its pathogenesis, deep sequencing and oral microbiota study in Chinese IBD patients is absent. AIM To explore the role of oral / intestinal microbiota in patients with IBD and the potential associations therein. METHODS Clinical data, fecal and saliva samples were harvested from 80 patients with IBD (Crohn's disease, CD, n = 69; Ulcerative colitis, UC, n = 11) and 24 normal controls. Microbiomics (16S rRNA sequencing and 16S rRNA full-length sequencing) were used to detect and analyze the difference between IBD patients and normal control. RESULTS Compared with normal controls, a higher abundance of the intestinal Shigella spp. (Shigella flexneri and Shigella sonnei, which were positively relate to the severity of IBD), lower abundance of intestinal probiotics (Prevotella, Faecalibacterium and Roseburia), and higher abundance of oral Neisseria were present in IBD patients with microbiome. The higher inflammation-related markers, impaired hepatic and renal function, and dyslipidaemia were present in patients with IBD. A higher intake of red meat and increased abundance of Clostridium in the gut were found in CD patients, while the elevated abundance of Ruminococcus in the gut was showed in UC ones. The bacterial composition of saliva and fecal samples was completely different, yet there was some correlation in the distribution of dominant probiotics. CONCLUSION Enteric dysbacteriosis and the infections of pathogenic bacteria (Shigella) may associate with the occurrence or development of IBD.
Collapse
Affiliation(s)
- Anqi Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Mingya Yang
- Department of Haematology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Guodong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Junrui Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Tao Meng
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Yu Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Zhenzhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Yangliu Zhou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Na Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Wei Han
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Haiyi Sun
- Clinical Medical Collage, Anhui Medical University, Hefei 230020, PR China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| | - Lixin Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| | - Maoming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| |
Collapse
|
8
|
Li X, Sun J, Wu Y, Li C, Peng G, Zheng Y. Enhancement of immunomodulatory effect of licorice after honey-roasting based on gut microbiota and fecal metabolomics. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2023.2193605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Wu Y, Jiao C, Diao Q, Tu Y. Effect of Dietary and Age Changes on Ruminal Microbial Diversity in Holstein Calves. Microorganisms 2023; 12:12. [PMID: 38276181 PMCID: PMC10818949 DOI: 10.3390/microorganisms12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/27/2024] Open
Abstract
Ruminal microorganisms play a crucial role in the energy supply of ruminants and animal performance. We analyzed the variations in rumen bacteria and fungi at 45 d, 75 d, and 105 d by using 16SrRNA and ITS sequencing data and investigated their correlation with rumen fermentation. According to the results, rumen microflora tended to gradually mature with age, and bacterial and fungal establishment gradually stabilized. Upon comparing the three periods, the concentration of propionic acid increased significantly (p < 0.05) after weaning, and weaning accompanied by a transition in diet remarkably decreased (p < 0.05) rumen diversity in the short term and induced a corresponding change in the rumen microbiota composition. Bacteroidota, Actinobacteriota, and Firmicutes were the core bacterial phyla for all age periods. Ruminococcus, NK4A214_group, Sharpea, Rikenellaceae_RC9_gut_group, and norank_f__Butyricicoccaceae were the markedly abundant bacterial genera in pre-weaning. After weaning, the relative abundance of Erysipelotrichaceae_ UCG-002, Eubacterium_ruminantium_group, and Solobacterium significantly increased (p < 0.05). The relative abundance of Acetitomaculum increased with age with the greatest abundance noted at 105 d (37%). The dominant fungal phyla were Ascomycota and Basidiomycota, and Aspergillus and Xeromyces were the most abundant fungal genera after weaning. Trichomonascus, Phialosimplex, and Talaromyces were enriched at 105 d. However, the low abundance of Neocallimastigomycota was not detected throughout the study, which is worthy of further investigation. In addition, correlations were observed between age-related abundances of specific genera and microbiota functions and rumen fermentation-related parameters. This study revealed that rumen microbiota and rumen fermentation capacity are correlated, which contributed to a better understanding of the effects of age and diet on rumen microbiology and fermentation in calves.
Collapse
Affiliation(s)
| | | | | | - Yan Tu
- Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (C.J.); (Q.D.)
| |
Collapse
|
10
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
11
|
Tian S, Paudel D, Hao F, Neupane R, Castro R, Patterson AD, Tiwari AK, Prabhu KS, Singh V. Refined fiber inulin promotes inflammation-associated colon tumorigenesis by modulating microbial succinate production. Cancer Rep (Hoboken) 2023; 6:e1863. [PMID: 37489647 PMCID: PMC10644334 DOI: 10.1002/cnr2.1863] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND AIM There is an increased risk of colon cancer associated with inflammatory bowel disease (IBD). Dietary fibers (DFs) naturally present in vegetables and whole grains offer numerous beneficial effects on intestinal health. However, the effects of refined DFs on intestinal health remain unclear. Therefore, we elucidated the impact of the refined DF inulin on colonic inflammation and tumorigenesis. METHODS Four-week-old wild-type (WT) mice were fed diets containing insoluble DF cellulose (control) or refined DF inulin for 4 weeks. A subgroup of mice was then switched to drinking water containing dextran sulfate sodium (DSS, 1.4% wt/vol) for colitis induction. In another subgroup of mice, colitis-associated colorectal cancer (CRC) was initiated with three 7-day alternate cycles of DSS following an initial dose of mutagenic substance azoxymethane (AOM; 7.5 mg/kg body weight; i.p.). Post 7 weeks of AOM treatment, mice were euthanized and examined for CRC development. RESULTS Mice consuming inulin-containing diet exhibited severe colitis upon DSS administration, as evidenced by more body weight loss, rectal bleeding, and increased colonic inflammation than the DSS-treated control group. Correspondingly, histological analysis revealed extensive disruption of colon architecture and massive infiltration of immune cells in the inulin-fed group. We next examined the effect of inulin on CRC development. Surprisingly, significant mortality (~50%) was observed in the inulin-fed but not in the control group during the DSS cycle. Consequently, the remaining inulin-fed mice, which completed the study exhibited extensive colon tumorigenesis. Immunohistochemical characterization showed comparatively high expression of the cell proliferation marker Ki67 and activation of the Wnt signaling in tumor sections obtained from the inulin-fed group. Gut microbiota and metabolite analysis revealed expansion of succinate producers and elevated cecal succinate in inulin-fed mice. Human colorectal carcinoma cells (HCT116) proliferated more rapidly when supplemented with succinate in an inflamed environment, suggesting that elevated luminal succinate may contribute to tumorigenesis. CONCLUSIONS Our study uncovers that supplementation of diet with refined inulin induces abnormal succinate accumulation in the intestinal lumen, which in part contributes to promoting colon inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Sangshan Tian
- Department of Nutritional SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Devendra Paudel
- Department of Nutritional SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Fuhua Hao
- Department of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rabin Neupane
- Department of Pharmacology and Experimental TherapeuticsUniversity of ToledoToledoOhioUSA
| | - Rita Castro
- Department of Nutritional SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental TherapeuticsUniversity of ToledoToledoOhioUSA
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Vishal Singh
- Department of Nutritional SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
12
|
Jia B, Tang L, Liu H, Zhu Y, Chen W, Chen Q, Li J, Zhong M, Yin A. Alterations and potential roles of microbial population of pregnant mouse saliva and amniotic fluid. Am J Reprod Immunol 2023; 90:e13782. [PMID: 37881125 DOI: 10.1111/aji.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
PROBLEM Prenatal exposure to intrauterine inflammation (IUI) is a crucial event in PTB pathophysiology. However, the relationship between microflora and PTB is not fully elucidated. METHOD OF STUDY In this study, we established an intrauterine inflammation mouse model via LPS intrauterine injection. The saliva and amniotic fluid were collected for 16s RNA gene sequencing. The levels of TNF-α and IL-1β in mouse amniotic fluid were determined by ELISA assays. RESULTS Up to 60% of the operational taxonomic units (OTUs) in the saliva and amniotic fluid of PBS-treated mice were overlapped. LPS treatment-induced changes in the abundance of oral and amniotic fluid microorganisms. Both immune-associated probiotics, salivarius and mastitidis, were still detected in saliva (at significantly increased levels) after LPS-induced intrauterine inflammation and almost no probiotics of any type were detected in amniotic fluid, suggesting that the uterine cavity seems to be more susceptible to LPS compared to the oral cavity. Moreover, the abundance of pathogenic bacteria Escherichia coli was increased in both saliva and amniotic fluid after LPS treatment. The level of TNF-α and IL-1β in amniotic fluid is positively related to the amniotic fluid E. coli abundance. CONCLUSIONS The microbial composition of saliva and amniotic fluid of pregnant mice was similar. LPS-induced intrauterine inflammation decreased the consistency of microbial composition in mouse saliva and amniotic fluid, increased the abundance of E. coli in saliva and amniotic fluid, and decreased the abundance of immune-associated probiotics, especially in amniotic fluid.
Collapse
Affiliation(s)
- Bei Jia
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Lijun Tang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Huibing Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yan Zhu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Wenqian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Ailan Yin
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| |
Collapse
|
13
|
Nandha MC, Shukla RM. Exploration of probiotic attributes in lactic acid bacteria isolated from fermented Theobroma cacao L. fruit using in vitro techniques. Front Microbiol 2023; 14:1274636. [PMID: 37808281 PMCID: PMC10552159 DOI: 10.3389/fmicb.2023.1274636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Probiotics are known for their health-promoting properties and are recognized as beneficial microorganisms. The current investigation delves into the isolation and comprehensive in vitro characterization of lactic acid bacteria (LAB) obtained from the Indian-origin Theobroma cacao L. Forastero variety to assess their potential as probiotic candidates. Eleven LAB isolates were obtained, and among them, five exhibited classical LAB traits. These five isolates underwent rigorous in vitro characterization to evaluate their suitability as probiotics. The assessments included resilience against acid and bile salts, which are crucial for probiotic viability. Additionally, the isolates were subjected to simulated gastric and pancreatic fluids and lysozyme exposure to assess their survival rates. Auto- aggregation, co-aggregation, hydrophobicity, and exopolysaccharide production were also examined. The inhibitory potential of α-glucosidase, an enzyme related to glucose metabolism, was measured, and antioxidant activity was evaluated using DPPH and ABTS assays. A safety assessment was conducted to confirm the non-pathogenic nature of the isolates. Among the five isolates, CR2 emerged as a standout candidate with maximal bile salt hydrolase activity, phenol resistance, and lysozyme resistance. CR2 and CYF3 exhibited notable survival rates under simulated conditions. The isolates displayed variable degrees of auto-aggregation, co-aggregation, and hydrophobicity. CR2 exhibited the highest exopolysaccharide production (0.66 mg/mL), suggesting diverse applications in the food industry. CR2 also demonstrated the highest inhibition rate against α-glucosidase (56.55%) and substantial antioxidant activity (79.62% DPPH, 83.45% ABTS). Safety assessment confirmed the non- pathogenic nature of the isolates. Molecular characterization identified CR2 as Lactococcus lactis subsp. lactis and CYF3 as Limnosilactobacillus fermentum. Both strains exhibited commendable probiotic and technological attributes, positioning them as promising candidates for functional foods and beyond. This study provides valuable insights into the in vitro characterization of LAB isolated from Indian Theobroma cacao L., highlighting their potential as probiotic candidates with advantageous traits, including survival in hostile conditions, beneficial enzymatic activities, bioactivity, and other essential attributes.
Collapse
Affiliation(s)
- Mausamy C. Nandha
- Department of Microbiology and Biotechnology, School of Science, Gujarat University, Ahmedabad, India
| | - Rachana M. Shukla
- Department of Microbiology, Gandhinagar Institute of Technology, Gandhinagar, India
| |
Collapse
|
14
|
Han Y, Liu L, Chen Y, Zheng H, Yao M, Cao L, Sferra TJ, Ke X, Peng J, Shen A. Qing Hua Chang Yin alleviates chronic colitis of mice by protecting intestinal barrier function and improving colonic microflora. Front Pharmacol 2023; 14:1176579. [PMID: 37576825 PMCID: PMC10413571 DOI: 10.3389/fphar.2023.1176579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Qing Hua Chang Yin (QHCY) is a famous formula of traditional Chinese medicine (TCM) and has been proven to have protective effect on ulcerative colitis. However, its protective effect and potential therapeutic mechanisms in chronic colitis remain unclear. The purpose of this study is to explore the effects and underlying mechanisms of QHCY on dextran sulfate sodium (DSS)-induced chronic colitis mice model. Methods: The chronic colitis model was established by administration of 2% DSS for three consecutive cycles of 7 days with two intervals of 14 days for recovery by drinking water. The experiment lasted 49 days. The DSS + QHCY group received QHCY administration by oral gavage at doses of 1.6 g/kg/d, DSS + Mesalazine group was administrated Mesalazine by oral gavage at doses of 0.2 g/kg/d. The control and DSS group were given equal volume of distilled water. The body weight, stool consistency and blood in stool were monitored every 2 days. The disease activity index (DAI) was calculated. The colon length was measured after the mice were sacrificed. The histomorphology of colonic tissues was checked by the HE and PAS staining. Immunohistochemistry was performed to detect the expressions of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), tight junction proteins (ZO-1, occludin) and Mucin2 (MUC2). 16S rRNA sequencing analysis was conducted to study the diversity and abundance of gut microbiota changes. Results: QHCY treatment not only significantly attenuated DSS-induced the weight loss, DAI score increase, colon shortening and histological damage in mice, but also decreased the expression of pro-inflammatory cytokines in colonic tissues and increased the expression of ZO-1, occludin, and MUC2. Furthermore, QHCY enhanced the diversity of gut microbes and regulated the structure and composition of intestinal microflora in mice with chronic colitis. Conclusion: QHCY has a therapeutic effect on a murine model of chronic colitis. It can effectively reduce the clinical and pathological manifestations of colitis and prevent alterations in the gut microbiota.
Collapse
Affiliation(s)
- Yuying Han
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liya Liu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youqin Chen
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Huifang Zheng
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengying Yao
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liujing Cao
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J. Sferra
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Xiao Ke
- Department of Gastroenterology, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Clinical Medical Research Centre of Chinese Medicine for Spleen and Stomach, Fuzhou, China
| | - Jun Peng
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Aling Shen
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
15
|
Kang M, Jung JH, Kim JY, Hong SH, Her Y. Therapeutic and Preventive Effect of Orally Administered Prebiotics on Atopic Dermatitis in a Mouse Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:303-315. [PMID: 37075794 DOI: 10.4168/aair.2023.15.3.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 05/17/2023]
Abstract
PURPOSE Recently, interest is increasing in using prebiotics, which are nutrient ingredients of live microorganism that improve the intestinal environments by promoting the growth of beneficial gut microflora. Although numerous studies have demonstrated the beneficial effects of probiotics on atopic dermatitis (AD) development, few have examined preventive and therapeutic effects of prebiotics on the onset and progression of AD. METHODS In this study, we investigated therapeutic and preventive effect of prebiotics, including β-glucan and inulin, using an oxazolone (OX)-induced AD-like mouse model. Prebiotics were orally administered 2 weeks after the end of sensitization period (therapeutic study) and 3 weeks before the initial sensitization (prevention study). The physiological and histological alterations in the skin and gut of the mice were investigated. RESULTS In the therapeutic study, the severity of skin lesions and inflammatory responses were effectively reduced after administering β-glucan and inulin, respectively. The expression level of calprotectin was significantly decreased by approximately 2-fold (P < 0.05) in the skin and gut of prebiotics-treated mice compared to the control. In addition, epidermal thickness and the number of infiltrated immune cells were markedly reduced in the dermis of prebiotics-treated mice compared <strike>with</strike> to those in the OX-induced mice (P < 0.05). These findings were same as in the prevention study. Importantly, pre-administration of β-glucan and inulin prevented the progression of AD by promoting the growth of good bacteria in the gut of OX-induced AD mice. However, the co-administration of β-glucan and inulin did not show enhanced preventive effects on these alterations. CONCLUSIONS Prebiotics has a therapeutic effect on AD in OX-induced AD mouse model. Moreover, our study suggests that prebiotics prevents the development of AD and this effect is associated with a change in gut microbiome.
Collapse
Affiliation(s)
- Minje Kang
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Ji-Hye Jung
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea.
| | - Young Her
- Department of Dermatology, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Korea.
| |
Collapse
|
16
|
Panwar D, Shubhashini A, Kapoor M. Complex alpha and beta mannan foraging by the human gut bacteria. Biotechnol Adv 2023; 66:108166. [PMID: 37121556 DOI: 10.1016/j.biotechadv.2023.108166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The human gut microbiota (HGM), a community of trillions of microbes, underscores its contribution by impacting many facets of host health and disease. In the HGM, Bacteroidota and Bacillota represent dominant bacterial phyla, which mainly rely on the glycans recalcitrant to host digestion to meet their energy requirements. Accordingly, the impact of dietary and host-derived glycans in the assembly and operation of these dominant microbial communities continues to be an area of active research. Among various glycans, mannans represent an integral component of the human diet. Apart from their health effects, the diverse and complex mannan structures bears molecular signatures that alter the expression of specific gene clusters in selected Bacteroidota and Bacillota species. Both the phyla possess variable and sophisticated loci of mannan recognition proteins, hydrolytic enzymes, transporters, and other metabolic proteins to sense, capture and utilize mannans as an energy source. The current review summarizes mannan structural diversity, and strategies adopted by select species of the HGM bacteria to forage mannans by focusing primarily on glycoside hydrolases and their effects on host health and metabolism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India
| | - A Shubhashini
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India.
| |
Collapse
|
17
|
Novel 3D Flipwell system that models gut mucosal microenvironment for studying interactions between gut microbiota, epithelia and immunity. Sci Rep 2023; 13:870. [PMID: 36650266 PMCID: PMC9845379 DOI: 10.1038/s41598-023-28233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Gut mucosa consists of stratified layers of microbes, semi-permeable mucus, epithelium and stroma abundant in immune cells. Although tightly regulated, interactions between gut commensals and immune cells play indispensable roles in homeostasis and cancer pathogenesis in the body. Thus, there is a critical need to develop a robust model for the gut mucosal microenvironment. Here, we report our novel co-culture utilizing 3D Flipwell system for establishing the stratified layers of discrete mucosal components. This method allows for analyzing synchronous effects of test stimuli on gut bacteria, mucus, epithelium and immune cells, as well as their crosstalks. In the present report, we tested the immuno-stimulatory effects of sepiapterin (SEP, the precursor of the cofactor of nitric oxide synthase (NOS)-BH4) on the gut mucosal community. We previously reported that SEP effectively reprogrammed tumor-associated macrophages and inhibited breast tumor cell growth. In our co-cultures, SEP largely promoted mucus integrity, bacterial binding, and M1-like polarization of macrophages. Conversely, these phenomena were absent in control-treated cultures. Our results demonstrate that this novel co-culture may serve as a robust in vitro system to recapitulate the effects of pharmacological agents on the gut mucosal microenvironment, and could potentially be expanded to test the effects outside the gut.
Collapse
|
18
|
Zhao H, Chen Y, Zheng Y, Xu J, Zhang C, Fu M, Xiong K. Conjunctival sac microbiome in anophthalmic patients: Flora diversity and the impact of ocular prosthesis materials. Front Cell Infect Microbiol 2023; 13:1117673. [PMID: 36960044 PMCID: PMC10027910 DOI: 10.3389/fcimb.2023.1117673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
Purpose To explore the changes of bacterial flora in anophthalmic patients wearing ocular prosthesis (OP) and the microbiome diversity in conditions of different OP materials. Methods A cross-sectional clinical study was conducted, involving 19 OP patients and 23 healthy subjects. Samples were collected from the upper, lower palpebral, caruncle, and fornix conjunctiva. 16S rRNA sequencing was applied to identify the bacterial flora in the samples. The eye comfort of each OP patient was determined by a questionnaire. In addition, demographics information of each participant was also collected. Results The diversity and richness of ocular flora in OP patients were significantly higher than that in healthy subjects. The results of flora species analysis also indicated that in OP patients, pathogenic microorganisms such as Escherichia Shigella and Fusobacterium increased significantly, while the resident flora of Lactobacillus and Lactococcus decreased significantly. Within the self-comparison of OP patients, compared with Polymethyl Methacrylate (PMMA), prosthetic material of glass will lead to the increased colonization of opportunistic pathogens such as Alcaligenes, Dermabacter and Spirochaetes, while gender and age have no significant impact on ocular flora. Conclusions The ocular flora of OP patients was significantly different from that of healthy people. Abundant colonization of pathogenic microorganisms may have an important potential relationship with eye discomfort and eye diseases of OP patients. PMMA, as an artificial eye material, demonstrated potential advantages in reducing the colonization of opportunistic pathogens.
Collapse
Affiliation(s)
- Hejia Zhao
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanjun Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yixu Zheng
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenyu Zhang
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Ke Xiong, ; Min Fu,
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Ke Xiong, ; Min Fu,
| |
Collapse
|
19
|
A Paradigm Shift in Understanding the Pathological Basis of Autism Spectrum Disorder: From the Womb to the Tomb. J Pers Med 2022; 12:jpm12101622. [PMID: 36294761 PMCID: PMC9604761 DOI: 10.3390/jpm12101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
|
20
|
Ma X, Nan F, Liang H, Shu P, Fan X, Song X, Hou Y, Zhang D. Excessive intake of sugar: An accomplice of inflammation. Front Immunol 2022; 13:988481. [PMID: 36119103 PMCID: PMC9471313 DOI: 10.3389/fimmu.2022.988481] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
High sugar intake has long been recognized as a potential environmental risk factor for increased incidence of many non-communicable diseases, including obesity, cardiovascular disease, metabolic syndrome, and type 2 diabetes (T2D). Dietary sugars are mainly hexoses, including glucose, fructose, sucrose and High Fructose Corn Syrup (HFCS). These sugars are primarily absorbed in the gut as fructose and glucose. The consumption of high sugar beverages and processed foods has increased significantly over the past 30 years. Here, we summarize the effects of consuming high levels of dietary hexose on rheumatoid arthritis (RA), multiple sclerosis (MS), psoriasis, inflammatory bowel disease (IBD) and low-grade chronic inflammation. Based on these reported findings, we emphasize that dietary sugars and mixed processed foods may be a key factor leading to the occurrence and aggravation of inflammation. We concluded that by revealing the roles that excessive intake of hexose has on the regulation of human inflammatory diseases are fundamental questions that need to be solved urgently. Moreover, close attention should also be paid to the combination of high glucose-mediated immune imbalance and tumor development, and strive to make substantial contributions to reverse tumor immune escape.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Nan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hantian Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Panyin Shu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinzou Fan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanfeng Hou
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong medicine and Health Key Laboratory of Rheumatism, Jinan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art Review. Nutrients 2022; 14:nu14132641. [PMID: 35807822 PMCID: PMC9268622 DOI: 10.3390/nu14132641] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Throughout history, malnutrition and deficiency diseases have been a problem for our planet’s population. A balanced diet significantly influences everyone’s health, and fiber intake appears to play a more important role than previously thought. The natural dietary fibers are a category of carbohydrates in the constitution of plants that are not completely digested in the human intestine. High-fiber foods, such as fruits, vegetables and whole grains, have consistently been highly beneficial to health and effectively reduced the risk of disease. Although the mode of action of dietary fiber in the consumer body is not fully understood, nutritionists and health professionals unanimously recognize the therapeutic benefits. This paper presents the fiber consumption in different countries, the metabolism of fiber and the range of health benefits associated with fiber intake. In addition, the influence of fiber intake on the intestinal microbiome, metabolic diseases (obesity and diabetes), neurological aspects, cardiovascular diseases, autoimmune diseases and cancer prevention are discussed. Finally, dietary restrictions and excess fiber are addressed, which can cause episodes of diarrhea and dehydration and increase the likelihood of bloating and flatulence or even bowel obstruction. However, extensive studies are needed regarding the composition and required amount of fiber in relation to the metabolism of saprotrophic microorganisms from the enteral level and the benefits of the various pathologies with which they can be correlated.
Collapse
|
22
|
Liatsos C, Papaefthymiou A, Kyriakos N, Galanopoulos M, Doulberis M, Giakoumis M, Petridou E, Mavrogiannis C, Rokkas T, Kountouras J. Helicobacter pylori, gastric microbiota and gastric cancer relationship: Unrolling the tangle. World J Gastrointest Oncol 2022; 14:959-972. [PMID: 35646287 PMCID: PMC9124990 DOI: 10.4251/wjgo.v14.i5.959] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection (Hp-I) represents a typical microbial agent intervening in the complex mechanisms of gastric homeostasis by disturbing the balance between the host gastric microbiota and mucosa-related factors, leading to inflammatory changes, dysbiosis and eventually gastric cancer. The normal gastric microbiota shows diversity, with Proteobacteria [Helicobacter pylori (H. pylori) belongs to this family], Firmicutes, Actinobacteria, Bacteroides and Fusobacteria being the most abundant phyla. Most studies indicate that H. pylori has inhibitory effects on the colonization of other bacteria, harboring a lower diversity of them in the stomach. When comparing the healthy with the diseased stomach, there is a change in the composition of the gastric microbiome with increasing abundance of H. pylori (where present) in the gastritis stage, while as the gastric carcinogenesis cascade progresses to gastric cancer, the oral and intestinal-type pathogenic microbial strains predominate. Hp-I creates a premalignant environment of atrophy and intestinal metaplasia and the subsequent alteration in gastric microbiota seems to play a crucial role in gastric tumorigenesis itself. Successful H. pylori eradication is suggested to restore gastric microbiota, at least in primary stages. It is more than clear that Hp-I, gastric microbiota and gastric cancer constitute a challenging tangle and the strong interaction between them makes it difficult to unroll. Future studies are considered of crucial importance to test the complex interaction on the modulation of the gastric microbiota by H. pylori as well as on the relationships between the gastric microbiota and gastric carcinogenesis.
Collapse
Affiliation(s)
- Christos Liatsos
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Apostolis Papaefthymiou
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
- Gastroenterology, University Hospital of Larissa, Larissa 41336, Greece
| | - Nikolaos Kyriakos
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Michail Galanopoulos
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Michael Doulberis
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau 1234, Switzerland
| | - Marios Giakoumis
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Evangelia Petridou
- Department of Microbiology, “Agia Sofia” Paediatric Hospital, Goudi, Athens 11527, Greece
| | - Christos Mavrogiannis
- Gastrointestinal and Liver Unit, Faculty of Nursing, Kifissia General and Oncology Hospital, Kaliftaki, N.Kifisia 14564, Greece
| | - Theodore Rokkas
- Gastroenterological Clinic, Henry Dunant Hospital, Athens 11525, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 41336, Macedonia, Greece
| |
Collapse
|
23
|
Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms 2022; 10:microorganisms10050949. [PMID: 35630391 PMCID: PMC9143008 DOI: 10.3390/microorganisms10050949] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Accumulating data show the involvement of intestinal microbiota in the development and maintenance of numerous diseases. Many environmental factors influence the composition and function of the gut microbiota. An animal model subjected to the same environmental constraints that will allow better characterization of the microbiota–host dialogue is awaited. The domestic dog has physiological, dietary and pathological characteristics similar to those of humans and shares the domestic environment and lifestyle of its owner. This review exposes how the domestication of dogs has brought them closer to humans based on their intrinsic and extrinsic similarities which were discerned through examining and comparing the current knowledge and data on the intestinal microbiota of humans and canines in the context of several spontaneous pathologies, including inflammatory bowel disease, obesity and diabetes mellitus.
Collapse
|
24
|
Panisi C, Marini M. Dynamic and Systemic Perspective in Autism Spectrum Disorders: A Change of Gaze in Research Opens to A New Landscape of Needs and Solutions. Brain Sci 2022; 12:250. [PMID: 35204013 PMCID: PMC8870276 DOI: 10.3390/brainsci12020250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
The first step for a harmonious bio-psycho-social framework in approaching autism spectrum disorders (ASD) is overcoming the conflict between the biological and the psychosocial perspective. Biological research can provide clues for a correct approach to clinical practice, assuming that it would lead to the conceptualization of a pathogenetic paradigm able to account for epidemiologic and clinical findings. The upward trajectory in ASD prevalence and the systemic involvement of other organs besides the brain suggest that the epigenetic paradigm is the most plausible one. The embryo-fetal period is the crucial window of opportunity for keeping neurodevelopment on the right tracks, suggesting that women's health in pregnancy should be a priority. Maladaptive molecular pathways beginning in utero, in particular, a vicious circle between the immune response, oxidative stress/mitochondrial dysfunction, and dysbiosis-impact neurodevelopment and brain functioning across the lifespan and are the basis for progressive multisystemic disorders that account for the substantial health loss and the increased mortality in ASD. Therefore, the biological complexity of ASD and its implications for health requires the enhancement of clinical skills on these topics, to achieve an effective multi-disciplinary healthcare model. Well-balanced training courses could be a promising starting point to make a change.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
25
|
Characterization of two new strains of Lactococcus lactis for their probiotic efficacy over commercial synbiotics consortia. Braz J Microbiol 2022; 53:903-920. [PMID: 35138631 PMCID: PMC9151986 DOI: 10.1007/s42770-022-00685-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023] Open
Abstract
Lactococcus spp. are industrially crucial lactic acid bacteria (LAB) used to manufacture lactic acid, pickled vegetables, buttermilk, cheese, and many kinds of delicious dairy foods and drinks. In addition to these, they are also being used as probiotics in specific formulations. However, their uses as probiotics are comparatively less than the other LAB genera. The present communication hypothesizes to validate the probiotic potentiality of two new Lactococcus lactis subsp. lactis strains for their future uses. These native food fermenting strains were characterized for in vitro acid tolerance, tolerance to simulated gastric and pancreatic juices, autoaggregation and co-aggregation, hydrophobicity, haemolytic activity, bile salt deconjugation, cholesterol removal, antimicrobial spectrum, and antibiotic sensitivity. The in vivo live bacterial feeding of these strains for 30 days was done in Swiss albino mice either singly or in combination with prebiotic inulin and evaluated for hypocholesterolemic activity, immune enhancement, and gut colonization efficiency and compared with the commercial probiotic consortia. The study revealed that the strains could survive in human gut bile concentration, gastric pH conditions at pH 2.0, 3.0, and 8.0 for 6 h, had a broad antibacterial spectrum, and cholesterol binding efficacy. The strains could survive with higher colony-forming units (CFU/mL) when amended with sodium caseinate. The strains had autoaggregation ranges from 15 to 25% over 24 h and had a significant co-aggregation with both lactic acid and Gram-positive and Gram-negative bacterial strains related to human illness. The strains also showed solvent and media-specific hydrophobicity against n-hexane and xylene. The live bacterial feeding either singly or in combination with prebiotic inulin resulted in a significant reduction of LDL (low-density lipoprotein), VLDL (very low-density lipoprotein) cholesterol and triglyceride (TG), and a significant increase in HDL (high-density lipoprotein) cholesterol level, and improved gut colonization and gut immunomodulation. The results prove that these non-haemolytic, non-toxic strains had significant health benefits than the commercial probiotics consortium with the recommended prebiotics mix. Thus, these new Lactococcus lactis subsp. lactis strains could be trialled as a new probiotic combination for human and animal feeds.
Collapse
|
26
|
Fecal 1H-NMR Metabolomics: A Comparison of Sample Preparation Methods for NMR and Novel in Silico Baseline Correction. Metabolites 2022; 12:metabo12020148. [PMID: 35208222 PMCID: PMC8875708 DOI: 10.3390/metabo12020148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Analysis of enteric microbiota function indirectly through the fecal metabolome has the potential to be an informative diagnostic tool. However, metabolomic analysis of feces is hampered by high concentrations of macromolecules such as proteins, fats, and fiber in samples. Three methods—ultrafiltration (UF), Bligh–Dyer (BD), and no extraction (samples added directly to buffer, vortexed, and centrifuged)—were tested on multiple rat (n = 10) and chicken (n = 8) fecal samples to ascertain whether the methods worked equally well across species and individuals. An in silico baseline correction method was evaluated to determine if an algorithm could produce spectra similar to those obtained via UF. For both rat and chicken feces, UF removed all macromolecules and produced no baseline distortion among samples. By contrast, the BD and no extraction methods did not remove all the macromolecules and produced baseline distortions. The application of in silico baseline correction produced spectra comparable to UF spectra. In the case of no extraction, more intense peaks were produced. This suggests that baseline correction may be a cost-effective method for metabolomic analyses of fecal samples and an alternative to UF. UF was the most versatile and efficient extraction method; however, BD and no extraction followed by baseline correction can produce comparable results.
Collapse
|
27
|
Wang CPJ, Byun MJ, Kim SN, Park W, Park HH, Kim TH, Lee JS, Park CG. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment. J Control Release 2022; 345:1-19. [DOI: 10.1016/j.jconrel.2022.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
|
28
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
29
|
Yuan D, Li C, Huang Q, Fu X, Dong H. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Crit Rev Food Sci Nutr 2022; 63:5890-5910. [PMID: 35021901 DOI: 10.1080/10408398.2022.2025535] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, multifactorial and inflammatory disease occurring in the colon tract. Bioactive polysaccharides from natural resources have attracted extensive attention due to their safety, accessibility and good bioactivities. In recent years, a variety of natural bioactive polysaccharides have been proven to possess anti-inflammatory effects on treating acute colitis. The objective of this review was to give an up-to-date review on the anti-inflammatory effects and mechanisms of natural polysaccharides on acute colitis. The anti-inflammatory effects of natural polysaccharides on acute colitis concerning clinical symptoms amelioration, colon tissue repairment, anti-oxidative stress alleviation, anti-inflammation, immune regulation, and gut microbiota modulation were comprehensively summarized. In addition, inducible murine models for assessing the anti-inflammatory effects of natural polysaccharides on acute colitis were also concluded. This review will offer the comprehensive understanding of anti-inflammatory mechanisms of natural polysaccharides in acute colitis, and render theoretical basis for the development and application of natural polysaccharides in drug and functional food.
Collapse
Affiliation(s)
- Dan Yuan
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chao Li
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
30
|
Wang S, Chai J, Zhao G, Zhang N, Cui K, Bi Y, Ma T, Tu Y, Diao Q. The Temporal Dynamics of Rumen Microbiota in Early Weaned Lambs. Microorganisms 2022; 10:microorganisms10010144. [PMID: 35056593 PMCID: PMC8779368 DOI: 10.3390/microorganisms10010144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
Weaning affects the development of ruminal bacteria in lambs during early life. However, the temporal dynamics of rumen microbiota in early weaned lambs is unknown compared to conventionally weaned lambs. In this study, one group was reared with their dams (control, CON) and conventionally weaned at 49 days (d), while the other lambs were weaned at 21 d (early weaning, EW) using starter. Rumen microbial samples collected at 26, 35, and 63 d were used for next-generation sequencing. Here, we found that the abundance and diversity of rumen microbiota in EW were significantly lower at 26 and 35 d than the CON. Linear discriminant analysis Effect Size (LEfSe) analysis was performed to identify the signature microbiota for EW at these three ages. At 26 d, Prevotella 7, Syntrophococcus, Sharpea, Dialister, Pseudoscardovia, and Megasphaera in the rumen of the EW group had greater relative abundances. At 35 d, the Lachnospiraceae_NK3A20_group was enriched in CON. On 63 d, Erysipelotrichaceae_UCG-002 was abundant in EW. Syntrophococcus and Megaspheaera in EW lambs were abundant at 26 and 35 d, but kept similar to CON at 63 d. The relative abundance of Erysipelotrichaceae_UCG-002 at all-time points was consistently higher in the EW group. In conclusion, early weaning led to a significant decrease in rumen microbiota richness and diversity in the short term. The changes in rumen microbiota are associated with the persistence of weaning stress. The temporal dynamics of relative abundances of Syntrophococcus, Megasphaera, and Ruminococcaceae_UCG-014 reflect the weaning stress over a short period and rumen recovery after early weaning.
Collapse
Affiliation(s)
- Shiqin Wang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jianmin Chai
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Guohong Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Kai Cui
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Tao Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Correspondence: ; Tel.: +86-010-8210-6055
| |
Collapse
|
31
|
Zhang HR, Yang Y, Tian W, Sun YJ. Dietary Fiber and All-Cause and Cardiovascular Mortality in Older Adults with Hypertension: A Cohort Study Of NHANES. J Nutr Health Aging 2022; 26:407-414. [PMID: 35450998 DOI: 10.1007/s12603-022-1770-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Several studies have documented that dietary fiber was inversely associated with a variety of diseases, but the association of dietary fiber with the prognosis of older adults with hypertension is unknown. The aim was to assess the association of dietary fiber with all-cause and cardiovascular mortality in older adults with hypertension. METHODS This study enrolled 4906 participants (51.6% were female) aged 65 years or older with hypertension in the National Health and Nutrition Examination Survey (NHANES) 2003-2014 and ascertained mortality through December 31, 2015. Dietary fiber intake data were assessed by using a 24-h recall survey. Participants were grouped by dietary fiber intake quartiles: Q1(fiber < 10.20, g/day), Q2 (10.20 ≤ fiber < 14.45, g/day), Q3 (14.45 ≤ fiber < 19.85, g/day), and Q4 (19.85 ≤ fiber, g/day). Multivariate Cox proportional hazard models were used to evaluate the associations of dietary fiber intake with all-cause and cardiovascular mortality. Kaplan-Meier survival curves and restricted cubic spline models were applied to reveal the relationship between dietary fiber intake and mortality. RESULTS Over the median follow-up duration of 70 months (interquartile range: 38-100 months), 1369 participants were determined as all-cause mortality (27.9%) and 270 participants were identified as cardiovascular mortality (5.5%). In the fully adjusted model, the higher dietary fiber intake group was associated with relatively lower all-cause (Q4 vs Q1: 0.68 (0.58, 0.80); P for trend <0.001) and cardiovascular mortality (Q4 vs Q1: 0.64 (0.45, 0.92); P for trend =0.010). The non-linear relationship was not observed between dietary fiber intake and all-cause or cardiovascular mortality. CONCLUSIONS Higher dietary fiber intake was significantly associated with decreased all-cause and cardiovascular mortality in older adults with hypertension. Increasing dietary fiber intake may improve the prognosis of older adults with hypertension.
Collapse
Affiliation(s)
- H R Zhang
- YuJiao Sun, Department of Geriatric cardiology, The First Affiliated Hospital of China Medical University, NO.155 Nanjing North Street, Heping Ward, Shenyang 110001, China. E-mail: , Telephone number: 024-83282300
| | | | | | | |
Collapse
|
32
|
Toni T, Alverdy J, Gershuni V. Re-examining chemically defined liquid diets through the lens of the microbiome. Nat Rev Gastroenterol Hepatol 2021; 18:903-911. [PMID: 34594028 PMCID: PMC8815794 DOI: 10.1038/s41575-021-00519-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Trends in nutritional science are rapidly shifting as information regarding the value of eating unprocessed foods and its salutary effect on the human microbiome emerge. Unravelling the evolution and ecology by which humans have harboured a microbiome that participates in every facet of health and disease is daunting. Most strikingly, the host habitat has sought out naturally occurring foodstuff that can fulfil its own metabolic needs and also the needs of its microbiota, each of which remain inexorably connected to one another. With the introduction of modern medicine and complexities of critical care, came the assumption that the best way to feed a critically ill patient is by delivering fibre-free chemically defined sterile liquid foods (that is, total enteral nutrition). In this Perspective, we uncover the potential flaws in this assumption and discuss how emerging technology in microbiome sciences might inform the best method of feeding malnourished and critically ill patients.
Collapse
Affiliation(s)
- Tiffany Toni
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - John Alverdy
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Victoria Gershuni
- University of Pennsylvania, Department of Surgery, Philadelphia, PA, USA and Washington University in St Louis, Department of Surgery, St Louis, MO, USA,Corresponding author
| |
Collapse
|
33
|
Bertuccioli A, Cardinali M, Biagi M, Moricoli S, Morganti I, Zonzini GB, Rigillo G. Nutraceuticals and Herbal Food Supplements for Weight Loss: Is There a Prebiotic Role in the Mechanism of Action? Microorganisms 2021; 9:2427. [PMID: 34946029 PMCID: PMC8703584 DOI: 10.3390/microorganisms9122427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Numerous nutraceuticals and botanical food supplements are used with the intention of modulating body weight. A recent review examined the main food supplements used in weight loss, dividing them according to the main effects for which they were investigated. The direct or indirect effects exerted on the intestinal microbiota can also contribute to the effectiveness of these substances. The aim of this review is to evaluate whether any prebiotic effects, which could help to explain their efficacy or ineffectiveness, are documented in the recent literature for the main nutraceuticals and herbal food supplements used for weight loss management. Several prebiotic effects have been reported for various nutraceutical substances, which have shown activity on Bifidobacterium spp., Lactobacillus spp., Akkermansia muciniphila, Faecalibacterium prausnitzi, Roseburia spp., and the Firmicutes/Bacteroidetes ratio. Different prebiotics have beneficial effects on weight and the related metabolic profile, in some cases even acting on the microbiota with mechanisms that are completely independent from those nutraceuticals for which certain products are normally used. Further studies are necessary to clarify the different levels at which a nutraceutical substance can exert its action.
Collapse
Affiliation(s)
- Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47900 Rimini, Italy;
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy;
| | - Sara Moricoli
- AIFeM, 48100 Ravenna, Italy; (S.M.); (I.M.); (G.B.Z.)
| | | | | | - Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
34
|
Zhong Y, Cao J, Deng Z, Ma Y, Liu J, Wang H. Effect of Fiber and Fecal Microbiota Transplantation Donor on Recipient Mice Gut Microbiota. Front Microbiol 2021; 12:757372. [PMID: 34721365 PMCID: PMC8548821 DOI: 10.3389/fmicb.2021.757372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
Both fecal microbiota transplantation (FMT) and dietary fiber intervention were verified as effective ways to manipulate the gut microbiota, whereas little is known about the influence of the combined methods on gut microbiota. Here, we constructed "non-industrialized" and "industrialized" gut microbiota models to investigate the donor effect of FMT and diet effect in shaping the gut microbiota. Mice were transplanted fecal microbiota from domestic pig and received a diet with low-fiber (D) or high-fiber (DF), whereas the other two groups were transplanted fecal microbiota from wild pig and then received a diet with low-fiber (W) or high-fiber (WF), respectively. Gut microbiota of WF mice showed a lower Shannon and Simpson index (P < 0.05), whereas gut microbiota of W mice showed no significant difference than that of D and DF mice. Random forest models revealed the major differential bacteria genera between four groups, including Anaeroplasma or unclassified_o_Desulfovibrionales, which were influenced by FMT or diet intervention, respectively. Besides, we found a lower out-of-bag rate in the random forest model constructed for dietary fiber (0.086) than that for FMT (0.114). Linear discriminant analysis effective size demonstrated that FMT combined with dietary fiber altered specific gut microbiota, including Alistipes, Clostridium XIVa, Clostridium XI, and Akkermansia, in D, DF, W, and WF mice, respectively. Our results revealed that FMT from different donors coupled with dietary fiber intervention could lead to different patterns of gut microbiota composition, and dietary fiber might play a more critical role in shaping gut microbiota than FMT donor. Strategies based on dietary fiber can influence the effectiveness of FMT in the recipient.
Collapse
Affiliation(s)
| | | | | | | | | | - Haifeng Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Structural changes in the gut microbiota community of the black-necked crane (Grus nigricollis) in the wintering period. Arch Microbiol 2021; 203:6203-6214. [PMID: 34561717 DOI: 10.1007/s00203-021-02587-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022]
Abstract
During overwintering of black-necked cranes (Grus nigricollis), the composition and function of the gut microbiota changes are of considerable interest for understanding its environmental adaption mechanism. In this study, we characterized the structure of the gut microbiota from the black-necked crane in the Dashanbao wintering area, and compared the early-winter (November) microbiota to the late-winter (March of the next year) microbiota. The results showed that the gut microbiota diversity of black-necked crane in the early-overwintering stage was higher than that in the late-overwintering stage, but it did not reach a significant level. Gut microbiota taxonomic composition analysis showed that relative abundance of Bacteroidota increased significantly, and showed decreased Firmicutes to Bacteroidota ratio at the phylum level, meanwhile, the abundance of Lactobacillus decreased significantly at the genus level. Explain gut microbiota between the early- and late-wintering showed some differences in microbiota richness but maintained a relatively conservative microbiota structure. PICRUSt2 method was used to predict and analyze the KEGG functional abundance of 16S rDNA sequences of bacteria, it was found that the changes in gut microbiota composition increased the abundance of bacteria associated with amino acid biosynthesis and acid metabolism in the late stage of overwintering. This work provides basic data for black-necked crane gut microbiota study, which might further contribute to their protection.
Collapse
|
36
|
Bandyopadhyay B, Mitra PK, Mandal V, Mandal NC. Novel fructooligosaccharides of Dioscorea alata L. tuber have prebiotic potentialities. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03872-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Sienkiewicz M, Szymańska P, Maciejewska O, Niewiadomska J, Wiśniewska‐Jarosińska M, Fichna J. Assessment of dietary habits in inflammatory bowel disease patients: A cross‐sectional study from Poland. NUTR BULL 2021. [DOI: 10.1111/nbu.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry Faculty of Medicine Medical University of Lodz Lodz Poland
| | - Patrycja Szymańska
- Department of Haemostasis and Haemostatic Disorders Faculty of Health Sciences Medical University of Lodz Lodz Poland
| | - Oliwia Maciejewska
- Department of Biochemistry Faculty of Medicine Medical University of Lodz Lodz Poland
| | - Justyna Niewiadomska
- Department of Biochemistry Faculty of Medicine Medical University of Lodz Lodz Poland
| | | | - Jakub Fichna
- Department of Biochemistry Faculty of Medicine Medical University of Lodz Lodz Poland
| |
Collapse
|
38
|
Chang TE, Luo JC, Yang UC, Huang YH, Hou MC, Lee FY. Fecal microbiota profile in patients with inflammatory bowel disease in Taiwan. J Chin Med Assoc 2021; 84:580-587. [PMID: 33871395 DOI: 10.1097/jcma.0000000000000532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with complicated interaction between immune, gut microbiota, and environmental factors in a genetically vulnerable host. Dysbiosis is often seen in patients with IBD. We aimed to investigate the fecal microbiota in patients with IBD and compared them with a control group in Taiwan. METHODS In this cross-sectional study, we investigated fecal microbiota in 20 patients with IBD and 48 healthy controls. Fecal samples from both IBD patients and controls were analyzed by the next-generation sequencing method and relevant software. RESULTS The IBD group showed lower bacterial richness and diversity compared with the control group. The principal coordinate analysis also revealed the significant structural differences between the IBD group and the control group. These findings were consistent whether the analysis was based on an operational taxonomic unit or amplicon sequence variant. However, no significant difference was found when comparing the composition of fecal microbiota between ulcerative colitis (UC) and Crohn's disease (CD). Further analysis showed that Lactobacillus, Enterococcus, and Bifidobacterium were dominant in the IBD group, whereas Faecalibacterium and Subdoligranulum were dominant in the control group at the genus level. When comparing UC, CD, and control group, Lactobacillus, Bifidobacterium, and Enterococcus were identified as dominant genera in the UC group. Fusobacterium and Escherichia_Shigella were dominant in the CD group. CONCLUSION Compared with the healthy control, the IBD group showed dysbiosis with a significant decrease in both richness and diversity of gut microbiota.
Collapse
Affiliation(s)
- Tien-En Chang
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Endoscopic Center for Diagnosis and Therapy, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Jiing-Chyuan Luo
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
- Keelung Hospital, Ministry of Health Welfare, Keelung, Taiwan, ROC
| | - Ueng-Cheng Yang
- National Yang Ming Chiao Tung University, School of Medicine, Institute of Biomedical Informatics, Taipei, Taiwan, ROC
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, ROC
| |
Collapse
|
39
|
Comparative analysis of the gut microbiota of mice fed a diet supplemented with raw and cooked beef loin powder. Sci Rep 2021; 11:11489. [PMID: 34075086 PMCID: PMC8169908 DOI: 10.1038/s41598-021-90461-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
We used 16S ribosomal RNA sequencing to evaluate changes in the gut microbiota of mice fed a diet supplemented with either raw or cooked beef loin powder for 9 weeks. Male BALB/c mice (n = 60) were randomly allocated to five groups: mice fed AIN-93G chow (CON), chow containing 5% (5RB) and 10% (10RB) raw beef loin powder, and chow containing 5% (5CB) and 10% (10CB) cooked beef loin powder. Dietary supplementation with both RB and CB increased the relative abundance of Clostridiales compared to the CON diet (p < 0.05). Mice fed 10RB showed a significantly higher relative abundance of Firmicutes (p = 0.018) and Lactobacillus (p = 0.001) than CON mice, and the ratio of Firmicutes/Bacteroidetes showed an increasing trend in the 10RB mice (p > 0.05). Mice fed 10CB showed a higher abundance of Peptostreptococcaceae and a lower abundance of Desulfovibrionaceae compared with the CON mice (p < 0.05). Genes for glycan biosynthesis, which result in short-chain fatty acid synthesis, were enriched in the CB mice compared to the RB mice, which was correlated to a high abundance of Bacteroides. Overall, dietary RB and CB changed the gut microbiota of mice (p < 0.05).
Collapse
|
40
|
Li H, Zhao L, Zhang M. Gut Microbial SNPs Induced by High-Fiber Diet Dominate Nutrition Metabolism and Environmental Adaption of Faecalibacterium prausnitzii in Obese Children. Front Microbiol 2021; 12:683714. [PMID: 34135881 PMCID: PMC8200495 DOI: 10.3389/fmicb.2021.683714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Dietary intervention is effective in human health promotion through modulation of gut microbiota. Diet can cause single-nucleotide polymorphisms (SNPs) to occur in the gut microbiota, and some of these variations may lead to functional changes in human health. In this study, we performed a systematic SNP analysis based on metagenomic data collected from children with Prader–Willi syndrome (PWS, n = 17) and simple obese (SO) children (n = 19), who had better healthy conditions after receiving high-fiber diet intervention. We found that the intervention increased the SNP proportions of Faecalibacterium, Bifidobacterium, and Clostridium and decreased those of Bacteroides in all children. Besides, the PWS children had Collinsella increased and Ruminococcus decreased, whereas the SO had Blautia and Escherichia decreased. There were much more BiasSNPs in PWS than in SO (4,465 vs 303), and only 81 of them appeared in both groups, of which 78 were from Faecalibacterium prausnitzii, and 51 were nonsynonymous mutations. These nonsynonymous variations were mainly related to pathways of environmental adaptation and nutrition metabolism, particularly to carbohydrate and nucleotide metabolism. In addition, dominant strains carrying BiasSNPs in all children shifted from F. prausnitzii AF32-8AC and F. prausnitzii 942/30-2 to F. prausnitzii SSTS Bg7063 and F. prausnitzii JG BgPS064 after the dietary intervention. Furthermore, although the abundance of Bifidobacterium increased significantly by the intervention and became dominant strains responsible for nutrition metabolism, they had less BiasSNPs between the pre- and post-intervention group in comparison with Faecalibacterium. The finding of F. prausnitzii as important functional strains influenced by the intervention highlights the superiority of applying SNP analysis in studies of gut microbiota. This study provided evidence and support for the effect of dietary intervention on gut microbial SNPs, and gave some enlightenments for disease treatment.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
Bamba S, Inatomi O, Nishida A, Ohno M, Imai T, Takahashi K, Naito Y, Iwamoto J, Honda A, Inohara N, Andoh A. Relationship between the gut microbiota and bile acid composition in the ileal mucosa of Crohn's disease. Intest Res 2021; 20:370-380. [PMID: 33975420 PMCID: PMC9344239 DOI: 10.5217/ir.2021.00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 11/05/2022] Open
Abstract
Background/Aims Crosstalk between the gut microbiota and bile acid plays an important role in the pathogenesis of gastrointestinal disorders. We investigated the relationship between microbial structure and bile acid metabolism in the ileal mucosa of Crohn's disease (CD). Methods Twelve non-CD controls and 38 CD patients in clinical remission were enrolled. Samples were collected from the distal ileum under balloon-assisted enteroscopy. Bile acid composition was analyzed by liquid chromatography-mass spectrometry. The gut microbiota was analyzed by 16S rRNA gene sequencing. Results The Shannon evenness index was significantly lower in endoscopically active lesions than in non-CD controls. β-Diversity, evaluated by the UniFrac metric, revealed a significant difference between the active lesions and non-CD controls (P=0.039). The relative abundance of Escherichia was significantly higher and that of Faecalibacterium and Roseburia was significantly lower in CD samples than in non-CD controls. The increased abundance of Escherichia was more prominent in active lesions than in inactive lesions. The proportion of conjugated bile acids was significantly higher in CD patients than in non-CD controls, but there was no difference in the proportion of primary or secondary bile acids. The genera Escherichia and Lactobacillus were positively correlated with the proportion of conjugated bile acids. On the other hand, Roseburia, Intestinibacter, and Faecalibacterium were negatively correlated with the proportion of conjugated bile acids. Conclusions Mucosa-associated dysbiosis and the alteration of bile acid composition were identified in the ileum of CD patients. These may play a role in the pathophysiology of ileal lesions in CD patients.
Collapse
Affiliation(s)
- Shigeki Bamba
- Division of Gastroenterology, Shiga University of Medical Science, Otsu, Japan
| | - Osamu Inatomi
- Division of Gastroenterology, Shiga University of Medical Science, Otsu, Japan
| | - Atsushi Nishida
- Division of Gastroenterology, Shiga University of Medical Science, Otsu, Japan
| | - Masashi Ohno
- Division of Gastroenterology, Shiga University of Medical Science, Otsu, Japan
| | - Takayuki Imai
- Division of Gastroenterology, Shiga University of Medical Science, Otsu, Japan
| | - Kenichiro Takahashi
- Division of Gastroenterology, Shiga University of Medical Science, Otsu, Japan
| | - Yuji Naito
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junichi Iwamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Naohiro Inohara
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Akira Andoh
- Division of Gastroenterology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
42
|
Holistic review of corn fiber gum: Structure, properties, and potential applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr 2021; 62:6016-6033. [PMID: 33685299 DOI: 10.1080/10408398.2021.1895063] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (LF), a glycoprotein found in mucosal secretions, is characterized by a wide range of functions, including immunomodulatory and anti-inflammatory activities. Moreover, several investigations confirmed that LF displays high effectiveness against multiple bacteria and viruses and may be regarded as a potential inhibitor of enveloped viruses, such as presently prevailing SARS-CoV-2. In our review, we discuss available studies about LF functions and bioavailability of different LF forms in in vitro and in vivo models. Moreover, we characterize the potential benefits and side effects of LF use; we also briefly summarize the latest clinical trials examining LF application. Finally, we point potential role of LF in inflammatory bowel disease and indicate its use as a marker for disease severity.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Jaśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
44
|
Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang K, Sun Z. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:11-16. [PMID: 33997326 PMCID: PMC8110859 DOI: 10.1016/j.aninu.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
In recent years, many studies have shown that the intestinal microflora has various effects that are linked to the critical physiological functions and pathological systems of the host. The intestinal microbial community is widely involved in the metabolism of food components such as protein, which is one of the essential nutrients in diets. Additionally, dietary protein/amino acids have been shown to have had a profound impact on profile and operation of gut microbiota. This review summarizes the current literature on the mutual interaction between intestinal microbiota and protein/amino acid metabolism for host mucosal immunity and health.
Collapse
Affiliation(s)
- Liuting Wu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhiru Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Huiyuan Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhongxiang Ren
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qi Ding
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Kaiyang Liang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhihong Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
45
|
Sugitani Y, Inoue R, Inatomi O, Nishida A, Morishima S, Imai T, Kawahara M, Naito Y, Andoh A. Mucosa-associated gut microbiome in Japanese patients with functional constipation. J Clin Biochem Nutr 2021; 68:187-192. [PMID: 33879972 PMCID: PMC8046005 DOI: 10.3164/jcbn.20-93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022] Open
Abstract
The number of patients with chronic constipation is increasing in Japan. We investigated the gut mucosa-associated microbiome in Japanese patients with functional constipation. Diagnosis was made according to the Rome IV criteria. Mucosal samples were obtained by gentle brushing of mucosa surfaces. The gut microbiome was analyzed using 16S rRNA gene sequencing. There were no significant differences in bacteria α-diversity such as richness and evenness. The PCoA indicated significant structural differences between the constipation group and healthy controls (p = 0.017 for unweighted and p = 0.027 for weighted). The abundance of the phylum Bacteroidetes was significantly higher in the constipation group. The abundance of the genera Streptococcus, Fusobacterium, Comamonas, and Alistipes was significantly higher in the constipation group. The abundance of the genera Acinetobacter, Oscillospilla, Mucispirillum, Propinibacterium, and Anaerotruncus was significantly lower in the constipation group. In the constipation group, the proportion of genes responsible for sulfur metabolism, selenocompound metabolism, sulfur relay system was significantly higher and the proportion of d-arginine and d-ornithine metabolism and flavonoid biosynthesis was significantly lower. In conclusion, we identified differences of the mucosa-associated microbiome between Japanese patients with functional constipation and healthy controls. The mucosa-associated microbiome of functional constipation was characterized by higher levels of Bacteroidetes (Alistipes).
Collapse
Affiliation(s)
- Yoshihiko Sugitani
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - So Morishima
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan
| | - Takayuki Imai
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Masahiro Kawahara
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
46
|
Na E, Moon KH, Lim SY. The Effect of Stachy sieboldii MIQ. Supplementation on Modulating Gut Microflora and Cytokine Expression in Mice. Comb Chem High Throughput Screen 2021; 24:177-186. [PMID: 32538719 DOI: 10.2174/1386207323666200615143627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVES The intake of Stachys sieboldii MIQ. has been associated with relieving inflammation and maintaining optimal gut health function. We investigated the diversity and composition of microflora in feces of S. sieboldii MIQ.-fed mice. In addition, we evaluated the production of major cytokines (Interleukin-6 and -10) related to inflammation and fatty acid composition of several tissues. MATERIALS AND METHODS 16S ribosomal DNA sequencing-based microbiome taxonomic profiling analysis was performed using EzBioCloud data base. The total RNA from the mesenteric lymph node was isolated and then synthesized with prime script 1st strand cDNA synthesis kit. Quantitative real-time PCR was performed on cDNA samples using the SYBR™ Green PCR Master Mix. RESULTS Mice fed on S. sieboldii MIQ. showed significantly reduced counts of aerobic and coliform in the feces compared with control. 16S rDNA sequencing analysis of fecal samples showed that supplementation with S. sieboldii MIQ. increased beneficial intestinal microflora (Ruminococcaceae and Akkermansia muciniphila) and decreased the community of harmful microflora (Enterobacteriaceae, including Escherichia coli and Bacteroides sp.) in feces compared with that in the control (P<0.05 for all). Mice showed a significantly lower mRNA expression of cytokines IL-6 and IL-10 in mesenteric lymph node compared with that in control (P<0.05). The fecal fatty acid composition in the S. sieboldii MIQ. group showed a higher percentage of 6:0 and 18:2n-6 compared with that in the control group (P<0.05). The percentages of 6:0 and 20:3n-6 fatty acids were also significantly higher in the intestines of S. sieboldii MIQ. group (P<0.05). No differences were revealed between the two groups in terms of the percentages of total saturated, monounsaturated, n-6 and n-3 polyunsaturated fatty acids found in feces and tissues. CONCLUSION The present results showed that supplementation of mice with S. sieboldii MIQ. increased beneficial gut microflora and decreased harmful microflora. Moreover, lower mRNA expression of pro-inflammatory cytokine IL-6, and anti-inflammatory cytokine IL-10 in the mesenteric lymph node of supplemented mice might be associated with the lower abundances of harmful fecal microflora.
Collapse
Affiliation(s)
- Eun Na
- Ocean Science and Technology School, Korea Maritime & Ocean University, Busan, 49112, Korea
| | - Ki Hwan Moon
- Division of Marine Bioscience, Korea Maritime & Ocean University, Busan, 49112, Korea
| | - Sun Young Lim
- Division of Marine Bioscience, Korea Maritime & Ocean University, Busan, 49112, Korea
| |
Collapse
|
47
|
Panisi C, Guerini FR, Abruzzo PM, Balzola F, Biava PM, Bolotta A, Brunero M, Burgio E, Chiara A, Clerici M, Croce L, Ferreri C, Giovannini N, Ghezzo A, Grossi E, Keller R, Manzotti A, Marini M, Migliore L, Moderato L, Moscone D, Mussap M, Parmeggiani A, Pasin V, Perotti M, Piras C, Saresella M, Stoccoro A, Toso T, Vacca RA, Vagni D, Vendemmia S, Villa L, Politi P, Fanos V. Autism Spectrum Disorder from the Womb to Adulthood: Suggestions for a Paradigm Shift. J Pers Med 2021; 11:70. [PMID: 33504019 PMCID: PMC7912683 DOI: 10.3390/jpm11020070] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The wide spectrum of unique needs and strengths of Autism Spectrum Disorders (ASD) is a challenge for the worldwide healthcare system. With the plethora of information from research, a common thread is required to conceptualize an exhaustive pathogenetic paradigm. The epidemiological and clinical findings in ASD cannot be explained by the traditional linear genetic model, hence the need to move towards a more fluid conception, integrating genetics, environment, and epigenetics as a whole. The embryo-fetal period and the first two years of life (the so-called 'First 1000 Days') are the crucial time window for neurodevelopment. In particular, the interplay and the vicious loop between immune activation, gut dysbiosis, and mitochondrial impairment/oxidative stress significantly affects neurodevelopment during pregnancy and undermines the health of ASD people throughout life. Consequently, the most effective intervention in ASD is expected by primary prevention aimed at pregnancy and at early control of the main effector molecular pathways. We will reason here on a comprehensive and exhaustive pathogenetic paradigm in ASD, viewed not just as a theoretical issue, but as a tool to provide suggestions for effective preventive strategies and personalized, dynamic (from womb to adulthood), systemic, and interdisciplinary healthcare approach.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | | | - Federico Balzola
- Division of Gastroenterology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Turin, 10126 Turin, Italy;
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, 20138 Milan, Italy;
| | - Alessandra Bolotta
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Marco Brunero
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Ernesto Burgio
- ECERI—European Cancer and Environment Research Institute, Square de Meeus 38-40, 1000 Bruxelles, Belgium;
| | - Alberto Chiara
- Dipartimento Materno Infantile ASST, 27100 Pavia, Italy;
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Luigi Croce
- Centro Domino per l’Autismo, Universita’ Cattolica Brescia, 20139 Milan, Italy;
| | - Carla Ferreri
- National Research Council of Italy, Institute of Organic Synthesis and Photoreactivity (ISOF), 40129 Bologna, Italy;
| | - Niccolò Giovannini
- Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Alessandro Ghezzo
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Enzo Grossi
- Autism Research Unit, Villa Santa Maria Foundation, 22038 Tavernerio, Italy;
| | - Roberto Keller
- Adult Autism Centre DSM ASL Città di Torino, 10138 Turin, Italy;
| | - Andrea Manzotti
- RAISE Lab, Foundation COME Collaboration, 65121 Pescara, Italy;
| | - Marina Marini
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Lucia Migliore
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Lucio Moderato
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
| | - Davide Moscone
- Associazione Spazio Asperger ONLUS, Centro Clinico CuoreMenteLab, 00141 Rome, Italy;
| | - Michele Mussap
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
| | - Antonia Parmeggiani
- Child Neurology and Psychiatry Unit, IRCCS ISNB, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Valentina Pasin
- Milan Institute for health Care and Advanced Learning, 20124 Milano, Italy;
| | | | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | - Andrea Stoccoro
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Tiziana Toso
- Unione Italiana Lotta alla Distrofia Muscolare UILDM, 35100 Padova, Italy;
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy, 70126 Bari, Italy;
| | - David Vagni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy;
| | | | - Laura Villa
- Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy;
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria, 09042 Cagliari, Italy
| |
Collapse
|
48
|
Yoshimatsu Y, Mikami Y, Kanai T. Bacteriotherapy for inflammatory bowel disease. Inflamm Regen 2021; 41:3. [PMID: 33441186 PMCID: PMC7807454 DOI: 10.1186/s41232-020-00153-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
The number of patients with inflammatory bowel disease is rapidly increasing in developed countries. The main cause of this increase is thought not to be genetic, but secondary to rapidly modernized environmental change. Changes in the environment have been detrimental to enteric probiotics useful for fermentation, inducing an increase in pathobionts that survive by means other than fermentation. This dysregulated microbiota composition, the so-called dysbiosis, is believed to have increased the incidence of inflammatory bowel disease. Bacteriotherapy, a treatment that prophylactically and therapeutically corrects the composition of disturbed intestinal microbiota, is a promising recent development. In fact, fecal microbiome transplantation for recurrent Clostridioides difficile infection in 2013 was a significant contribution for bacteriotherapy. In this paper, we comprehensively review bacteriotherapy in an easy-to-understand format.
Collapse
Affiliation(s)
- Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
49
|
Gut Microbiota and Immune System Interactions. Microorganisms 2020; 8:microorganisms8101587. [PMID: 33076307 PMCID: PMC7602490 DOI: 10.3390/microorganisms8101587] [Citation(s) in RCA: 456] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Dynamic interactions between gut microbiota and a host’s innate and adaptive immune systems play key roles in maintaining intestinal homeostasis and inhibiting inflammation. The gut microbiota metabolizes proteins and complex carbohydrates, synthesize vitamins, and produce an enormous number of metabolic products that can mediate cross-talk between gut epithelial and immune cells. As a defense mechanism, gut epithelial cells produce a mucosal barrier to segregate microbiota from host immune cells and reduce intestinal permeability. An impaired interaction between gut microbiota and the mucosal immune system can lead to an increased abundance of potentially pathogenic gram-negative bacteria and their associated metabolic changes, disrupting the epithelial barrier and increasing susceptibility to infections. Gut dysbiosis, or negative alterations in gut microbial composition, can also dysregulate immune responses, causing inflammation, oxidative stress, and insulin resistance. Over time, chronic dysbiosis and the translocation of bacteria and their metabolic products across the mucosal barrier may increase prevalence of type 2 diabetes, cardiovascular disease, inflammatory bowel disease, autoimmune disease, and a variety of cancers. In this paper, we highlight the pivotal role gut microbiota and their metabolites (short-chain fatty acids (SCFAs)) play in mucosal immunity.
Collapse
|
50
|
Zhang T, Kayani MUR, Hong L, Zhang C, Zhong J, Wang Z, Chen L. Dynamics of the Salivary Microbiome During Different Phases of Crohn's Disease. Front Cell Infect Microbiol 2020; 10:544704. [PMID: 33123492 PMCID: PMC7574453 DOI: 10.3389/fcimb.2020.544704] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Crohn's disease is a chronic disorder that typically affects the gastrointestinal tract. The increased incidence in the recent years, especially in Asian countries, prompts for performing studies and gain newer insights into the etiology and pathogenesis of the disease. Among other causative factors, gut microbiome and its cross-talk with the salivary microbiome is a known factor that has a plausible role in the pathogenesis of Crohn's disease. The gut microbiome has been extensively studied, however, the salivary microbiome and its dynamics during different phases of this disease remain understudied. In this study, we obtained saliva samples from the patients during active and remission phases of the disease and compared them with control samples and highlighted the differences in taxonomic as well as predicted functional pathways among them. Our results indicated that the α and β diversities were significantly lower during the active phase in contrast with remission phase and healthy samples. In general, Firmicutes were most abundant among the three sample groups, followed by Bacteroidetes and Proteobacteria. Genus level distribution highlighted Streptococcus, Neisseria, Prevotella, Haemophilus, and Veillonella as the five most abundant taxa. Differential abundance analysis of the three sample groups identified significant enrichment of 30 bacterial taxa in the active phase that included g_Prevotella, f_Prevotellaceae, and p_Bacteroidetes. Furthermore, remission phase and control also exhibited significant enrichment of 24 and 22 bacterial taxa, respectively. Eleven differentially abundant pathways were also identified, four were significantly enriched in healthy controls whereas other seven were significantly enriched in active phase of the disease. Several important pathways, such as ribosome biogenesis and Energy metabolism were depleted in the active phase. Our study has highlighted several taxa and functional categories that could be implicated with the onset of Crohn's disease and thus have the potential to serve as biomarkers of the active disease. However, these findings require further validation through functional studies in the future.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masood Ur Rehman Kayani
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liwen Hong
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|