1
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Nie W, Zhao X, Zhang Y, Zeng C, Yang H, Liu B. Chlorogenic acid alleviates DNCB-induced atopic dermatitis by inhibiting the Akt1/NF-κB signaling pathway. Eur J Pharmacol 2025; 998:177534. [PMID: 40118327 DOI: 10.1016/j.ejphar.2025.177534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease that significantly impacts patients' quality of life. Chlorogenic acid (CGA), a polyphenol present in various dietary sources and plants, has been shown to reduce skin inflammation. However, its efficacy and mechanisms of action in AD have not been thoroughly investigated. This study aimed to evaluate the therapeutic effect of CGA on AD in mice and explored its mechanism. METHODS To establish a BALB/c mouse model of AD induced by 2,4-dinitrochlorobenzene (DNCB) to evaluate the therapeutic potential of CGA. The anti-inflammatory effects of CGA were assessed by measuring IL-1β and IL-6 levels in TNF-α-stimulated HaCaT cells. The phosphorylation levels of PI3K, Akt, Akt1, NF-κB, and IκB-α were analyzed using Western blotting. Molecular docking was conducted to evaluate the binding affinity of CGA to Akt1. RESULTS Topical application of CGA significantly reduced dermatitis scores, spleen index, epidermal thickness, mast cell infiltration, and skin fibrosis. CGA reversed DNCB-induced increases in IgE, histamine, TNF-α, IL-1β, IL-6, and IL-8 levels. Western blot analysis showed that CGA inhibited the PI3K/Akt and NF-κB signaling pathways. In vitro, CGA exerts its anti-inflammatory effects by inhibiting the Akt1/NF-κB pathway, and the Akt activator (SC79) can counteract this effect. Molecular docking and dynamics simulations suggest that CGA may inhibit Akt1 activity by interacting with specific residues (ALA-50, GLY-37, TYR-326, ASP-323). CONCLUSIONS CGA improves AD by inhibiting the Akt1/NF-κB pathway, suggesting its potential as a natural treatment for AD.
Collapse
Affiliation(s)
- Wenkai Nie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuan Zhao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Cheng Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huiwen Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China.
| |
Collapse
|
3
|
Cheng C, Cui L, Cui X, Zhan Q, Ju J, Hong B, Huang Y, Ding Y, Xu H, Qiu T, Kang C, Liu X, Wang Q, Zeng L. ADAM12 promotes temozolomide resistance in glioblastoma by activating the TNF-α - NF-κB pathway. Cancer Lett 2025; 620:217684. [PMID: 40180114 DOI: 10.1016/j.canlet.2025.217684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Development of temozolomide (TMZ) resistance is a critical factor contributing to a poor prognosis in glioma patients. TMZ resistance is also closely associated with the phosphorylation level of NF-κB, yet targeted inhibition of NF-κB activity in glioma can be leveraged to overcome TMZ resistance. ADAM12, a protein significantly overexpressed in glioma cells, is implicated in the pathogenesis and progression of glioma, yet its role in the development of TMZ resistance is completely understood. We found that knockdown of ADAM12 was shown to arrest the glioma cell cycle, enhance apoptosis, inhibit DNA damage repair mechanisms, and sensitize glioma cells to TMZ. Targeting ADAM12 in vivo was found to increase the sensitivity of glioma cells to TMZ. Survival analysis indicated that ADAM12 serves as a prognostic marker for TMZ treatment. Using ELISA and protein interaction predictions via docking simulation, we identified the TNF-α shedding function of ADAM12 as a critical regulator of glioma progression. Furthermore, in glioma cell lines with unmethylated MGMT, the knockdown of ADAM12 enhanced sensitivity to TMZ by inhibiting the TNF-α/NF-κB pathway and reducing MGMT expression. In all, these results demonstrated that ADAM12 aids in shedding of membrane-bound TNF-a to drive TMZ resistance in glioma.
Collapse
Affiliation(s)
- Chunchao Cheng
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Longtao Cui
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaoteng Cui
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qi Zhan
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jiasheng Ju
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Biao Hong
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yanping Huang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yaqing Ding
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hanyi Xu
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tian Qiu
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaomin Liu
- Neuro-Oncology Center, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| | - Qixue Wang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, 300052, China; Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Liang Zeng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
4
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson AL, Wolin A, Hampton D, Shrivastava NM, Turner N, Danis E, Ebmeier C, Spoelstra N, Richer J, Jedlicka P, Costello JC, Zhao R, Ford HL. EYA3 regulation of NF-κB and CCL2 suppresses cytotoxic NK cells in the premetastatic niche to promote TNBC metastasis. SCIENCE ADVANCES 2025; 11:eadt0504. [PMID: 40333987 PMCID: PMC12057687 DOI: 10.1126/sciadv.adt0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
Triple-negative breast cancer cells must evade immune surveillance to metastasize to distant sites, yet this process is not well understood. The Eyes absent (EYA) family of proteins, which are crucial for embryonic development, become dysregulated in cancer, where they have been shown to mediate proliferation, migration, and invasion. Our study reveals an unusual mechanism by which EYA3 reduces the presence of cytotoxic natural killer (NK) cells in the premetastatic niche (PMN) to enhance metastasis, independent of its effects on the primary tumor. We find that EYA3 up-regulates nuclear factor κB signaling to enhance CCL2 expression, which, in contrast to previous findings, suppresses cytotoxic NK cell activation in vitro and their infiltration into the PMN in vivo. These findings uncover an unexpected role for CCL2 in inhibiting NK cell responses at the PMN and suggest that targeting EYA3 could be an effective strategy to reactivate antitumor immune responses to inhibit metastasis.
Collapse
Affiliation(s)
- Sheera R. Rosenbaum
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Connor J. Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Kaiah M. Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Stephen Connor Purdy
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Annika L. Gustafson
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Arthur Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Drake Hampton
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Natasha M. Shrivastava
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Nicholas Turner
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Etienne Danis
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Christopher Ebmeier
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nicole Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Jennifer Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Paul Jedlicka
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
5
|
Yang Z, Yu Z, Teng J, Yanzhang R, Yu Y, Zhang H, Jin G, Wang F. PDK1-mediated phosphorylation of USP5 modulates NF-κB signalling to enhance osteosarcoma growth. Int J Biol Macromol 2025; 306:141378. [PMID: 39988167 DOI: 10.1016/j.ijbiomac.2025.141378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
The overexpression of pyruvate dehydrogenase kinase 1 (PDK1) has been observed in a number of different cancers, making it a potential target for the treatment of cancer. In this study, we used bioinformatics methods to analyse the immunophenotype of osteosarcoma (OS) and identified PDK1 as a critical factor in the different immune states of the disease. A pan-cancer analysis revealed a robust correlation between PDK1 and the tumour microenvironment. Moreover, our findings corroborate the overexpression of PDK1 in OS, whereby it facilitates tumour development via the NF-κB pathway. From a mechanistic perspective, PDK1 has the capacity to bind and phosphorylate USP5. The phosphorylation of USP5 by PDK1 activates its deubiquitinating activity, leading to the stabilisation of IKKγ protein and subsequent activation of the NF-κB signalling pathway, which ultimately promotes the growth of OS cells. Molecular simulation docking, pull-down assays, and SIP experiments were employed to further identify arctigenin (ATG) as a small molecule inhibitor of PDK1. The findings demonstrated that ATG effectively inhibited the growth of OS cells and tumour xenograft models. Collectively, these results highlight that PDK1 influences NF-κB in OS through the PDK1-USP5-IKKγ axis. Furthermore, the identification of ATG as an effective inhibitor of PDK1 suggests that ATG may serve as a promising lead compound for the treatment of OS.
Collapse
Affiliation(s)
- Zhaojie Yang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou 450000, China
| | - Zhidan Yu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Zhengzhou Key Laboratory of Children's Digestive Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Junyan Teng
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou 450000, China
| | - Ruoping Yanzhang
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou 450000, China
| | - Yin Yu
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou 450000, China
| | - Huijun Zhang
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou 450000, China
| | - Guoguo Jin
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou 450000, China.
| | - Fu Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
6
|
Jasim MH, Mukhlif BAM, Uthirapathy S, Zaidan NK, Ballal S, Singh A, Sharma GC, Devi A, Mohammed WM, Mekkey SM. NFĸB and its inhibitors in preeclampsia: mechanisms and potential interventions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04211-x. [PMID: 40299024 DOI: 10.1007/s00210-025-04211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Preeclampsia (PE), which affects between 2 and 15% of pregnancies, is one of the most often reported prenatal problems. It is defined as gestational hypertension beyond 20 weeks of pregnancy, along with widespread edema or proteinuria and specific types of organ damage. PE is characterized by increased levels and activation of nuclear factor kappa B (NF-κB) in the mother's blood and placental cells. This factor controls over 400 genes linked to inflammatory, apoptotic, angiogenesis, and cellular responses to hypoxia and oxidative stress. In the final stages of physiological pregnancy, NF-κB levels need to be lowered to favor maternal immunosuppressive events and continue gestation to prevent hypoxia and inflammation, which are advantageous for implantation. Pharmacotherapy is thought to be a potential treatment for PE by downregulating NF-κB activation. NF-κB activity has been discovered to be regulated by several medications used for both prevention and treatment of PE. However, in order to guarantee treatment safety and effectiveness, additional creativity is desperately required. This article provides an overview of the current understanding of the defined function of NF-κB in PE progression. According to their effect on the cellular control of NF-κB pathways, newly proposed compounds for preventing and treating PE have also been emphasized.
Collapse
Affiliation(s)
- Mohannad Hamid Jasim
- Biology Department, College of Education, University of Fallujah, Fallujah, Iraq
| | - Bilal Abdul Majeed Mukhlif
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Noor Khalid Zaidan
- Department of Applied Chemistry, College of Applied Science, University of Fallujah, Fallujah, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Anita Devi
- Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Wisam Mahmood Mohammed
- Department of Applied Chemistry, College of Applied Science, University of Fallujah, Fallujah, Iraq
| | - Shereen M Mekkey
- College of Pharmacy, Al-Mustaqbal University, 51001 Hilla, Babylon, Iraq
| |
Collapse
|
7
|
Chen L, Cen Y, Qian K, Yang W, Zhou W, Yang Y. MMP1-induced NF-κB activation promotes epithelial-mesenchymal transition and sacituzumab govitecan resistance in hormone receptor-positive breast cancer. Cell Death Dis 2025; 16:346. [PMID: 40287412 PMCID: PMC12033297 DOI: 10.1038/s41419-025-07615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Sacituzumab govitecan (SG), a novel antibody-drug conjugate (ADC), shows promise in the treatment of breast cancer (BC); however, drug resistance limits its clinical application. Matrix metalloproteinase 1 (MMP1), which is overexpressed in many tumor types, plays a key role in tumor metastasis and drug resistance. The involvement of MMP1 in SG resistance in metastatic hormone receptor-positive (HR + ) BC has not been previously reported. In this study, we employed various in vitro and in vivo approaches to investigate the role of MMP1 in SG resistance in BC. MMP1 expression was manipulated in different BC cell lines through lentiviral transfection and small interfering RNA techniques. Key methodologies included Western blot, quantitative reverse transcription PCR, and RNA sequencing to assess marker expression and identify differentially expressed genes. Functional assays were conducted to evaluate cell viability, proliferation, invasion, and migration. In vivo, a cell-derived xenograft model in nude mice was utilized to assess tumor growth and drug response. Bioinformatics analyses further explored MMP1 expression and its clinical relevance across different cancer types. Our findings indicate that MMP1 is overexpressed by approximately 30-fold in HR + BC tissues and is associated with poorer prognosis among HR + BC patients. Furthermore, our analysis reveals that HR + BC with high MMP1 expression displays resistance to SG, supporting the hypothesis that MMP1 plays a key role in regulating ADC resistance. Mechanistic studies demonstrate that MMP1 can activate the NF-κB pathway, which subsequently influences the epithelial-mesenchymal transition, thereby contributing to SG resistance. Ultimately, our research underscores the potential of MMP1 as a therapeutic target and biomarker, facilitating personalized treatment strategies that could enhance patient outcomes in BC therapy.
Collapse
Affiliation(s)
- Letian Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinghuan Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Keyang Qian
- Department of Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Wang Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Zhou
- Division of Breast Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Yaping Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Wu H, Gong YY, Huntriss J, Routledge MN. Transcriptome profiling and DNA methylation analysis of human hepatocyte cell line HHL-16 in response to aflatoxin B1. Chem Biol Interact 2025; 416:111531. [PMID: 40288432 DOI: 10.1016/j.cbi.2025.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) can cause acute aflatoxicosis and liver cancer, and is associated with immune suppression and growth impairment, but the molecular mechanisms of the health effects are not fully understood. A non-neoplastic human hepatocyte cell line 16 (HHL-16) was utilized to understand the effects of AFB1 on transcriptome and DNA methylation changes, identifying molecular pathways underlying toxicity and health effects. RNA sequencing and bioinformatic analysis (RNA-Seq) was applied to find the genes and pathways affected by AFB1. Bisulfite pyrosequencing was used to assess DNA methylation levels of CpG sites around promoter regions of gene of interest. RNA-sequencing revealed 280 significantly up-regulated and 296 significantly down-regulated genes in HHL-16 cells after 20 μg/ml AFB1 treatment for 24 h. KEGG pathway enrichment analysis indicated that differentially expressed genes (DEGs) were significantly enriched in the following pathways: cytokine-cytokine receptor interaction, NF-kappa B signalling pathway, TNF signalling pathway, IL-17 signalling pathway, amoebiasis, MAPK signalling pathway, and lipid and atherosclerosis. Further DNA methylation analysis found that there was significant hypomethylation at one CpG site of CCL20 after 20 μg/ml AFB1 treatment on HHL-16 cells for 24 h. In conclusion, AFB1 modulates the expression of genes related to the pathways that play important roles in inflammatory response, growth, and cancers, and demonstrates the effects of AFB1 on DNA methylation.
Collapse
Affiliation(s)
- Hang Wu
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK; School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - John Huntriss
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael N Routledge
- Leicester Medical School, University of Leicester, Leicester, LE1 7RH, UK; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
9
|
Xu XL, Wu CC, Cheng H. Prognostic significance of preoperative Naples prognostic score for disease-free and overall survival in oral cavity squamous cell carcinoma post-surgery. BMC Cancer 2025; 25:757. [PMID: 40264051 PMCID: PMC12016317 DOI: 10.1186/s12885-025-14146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Oral cavity squamous cell carcinoma (OCSCC) is a common malignancy with high morbidity and mortality. This research seeks to assess the correlation between Naples Prognostic Score (NPS) and survival outcomes in patients with OCSCC who are receiving surgical treatment, highlighting its potential as a prognostic tool for predicting patient outcomes. METHODS This retrospective study included 589 OCSCC patients from two large regional medical centers in central China, treated between February 2008 and September 2019. Inclusion criteria mandated confirmed OCSCC diagnosis, age ≥ 18 years, and radical surgery, while patients with distant metastasis, multiple tumors, or insufficient data were excluded. Data on 29 clinicopathological variables, including demographic details, tumor characteristics, and nutritional/inflammatory markers, were collected. The statistical approach included both univariate and multivariate Cox regression models to determine factors associated with disease-free survival (DFS) and overall survival (OS). Additionally, Kaplan-Meier survival analysis was employed to evaluate the effect of adjuvant radiotherapy on survival in various NPS subgroups. RESULTS Surgical margin status, ENE, NPS, age-adjusted Charlson comorbidity index (ACCI), and American Joint Committee on Cancer (AJCC) stage were identified as independent prognostic factors for DFS. Similarly, Eastern Cooperative Oncology Group Performance Status (ECOG PS), surgical margin status, extranodal extension (ENE), NPS, ACCI, and AJCC stage were found to be independent prognostic factors for OS. A higher NPS was associated with a poorer prognosis. In AJCC stage III-IVb patients with NPS 1-2, adjuvant radiotherapy significantly improved both DFS and OS. Likewise, in AJCC stage III-IVb patients with NPS 3-4, adjuvant radiotherapy was associated with better DFS and OS outcomes. However, no significant impact of adjuvant radiotherapy was observed in patients with AJCC stage I-II or in those with NPS 0, regardless of stage. This underscores the importance of NPS in stratifying patients for adjuvant therapy. CONCLUSION The Naples Prognostic Score is a beneficial prognostic indicator for survival in OCSCC patients. Its integration into clinical practice may assist in risk stratification and treatment decision-making, particularly for those undergoing adjuvant radiotherapy.
Collapse
Affiliation(s)
- Xue-Lian Xu
- Department of Radiotherapy Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China
| | - Chen-Chen Wu
- Department of Radiotherapy Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China
| | - Hao Cheng
- Department of Radiotherapy Oncology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China.
- Department of Radiotherapy Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
10
|
Hou Y, Liu D, Guo Z, Wei C, Cao F, Xu Y, Feng Q, Liu F. Lactate and Lactylation in AKI-to-CKD: Epigenetic Regulation and Therapeutic Opportunities. Cell Prolif 2025:e70034. [PMID: 40207870 DOI: 10.1111/cpr.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/20/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Lactate is not only a byproduct of glycolysis, but is also considered an energy source, gluconeogenic precursor, signalling molecule and protein modifier during the process of cellular metabolism. The discovery of lactylation reveals the multifaceted functions of lactate in cellular metabolism and opens new avenues for lactate-related research. Both lactate and lactylation have been implicated in regulating numerous biological processes, including tumour progression, ischemic-hypoxic injury, neurodevelopment and immune-related inflammation. The kidney plays a crucial role in regulating lactate metabolism, influencing lactate levels while also being regulated by lactate. Previous studies have demonstrated the importance of lactate in the pathogenesis of acute kidney injury (AKI) and chronic kidney disease (CKD). This review explores the role of lactate and lactylation in these diseases, comparing the function and metabolic mechanisms of lactate in normal and diseased kidneys from the perspective of lactylation. The key regulatory roles of lactylation in different organs, multiple systems, various pathological states and underlying mechanisms in AKI-to-CKD progression are summarised. Moreover, potential therapeutic targets and future research directions for lactate and lactylation across multiple kidney diseases are identified.
Collapse
Affiliation(s)
- Yi Hou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Zuishuang Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Cien Wei
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fengyu Cao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yue Xu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qi Feng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Fengxun Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| |
Collapse
|
11
|
Teng C, Chen JW, Shen LS, Chen S, Chen GQ. Research advances in natural sesquiterpene lactones: overcoming cancer drug resistance through modulation of key signaling pathways. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:13. [PMID: 40201307 PMCID: PMC11977367 DOI: 10.20517/cdr.2024.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Cancer remains a significant global health challenge, with current chemotherapeutic strategies frequently limited by the emergence of resistance. In this context, natural compounds with the potential to overcome resistance have garnered considerable attention. Among these, sesquiterpene lactones, primarily derived from plants in the Asteraceae family, stand out for their potential anticancer properties. This review specifically focuses on five key signaling pathways: PI3K/Akt/mTOR, NF-κB, Wnt/β-catenin, MAPK/ERK, and STAT3, which play central roles in the mechanisms of cancer resistance. For each of these pathways, we detail their involvement in both cancer development and the emergence of drug resistance. Additionally, we investigate how sesquiterpene lactones modulate these pathways to overcome resistance across diverse cancer types. These insights highlight the potential of sesquiterpene lactones to drive the advancement of novel therapies that can effectively combat both cancer progression and drug resistance.
Collapse
Affiliation(s)
- Chi Teng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Jia-Wen Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guo-Qing Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
| |
Collapse
|
12
|
Gómez Hernández NA, Pérez GL, Arteaga AV, Garay Pérez HE, Arguellez BO, Rico AC, Guardia AL, Fernández Massó JR. A sandwich ELISA for the quantification of the anticancer peptide CIGB-552 in human plasma. Anal Biochem 2025; 698:115725. [PMID: 39608624 DOI: 10.1016/j.ab.2024.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
CIGB-552 is a synthetic anticancer peptide that has been evaluated in vitro and in vivo in lung and colon cancer models. To optimize therapy in the clinic, pharmacokinetic studies are necessary. Previously, a sandwich-type enzyme-linked immunosorbent assay (ELISA) had been developed by our working group for the quantification of CIGB-552 in biological matrices. The objective of this work was to carry out the full validation of the ELISA to support its application in clinical trials. First, we obtained a polyclonal antibody specific for CIGB-552 and with purity greater than 95 %. The lower limit of quantification and the upper limit of quantification were 3125 ng/ml and 200 ng/ml, respectively. The method is exact and precise in the quantification of the peptide with relative error and coefficient of variation values less than 20 %. The ELISA is specific in the presence of CIGB-552 metabolites in the sample, and also presents robustness to certain protocol variations. In summary, the validated ELISA meets the requirements for its application in upcoming clinical trials as part of pharmacokinetic studies.
Collapse
Affiliation(s)
| | - Gilda Lemos Pérez
- Chemistry-Physics Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Amalia Vazquez Arteaga
- Chemistry-Physics Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Hilda Elisa Garay Pérez
- Peptide Synthesis Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | | | - Ania Cabrales Rico
- Chemistry-Physics Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Airela Llamo Guardia
- Monoclonal Antibody Production Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | | |
Collapse
|
13
|
Farhadi R, Daniali M, Baeeri M, Khorasani R, Haghi-Aminjan H, Gholami M, Rahimifard M, Navaei-Nigjeh M, Abdollahi M. Molecular evidence of the inhibitory potential of melatonin against sodium arsenite toxicity. Heliyon 2025; 11:e42113. [PMID: 39916822 PMCID: PMC11799970 DOI: 10.1016/j.heliyon.2025.e42113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction Sodium arsenite (SA), NaAsO2, is among the most hazardous toxicants, and wide use and presence of this toxicant leads to a severe environmental threat. Exposure to SA is associated with many health concerns, such as the prevalence of cancer and diabetes mellitus type 2 (DMT2). Many studies suggest that SA induces inflammation and biochemical impairments through different mechanisms, including increasing oxidative stress and altering vital genes such as biochemical and anti-inflammatory. Recent studies on melatonin (MLT), a harmless hormone secreted in the body generally for induction of sleepiness, find many beneficial and positive effects. Mitigating different harms and toxicities through different mechanisms, such as antioxidant properties, anti-inflammatory effects, and critical gene regulation, is essential. Due to these findings, this study aimed to evaluate the hypothesis that MLT may ameliorate pancreatic damage caused by exposure to SA. Methods Forty-eight adult healthy male wistar rats aged 7-8 weeks were divided into eight for this research. Group 1 did not receive any intervention. Group 2 received 10 mg/kg/day MLT through intraperitoneal (IP) injection. Groups 3, 4, and 5 received 1.5 (1/10 LD50), 5 (1/3 LD50), and 7.5 (1/2 LD50) mg/kg SA, respectively. Groups 6, 7, and 8 were given 1.5 (1/10 LD50), 5 (1/3 LD50), and 7.5 (1/2 LD50) mg/kg of SA along with 10 mg/kg/day MLT, respectively, during the last ten days of the experiment. After 28 days of the experiment, the blood and tissue samples of the pancreas were removed for biochemical and pathological examination. Results MLT attenuates SA toxicity by reducing oxidative stress biomarkers and inflammation markers. Moreover, MLT improves SA exposure's biochemical and functional damages by regulating related genes and pathways. Conclusion MLT poses protective and preventive effects on the pancreas against exposure to SA. However, MLT's therapeutic and beneficial impacts have great potential for further investigation.
Collapse
Affiliation(s)
- Ramtin Farhadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Marzieh Daniali
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Reza Khorasani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei-Nigjeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
14
|
Liang Z, Zhao S, Liu Y, Cheng C. The promise of mitochondria in the treatment of glioblastoma: a brief review. Discov Oncol 2025; 16:142. [PMID: 39924629 PMCID: PMC11807951 DOI: 10.1007/s12672-025-01891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Glioblastoma (GBM) is a prevalent and refractory type of brain tumor. Over the past two decades, there have been minimal advancements in GBM therapy. The current standard treatment involves surgical excision followed by radiation and chemotherapy. Compared to other tumors, GBM is more challenging to treat due to the presence of glioma stem-like cells (GSCs) and the blood-brain barrier, resulting in an extremely low survival rate. Mitochondria play a critical role in tumor respiration, metabolism, and multiple signaling pathways involved in tumor formation, progression, and cell apoptosis. Consequently, mitochondria represent promising targets for developing novel anticancer agents, including those targeting oxidative phosphorylation, reactive oxygen species (ROS), mitochondrial transfer, and mitophagy. This review outlines the mitochondrial-related therapeutic targets in GBM, highlighting the potential of mitochondria as a target for GBM treatment.
Collapse
Affiliation(s)
- Zhuo Liang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
15
|
Bonolo de Campos C, McCabe CE, Bruins LA, O'Brien DR, Brown S, Tschumper RC, Allmer C, Zhu YX, Rabe KG, Parikh SA, Kay NE, Yan H, Cerhan JR, Allan JN, Furman RR, Weinberg JB, Brander DM, Jelinek DF, Chesi M, Slager SL, Braggio E. Genomic characterization of chronic lymphocytic leukemia in patients of African ancestry. Blood Cancer J 2025; 15:14. [PMID: 39910036 PMCID: PMC11799526 DOI: 10.1038/s41408-024-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025] Open
Abstract
Despite the considerable effort to characterize the genomic landscape of chronic lymphocytic leukemia (CLL), published data have been almost exclusively derived from patients of European Ancestry (EA), with significant underrepresentation of minorities, including patients of African Ancestry (AA). To begin to address this gap, we evaluated whether differences exist in the genetic and transcriptomic features of 157 AA and 440 EA individuals diagnosed with CLL. We sequenced 59 putative driver genes and found an increased frequency of high-impact mutations in AA CLL, including genes of the DNA damage repair (DDR) pathway. Telomere erosion was also increased in AA CLL, amplifying the notion of increased genomic instability in AA CLL. Furthermore, we found transcription enrichment of the Tumor Necrosis Factor-alpha (TNFα) Signaling via NF-κB pathway in AA CLL compared to EA CLL, suggesting that tumor promoting inflammation plays an important role in AA CLL. In summary, these results suggest that genomic instability and NF-kB activation is more prevalent in AA CLL than EA CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/ethnology
- Female
- Male
- Genomic Instability
- Middle Aged
- Aged
- Genomics/methods
- NF-kappa B/metabolism
- NF-kappa B/genetics
- Mutation
- Black People/genetics
- White People/genetics
- Aged, 80 and over
- Black or African American/genetics
Collapse
Affiliation(s)
| | - Chantal E McCabe
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Laura A Bruins
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Daniel R O'Brien
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Sochilt Brown
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Cristine Allmer
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Yuan Xiao Zhu
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Kari G Rabe
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | | - Neil E Kay
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Huihuang Yan
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - James R Cerhan
- Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - John N Allan
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Richard R Furman
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, USA
| | - J Brice Weinberg
- Divisions of Hematology and Hematologic Malignancies & Cellular Therapy & VA Medical Center, Durham, NC, USA
| | - Danielle M Brander
- Division of Hematologic Malignancy and Cellular Therapy, Duke Cancer Institute, Durham, NC, USA
| | | | - Marta Chesi
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Susan L Slager
- Division of Computational Biology, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| | - Esteban Braggio
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA.
| |
Collapse
|
16
|
Gufler J, Heffeter P, Kowol CR, Hager S, Marko D. Opposing effects of mycotoxins alternariol and deoxynivalenol on the immunomodulatory effects of oxaliplatin and triapine. Toxicology 2025; 511:154039. [PMID: 39725263 DOI: 10.1016/j.tox.2024.154039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Mycotoxin occurrence in food worldwide is estimated to increase due to climate change. Moreover, studies on how these food contaminants interfere with medications and especially anticancer therapies are rare. With the rise of anticancer immunotherapies, particularly mycotoxins with immunomodulatory activity, such as alternariol (AOH) or deoxynivalenol (DON), are of great concern. Both mycotoxins interfere with the pro-inflammatory nuclear factor kappa B (NF-κB) pathway in myeloid cells. This pathway not only plays an important role in the anticancer immune response but also inflammatory side effects induced by chemotherapeutic drugs. Consequently, the aim of this study was to investigate possible beneficial or detrimental immunomodulatory interactions between these mycotoxins and anticancer drugs. To assess the combined influence of mycotoxins and anticancer therapies on immune cell stimulation, THP-1 NF-κB reporter cells were utilized as monocytes as well as differentiated and polarized macrophages. Parameters for activation (NF-κB activity and protein expression), differentiation (CD14 and CD71 surface marker expression) and polarization (interleukin 10 (IL10), interleukin 8 (CXCL8), tumor necrosis factor α (TNF), prostaglandin-endoperoxide synthase 2 expression and CXCL8 secretion) were assessed upon combinatory treatment. Both mycotoxins affected the immunostimulatory effects of the pre-selected anticancer drugs oxaliplatin and triapine, although in opposing directions. While AOH generally suppressed a drug-induced activation and increased anti-inflammatory IL10 levels, DON potentiated activation and pro-inflammatory markers, such as CXCL8 and TNF in immune cells. In conclusion, AOH and DON have the potential to alter the immunological effects of anticancer therapies, which should be considered during therapy as well as in their future risk assessment.
Collapse
Affiliation(s)
- Judith Gufler
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, Vienna 1090, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, Vienna 1090, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, Vienna 1090, Austria
| | - Sonja Hager
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, Vienna 1090, Austria.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, Vienna 1090, Austria
| |
Collapse
|
17
|
Wang Y, Armendariz DA, Wang L, Zhao H, Xie S, Hon GC. Enhancer regulatory networks globally connect non-coding breast cancer loci to cancer genes. Genome Biol 2025; 26:10. [PMID: 39825430 PMCID: PMC11740497 DOI: 10.1186/s13059-025-03474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Genetic studies have associated thousands of enhancers with breast cancer (BC). However, the vast majority have not been functionally characterized. Thus, it remains unclear how BC-associated enhancers contribute to cancer. RESULTS Here, we perform single-cell CRISPRi screens of 3513 regulatory elements associated with breast cancer to measure the impact of these regions on transcriptional phenotypes. Analysis of > 500,000 single-cell transcriptomes in two breast cancer cell lines shows that perturbation of BC-associated enhancers disrupts breast cancer gene programs. We observe BC-associated enhancers that directly or indirectly regulate the expression of cancer genes. We also find one-to-multiple and multiple-to-one network motifs where enhancers indirectly regulate cancer genes. Notably, multiple BC-associated enhancers indirectly regulate TP53. Comparative studies illustrate subtype specific functions between enhancers in ER + and ER - cells. Finally, we develop the pySpade package to facilitate analysis of single-cell enhancer screens. CONCLUSIONS Overall, we demonstrate that enhancers form regulatory networks that link cancer genes in the genome, providing a more comprehensive understanding of the contribution of enhancers to breast cancer development.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel A Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
18
|
Zhang J, Lou K, Chi J, Wu J, Fan X, Cui Y. Research progress on intratumoral microorganisms in renal cancer. World J Urol 2025; 43:72. [PMID: 39812826 DOI: 10.1007/s00345-024-05403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
The human body harbors a vast array of microorganisms. Changes in the microbial ecosystem can potentially lead to diseases, including cancer. Traditionally, research has focused more on the gut microbiota and its influence on cancer. However, with the advancement of sequencing technologies, scholars have discovered that microorganisms within kidney tissues are significant components of tumor tissues. Intratumoral microorganisms may affect tumor growth and development through certain mechanisms, influence the function of immune cells, or impact the effectiveness of chemotherapy or immunotherapy in patients. This paper reviews the latest progress in the research on intratumoral microorganisms in renal cancer (RCa). It summarizes the types and distribution characteristics of these microorganisms, discusses the close association between specific viral infections (such as HPV and EBV) and RCa, and highlights the role of microorganisms in the pathogenesis of RCa. This review provides new perspectives for understanding the pathogenic mechanisms of RCa, thereby offering potential clinical applications.
Collapse
Affiliation(s)
- Jiankun Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xinying Fan
- Department of Blood Purification, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
19
|
Famurewa AC, Prabhune NM, Prabhu S. Natural product mitigation of ferroptosis in platinum-based chemotherapy toxicity: targeting the underpinning oxidative signaling pathways. J Pharm Pharmacol 2025; 77:1-17. [PMID: 39485898 DOI: 10.1093/jpp/rgae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVES Platinum-based anticancer chemotherapy (PAC) represents a cornerstone in cancer treatment, retaining its status as the gold standard therapy. However, PAC's efficacy is countered by significant toxicities, such as nephrotoxicity, ototoxicity, and neurotoxicity. Recent studies have linked these toxicities to ferroptosis, characterized by iron accumulation, reactive oxygen species generation, and lipid peroxidation. This review explores the mechanisms underlying PAC-induced toxicities, focusing on the involvement of ferroptosis with three major PAC drugs-cisplatin, carboplatin, and oxaliplatin. Further, we provide a comprehensive analysis of the natural product mitigation of PAC-induced ferroptotic toxicity. KEY FINDINGS The mechanistic role of ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, while studies on carboplatin-induced ferroptotic toxicities are lacking. Natural compounds targeting molecular pathways of ferroptosis have been explored to mitigate PAC-induced ferroptotic toxicity. CONCLUSION While ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, there remains a notable dearth of studies examining its involvement in carboplatin-induced toxicities. Hence, further exploration is warranted to define the role of ferroptosis in carboplatin-induced toxicities, and its further mitigation. Moreover, in-depth mechanistic evaluation is necessary to establish natural products evaluated against PAC-induced ferroptosis, as PAC adjuvants.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ikwo 482103, Ebonyi State, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Nupura Manish Prabhune
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sudharshan Prabhu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
20
|
Hase N, Misiak D, Taubert H, Hüttelmaier S, Gekle M, Köhn M. APOBEC3C-mediated NF-κB activation enhances clear cell renal cell carcinoma progression. Mol Oncol 2025; 19:114-132. [PMID: 39183666 PMCID: PMC11705732 DOI: 10.1002/1878-0261.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Renowned as the predominant form of kidney cancer, clear cell renal cell carcinoma (ccRCC) exhibits susceptibility to immunotherapies due to its specific expression profile as well as notable immune cell infiltration. Despite this, effectively treating metastatic ccRCC remains a significant challenge, necessitating a more profound comprehension of the underlying molecular mechanisms governing its progression. Here, we unveil that the enhanced expression of the RNA-binding protein DNA dC → dU-editing enzyme APOBEC-3C (APOBEC3C; also known as A3C) in ccRCC tissue and ccRCC-derived cell lines serves as a catalyst for tumor growth by amplifying nuclear factor-kappa B (NF-κB) activity. By employing RNA-sequencing and cell-based assays in ccRCC-derived cell lines, we determined that A3C is a stress-responsive factor and crucial for cell survival. Furthermore, we identified that A3C binds and potentially stabilizes messenger RNAs (mRNAs) encoding positive regulators of the NF-κB pathway. Upon A3C depletion, essential subunits of the NF-κB family are abnormally restrained in the cytoplasm, leading to deregulation of NF-κB target genes. Our study illuminates the pivotal role of A3C in promoting ccRCC tumor development, positioning it as a prospective target for future therapeutic strategies.
Collapse
Affiliation(s)
- Nora Hase
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| | - Danny Misiak
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Helge Taubert
- Department of Urology and Pediatric UrologyUniversity Hospital Erlangen, Friedrich Alexander University Erlangen/NürnbergGermany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Michael Gekle
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle/WittenbergGermany
| | - Marcel Köhn
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| |
Collapse
|
21
|
Ling R, Du C, Li Y, Wang S, Cong X, Huang D, Chen S, Zhu S. Protective Effect of Selenium-enriched Peptide from Cardamine violifolia on Ethanol-induced L-02 Hepatocyte Injury. Biol Trace Elem Res 2025; 203:139-152. [PMID: 38538964 DOI: 10.1007/s12011-024-04159-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/23/2024] [Indexed: 01/07/2025]
Abstract
In this study, we investigated the protective effect of selenium (Se)-enriched peptide isolated from Cardamine violifolia (SPE) against ethanol-induced liver injury. Cell proliferation assays show that different concentrations of SPE protect human embryonic liver L-02 cells against ethanol-induced injury in a dose-dependent manner. Treatment with 12 μmol/L Se increases the cell survival rate (82.44%) and reduces the release of alanine aminotransferase, aspartate transaminase, lactate dehydrogenase, and apoptosis rate. SPE treatment with 12 μmol/L Se effectively reduces the concentration of intracellular reactive oxygen species and increases the contents of intracellular superoxide dismutase (51.64 U/mg), catalase (4.41 U/mg), glutathione peroxidase (1205.28 nmol/g), and glutathione (66.67 μmol/g), thereby inhibiting the effect of ethanol-induced oxidative damage. The results of the transcriptomic analysis show that the glutathione metabolism and apoptotic pathway play significant roles in the protection of L-02 hepatocytes by SPE. Real-time qPCR analysis shows that SPE increases the mRNA expression of GPX1 and NGFR. The results of this study highlight the protective effects of SPE against ethanol-induced liver injury.
Collapse
Affiliation(s)
- Rongrui Ling
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 4122, Jiangsu, China
| | - Chaodong Du
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yue Li
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Shan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd, Enshi, 445000, Hubei, China
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore, 117543, Singapore
| | - Shangwei Chen
- Analysis and Testing Center, Jiangnan University, Wuxi, 4122, Jiangsu, China
| | - Song Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 4122, Jiangsu, China.
| |
Collapse
|
22
|
Xu W, Qin X, Liu Y, Chen J, Wang Y. Advances in Enzyme-responsive Supramolecular In situ Self-assembled Peptide for Drug Delivery. Curr Drug Deliv 2025; 22:374-386. [PMID: 37496133 DOI: 10.2174/1567201820666230726151607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Because of low immunogenicity, ease of modification, and inherent biosafety, peptides have been well recognized as vehicles to deliver therapeutic agents to targeted regions with improved pharmacokinetic characteristics. Enzyme-responsive self-assembled peptides (ERSAPs) show superiority over their naive forms due to their enhanced targeting efficacy and long-retention property. In this review, we have summarized recent advances in the therapeutic application of ERSAPs, mainly focusing on their self-therapeutic properties and potential as vehicles to deliver different drugs.
Collapse
Affiliation(s)
- Wentao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaowen Qin
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yang Liu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jun Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuguang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
23
|
Villarreal-García V, Estupiñan-Jiménez JR, Gonzalez-Villasana V, Vivas-Mejía PE, Flores-Colón M, Ancira-Moreno IE, Zapata-Morín PA, Altamirano-Torres C, Vázquez-Guillen JM, Rodríguez-Padilla C, Bayraktar R, Rashed MH, Ivan C, Lopez-Berestein G, Reséndez-Pérez D. Inhibition of microRNA-660-5p decreases breast cancer progression through direct targeting of TMEM41B. Hereditas 2024; 161:53. [PMID: 39709500 DOI: 10.1186/s41065-024-00357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer among women worldwide. Most breast cancer-related deaths result from metastasis and drug resistance. Novel therapies are imperative for targeting metastatic and drug-resistant breast cancer cells. Accumulating evidence suggests that dysregulated microRNAs (miRNAs) promote breast cancer progression, metastasis, and drug resistance. Compared with healthy breast tissue, miR-660-5p is notably overexpressed in breast cancer tumor tissues. However, the downstream effectors of miR-660-5p in breast cancer cells have not been fully elucidated. Our aim was to investigate the role of miR-660-5p in breast cancer cell proliferation, migration, invasion, and angiogenesis and to identify its potential targets. RESULTS Our findings revealed significant upregulation of miR-660-5p in MDA-MB-231 and MCF-7 cells compared with MCF-10 A cells. Furthermore, inhibiting miR-660-5p led to notable decreases in the proliferation, migration, and invasion of breast cancer cells, as well as angiogenesis, in HUVEC cells. Through bioinformatics analysis, we identified 15 potential targets of miR-660-5p. We validated TMEM41B as a direct target of miR-660-5p via Western blot and dual-luciferase reporter assays. CONCLUSIONS Our study highlights the upregulation and involvement of miR-660-5p in breast cancer cell proliferation, migration, invasion, and angiogenesis. Additionally, we identified TMEM41B as a direct target of miR-660-5p in breast cancer cells.
Collapse
Affiliation(s)
- Valeria Villarreal-García
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - José Roberto Estupiñan-Jiménez
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Vianey Gonzalez-Villasana
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.
| | - Pablo E Vivas-Mejía
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico.
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico.
| | - Marienid Flores-Colón
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Irma Estefanía Ancira-Moreno
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Patricio Adrián Zapata-Morín
- Facultad de Ciencias Biológicas, Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Claudia Altamirano-Torres
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - José Manuel Vázquez-Guillen
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Cristina Rodríguez-Padilla
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Recep Bayraktar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed H Rashed
- Clinical Pharmacy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diana Reséndez-Pérez
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
24
|
Liu J, Li SM, Tang YJ, Cao JL, Hou WS, Wang AQ, Wang C, Jin CH. Jaceosidin induces apoptosis and inhibits migration in AGS gastric cancer cells by regulating ROS-mediated signaling pathways. Redox Rep 2024; 29:2313366. [PMID: 38318818 PMCID: PMC10854459 DOI: 10.1080/13510002.2024.2313366] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Jaceosidin (JAC) is a natural flavonoid with anti-oxidant and other pharmacological activities; however, its anti-cancer mechanism remains unclear. We investigated the mechanism of action of JAC in gastric cancer cells. Cytotoxicity and apoptosis assays showed that JAC effectively killed multiple gastric cancer cells and induced apoptosis in human gastric adenocarcinoma AGS cells via the mitochondrial pathway. Network pharmacological analysis suggested that its activity was linked to reactive oxygen species (ROS), AKT, and MAPK signaling pathways. Furthermore, JAC accumulated ROS to up-regulate p-JNK, p-p38, and IκB-α protein expressions and down-regulate the p-ERK, p-STAT3, and NF-κB protein expressions. Cell cycle assay results showed that JAC accumulated ROS to up-regulate p21 and p27 protein expressions and down-regulate p-AKT, CDK2, CDK4, CDK6, Cyclin D1, and Cyclin E protein expressions to induce G0/G1 phase arrest. Cell migration assay results showed JAC accumulated ROS to down-regulate Wnt-3a, p-GSK-3β, N-cadherin, and β-catenin protein expressions and up-regulate E-cadherin protein expression to inhibit migration. Furthermore, N-acetyl cysteine pre-treatment prevented the change of these protein expressions. In summary, JAC induced apoptosis and G0/G1 phase arrest and inhibited migration through ROS-mediated signaling pathways in AGS cells.
Collapse
Affiliation(s)
- Jian Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Shu-Mei Li
- Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, People’s Republic of China
| | - Yan-Jun Tang
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Jing-Long Cao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Wen-Shuang Hou
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - An-Qi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Chang Wang
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Cheng-Hao Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
- National Coarse Cereals Engineering Research Center, Daqing, People’s Republic of China
| |
Collapse
|
25
|
Zhao P, Ning J, Huang J, Huang X. Mechanism of Resveratrol on LPS/ATP-induced pyroptosis and inflammatory response in HT29 cells. Autoimmunity 2024; 57:2427094. [PMID: 39534992 DOI: 10.1080/08916934.2024.2427094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Pyroptosis plays an important role in maintenance of intestinal homeostasis, the abnormal activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome can promote the event and development of ulcerative colitis (UC). Its protective effects such as inhibiting pyroptosis in various inflammation-related diseases have been demonstrated, but whether resveratrol (RES) can also alleviate the progression of the disease by inhibiting pyroptosis in UC and the mechanism have rarely been studied. In this study, lipopolysaccharide (LPS) combined with adenosine triphosphate (ATP) was used to induce HT29 human colon cancer cells to construct an intestinal epithelial cell pyroptosis and inflammation model in vitro to investigate the anti-inflammatory effect of RES, reveal the regulatory mechanism of RES on pyroptosis, and provide a new theoretical basis for the treatment of UC. In vitro experiences, HT29 cells were dividing into control group, LPS/ATP group, RES low-dose group, RES high-dose group, NF-κB inhibitor pyrrolidine dithiocarbamate group (PDTC group), and LPS/ATP+PDTC group. The mRNA expressions of pyroptosis-related indicators such as NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), Caspase-1(CASP1), IL-18, IL-1β, and inflammatory factors such as TNF-α and IL-6 were detected by qRT-PCR. The protein expressions of pyroptosis-related indicators NLRP3, ASC, CASP1, IL-18, IL-1β, NF-κB-p65 in the nucleus, and IκBα and p-IκBα in the cytoplasm were detected by Western blot. Immunofluorescence saw the distribution and expression of NLRP3, ASC and NF-κB-p65 protein in each group. The morphology and degree of pyroptosis in each group were observed by transmission electron microscope. The results showed that compared with the control group, the pyroptosis-related proteins including NLRP3, ASC, CASP1, IL-18, IL-1β, and inflammatory factors including TNF-α and IL-6 in the LPS/ATP group were increased, and LPS/ATP activated the activity of NF-κB signaling pathway. Compared with the LPS/ATP group, RES downregulated the expression of pyroptosis-related proteins and inflammatory factors in HT29 cells, and inhibited the activation of the NF-κB signaling pathway in HT29 cells pyroptosis. RES down-regulates the pyroptosis of HT29 cells induced by LPS/ATP and the expression of pyroptosis-related indicators NLRP3, ASC, CASP1, IL-18, IL-1β and inflammatory factors TNF-α and IL-6 in the inflammatory response and inhibits the occurrence of pyroptosis. The mechanism is related to the inhibition of NF-κB pathway activity.
Collapse
Affiliation(s)
- Peizhuang Zhao
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiajia Ning
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
26
|
Ju S, Singh MK, Han S, Ranbhise J, Ha J, Choe W, Yoon KS, Yeo SG, Kim SS, Kang I. Oxidative Stress and Cancer Therapy: Controlling Cancer Cells Using Reactive Oxygen Species. Int J Mol Sci 2024; 25:12387. [PMID: 39596452 PMCID: PMC11595237 DOI: 10.3390/ijms252212387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer is a multifaceted disease influenced by various mechanisms, including the generation of reactive oxygen species (ROS), which have a paradoxical role in both promoting cancer progression and serving as targets for therapeutic interventions. At low concentrations, ROS serve as signaling agents that enhance cancer cell proliferation, migration, and resistance to drugs. However, at elevated levels, ROS induce oxidative stress, causing damage to biomolecules and leading to cell death. Cancer cells have developed mechanisms to manage ROS levels, including activating pathways such as NRF2, NF-κB, and PI3K/Akt. This review explores the relationship between ROS and cancer, focusing on cell death mechanisms like apoptosis, ferroptosis, and autophagy, highlighting the potential therapeutic strategies that exploit ROS to target cancer cells.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
27
|
Cao S, Qin X, Li C, Zhang L, Ren S, Zhou W, Zhao M, Zhou G. The IL-33/ ST2 Axis Affects Adipogenesis Through Regulating the TRAF6/ RelA Pathway. Int J Mol Sci 2024; 25:12005. [PMID: 39596071 PMCID: PMC11593896 DOI: 10.3390/ijms252212005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Understanding the regulatory mechanisms of adipogenesis is essential for preventing obesity. Interleukin-33 (IL-33) has recently attracted increasing attention for its role in adipogenesis. The purpose of this study was to explore the function and regulatory mechanism of IL-33 and its receptor suppression of tumorigenicity 2 (ST2) on adipogenesis. Here, Oil Red O staining was used to detect the accumulation of intracellular lipid droplets. Molecular techniques such as qRT-PCR and Western blotting were used to detect the expression of pivotal genes and adipogenic marker genes. Gains and losses of function experiments were used to explore the potential regulatory mechanism of the IL-33/ST2 axis in adipogenesis. Functionally, IL-33 is negatively associated with adipogenesis in 3T3-L1 preadipocytes, while ST2 is positively associated with it, encompassing both the trans-membrane receptor ST2 (ST2L) and the soluble ST2 (sST2). Mechanistically, the IL-33/ST2 axis affects adipogenesis by regulating the expression of the TRAF6/RelA pathway in 3T3-L1 preadipocytes. Downregulating the expression of ST2 suppressed the activation of the IL-33/ST2 axis, which subsequently inhibits the expression of TRAF6. This further attenuates the expression of RelA, ultimately resulting in the suppression of adipogenesis in 3T3-L1 preadipocytes. This study reveals a new mechanism by which the IL-33/ST2 axis regulates the differentiation of preadipocytes and provides a new idea for improving obesity prevention.
Collapse
Affiliation(s)
- Shujun Cao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Xuyong Qin
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Chengping Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China;
| | - Shizhong Ren
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Wenhao Zhou
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Meiman Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Guoli Zhou
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| |
Collapse
|
28
|
Cui H, Yang H, Qi X, Zhao Y, Huang T, Miao L. Immunologic Effects of a Novel Bovine Lactoferrin-Derived Peptide on the Gut and Clinical Perspectives. Vet Sci 2024; 11:545. [PMID: 39591319 PMCID: PMC11599047 DOI: 10.3390/vetsci11110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Bovine lactoferrin is a natural iron-binding glycoprotein known for its antimicrobial, antiviral, antitumor, anti-inflammatory, and immunomodulatory properties. In this study, we artificially recombined a fragment of bovine lactoferrin with immunomodulatory and antimicrobial properties to create a novel peptide named LF-MQL. The primary objective was to investigate the effects of LF-MQL on the intestinal tract and immune cells in animals. First, we assessed the in vitro activation effects of LF-MQL on mouse peritoneal macrophages. The results indicated that LF-MQL enhanced the macrophage phagocytic activity and increased IL-1β mRNA expression without significantly affecting IL-6 mRNA levels. Next, we examined the effects of LF-MQL on mucosal immunity by administering LF-MQL orally at doses of 300 mg/kg, 30 mg/kg, and 3 mg/kg to mice. The results demonstrated that different doses of LF-MQL modulated IL-6 and IL-10 mRNA levels in the small intestine. Low doses enhanced the intestinal immune response, while higher doses reduced the inflammatory response. In conclusion, LF-MQL exerts immunomodulatory effects rather than simply boosting immune activity in animal models.
Collapse
Affiliation(s)
| | | | | | | | | | - Liguang Miao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (H.C.)
| |
Collapse
|
29
|
Zuo W, Ma H, Bi J, Li T, Mo Y, Yu S, Wang J, Li B, Huang J, Li Y, Li L. Phosphorylation of RelA/p65 Ser536 inhibits the progression and metastasis of hepatocellular carcinoma by mediating cytoplasmic retention of NF-κB p65. Gastroenterol Rep (Oxf) 2024; 12:goae094. [PMID: 39498383 PMCID: PMC11534074 DOI: 10.1093/gastro/goae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 11/07/2024] Open
Abstract
Background Intrahepatic and extrahepatic metastases contribute to the high recurrence rate and mortality of hepatocellular carcinoma (HCC). Constitutive activation of nuclear factor-κB (NF-κB) is a crucial feature of HCC. NF-κB p65 (p50-p65) is the most common dimeric form. Ser536 acts as an essential phosphorylation site of RelA/p65. However, the effect of RelA/p65 Ser536 phosphorylation on progression and metastases during intermediate and advanced HCC has not been reported. Methods Phosphorylation of RelA/p65 (p-p65 Ser536) and NF-κB p65 were detected by using immunohistochemical staining in HCC tissue samples. The biological effects of RelA/p65 Ser536 phosphorylation were evaluated by using xenograft and metastasis models. NF-κB p65 nuclear translocation was detected by using Western blotting. The binding of NF-κB p65 to the BCL2, SNAIL, and MMP9 promoters was detected by using chromatin immunoprecipitation. The biological effects on proliferation, migration, invasion, and epithelial-mesenchymal transition were assessed by using tetrazolium-based colorimetry, colony formation, EdU incorporation, flow cytometry, cell wound healing, and transwell assay. Results NF-κB p65 is highly expressed, while p-p65 Ser536 is not well expressed in intermediate and advanced HCC tissues. In vivo experiments demonstrated that a phosphorylation-mimetic mutant of RelA/p65 Ser536 (p65/S536D) prevents tumor progression and metastasis. In vitro experiments showed that p65/S536D inhibits proliferation, migration, and invasion. Mechanistically, RelA/p65 Ser536 phosphorylation inhibits NF-κB p65 nuclear translocation and reduces NF-κB p65 binding to the BCL2, SNAIL, and MMP9 promoters. Conclusions RelA/p65 Ser536 phosphorylation was detrimental to NF-κB p65 entry into the nucleus and inhibited HCC progression and metastasis by reducing BCL2, SNAIL, and MMP9. The phosphorylation site of RelA/p65 Ser536 has excellent potential to be a promising target for NF-κB-targeted therapy in HCC.
Collapse
Affiliation(s)
- Wentao Zuo
- College of Basic Medical, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Haoyang Ma
- College of Basic Medical, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Jianghui Bi
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Tiaolan Li
- College of Basic Medical, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Yifeng Mo
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Shiyu Yu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Jia Wang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Beiqing Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Jinfeng Huang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Yongwen Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, P. R. China
| | - Li Li
- College of Basic Medical, Guilin Medical University, Guilin, Guangxi, P. R. China
| |
Collapse
|
30
|
Yu T, Deng X, Yang X, Yin Y, Liu Y, Xu S. New insights into evodiamine attenuates IPEC-J2 cells pyroptosis induced by T-2 toxin - Activating Keap1-Nrf2/NF-κB signaling pathway through binding with Keap1. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122605. [PMID: 39305878 DOI: 10.1016/j.jenvman.2024.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
T-2 toxin (T-2) is a highly toxic mycotoxin with a molecular weight of 466.52 g/mol. Evodiamine (EV), an alkaloid component of Evodia, has anti-inflammation and antioxidant properties. As a receptor of oxidative stress, Keap1 with a molecular weight of 70 kDa, is a molecular switch that controls the Nrf2 signaling pathway. In this paper, the effect of EV on Keap1-Nrf2/NF-κB pathway was investigated. Based on our research outcomes, it was observed that T-2 exposure substantially increased IPEC-J2 cells intracellular ROS levels and MDA accumulation, decreased SOD and CAT activities, disrupted intestinal tight junction (ZO-1, occludin, and claudin-1), and up-regulated pyroptosis-related protein (ASC, NLRP3, caspase-1, GSDMD, IL-1β, and IL-18). Additionally, EV could bind well with Keap1, the separating it from Nrf2, promoting Nrf2 into the nucleus, enhanced antioxidant enzyme activities, reduced the production of ROS, down-regulated NF-κB expression, alleviated T-2-induced pyroptosis, and restored tight junction protein expression. However, after treatment with the Nrf2 inhibitor ML385, ML385 reversed the protective effect of EV on IPEC-J2 cells. Collectively, EV can activate the Keap1-Nrf2/NF-κB signaling pathway via binding to Keap1, exert anti-inflammatory and antioxidant effects, inhibit the pyroptosis of IPEC-J2 cells triggered by T-2, and retore intestinal barrier function.
Collapse
Affiliation(s)
- Tingting Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinrui Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuejiao Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yong Liu
- Mudanjiang Medical University, Mudanjiang, 157011, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
31
|
Bayat M, Golestani S, Motlaghzadeh S, Bannazadeh Baghi H, Lalehzadeh A, Sadri Nahand J. War or peace: Viruses and metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189179. [PMID: 39299491 DOI: 10.1016/j.bbcan.2024.189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Metastasis, the dissemination of malignant cells from a primary tumor to secondary sites, poses a catastrophic burden to cancer treatment and is the predominant cause of mortality in cancer patients. Metastasis as one of the main aspects of cancer progression could be strongly under the influence of viral infections. In fact, viruses have been central to modern cancer research and are associated with a great number of cancer cases. Viral-encoded elements are involved in modulating essential pathways or specific targets that are implicated in different stages of metastasis. Considering the continuous emergence of new viruses and the establishment of their contribution to cancer progression, the warfare between viruses and cancer appears to be endless. Here we aimed to review the critical mechanism and pathways involved in cancer metastasis and the influence of viral machinery and various routes that viruses adopt to manipulate those pathways for their benefit.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Golestani
- Department of ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Chen X, Song Y, Hong Y, Zhang X, Li Q, Zhou H. "NO" controversy?: A controversial role in insulin signaling of diabetic encephalopathy. Mol Cell Endocrinol 2024; 593:112346. [PMID: 39151653 DOI: 10.1016/j.mce.2024.112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Insulin, a critical hormone in the human body, exerts its effects by binding to insulin receptors and regulating various cellular processes. While nitric oxide (NO) plays an important role in insulin secretion and acts as a mediator in the signal transduction pathway between upstream molecules and downstream effectors, holds a significant position in the downstream signal network of insulin. Researches have shown that the insulin-NO system exhibits a dual regulatory effect within the central nervous system, which is crucial in the regulation of diabetic encephalopathy (DE). Understanding this system holds immense practical importance in comprehending the targets of existing drugs and the development of potential therapeutic interventions. This review extensively examines the characterization of insulin, NO, Nitric oxide synthase (NOS), specific NO pathway, their interconnections, and the mechanisms underlying their regulatory effects in DE, providing a reference for new therapeutic targets of DE.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China; Hangzhou King's Bio-pharmaceutical Technology Co., Ltd, Hangzhou, Zhejiang, 310007, China.
| | - Ye Hong
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiaomin Zhang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qisong Li
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hongling Zhou
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
33
|
Sun X, Chai L, Wang B, Zhou J. PRELP inhibits the progression of oral squamous cell carcinoma via inactivation of the NF-κB pathway. Arch Oral Biol 2024; 167:106068. [PMID: 39151326 DOI: 10.1016/j.archoralbio.2024.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the role and molecular mechanism of proline/arginine-rich end leucine-rich repeat protein (PRELP), a secreted protein in extracellular matrix, in oral squamous cell carcinoma (OSCC) progression. DESIGN PRELP expression in OSCC was analyzed in the Gene Set Enrichment (GSE) 138206, GSE37991, and GSE23558 datasets as well as cell lines. Also, PRELP expression and its relationship with prognosis and immune infiltration in head and neck squamous cell carcinoma (HNSCC) were confirmed by bioinformatics analysis. The proliferation, apoptosis, invasion, epithelial-to-mesenchymal transition (EMT) and NF-κB activation were detected after alteration of PRELP expression in OSCC cells using CCK-8, EdU, flow cytometry, Transwell, real-time PCR, immunofluorescence and Western blot. Additionally, an NF-κB inhibitor PDTC was used to confirm the regulation mechanism of PRELP. RESULTS The expression of PRELP in OSCC tissues, cells and in HNSCC samples was low. HNSCC patients with higher PRELP expression was associated with longer overall survival. A positive correlation between PRELP expression and immune cell infiltration was found in HNSCC. Upregulation of PRELP inhibited, whereas PRELP silencing promoted, the proliferation, invasion and EMT of OSCC cells. Also, overexpression of PRELP promoted cell apoptosis. Mechanistically, PRELP suppressed p65 phosphorylation and nuclear translocation. And PDTC treatment partially reversed the influences of PRELP knockdown on the malignant behaviors in OSCC cells. CONCLUSION PRELP suppressed OSCC progression via inactivation of the NF-κB pathway. Targeting PRELP may be a potential approach for OSCC treatment.
Collapse
Affiliation(s)
- Xiaoni Sun
- Department of Stomatology, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China.
| | - Luyi Chai
- Department of Stomatology, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Bingjie Wang
- Department of Stomatology, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Jianbo Zhou
- Department of Stomatology, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| |
Collapse
|
34
|
Liu BQ, Bai Y, Chen DP, Zhang YM, Wang TZ, Chen JR, Liu XY, Zheng B, Cui ZL. Intratumoural microorganism can affect the progression of hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:4232-4243. [DOI: 10.4251/wjgo.v16.i10.4232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Several recent studies have confirmed that intratumoural microorganisms can affect the occurrence and development of hepatocellular carcinoma (HCC); however, their role in tumor progression remains unclear. Hence, there is a need for further research on the role of intratumoural microorganisms in HCC.
AIM To investigate the changes in intratumoural microorganisms in HCC and the effect of Propionibacterium on HCC progression.
METHODS HCC and normal liver tissue specimens were subjected to fluorescence in situ hybridization (FISH). After performing 16S rRNA sequencing on HCC and peritumoral tissues to analyze the differences between the two groups. Propionibacterium was cocultured with HCC cells in vitro. Changes in cell proliferation and migration capacity were evaluated. The expression of NF-κB pathway related proteins in tumor cells was compared. The orthotopic liver implantation model and the subcutaneous xenograft model were constructed. liver tissues and subcutaneous tumors were collected 2 weeks later.
RESULTS FISH demonstrated the presence of microorganisms in HCC and normal liver tissues. 16S rRNA sequencing revealed an abundance of Lysobacter, Lachnospiraceae, Pseudomonas, and Lactobacillus in HCC tissues. The distribution and abundance of Propionibacterium showed differences between HCC and peritumoral tissues (P < 0.05). In vitro studies demonstrated that Propionibacterium and its metabolite propionic acid (PA) inhibited the proliferation and migration of HCC cells (P < 0.05). The expression of the proteins in NF-κB signaling pathway also decreased in HCC cells (P < 0.05).
CONCLUSION Microorganisms in HCC and normal liver tissues displayed significant disparities. The PA-producing bacterium Propionibacterium in HCC exerts an effect on the NF-κB pathway, thereby affecting the biological behavior of HCC.
Collapse
Affiliation(s)
- Bao-Qun Liu
- First Central Clinical College, Tianjin Medical University, Tianjin 300070, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Da-Peng Chen
- First Central Clinical College, Tianjin Medical University, Tianjin 300070, China
| | - Ya-Min Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Tian-Ze Wang
- Tianjin First Central Hospital Clinic Institute, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jing-Rui Chen
- First Central Clinical College, Tianjin Medical University, Tianjin 300070, China
| | - Xiang-Yu Liu
- Tianjin First Central Hospital Clinic Institute, School of Medicine, Nankai University, Tianjin 300192, China
| | - Bin Zheng
- School of Medicine, Tianjin University, Tianjin 300072, China
| | - Zi-Lin Cui
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| |
Collapse
|
35
|
Manzhula K, Rebl A, Budde-Sagert K, Rebl H. Interplay of Cellular Nrf2/NF-κB Signalling after Plasma Stimulation of Malignant vs. Non-Malignant Dermal Cells. Int J Mol Sci 2024; 25:10967. [PMID: 39456749 PMCID: PMC11507371 DOI: 10.3390/ijms252010967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Skin cancer is one of the most common malignancies worldwide. Cold atmospheric pressure Plasma (CAP) is increasingly successful in skin cancer therapy, but further research is needed to understand its selective effects on cancer cells at the molecular level. In this study, A431 (squamous cell carcinoma) and HaCaT (non-malignant) cells cultured under identical conditions revealed similar ROS levels but significantly higher antioxidant levels in unstimulated A431 cells, indicating a higher metabolic turnover typical of tumour cells. HaCaT cells, in contrast, showed increased antioxidant levels upon CAP stimulation, reflecting a robust redox adaptation. Specifically, proteins involved in antioxidant pathways, including NF-κB, IκBα, Nrf2, Keap1, IKK, and pIKK, were quantified, and their translocation level upon stimulation was evaluated. CAP treatment significantly elevated Nrf2 nuclear translocation in non-malignant HaCaT cells, indicating a strong protection against oxidative stress, while selectively inducing NF-κB activation in A431 cells, potentially leading to apoptosis. The expression of pro-inflammatory genes like IL-1B, IL-6, and CXCL8 was downregulated in A431 cells upon CAP treatment. Notably, CAP enhanced the expression of antioxidant response genes HMOX1 and GPX1 in non-malignant cells. The differential response between HaCaT and A431 cells underscores the varied antioxidative capacities, contributing to their distinct molecular responses to CAP-induced oxidative stress.
Collapse
Affiliation(s)
- Kristina Manzhula
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Kai Budde-Sagert
- Institute of Communications Engineering, University of Rostock, 18051 Rostock, Germany;
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
36
|
Silveira HS, Cesário RC, Vígaro RA, Gaiotte LB, Cucielo MS, Guimarães F, Seiva FRF, Zuccari DAPC, Reiter RJ, Chuffa LGDA. Melatonin changes energy metabolism and reduces oncogenic signaling in ovarian cancer cells. Mol Cell Endocrinol 2024; 592:112296. [PMID: 38844096 DOI: 10.1016/j.mce.2024.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Ovarian cancer (OC) adjusts energy metabolism in favor of its progression and dissemination. Because melatonin (Mel) has antitumor actions, we investigated its impact on energy metabolism and kinase signaling in OC cells (SKOV-3 and CAISMOV-24). Cells were divided into control and Mel-treated groups, in the presence or absence of the antagonist luzindole. There was a decrease in the levels of HIF-1α, G6PDH, GAPDH, PDH, and CS after Mel treatment even in the presence of luzindole in both OC cells. Mel treatment also reduced the activity of OC-related enzymes including PFK-1, G6PDH, LDH, CS, and GS whereas PDH activity was increased. Lactate and glutamine levels dropped after Mel treatment. Mel further promoted a reduction in the concentrations of CREB, JNK, NF-kB, p-38, ERK1/2, AKT, P70S6K, and STAT in both cell lines. Mel reverses Warburg-type metabolism and possibly reduces glutaminolysis, thereby attenuating various oncogenic molecules associated with OC progression and invasion.
Collapse
Affiliation(s)
- Henrique Spaulonci Silveira
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | - Roberta Carvalho Cesário
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | - Renan Aparecido Vígaro
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | - Leticia Barbosa Gaiotte
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | - Maira Smaniotto Cucielo
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | - Fernando Guimarães
- Hospital da Mulher "Professor Doutor José Aristodemo Pinotti" - CAISM, UNICAMP, Campinas, São Paulo, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, TX, 78229, USA
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil.
| |
Collapse
|
37
|
Chen L, Xiang T, Xing J, Lu X, Wei S, Wang H, Li J, Yu W. Circular RNA circEZH2 Promotes Lung Adenocarcinoma Progression by Regulating microRNA-495-3p/Tumor Protein D52 Axis and Activating Nuclear Factor-Kappa B Pathway. Int J Gen Med 2024; 17:4419-4433. [PMID: 39359616 PMCID: PMC11446202 DOI: 10.2147/ijgm.s473202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
Background It has been increasingly recognized that circular RNAs (circRNAs) act as a pivotal factor in the onset and progression of human malignancies. Yet, the specific activities and mechanistic roles of these RNAs in the context of lung adenocarcinoma (LUAD) are not fully understood. Methods Microarray analysis identified a novel LUAD-associated circular RNA, termed hsa_circ_0006357 (also referred to as circEZH2). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was utilized for the analysis of circEZH2 expression in tissues and cell lines. The characteristics of circEZH2 were verified by RNase R treatment and fluorescence in situ hybridization (FISH) assays. The functions of circEZH2 were detected by Cell Counting Kit-8 (CCK-8), colony formation, wound healing, and Transwell assays. The molecular mechanism of circEZH2 was clarified through bioinformatics analysis as well as RNA pulldown, dual-luciferase reporter, RT-qPCR, and immunoblotting assays. The role of circEZH2 in vivo was investigated using a xenograft model. Results This investigation revealed that circEZH2 expression was elevated in LUAD cell lines and tumor samples. This elevation was associated with enhanced cell proliferation, migratory capacity, epithelial-mesenchymal transition (EMT), and invasion in vitro. Conversely, silencing of circEZH2 in vivo resulted in a notable decrease in LUAD tumorigenesis, whereas its overexpression led to the opposite effects. Mechanistically, circEZH2 appeared to act as a sponge for miR-495-3p, facilitating the upregulation of tumor protein D52 (TPD52) and triggering the nuclear factor kappa B (NF-κB) signaling pathway, thus contributing to the progression of LUAD. Conclusion These findings indicate that circEZH2 may function as a competitive endogenous RNA (ceRNA), driving the progression of LUAD by manipulating the miR-495-3p/TPD52 axis and activating the NF-κB pathway.
Collapse
Affiliation(s)
- Liping Chen
- Department of Central Laboratory, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Tongwei Xiang
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Jing Xing
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Xinan Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Shan Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Huaying Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Jipeng Li
- Department of Central Laboratory, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Wanjun Yu
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
38
|
Zhang Q, Xu Z, Han R, Wang Y, Ye Z, Zhu J, Cai Y, Zhang F, Zhao J, Yao B, Qin Z, Qiao N, Huang R, Feng J, Wang Y, Rui W, He F, Zhao Y, Ding C. Proteogenomic characterization of skull-base chordoma. Nat Commun 2024; 15:8338. [PMID: 39333076 PMCID: PMC11436687 DOI: 10.1038/s41467-024-52285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Skull-base chordoma is a rare, aggressive bone cancer with a high recurrence rate. Despite advances in genomic studies, its molecular characteristics and effective therapies remain unknown. Here, we conduct integrative genomics, transcriptomics, proteomics, and phosphoproteomics analyses of 187 skull-base chordoma tumors. In our study, chromosome instability is identified as a prognostic predictor and potential therapeutic target. Multi-omics data reveals downstream effects of chromosome instability, with RPRD1B as a putative target for radiotherapy-resistant patients. Chromosome 1q gain, associated with chromosome instability and upregulated mitochondrial functions, lead to poorer clinical outcomes. Immune subtyping identify an immune cold subtype linked to chromosome 9p/10q loss and immune evasion. Proteomics-based classification reveals subtypes (P-II and P-III) with high chromosome instability and immune cold features, with P-II tumors showing increased invasiveness. These findings, confirmed in 17 paired samples, provide insights into the biology and treatment of skull-base chordoma.
Collapse
Affiliation(s)
- Qilin Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ziyan Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Rui Han
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunzhi Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Zhen Ye
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Zhu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yixin Cai
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Jiangyan Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Boyuan Yao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Nidan Qiao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Huang
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jinwen Feng
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yongfei Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuchu He
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Research Unit of Proteomics Driven Cancer Precision Medicine. Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Yao Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830000, China.
| |
Collapse
|
39
|
Diskul-Na-Ayudthaya P, Bae SJ, Bae YU, Van NT, Kim W, Ryu S. ANKRD1 Promotes Breast Cancer Metastasis by Activating NF- κB-MAGE-A6 Pathway. Cancers (Basel) 2024; 16:3306. [PMID: 39409926 PMCID: PMC11476229 DOI: 10.3390/cancers16193306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Early detection and surgical excision of tumors have helped improve the survival rate of patients with breast cancer. However, patients with metastatic cancer typically have a poor prognosis. In this study, we propose that ANKRD1 promotes metastasis of breast cancer. ANKRD1 was found to be highly expressed in the MDA-MB-231 and MDA-LM-2 highly metastatic breast cancer cell lines compared to the non-metastatic breast cancer cell lines (MCF-7, ZR-75-30, T47D) and normal breast cancer cells (MCF-10A). Furthermore, high-grade tumors showed increased levels of ANKRD1 compared to low-grade tumors. Both in vitro and in vivo functional studies demonstrated the essential role of ANKRD1 in cancer cell migration and invasion. The previous studies have suggested a significant role of NF-κB and MAGE-A6 in breast cancer metastasis, but the upstream regulators of this axis are not well characterized. Our study suggests that ANKRD1 promotes metastasis of breast cancer by activating NF-κB as well as MAGE-A6 signaling. Our findings show that ANKRD1 is a potential therapeutic target and a diagnostic marker for breast cancer metastasis.
Collapse
Affiliation(s)
- Penchatr Diskul-Na-Ayudthaya
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Seon Joo Bae
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Yun-Ui Bae
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Konkuk University, Seoul 05030, Republic of Korea;
| | - Ngu Trinh Van
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Wootae Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
- Department of Pathology, College of Medicine, Soonchunhyang University, Asan-si 311151, Republic of Korea
| |
Collapse
|
40
|
Chiang DC, Yap BK. TRIM25, TRIM28 and TRIM59 and Their Protein Partners in Cancer Signaling Crosstalk: Potential Novel Therapeutic Targets for Cancer. Curr Issues Mol Biol 2024; 46:10745-10761. [PMID: 39451518 PMCID: PMC11506413 DOI: 10.3390/cimb46100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Aberrant expression of TRIM proteins has been correlated with poor prognosis and metastasis in many cancers, with many TRIM proteins acting as key oncogenic factors. TRIM proteins are actively involved in many cancer signaling pathways, such as p53, Akt, NF-κB, MAPK, TGFβ, JAK/STAT, AMPK and Wnt/β-catenin. Therefore, this review attempts to summarize how three of the most studied TRIMs in recent years (i.e., TRIM25, TRIM28 and TRIM59) are involved directly and indirectly in the crosstalk between the signaling pathways. A brief overview of the key signaling pathways involved and their general cross talking is discussed. In addition, the direct interacting protein partners of these TRIM proteins are also highlighted in this review to give a picture of the potential protein-protein interaction that can be targeted for future discovery and for the development of novel therapeutics against cancer. This includes some examples of protein partners which have been proposed to be master switches to various cancer signaling pathways.
Collapse
Affiliation(s)
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| |
Collapse
|
41
|
Skubic C, Trček H, Nassib P, Kreft T, Walakira A, Pohar K, Petek S, Režen T, Ihan A, Rozman D. Knockouts of CYP51A1, DHCR24, or SC5D from cholesterol synthesis reveal pathways modulated by sterol intermediates. iScience 2024; 27:110651. [PMID: 39262789 PMCID: PMC11387598 DOI: 10.1016/j.isci.2024.110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
Sterols from cholesterol synthesis are crucial for cholesterol production, but also have individual roles difficult to assess in vivo due to essentiality of cholesterol. We developed HepG2 cell models with knockouts (KOs) for three enzymes of cholesterol synthesis, each accumulating specific sterols. Surprisingly, KOs of CYP51, DHCR24, and SC5D shared only 9% of differentially expressed genes. The most striking was the phenotype of CYP51 KO with highly elevated lanosterol and 24,25-dihydrolanosterol, significant increase in G2+M phase and enhanced cancer and cell cycle pathways. Comparisons with mouse liver Cyp51 KO data suggest 24,25-dihydrolanosterol activates similar cell proliferation pathways, possibly via elevated LEF1 and WNT/NFKB signaling. In contrast, SC5D and DHCR24 KO cells with elevated lathosterol or desmosterol proliferated slowly, with downregulated E2F, mitosis, and enriched HNF1A. These findings demonstrate that increase of lanosterol and 24,25-dihydrolanosterol, but not other sterols, promotes cell proliferation in hepatocytes.
Collapse
Affiliation(s)
- Cene Skubic
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Hana Trček
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Petra Nassib
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tinkara Kreft
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Andrew Walakira
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Katka Pohar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sara Petek
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Xie P, Yin Q, Wang S, Song D. Prognostic Protein Biomarker Screening for Thyroid Carcinoma Based on Cancer Proteomics Profiles. Biomedicines 2024; 12:2066. [PMID: 39335579 PMCID: PMC11428938 DOI: 10.3390/biomedicines12092066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Thyroid carcinoma (THCA) ranks among the most prevalent cancers globally. Integrating advanced genomic and proteomic analyses to construct a protein-based prognostic model promises to identify effective biomarkers and explore new therapeutic avenues. In this study, proteomic data from The Cancer Proteomics Atlas (TCPA) and clinical data from The Cancer Genome Atlas (TCGA) were utilized. Using Kaplan-Meier, Cox regression, and LASSO penalized Cox analyses, we developed a prognostic risk model comprising 13 proteins (S100A4, PAI1, IGFBP2, RICTOR, B7-H3, COLLAGENVI, PAR, SNAIL, FAK, Connexin-43, Rheb, EVI1, and P90RSK_pT359S363). The protein prognostic model was validated as an independent predictor of survival time in THCA patients, based on risk curves, survival analysis, receiver operating characteristic curves and independent prognostic analysis. Additionally, we explored the immune cell infiltration and tumor mutational burden (TMB) related to these features. Notably, our study proved a novel approach for predicting treatment responses in THCA patients, including those undergoing chemotherapy and targeted therapy.
Collapse
Affiliation(s)
- Pu Xie
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinglei Yin
- Guangdong Geriatric Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China;
| | - Shu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dalong Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
43
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
44
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson A, Wolin A, Hampton D, Turner N, Ebmeier C, Costello JC, Ford HL. An EYA3/NF-κB/CCL2 signaling axis suppresses cytotoxic NK cells in the pre-metastatic niche to promote triple negative breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606072. [PMID: 39211066 PMCID: PMC11360953 DOI: 10.1101/2024.07.31.606072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Patients with Triple Negative Breast Cancer (TNBC) exhibit high rates of metastases and poor prognoses. The Eyes absent (EYA) family of proteins are developmental transcriptional cofactors/phosphatases that are re-expressed and/or upregulated in numerous cancers. Herein, we demonstrate that EYA3 correlates with decreased survival in breast cancer, and that it strongly, and specifically, regulates metastasis via a novel mechanism that involves NF-kB signaling and an altered innate immune profile at the pre-metastatic niche (PMN). Remarkably, restoration of NF-kB signaling downstream of Eya3 knockdown (KD) restores metastasis without restoring primary tumor growth, isolating EYA3/NF-kB effects to the metastatic site. We show that secreted CCL2, regulated downstream of EYA3/NF-kB, specifically decreases cytotoxic NK cells in the PMN and that re-expression of Ccl2 in Eya3 -KD cells is sufficient to rescue activation/levels of cytotoxic NK cells in vitro and at the PMN, where EYA3-mediated decreases in cytotoxic NK cells are required for metastatic outgrowth. Importantly, analysis of public breast cancer datasets uncovers a significant correlation of EYA3 with NF-kB/CCL2, underscoring the relevance of EYA3/NF-kB/CCL2 to human disease. Our findings suggest that inhibition of EYA3 could be a powerful means to re-activate the innate immune response at the PMN, inhibiting TNBC metastasis. Significance EYA3 promotes metastasis of TNBC cells by promoting NF-kB-mediated CCL2 expression and inhibiting cytotoxic NK cells at the pre-metastatic niche, highlighting a potential therapeutic target in this subset of breast cancer.
Collapse
|
45
|
Pacurari M, Cox I, Bible AN, Davern S. MIP-4 is Induced by Bleomycin and Stimulates Cell Migration Partially via Nir-1 Receptor. Biochem Res Int 2024; 2024:5527895. [PMID: 39132322 PMCID: PMC11315970 DOI: 10.1155/2024/5527895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/10/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Background CC-chemokine ligand 18 also known as MIP-4 is a chemokine with roles in inflammation and immune responses. It has been shown that MIP-4 is involved in the development of several diseases including lung fibrosis and cancer. How exactly MIP-4 is regulated and exerts its role in lung fibrosis remains unclear. Therefore, in the present study, we examined how MIP-4 is regulated and whether it acts via its potential receptor Nir-1. Materials and Methods A549 cells were grown and maintained in DMEM : F12 (1 : 1) and supplemented with 10% FBS and 1000 U of penicillin/streptomycin and maintained as recommended by the manufacturer (ATCC). Cell migration and invasion, immunohistochemistry (IHC), Western blot, qPCR, and siRNA Nir-1 were used to determine MIP-4 regulation and its role in cell migration. Results Cell migration was increased following stimulation of cells with recombinant (r) MIP-4 and bleomycin (BLM), whereas quenching rMIP-4 with its antibody (Ab) or addition of the Ab to BLM or H2O2 diminished rMIP-4-induced cell migration. Along with cell migration, rMIP-4, BLM, and H2O2 induced the formation of actin filaments dynamic structures whereas costimulation with MIP-4 Ab limited BLM- and H2O2-induced effects. MIP-4 mRNA and protein were increased by BLM and H2O2, and the addition of its Ab significantly reduced treatments effect. Experiments with siRNA investigating whether Nir-1 is a potential MIR-4 receptor indicated that the inhibition of Nir-1 decreased cell migration/invasion but did not totally inhibit rMIP-4-induced cell migration. Conclusion Therefore, our data indicate that MIP-4 is regulated by BLM and H2O2 and costimulation with its Ab limits the effects on MIP-4 and that the Nir-1 receptor partially mediates MIP-4's effects on increased cell migration. These data also evidenced that MIP-4 is regulated by fibrotic and oxidative stimuli and that quenching MIP-4 with its Ab or therapeutically targeting the Nir-1 receptor may partially limit MIP-4 effects under fibrotic or oxidative stimulation.
Collapse
Affiliation(s)
- M. Pacurari
- Department of BiologyCollege of ScienceEngineering and TechnologyJackson State University, Jackson, MS 39217, USA
- RCMI Center for Environmental HealthCollege of ScienceEngineering and TechnologyJackson State University, 1400 Lynch Street, 18750, Jackson, MS 39217, USA
| | - I. Cox
- Environmental Science PhD ProgramCollege of ScienceEngineering and TechnologyJackson State University, Jackson, MS 39217, USA
| | - A. N. Bible
- Biosciences DivisionOak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - S. Davern
- Radioisotope Science and Technology DivisionOak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
46
|
Omidvar S, Vahedian V, Sourani Z, Yari D, Asadi M, Jafari N, Khodavirdilou L, Bagherieh M, Shirzad M, Hosseini V. The molecular crosstalk between innate immunity and DNA damage repair/response: Interactions and effects in cancers. Pathol Res Pract 2024; 260:155405. [PMID: 38981346 DOI: 10.1016/j.prp.2024.155405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
DNA damage can lead to erroneous alterations and mutations which in turn can result into wide range of disease condition including aging, severe inflammation, and, most importantly, cancer. Due to the constant exposure to high-risk factors such as exogenous and endogenous DNA-damaging agents, cells may experience DNA damage impairing stability and integrity of the genome. These perturbations in DNA structure can arise from several mutations in the genome. Therefore, DNA Damage Repair/Response (DDR) detects and then corrects these potentially tumorigenic problems by inducing processes such as DNA repair, cell cycle arrest, apoptosis, etc. Additionally, DDR can activate signaling pathways related to immune system as a protective mechanism against genome damage. These protective machineries are ignited and spread through a network of molecules including DNA damage sensors, transducers, kinases and downstream effectors. In this review, we are going to discuss the molecular crosstalk between innate immune system and DDR, as well as their potential effects on cancer pathophysiology.
Collapse
Affiliation(s)
- Sahar Omidvar
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy, Division of Hematology/Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil; Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM-31), Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil; Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil.
| | - Zahra Sourani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Davood Yari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mehrdad Asadi
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| | - Negin Jafari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Lida Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| | - Molood Bagherieh
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran.
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Vahid Hosseini
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran; Infectious Diseases Research Center, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
47
|
Su Q, Yang SP, Guo JP, Rong YR, Sun Y, Chai YR. Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway. Microbiol Immunol 2024; 68:281-293. [PMID: 38886542 DOI: 10.1111/1348-0421.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.
Collapse
Affiliation(s)
- Qing Su
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shu-Ping Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- School of Medical Technology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jun-Ping Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi-Ren Rong
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yun Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
48
|
Yu Y, Fan Y, Mei W, Xu X, Chen Y, Zhao Y, Ruan B, Shen Z, Lu Y, Zheng S, Jie W. Dendrobium nobile active ingredient Dendrobin A against hepatocellular carcinoma via inhibiting nuclear factor kappa-B signaling. Biomed Pharmacother 2024; 177:117013. [PMID: 38901205 DOI: 10.1016/j.biopha.2024.117013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE Dendrobin A, a typical active ingredient of the traditional Chinese medicine Dendrobium nobile, has potential clinical application in cancer treatment; however, its effect and mechanism in anti-hepatocellular carcinoma (HCC) remain unsolved. METHOD The effects of Dendrobin A on the viability, migration, invasion, cycle, apoptosis, and epithelial-mesenchymal transition of HepG2 and SK-HEP-1 cells were verified by in vitro experiments. mRNA sequencing was performed to screen the differentially expressed genes (DEGs) of HCC cells before and after Dendrobin A treatment, following GO enrichment and KEGG signaling pathway analyses. Mechanistically, molecular docking was used to evaluate the binding of Dendrobin A with proteins p65 and p50, before further verifying the activation of nuclear factor kappa-B (NF-κB) signaling. Finally, the antiproliferative effect of Dendrobin A on HCC cells was explored through animal experiments. RESULTS Dendrobin A arrested cell cycle, induced apoptosis, and inhibited proliferation, migration, invasion, and blocked epithelial-mesenchymal transition in HepG2 and SK-HEP-1 cells. mRNA sequencing identified 830 DEGs, involving various biological processes. KEGG analysis highlighted NF-κB signaling. Molecular docking revealed strong binding of Dendrobin A with p65 and p50 proteins, and western blotting confirmed reduced levels of p-p65 and p-p50 in HCC cells post Dendrobin A treatment. NF-κB agonist PMA reversed Dendrobin A-inhibited cell proliferation migration and invasion. In vivo experiments showed that Dendrobin A inhibited HCC cell growth. CONCLUSION Our findings suggest that Dendrobin A exhibits anti-HCC properties by inhibiting the activation of the NF-κB pathway. These results provide a scientific basis for utilizing Dendrobium nobile in anti-HCC therapies.
Collapse
Affiliation(s)
- Yaping Yu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Yonghao Fan
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Wenli Mei
- Key Laboratory of Natural Products Research and Development from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571199, PR China
| | - Xiaoqing Xu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Yan Chen
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Yangyang Zhao
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Banzhan Ruan
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Zhihua Shen
- Department of Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Yanda Lu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| | - Shaojiang Zheng
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| | - Wei Jie
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| |
Collapse
|
49
|
Zhang W, Shi Y, Oyang L, Cui S, Li S, Li J, Liu L, Li Y, Peng M, Tan S, Xia L, Lin J, Xu X, Wu N, Peng Q, Tang Y, Luo X, Liao Q, Jiang X, Zhou Y. Endoplasmic reticulum stress-a key guardian in cancer. Cell Death Discov 2024; 10:343. [PMID: 39080273 PMCID: PMC11289465 DOI: 10.1038/s41420-024-02110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) is a cellular stress response characterized by excessive contraction of the endoplasmic reticulum (ER). It is a pathological hallmark of many diseases, such as diabetes, obesity, and neurodegenerative diseases. In the unique growth characteristic and varied microenvironment of cancer, high levels of stress are necessary to maintain the rapid proliferation and metastasis of tumor cells. This process is closely related to ERS, which enhances the ability of tumor cells to adapt to unfavorable environments and promotes the malignant progression of cancer. In this paper, we review the roles and mechanisms of ERS in tumor cell proliferation, apoptosis, metastasis, angiogenesis, drug resistance, cellular metabolism, and immune response. We found that ERS can modulate tumor progression via the unfolded protein response (UPR) signaling of IRE1, PERK, and ATF6. Targeting the ERS may be a new strategy to attenuate the protective effects of ERS on cancer. This manuscript explores the potential of ERS-targeted therapies, detailing the mechanisms through which ERS influences cancer progression and highlighting experimental and clinical evidence supporting these strategies. Through this review, we aim to deepen our understanding of the role of ER stress in cancer development and provide new insights for cancer therapy.
Collapse
Grants
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- he Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
- the Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
Collapse
Affiliation(s)
- Wenlong Zhang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yidan Shi
- The High School Attached to Hunan Normal University, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Shiwen Cui
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinyun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
- Department of Oncology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| |
Collapse
|
50
|
Yang J, Sun Q, Liu X, Yang Y, Rong R, Yan P, Xie Y. Targeting Notch signaling pathways with natural bioactive compounds: a promising approach against cancer. Front Pharmacol 2024; 15:1412669. [PMID: 39092224 PMCID: PMC11291470 DOI: 10.3389/fphar.2024.1412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Notch signaling pathway is activated abnormally in solid and hematological tumors, which perform essential functions in cell differentiation, survival, proliferation, and angiogenesis. The activation of Notch signaling and communication among Notch and other oncogenic pathways heighten malignancy aggressiveness. Thus, targeting Notch signaling offers opportunities for improved survival and reduced disease incidence. Already, most attention has been given to its role in the cancer cells. Recent research shows that natural bioactive compounds can change signaling molecules that are linked to or interact with the Notch pathways. This suggests that there may be a link between Notch activation and the growth of tumors. Here, we sum up the natural bioactive compounds that possess inhibitory effects on human cancers by impeding the Notch pathway and preventing Notch crosstalk with other oncogenic pathways, which provoke further study of these natural products to derive rational therapeutic regimens for the treatment of cancer and develop novel anticancer drugs. This review revealed Notch as a highly challenging but promising target in oncology.
Collapse
Affiliation(s)
- Jia Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Liu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Yang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Peiyu Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|