1
|
Soni L, Soopramanien J, Acharya A, Ashrafian H, Giannarou S, Fotiadis N, Darzi A. The use of machine learning in transarterial chemoembolisation/transarterial embolisation for patients with intermediate-stage hepatocellular carcinoma: a systematic review. LA RADIOLOGIA MEDICA 2025:10.1007/s11547-025-02013-y. [PMID: 40317437 DOI: 10.1007/s11547-025-02013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/25/2025] [Indexed: 05/07/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Intermediate-stage HCC is often treated with either transcatheter arterial chemoembolisation (TACE) or transcatheter arterial embolisation (TAE). Integrating machine learning (ML) offers the possibility of improving treatment outcomes through enhanced patient selection. This systematic review evaluates the effectiveness of ML models in improving the precision and efficacy of both TACE and TAE for intermediate-stage HCC. A comprehensive search of PubMed, EMBASE, Web of Science, and Cochrane Library databases was conducted for studies applying ML models to TACE and TAE in patients with intermediate-stage HCC. Seven studies involving 4,017 patients were included. All included studies were from China. Various ML models, including deep learning and radiomics, were used to predict treatment response, yielding a high predictive accuracy (AUC 0.90). However, study heterogeneity limited comparisons. While ML shows potential in predicting treatment outcomes, further research with standardised protocols and larger, multi-centre trials is needed for clinical integration.
Collapse
Affiliation(s)
- Lakshya Soni
- Institute of Global Health Innovation, Imperial College London, London, UK.
- Royal Marsden Hospital, London, UK.
| | | | - Amish Acharya
- Institute of Global Health Innovation, Imperial College London, London, UK
| | - Hutan Ashrafian
- Institute of Global Health Innovation, Imperial College London, London, UK
| | | | - Nicos Fotiadis
- Royal Marsden Hospital, London, UK.
- Institute of Cancer Research, London, UK.
| | - Ara Darzi
- Institute of Global Health Innovation, Imperial College London, London, UK
- Institute of Cancer Research, London, UK
| |
Collapse
|
2
|
Lv X, Zhang PB, Zhang EL, Yang S. Predictive factors and prognostic models for Hepatic arterial infusion chemotherapy in Hepatocellular carcinoma: a comprehensive review. World J Surg Oncol 2025; 23:166. [PMID: 40287734 PMCID: PMC12034129 DOI: 10.1186/s12957-025-03765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and lethal cancer, often diagnosed at advanced stages where traditional treatments such as surgical resection, liver transplantation, and locoregional therapies provide limited benefits. Hepatic arterial infusion chemotherapy (HAIC) has emerged as a promising treatment modality for advanced HCC, enhancing anti-tumor efficacy through targeted drug delivery while minimizing systemic side effects. However, the heterogeneous nature of HCC leads to variable responses to HAIC, highlighting the necessity for reliable predictive indicators to tailor personalized treatment strategies. This review explores the factors influencing HAIC success, including patient demographics, tumor characteristics, biomarkers, genomic profiles, and advanced imaging techniques such as radiomics and deep learning models. Additionally, the synergistic potential of HAIC combined with immunotherapy and molecular targeted therapies is examined, demonstrating improved survival outcomes. Prognostic scoring systems and nomograms that integrate clinical, molecular, and imaging data are discussed as superior tools for individualized prognostication compared to traditional staging systems. Understanding these predictors is essential for optimizing HAIC efficacy and enhancing survival and quality of life for patients with advanced HCC. Future research directions include large-scale prospective studies, integration of multi-omics data, and advancements in artificial intelligence to refine predictive models and further personalize treatment approaches.
Collapse
Affiliation(s)
- Xing Lv
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Peng-Bo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Er-Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - S Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Zhang M, Li Y, Hu Y, Du B, Mo Y, He T, Yang Y, Li B, Xia J, Huang Z, Lu F, Lu B, Peng J. Development and validation of a prediction model based on two-dimensional dose distribution maps fused with computed tomography images for noninvasive prediction of radiochemotherapy resistance in non-small cell lung cancer. Transl Cancer Res 2025; 14:1516-1530. [PMID: 40224967 PMCID: PMC11985215 DOI: 10.21037/tcr-24-1897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025]
Abstract
Background There are individualized differences in the prognosis of radiochemotherapy for non-small cell lung cancer (NSCLC), and accurate prediction of prognosis is essential for individualized treatment. This study proposes to explore the potential of multiregional two-dimensional (2D) dosiomics combined with radiomics as a new imaging marker for prognostic risk stratification of NSCLC patients receiving radiochemotherapy. Methods In this study, 365 patients with histologically confirmed NSCLC, who had computed tomography (CT) scans before treatment, received standard radiochemotherapy, and had Karnofsky Performance Scale (KPS) scores ≥70 were included in three medical institutions, and 145 cases were excluded due to surgery, data accuracy, poor image quality, and the presence of other tumors. Finally, 220 patients were included in the study. Efficacy evaluation criteria for solid tumors are used to evaluate efficacy. Complete and partial remission indicate the radiochemotherapy-sensitive group, and disease stability and progression indicate the radiochemotherapy-resistant group. We combined all the data and then randomised them into a training cohort (154 cases) and a validation cohort (66 cases) in a 7:3 ratio. Radiomics and dosiomics features were extracted for gross tumor volume (GTV), GTV-heat, and 50 Gy-heat and screened. 2D dosiomics model (DMGTV and DM50Gy), radiomics model (RMGTV), 2D radiomics-dosiomics model (RDM), and combined models were constructed, and the predictive performances for radiochemotherapy resistance were compared. Subsequently, the predictive performance of various models for radiochemotherapy resistance was compared by receiver operating characteristic (ROC) curves and calculating accuracy, sensitivity and specificity. The multi-omics and clinical models were integrated for patient risk stratification. Results DM50Gy had better predictive performance than RMGTV and DMGTV, with the area under the curve (AUC) of the ROC in the training and validation cohorts for DM50Gy were 0.764 [95% confidence interval (CI): 0.687-0.841] and 0.729 (95% CI: 0.568-0.889). And the RDM performed significantly better than the single radiomics and dosiomics models, with AUC of 0.836 (95% CI: 0.773-0.899) and 0.748 (95% CI: 0.617-0.879), respectively. Hemoglobin level and T stage were independent predictors in the clinical model. The combined model containing independent predictors further improved the predictive performance in both the training and validation cohorts, with AUC of 0.844 (95% CI: 0.781-0.907) and 0.753 (95% CI: 0.618-0.887). Grouping of patients according to the critical value of the combined model revealed significant differences in progression-free survival (PFS) and overall survival (OS) between the high-risk and low-risk groups (P<0.05). Conclusions Compared to the traditional radiomics model, the 2D dosiomics model demonstrates superior predictive performance. The combined model based on clinical data, radiomics, and dosiomics has improved the prediction of radiochemotherapy resistance in NSCLC and effectively performed survival stratification. Through precise risk assessment, doctors can better understand which patients may develop resistance to treatment and optimize treatment plans accordingly.
Collapse
Affiliation(s)
- Min Zhang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College, Guizhou Medical University, Guiyang, China
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Ya Li
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College, Guizhou Medical University, Guiyang, China
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Yong Hu
- Department of Oncology, Guiyang Public Health Clinical Center, Guiyang, China
| | - Bo Du
- Department of Oncology, Guiyang Public Health Clinical Center, Guiyang, China
| | - Youlong Mo
- Department of Oncology, Guiyang Public Health Clinical Center, Guiyang, China
| | - Tianchu He
- Department of Oncology, Qiandongnan Prefecture People’s Hospital, Kaili, China
| | - Yang Yang
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Benlan Li
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College, Guizhou Medical University, Guiyang, China
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Ji Xia
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College, Guizhou Medical University, Guiyang, China
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Zhongjun Huang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College, Guizhou Medical University, Guiyang, China
- Department of Radiation Oncology, The Xingyi People’s Hospital, Xingyi, China
| | - Fangyang Lu
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Bing Lu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College, Guizhou Medical University, Guiyang, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Jie Peng
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Teaching and Research Department of Oncology, Clinical Medical College, Guizhou Medical University, Guiyang, China
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| |
Collapse
|
4
|
Wang Z, Xu H, Liu J, Lin R, He D, Yang Y, Wang X, Pan Z. An automatic deep-learning approach for the prediction of post-stroke epilepsy after an initial intracerebral hemorrhage based on non-contrast computed tomography imaging. Quant Imaging Med Surg 2025; 15:1175-1189. [PMID: 39995708 PMCID: PMC11847184 DOI: 10.21037/qims-24-1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/26/2024] [Indexed: 02/26/2025]
Abstract
Background Post-stroke epilepsy (PSE) is a common and significant complication that often occurs after stroke, and affects patients' prognosis and overall quality of life. In recent years, non-contrast computed tomography (NCCT) has become the preferred method for the clinical diagnosis of intracerebral hemorrhage (ICH). This study aimed to develop and validate a triple deep-learning model, simply named, the post-stroke epilepsy network (PSENet), to predict PSE in ICH patients based on NCCT. Methods A total of 1,130 patients (62 with PSE and 1,068 without PSE) who experienced an initial ICH at our hospital were enrolled in this study. Using five-fold cross-validation, all patients were randomly divided into training and validation sets at a ratio of 4:1. Next, the no-new-Net (nnU-Net) was used to automatically segment the ICH for the subsequent quantitative analysis. A triple deep-learning model was developed to extract the PSE-related features and incorporate the deep-learning features related to cortical involvement (FCI) and ICH volume to predict PSE. This model was compared with three clinical models constructed using random forest. Model performance was mainly evaluated using the area under the curve (AUC). Results The nnU-Net had a high Dice score of 0.923. The proposed PSENet, which incorporated multiple features, showed excellent diagnostic performance, and had an accuracy of 0.876, a F1-score of 0.621, a recall of 0.716, a specificity of 0.897, and an AUC of 0.840, which significantly surpassed the AUC of the baseline clinical model (AUC =0.787). Conclusions Based on our findings, the developed PSENet could be used to predict PSE quickly after the first ICH, especially in scenarios in which reliable clinical information is lacking on admission.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Computer, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haoli Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiachang Liu
- Department of Computer, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ru Lin
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongyu He
- Department of Computer, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinshi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Geriatric Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhifang Pan
- Department of Computer, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Cho EEL, Law M, Yu Z, Yong JN, Tan CS, Tan EY, Takahashi H, Danpanichkul P, Nah B, Soon GST, Ng CH, Tan DJH, Seko Y, Nakamura T, Morishita A, Chirapongsathorn S, Kumar R, Kow AWC, Huang DQ, Lim MC, Law JH. Artificial Intelligence and Machine Learning Predicting Transarterial Chemoembolization Outcomes: A Systematic Review. Dig Dis Sci 2025; 70:533-542. [PMID: 39708260 DOI: 10.1007/s10620-024-08747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/06/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Major society guidelines recommend transarterial chemoembolization (TACE) as the standard of care for intermediate-stage hepatocellular carcinoma (HCC) patients. However, predicting treatment response remains challenging. AIMS As artificial intelligence (AI) may predict therapeutic responses, this systematic review aims to assess the performance and effectiveness of radiomics and AI-based models in predicting TACE outcomes in patients with HCC. METHODS A systemic search was conducted on Medline and Embase databases from inception to 7th April 2024. Included studies generated a predictive model for TACE response and evaluated its performance by area under the curve (AUC), specificity, or sensitivity analysis. Systematic reviews, meta-analyses, case series and reports, pediatric, and animal studies were excluded. Secondary search of references of included articles ensured comprehensiveness. RESULTS 64 articles, with 13,412 TACE-treated patients, were included. AI in pre-treatment CT scans provided value in predicting the efficacy of TACE in HCC treatment. A positive association was observed for AI in pre-treatment MRI scans. Models incorporating radiomics had numerically better performance than those incorporating manual measured radiological variables. 39 studies demonstrated that combined predictive models had numerically better performance than models based solely on imaging or non-imaging features. CONCLUSION A combined predictive model incorporating clinical features, laboratory investigations, and radiological characteristics may effectively predict response to TACE treatment for HCC.
Collapse
Affiliation(s)
- Elina En Li Cho
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Michelle Law
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhenning Yu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claire Shiying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | | | - Pojsakorn Danpanichkul
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Nah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- Department of Medicine, Division of Gastroenterology, Kurume University School of Medicine, Fukuoka, Japan
| | - Darren Jun Hao Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Toru Nakamura
- Department of Medicine, Division of Gastroenterology, Kurume University School of Medicine, Fukuoka, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| | | | - Rahul Kumar
- Department of Gastroenterology, Changi General Hospital, Singapore, Singapore
| | - Alfred Wei Chieh Kow
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore
| | - Daniel Q Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Mei Chin Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
| | - Jia Hao Law
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Romeo M, Dallio M, Napolitano C, Basile C, Di Nardo F, Vaia P, Iodice P, Federico A. Clinical Applications of Artificial Intelligence (AI) in Human Cancer: Is It Time to Update the Diagnostic and Predictive Models in Managing Hepatocellular Carcinoma (HCC)? Diagnostics (Basel) 2025; 15:252. [PMID: 39941182 PMCID: PMC11817573 DOI: 10.3390/diagnostics15030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
In recent years, novel findings have progressively and promisingly supported the potential role of Artificial intelligence (AI) in transforming the management of various neoplasms, including hepatocellular carcinoma (HCC). HCC represents the most common primary liver cancer. Alarmingly, the HCC incidence is dramatically increasing worldwide due to the simultaneous "pandemic" spreading of metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD currently constitutes the leading cause of chronic hepatic damage (steatosis and steatohepatitis), fibrosis, and liver cirrhosis, configuring a scenario where an HCC onset has been reported even in the early disease stage. On the other hand, HCC represents a serious plague, significantly burdening the outcomes of chronic hepatitis B (HBV) and hepatitis C (HCV) virus-infected patients. Despite the recent progress in the management of this cancer, the overall prognosis for advanced-stage HCC patients continues to be poor, suggesting the absolute need to develop personalized healthcare strategies further. In this "cold war", machine learning techniques and neural networks are emerging as weapons, able to identify the patterns and biomarkers that would have normally escaped human observation. Using advanced algorithms, AI can analyze large volumes of clinical data and medical images (including routinely obtained ultrasound data) with an elevated accuracy, facilitating early diagnosis, improving the performance of predictive models, and supporting the multidisciplinary (oncologist, gastroenterologist, surgeon, radiologist) team in opting for the best "tailored" individual treatment. Additionally, AI can significantly contribute to enhancing the effectiveness of metabolomics-radiomics-based models, promoting the identification of specific HCC-pathogenetic molecules as new targets for realizing novel therapeutic regimens. In the era of precision medicine, integrating AI into routine clinical practice appears as a promising frontier, opening new avenues for liver cancer research and treatment.
Collapse
Affiliation(s)
- Mario Romeo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (C.N.); (C.B.); (F.D.N.); (P.V.); (A.F.)
| | - Marcello Dallio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (C.N.); (C.B.); (F.D.N.); (P.V.); (A.F.)
| | - Carmine Napolitano
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (C.N.); (C.B.); (F.D.N.); (P.V.); (A.F.)
| | - Claudio Basile
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (C.N.); (C.B.); (F.D.N.); (P.V.); (A.F.)
| | - Fiammetta Di Nardo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (C.N.); (C.B.); (F.D.N.); (P.V.); (A.F.)
| | - Paolo Vaia
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (C.N.); (C.B.); (F.D.N.); (P.V.); (A.F.)
| | | | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (C.N.); (C.B.); (F.D.N.); (P.V.); (A.F.)
| |
Collapse
|
7
|
Lanza C, Ascenti V, Amato GV, Pellegrino G, Triggiani S, Tintori J, Intrieri C, Angileri SA, Biondetti P, Carriero S, Torcia P, Ierardi AM, Carrafiello G. All You Need to Know About TACE: A Comprehensive Review of Indications, Techniques, Efficacy, Limits, and Technical Advancement. J Clin Med 2025; 14:314. [PMID: 39860320 PMCID: PMC11766109 DOI: 10.3390/jcm14020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is a proven and widely accepted treatment option for hepatocellular carcinoma and it is recommended as first-line non-curative therapy for BCLC B/intermediate HCC (preserved liver function, multifocal, no cancer-related symptoms) in patients without vascular involvement. Different types of TACE are available nowadays, including TAE, c-TACE, DEB-TACE, and DSM-TACE, but at present there is insufficient evidence to recommend one TACE technique over another and the choice is left to the operator. This review then aims to provide a comprehensive overview of the current literature on indications, types of procedures, safety, and efficacy of different TACE treatments.
Collapse
Affiliation(s)
- Carolina Lanza
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Velio Ascenti
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Gaetano Valerio Amato
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Giuseppe Pellegrino
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Sonia Triggiani
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Jacopo Tintori
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Cristina Intrieri
- Postgraduate School in Diangostic Imaging, Università degli Studi di Siena, 20122 Milan, Italy;
| | - Salvatore Alessio Angileri
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Pierpaolo Biondetti
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Serena Carriero
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Pierluca Torcia
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Anna Maria Ierardi
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Gianpaolo Carrafiello
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
- Faculty of Health Science, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| |
Collapse
|
8
|
Chiu SH, Li HC, Chang WC, Wu CC, Lin HH, Lo CH, Chang PY. Improving the prediction of patient survival with the aid of residual convolutional neural network (ResNet) in colorectal cancer with unresectable liver metastases treated with bevacizumab-based chemotherapy. Cancer Imaging 2024; 24:165. [PMID: 39696483 DOI: 10.1186/s40644-024-00809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND To verify overall survival predictions made with residual convolutional neural network-determined morphological response (ResNet-MR) in patients with unresectable synchronous liver-only metastatic colorectal cancer (mCRC) treated with bevacizumab-based chemotherapy (BBC). METHODS A retrospective review of liver-only mCRC patients treated with BBC from December 2011 to Apr 2021 was performed. Patients who had metachronous liver metastases or received locoregional treatment before the initiation of BBC were excluded. The percentage of downstaging to curative treatment and overall survival (OS) were recorded. Two abdominal radiologists evaluated portal venous phase CT images based on the morphological criteria and divided the images into Groups 1, 2, and 3. These images were used to establish the radiologists-determined morphological response (RD-MR), which classified patients into responders and non-responders based on the morphological change 3 months after the initiation of BBC. Then, the Group 1 and 3 images classified by the radiologists were input into ResNet as the training dataset. The trained ResNet then redivided the Group 2 images into Groups 1, 2 and 3. The ResNet-MR was determined on the basis of these redivided images and the initial Group 1 and 3 images classified by the radiologists. RESULTS Eighty-four patients were included in this study (53 males and 31 females, with a median age of 60.0 years). The follow-up time ranged from 10 to 86 months. A total of 407 CT images were input into ResNet as the training dataset. Both RD-MR and ResNet-MR correlated with OS (p value = 0.0167 and 0.0225, respectively). Regarding discriminatory ability for mortality, ResNet-MR had higher area under curve than RD-MR at both 1 year and 2 years and showed a significant difference in discriminatory ability (p-value = 0.0321) at 2 years. RD-MR classified 28 patients (33.3%) as responders, and ResNet-MR classified an additional 16 patients (19.0%) as responders; these 16 patients had longer OS than the remaining non-responders in the RD-MR group (27.49 versus 21.20 months, p value = 0.043) and had a higher percentage of downstaging (37.5% versus 17.5%, p value = 0.1610). CONCLUSIONS In CRC patients with liver metastases treated with BBC, prediction of survival can be improved with the aid of ResNet, enabling optimized individualized treatment.
Collapse
Affiliation(s)
- Sung-Hua Chiu
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Chi Li
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Cheng Wu
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Hsuan-Hwai Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsiang Lo
- Department of Radiotherapy, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Ying Chang
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
9
|
Nishida N. Advancements in Artificial Intelligence-Enhanced Imaging Diagnostics for the Management of Liver Disease-Applications and Challenges in Personalized Care. Bioengineering (Basel) 2024; 11:1243. [PMID: 39768061 PMCID: PMC11673237 DOI: 10.3390/bioengineering11121243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Liver disease can significantly impact life expectancy, making early diagnosis and therapeutic intervention critical challenges in medical care. Imaging diagnostics play a crucial role in diagnosing and managing liver diseases. Recently, the application of artificial intelligence (AI) in medical imaging analysis has become indispensable in healthcare. AI, trained on vast datasets of medical images, has sometimes demonstrated diagnostic accuracy that surpasses that of human experts. AI-assisted imaging diagnostics are expected to contribute significantly to the standardization of diagnostic quality. Furthermore, AI has the potential to identify image features that are imperceptible to humans, thereby playing an essential role in clinical decision-making. This capability enables physicians to make more accurate diagnoses and develop effective treatment strategies, ultimately improving patient outcomes. Additionally, AI is anticipated to become a powerful tool in personalized medicine. By integrating individual patient imaging data with clinical information, AI can propose optimal plans for treatment, making it an essential component in the provision of the most appropriate care for each patient. Current reports highlight the advantages of AI in managing liver diseases. As AI technology continues to evolve, it is expected to advance personalized diagnostics and treatments and contribute to overall improvements in healthcare quality.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama 589-8511, Japan
| |
Collapse
|
10
|
Loper MR, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging. Tomography 2024; 10:1814-1831. [PMID: 39590942 PMCID: PMC11598375 DOI: 10.3390/tomography10110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Advancements in artificial intelligence (AI) have significantly transformed the field of abdominal radiology, leading to an improvement in diagnostic and disease management capabilities. This narrative review seeks to evaluate the current standing of AI in abdominal imaging, with a focus on recent literature contributions. This work explores the diagnosis and characterization of hepatobiliary, pancreatic, gastric, colonic, and other pathologies. In addition, the role of AI has been observed to help differentiate renal, adrenal, and splenic disorders. Furthermore, workflow optimization strategies and quantitative imaging techniques used for the measurement and characterization of tissue properties, including radiomics and deep learning, are highlighted. An assessment of how these advancements enable more precise diagnosis, tumor description, and body composition evaluation is presented, which ultimately advances the clinical effectiveness and productivity of radiology. Despite the advancements of AI in abdominal imaging, technical, ethical, and legal challenges persist, and these challenges, as well as opportunities for future development, are highlighted.
Collapse
Affiliation(s)
| | - Mina S. Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
11
|
Peng J, Zhang X, Hu Y, He T, Huang J, Zhao M, Meng J. Deep learning to estimate response of concurrent chemoradiotherapy in non-small-cell lung carcinoma. J Transl Med 2024; 22:896. [PMID: 39367461 PMCID: PMC11451157 DOI: 10.1186/s12967-024-05708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Concurrent chemoradiotherapy (CCRT) is a crucial treatment for non-small cell lung carcinoma (NSCLC). However, the use of deep learning (DL) models for predicting the response to CCRT in NSCLC remains unexplored. Therefore, we constructed a DL model for estimating the response to CCRT in NSCLC and explored the associated biological signaling pathways. METHODS Overall, 229 patients with NSCLC were recruited from six hospitals. Based on contrast-enhanced computed tomography (CT) images, a three-dimensional ResNet50 algorithm was used to develop a model and validate the performance in predicting response and prognosis. An associated analysis was conducted on CT image visualization, RNA sequencing, and single-cell sequencing. RESULTS The DL model exhibited favorable predictive performance, with an area under the curve of 0.86 (95% confidence interval [CI] 0.79-0·92) in the training cohort and 0.84 (95% CI 0.75-0.94) in the validation cohort. The DL model (low score vs. high score) was an independent predictive factor; it was significantly associated with progression-free survival and overall survival in both the training (hazard ratio [HR] = 0.54 [0.36-0.80], P = 0.002; 0.44 [0.28-0.68], P < 0.001) and validation cohorts (HR = 0.46 [0.24-0.88], P = 0.008; 0.30 [0.14-0.60], P < 0.001). The DL model was also positively related to the cell adhesion molecules, the P53 signaling pathway, and natural killer cell-mediated cytotoxicity. Single-cell analysis revealed that differentially expressed genes were enriched in different immune cells. CONCLUSION The DL model demonstrated a strong predictive ability for determining the response in patients with NSCLC undergoing CCRT. Our findings contribute to understanding the potential biological mechanisms underlying treatment responses in these patients.
Collapse
Affiliation(s)
- Jie Peng
- Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China.
| | - Xudong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Hu
- Department of Oncology, Guiyang Public Health Clinical Center, Guiyang, China
| | - Tianchu He
- Department of Oncology, Qiandongnan Prefecture People's Hospital, Kaili, China
| | - Jun Huang
- Department of Oncology, Qiannan Prefecture Hospital of Traditional Chinese Medicine, Duyun, China
| | - Mingdan Zhao
- Department of Oncology, Qiannan Prefecture Hospital of Traditional Chinese Medicine, Duyun, China
| | - Jimei Meng
- Department of Oncology, Qiannan Prefecture People's Hospital, Duyun, China
| |
Collapse
|
12
|
Mostafa G, Mahmoud H, Abd El-Hafeez T, E ElAraby M. The power of deep learning in simplifying feature selection for hepatocellular carcinoma: a review. BMC Med Inform Decis Mak 2024; 24:287. [PMID: 39367397 PMCID: PMC11452940 DOI: 10.1186/s12911-024-02682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is a highly aggressive, prevalent, and deadly type of liver cancer. With the advent of deep learning techniques, significant advancements have been made in simplifying and optimizing the feature selection process. OBJECTIVE Our scoping review presents an overview of the various deep learning models and algorithms utilized to address feature selection for HCC. The paper highlights the strengths and limitations of each approach, along with their potential applications in clinical practice. Additionally, it discusses the benefits of using deep learning to identify relevant features and their impact on the accuracy and efficiency of diagnosis, prognosis, and treatment of HCC. DESIGN The review encompasses a comprehensive analysis of the research conducted in the past few years, focusing on the methodologies, datasets, and evaluation metrics adopted by different studies. The paper aims to identify the key trends and advancements in the field, shedding light on the promising areas for future research and development. RESULTS The findings of this review indicate that deep learning techniques have shown promising results in simplifying feature selection for HCC. By leveraging large-scale datasets and advanced neural network architectures, these methods have demonstrated improved accuracy and robustness in identifying predictive features. CONCLUSIONS We analyze published studies to reveal the state-of-the-art HCC prediction and showcase how deep learning can boost accuracy and decrease false positives. But we also acknowledge the challenges that remain in translating this potential into clinical reality.
Collapse
Affiliation(s)
- Ghada Mostafa
- Computer Science Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt.
- Computer Science Unit, Deraya University, EL-Minia, Egypt.
| | - Hamdi Mahmoud
- Computer Science Department, Faculty of Computers and Artificial Intelligence, Beni-Suef National University, Beni-Suef, Egypt.
| | - Tarek Abd El-Hafeez
- Department of Computer Science, Faculty of Science, Minia University, EL-Minia, Egypt.
- Computer Science Unit, Deraya University, EL-Minia, Egypt.
| | - Mohamed E ElAraby
- Computer Science Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
13
|
Calderaro J, Žigutytė L, Truhn D, Jaffe A, Kather JN. Artificial intelligence in liver cancer - new tools for research and patient management. Nat Rev Gastroenterol Hepatol 2024; 21:585-599. [PMID: 38627537 DOI: 10.1038/s41575-024-00919-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 07/31/2024]
Abstract
Liver cancer has high incidence and mortality globally. Artificial intelligence (AI) has advanced rapidly, influencing cancer care. AI systems are already approved for clinical use in some tumour types (for example, colorectal cancer screening). Crucially, research demonstrates that AI can analyse histopathology, radiology and natural language in liver cancer, and can replace manual tasks and access hidden information in routinely available clinical data. However, for liver cancer, few of these applications have translated into large-scale clinical trials or clinically approved products. Here, we advocate for the incorporation of AI in all stages of liver cancer management. We present a taxonomy of AI approaches in liver cancer, highlighting areas with academic and commercial potential, and outline a policy for AI-based liver cancer management, including interdisciplinary training of researchers, clinicians and patients. The potential of AI in liver cancer is immense, but effort is required to ensure that AI can fulfil expectations.
Collapse
Affiliation(s)
- Julien Calderaro
- Département de Pathologie, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Créteil, France
- Institut Mondor de Recherche Biomédicale, MINT-HEP Mondor Integrative Hepatology, Université Paris Est Créteil, Créteil, France
| | - Laura Žigutytė
- Else Kroener Fresenius Center for Digital Health (EKFZ), Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ariel Jaffe
- Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health (EKFZ), Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumour Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
14
|
Deng K, Chen T, Leng Z, Yang F, Lu T, Cao J, Pan W, Zheng Y. Radiomics as a tool for prognostic prediction in transarterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis. LA RADIOLOGIA MEDICA 2024; 129:1099-1117. [PMID: 39060885 PMCID: PMC11322429 DOI: 10.1007/s11547-024-01840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION Transarterial chemoembolization (TACE) is one of the predominant locoregional therapeutic modalities for addressing hepatocellular carcinoma (HCC). However, achieving precise prognostic predictions and effective patient selection remains a challenging pursuit. The primary objective of this systematic review and meta-analysis is to evaluate the efficacy of radiomics in forecasting the prognosis associated with TACE treatment. METHODS A comprehensive exploration of pertinent original studies was undertaken, encompassing databases of PubMed, Web of Science and Embase. The studies' quality was meticulously evaluated employing the quality assessment of diagnostic accuracy studies 2 (QUADAS-2), the radiomics quality score (RQS) and the METhodological RadiomICs Score (METRICS). Pooled statistics, along with 95% confidence intervals (95% CI), were computed for sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR). Additionally, a summary receiver operating characteristic curve (sROC) was generated. To discern potential sources of heterogeneity, meta-regression and subgroup analyses were performed. RESULTS The systematic review incorporated 29 studies, comprising a total of 5483 patients, with 14 studies involving 2691 patients qualifying for inclusion in the meta-analysis. The assessed studies exhibited commendable quality with regard to bias risk, with mean RQS of 12.90 ± 5.13 (35.82% ± 14.25%) and mean METRICS of 62.98% ± 14.58%. The pooled sensitivity was 0.83 (95% CI: 0.78-0.87), specificity was 0.86 (95% CI: 0.79-0.92), PLR was 6.13 (95% CI: 3.79-9.90), and NLR was 0.20 (95% CI: 0.15-0.27). The area under the sROC was 0.90 (95% CI: 0.87-0.93). Significant heterogeneity within all the included studies was observed, while meta-regression and subgroup analyses revealed homogeneous and promising findings in subgroups where principal methodological variables such as modeling algorithms, imaging modalities, and imaging phases were specified. CONCLUSION Radiomics models have exhibited robust predictive capabilities concerning prognosis subsequent to TACE, thereby presenting promising prospects for clinical translation.
Collapse
Affiliation(s)
- Kaige Deng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tong Chen
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Zijian Leng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fan Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tao Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingying Cao
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Weixuan Pan
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
15
|
Wu X, Liu M, Zhang X, Pan X, Cui X, Jin J, Sun H, Xiao C, Tong X, Ren L, Wang Y, Cao X. Elucidating Microglial Heterogeneity and Functions in Alzheimer's Disease Using Single-cell Analysis and Convolutional Neural Network Disease Model Construction. Sci Rep 2024; 14:17271. [PMID: 39068182 PMCID: PMC11283484 DOI: 10.1038/s41598-024-67537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
In this study, we conducted an in-depth exploration of Alzheimer's Disease (AD) by integrating state-of-the-art methodologies, including single-cell RNA sequencing (scRNA-seq), weighted gene co-expression network analysis (WGCNA), and a convolutional neural network (CNN) model. Focusing on the pivotal role of microglia in AD pathology, our analysis revealed 11 distinct microglial subclusters, with 4 exhibiting obviously alterations in AD and HC groups. The investigation of cell-cell communication networks unveiled intricate interactions between AD-related microglia and various cell types within the central nervous system (CNS). Integration of WGCNA and scRNA-seq facilitated the identification of critical genes associated with AD-related microglia, providing insights into their involvement in processes such as peptide chain elongation, synapse-related functions, and cell adhesion. The identification of 9 hub genes, including USP3, through the least absolute shrinkage and selection operator (LASSO) and COX regression analyses, presents potential therapeutic targets. Furthermore, the development of a CNN-based model showcases the application of deep learning in enhancing diagnostic accuracy for AD. Overall, our findings significantly contribute to unraveling the molecular intricacies of microglial responses in AD, offering promising avenues for targeted therapeutic interventions and improved diagnostic precision.
Collapse
Affiliation(s)
- Xinyi Wu
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China
| | - Mingyu Liu
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xinyue Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China
| | - Xue Pan
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China
| | - Xiaotong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China
| | - Jiahui Jin
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China
| | - Huanan Sun
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China
| | - Chuyu Xiao
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China
| | - Xiangyi Tong
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China
| | - Liou Ren
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China
| | - Yaxuan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China
| | - Xuezhao Cao
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
16
|
Li L, Liang X, Yu Y, Mao R, Han J, Peng C, Zhou J. Radiomics-Based Machine Learning Classification Strategy for Characterization of Hepatocellular Carcinoma on Contrast-Enhanced Ultrasound in High-Risk Patients with LI-RADS Category M Nodules. Indian J Radiol Imaging 2024; 34:405-415. [PMID: 38912232 PMCID: PMC11188750 DOI: 10.1055/s-0043-1777993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Objective Accurate differentiation within the LI-RADS category M (LR-M) between hepatocellular carcinoma (HCC) and non-HCC malignancies (mainly intrahepatic cholangiocarcinoma [CCA] and combined hepatocellular and cholangiocarcinoma [cHCC-CCA]) is an area of active investigation. We aimed to use radiomics-based machine learning classification strategy for differentiating HCC from CCA and cHCC-CCA on contrast-enhanced ultrasound (CEUS) images in high-risk patients with LR-M nodules. Methods A total of 159 high-risk patients with LR-M nodules (69 HCC and 90 CCA/cHCC-CCA) who underwent CEUS within 1 month before pathologic confirmation from January 2006 to December 2019 were retrospectively included (111 patients for training set and 48 for test set). The training set was used to build models, while the test set was used to compare models. For each observation, six CEUS images captured at predetermined time points (T1, peak enhancement after contrast injection; T2, 30 seconds; T3, 45 seconds; T4, 60 seconds; T5, 1-2 minutes; and T6, 2-3 minutes) were collected for tumor segmentation and selection of radiomics features, which included seven types of features: first-order statistics, shape (2D), gray-level co-occurrence matrix, gray-level size zone matrix, gray-level run length matrix, neighboring gray tone difference matrix, and gray-level dependence matrix. Clinical data and key radiomics features were employed to develop the clinical model, radiomics signature (RS), and combined RS-clinical (RS-C) model. The RS and RS-C model were built using the machine learning framework. The diagnostic performance of these three models was calculated and compared. Results Alpha-fetoprotein (AFP), CA19-9, enhancement pattern, and time of washout were included as independent factors for clinical model (all p < 0.05). Both the RS and RS-C model performed better than the clinical model in the test set (area under the curve [AUC] of 0.698 [0.571-0.812] for clinical model, 0.903 [0.830-0.970] for RS, and 0.912 [0.838-0.977] for the RS-C model; both p < 0.05). Conclusions Radiomics-based machine learning classifiers may be competent for differentiating HCC from CCA and cHCC-CCA in high-risk patients with LR-M nodules.
Collapse
Affiliation(s)
- Lingling Li
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaoxin Liang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yiwen Yu
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Rushuang Mao
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jing Han
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Chuan Peng
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jianhua Zhou
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Fite EL, Makary MS. Transarterial Chemoembolization Treatment Paradigms for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2430. [PMID: 39001491 PMCID: PMC11240648 DOI: 10.3390/cancers16132430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of liver cancer cases worldwide and is currently the most quickly increasing cause of cancer-related deaths in the United States. The 5-year survival rate for primary liver cancer is estimated to be below 20%, and HCC mortality is expected to increase by 41% by 2040. Currently, surgical resection is the first-line approach to definitive treatment of early-stage HCC. However, the majority of patients present with late-stage, unresectable disease due to the asymptomatic nature of early HCC. For patients who present with unresectable HCC, locoregional therapies such as transarterial chemoembolization (TACE) represent an alternative approach to HCC treatment. TACE is a minimally invasive, catheter-based technique that allows for targeted delivery of chemotherapy to tumor sites while occluding tumor-feeding blood vessels. In appropriately selected patients, outcomes for TACE therapy have been shown to be more favorable than supportive care or conservative management. The increasing incidence and mortality of HCC, in addition to the late-stage presentation of most HCC patients, demonstrates the need to expand the role of locoregional therapies in the treatment of HCC. TACE represents an appealing approach to HCC management, including disease control, palliation, and potentially curative-intent strategies. In this review, we will describe the current utility of TACE in the treatment of HCC, characterize the outcomes of patients treated with TACE across different HCC stages, and outline future applications of TACE in the treatment paradigm.
Collapse
Affiliation(s)
- Elliott L Fite
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mina S Makary
- Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Guan QL, Zhang HX, Gu JP, Cao GF, Ren WX. Omics-imaging signature-based nomogram to predict the progression-free survival of patients with hepatocellular carcinoma after transcatheter arterial chemoembolization. World J Clin Cases 2024; 12:3340-3350. [PMID: 38983440 PMCID: PMC11229926 DOI: 10.12998/wjcc.v12.i18.3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Enhanced magnetic resonance imaging (MRI) is widely used in the diagnosis, treatment and prognosis of hepatocellular carcinoma (HCC), but it can not effectively reflect the heterogeneity within the tumor and evaluate the effect after treatment. Preoperative imaging analysis of voxel changes can effectively reflect the internal heterogeneity of the tumor and evaluate the progression-free survival (PFS). AIM To predict the PFS of patients with HCC before operation by building a model with enhanced MRI images. METHODS Delineate the regions of interest (ROI) in arterial phase, portal venous phase and delayed phase of enhanced MRI. After extracting the combinatorial features of ROI, the features are fused to obtain deep learning radiomics (DLR)_Sig. DeLong's test was used to evaluate the diagnostic performance of different typological features. K-M analysis was applied to assess PFS in different risk groups, and the discriminative ability of the model was evaluated using the C-index. RESULTS Tumor diameter and diolame were independent factors influencing the prognosis of PFS. Delong's test revealed multi-phase combined radiomic features had significantly greater area under the curve values than did those of the individual phases (P < 0.05).In deep transfer learning (DTL) and DLR, significant differences were observed between the multi-phase and individual phases feature sets (P < 0.05). K-M survival analysis revealed a median survival time of high risk group and low risk group was 12.8 and 14.2 months, respectively, and the predicted probabilities of 6 months, 1 year and 2 years were 92%, 60%, 40% and 98%, 90%,73%, respectively. The C-index was 0.764, indicating relatively good consistency between the predicted and observed results. DTL and DLR have higher predictive value for 2-year PFS in nomogram. CONCLUSION Based on the multi-temporal characteristics of enhanced MRI and the constructed Nomograph, it provides a new strategy for predicting the PFS of transarterial chemoembolization treatment of HCC.
Collapse
Affiliation(s)
- Qing-Long Guan
- Department of Interventional Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous region, China
| | - Hai-Xiao Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous region, China
| | - Jun-Peng Gu
- Department of Interventional Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous region, China
| | - Geng-Fei Cao
- Department of Interventional Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous region, China
| | - Wei-Xin Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
19
|
Haghshomar M, Rodrigues D, Kalyan A, Velichko Y, Borhani A. Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies. Front Oncol 2024; 14:1362737. [PMID: 38779098 PMCID: PMC11109422 DOI: 10.3389/fonc.2024.1362737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Liver tumors, whether primary or metastatic, have emerged as a growing concern with substantial global health implications. Timely identification and characterization of liver tumors are pivotal factors in order to provide optimum treatment. Imaging is a crucial part of the detection of liver tumors; however, conventional imaging has shortcomings in the proper characterization of these tumors which leads to the need for tissue biopsy. Artificial intelligence (AI) and radiomics have recently emerged as investigational opportunities with the potential to enhance the detection and characterization of liver lesions. These advancements offer opportunities for better diagnostic accuracy, prognostication, and thereby improving patient care. In particular, these techniques have the potential to predict the histopathology, genotype, and immunophenotype of tumors based on imaging data, hence providing guidance for personalized treatment of such tumors. In this review, we outline the progression and potential of AI in the field of liver oncology imaging, specifically emphasizing manual radiomic techniques and deep learning-based representations. We discuss how these tools can aid in clinical decision-making challenges. These challenges encompass a broad range of tasks, from prognosticating patient outcomes, differentiating benign treatment-related factors and actual disease progression, recognizing uncommon response patterns, and even predicting the genetic and molecular characteristics of the tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of these AI-based techniques.
Collapse
Affiliation(s)
| | | | | | | | - Amir Borhani
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
20
|
Glielmo P, Fusco S, Gitto S, Zantonelli G, Albano D, Messina C, Sconfienza LM, Mauri G. Artificial intelligence in interventional radiology: state of the art. Eur Radiol Exp 2024; 8:62. [PMID: 38693468 PMCID: PMC11063019 DOI: 10.1186/s41747-024-00452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/26/2024] [Indexed: 05/03/2024] Open
Abstract
Artificial intelligence (AI) has demonstrated great potential in a wide variety of applications in interventional radiology (IR). Support for decision-making and outcome prediction, new functions and improvements in fluoroscopy, ultrasound, computed tomography, and magnetic resonance imaging, specifically in the field of IR, have all been investigated. Furthermore, AI represents a significant boost for fusion imaging and simulated reality, robotics, touchless software interactions, and virtual biopsy. The procedural nature, heterogeneity, and lack of standardisation slow down the process of adoption of AI in IR. Research in AI is in its early stages as current literature is based on pilot or proof of concept studies. The full range of possibilities is yet to be explored.Relevance statement Exploring AI's transformative potential, this article assesses its current applications and challenges in IR, offering insights into decision support and outcome prediction, imaging enhancements, robotics, and touchless interactions, shaping the future of patient care.Key points• AI adoption in IR is more complex compared to diagnostic radiology.• Current literature about AI in IR is in its early stages.• AI has the potential to revolutionise every aspect of IR.
Collapse
Affiliation(s)
- Pierluigi Glielmo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli, 31, 20133, Milan, Italy.
| | - Stefano Fusco
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli, 31, 20133, Milan, Italy
| | - Salvatore Gitto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli, 31, 20133, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso, 173, 20157, Milan, Italy
| | - Giulia Zantonelli
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli, 31, 20133, Milan, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso, 173, 20157, Milan, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via della Commenda, 10, 20122, Milan, Italy
| | - Carmelo Messina
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli, 31, 20133, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso, 173, 20157, Milan, Italy
| | - Luca Maria Sconfienza
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli, 31, 20133, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso, 173, 20157, Milan, Italy
| | - Giovanni Mauri
- Divisione di Radiologia Interventistica, IEO, IRCCS Istituto Europeo di Oncologia, Milan, Italy
| |
Collapse
|
21
|
Mirza-Aghazadeh-Attari M, Srinivas T, Kamireddy A, Kim A, Weiss CR. Radiomics Features Extracted From Pre- and Postprocedural Imaging in Early Prediction of Treatment Response in Patients Undergoing Transarterial Radioembolization of Hepatic Lesions: A Systematic Review, Meta-Analysis, and Quality Appraisal Study. J Am Coll Radiol 2024; 21:740-751. [PMID: 38220040 DOI: 10.1016/j.jacr.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
INTRODUCTION Transarterial radioembolization (TARE) is one of the most promising therapeutic options for hepatic masses. Radiomics features, which are quantitative numeric features extracted from medical images, are considered to have potential in predicting treatment response in TARE. This article aims to provide meta-analytic evidence and critically appraise the methodology of radiomics studies published in this regard. METHODS A systematic search was performed on PubMed, Scopus, Embase, and Web of Science. All relevant articles were retrieved, and the characteristics of the studies were extracted. The Radiomics Quality Score and Checklist for Evaluation of Radiomics Research were used to assess the methodologic quality of the studies. Pooled sensitivity, specificity, and area under the receiver operating characteristic curve in predicting objective response were determined. RESULTS The systematic review included 15 studies. The average Radiomics Quality Score of these studies was 11.4 ± 2.1, and the average Checklist for Evaluation of Radiomics Research score was 33± 6.7. There was a notable correlation (correlation coefficient = 0.73) between the two metrics. Adherence to quality measures differed considerably among the studies and even within different components of the same studies. The pooled sensitivity and specificity of the radiomics models in predicting complete or partial response were 83.5% (95% confidence interval 76%-88.9%) and 86.7% (95% confidence interval 78%-92%), respectively. CONCLUSION Radiomics models show great potential in predicting treatment response in TARE of hepatic lesions. However, the heterogeneity seen between the methodologic quality of studies may limit the generalizability of the results. Future initiatives should aim to develop radiomics signatures using multiple external datasets and adhere to quality measures in radiomics methodology.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Tara Srinivas
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Arun Kamireddy
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Alan Kim
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Clifford R Weiss
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
22
|
Zhang P, Gao C, Huang Y, Chen X, Pan Z, Wang L, Dong D, Li S, Qi X. Artificial intelligence in liver imaging: methods and applications. Hepatol Int 2024; 18:422-434. [PMID: 38376649 DOI: 10.1007/s12072-023-10630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/18/2023] [Indexed: 02/21/2024]
Abstract
Liver disease is regarded as one of the major health threats to humans. Radiographic assessments hold promise in terms of addressing the current demands for precisely diagnosing and treating liver diseases, and artificial intelligence (AI), which excels at automatically making quantitative assessments of complex medical image characteristics, has made great strides regarding the qualitative interpretation of medical imaging by clinicians. Here, we review the current state of medical-imaging-based AI methodologies and their applications concerning the management of liver diseases. We summarize the representative AI methodologies in liver imaging with focusing on deep learning, and illustrate their promising clinical applications across the spectrum of precise liver disease detection, diagnosis and treatment. We also address the current challenges and future perspectives of AI in liver imaging, with an emphasis on feature interpretability, multimodal data integration and multicenter study. Taken together, it is revealed that AI methodologies, together with the large volume of available medical image data, might impact the future of liver disease care.
Collapse
Affiliation(s)
- Peng Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Chaofei Gao
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Yifei Huang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangyi Chen
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Zhuoshi Pan
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Lan Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China.
| | - Xiaolong Qi
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Southeast University, Nanjing, China.
| |
Collapse
|
23
|
Tang Z, Mahmoodi S, Meng D, Darekar A, Vollmer B. Rule-based deep learning method for prognosis of neonatal hypoxic-ischemic encephalopathy by using susceptibility weighted image analysis. MAGMA (NEW YORK, N.Y.) 2024; 37:227-239. [PMID: 38252196 DOI: 10.1007/s10334-023-01139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVE Susceptibility weighted imaging (SWI) of neonatal hypoxic-ischemic brain injury can provide assistance in the prognosis of neonatal hypoxic-ischemic encephalopathy (HIE). We propose a convolutional neural network model to classify SWI images with HIE. MATERIALS AND METHODS Due to the lack of a large dataset, transfer learning method with fine-tuning a pre-trained ResNet 50 is introduced. We randomly select 11 datasets from patients with normal neurology outcomes (n = 31) and patients with abnormal neurology outcomes (n = 11) at 24 months of age to avoid bias in classification due to any imbalance in the data. RESULTS We develop a rule-based system to improve the classification performance, with an accuracy of 0.93 ± 0.09. We also compute heatmaps produced by the Grad-CAM technique to analyze which areas of SWI images contributed more to the classification patients with abnormal neurology outcome. CONCLUSION Such regions that are important in the classification accuracy can interpret the relationship between the brain regions affected by hypoxic-ischemic and neurodevelopmental outcomes of infants with HIE at the age of 2 years.
Collapse
Affiliation(s)
- Zhen Tang
- School of Computer Science and Technology, AnHui University of Technology, Maxiang Street, Maanshan, 243032, Anhui, China.
| | - Sasan Mahmoodi
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Di Meng
- School of Computer Science and Technology, AnHui University of Technology, Maxiang Street, Maanshan, 243032, Anhui, China
| | - Angela Darekar
- Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Brigitte Vollmer
- Clinical Neurosciences and Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
24
|
Nakao Y, Nishihara T, Sasaki R, Fukushima M, Miuma S, Miyaaki H, Akazawa Y, Nakao K. Investigation of deep learning model for predicting immune checkpoint inhibitor treatment efficacy on contrast-enhanced computed tomography images of hepatocellular carcinoma. Sci Rep 2024; 14:6576. [PMID: 38503827 PMCID: PMC10951210 DOI: 10.1038/s41598-024-57078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Although the use of immune checkpoint inhibitors (ICIs)-targeted agents for unresectable hepatocellular carcinoma (HCC) is promising, individual response variability exists. Therefore, we developed an artificial intelligence (AI)-based model to predict treatment efficacy using pre-ICIs contrast-enhanced computed tomography (CT) imaging characteristics. We evaluated the efficacy of atezolizumab and bevacizumab in 43 patients at the Nagasaki University Hospital from 2020 to 2022 using the modified Response Evaluation Criteria in Solid Tumors. A total of 197 Progressive Disease (PD), 271 Partial Response (PR), and 342 Stable Disease (SD) contrast CT images of HCC were used for training. We used ResNet-18 as the Convolutional Neural Network (CNN) model and YOLOv5, YOLOv7, YOLOv8 as the You Only Look Once (YOLO) model with precision-recall curves and class activation maps (CAMs) for diagnostic performance evaluation and model interpretation, respectively. The 3D t-distributed Stochastic Neighbor Embedding was used for image feature analysis. The YOLOv7 model demonstrated Precision 53.7%, Recall 100%, F1 score 69.8%, mAP@0.5 99.5% for PD, providing accurate and clinically versatile predictions by identifying decisive points. The ResNet-18 model had Precision 100% and Recall 100% for PD. However, the CAMs sites did not align with the tumors, suggesting the CNN model is not predicting that a given CT slice is PD, PR, or SD, but that it accurately predicts Individual Patient's CT slices. Preparing substantial training data for tumor drug effect prediction models is challenging compared to general tumor diagnosis models; hence, large-scale validation using an efficient YOLO model is warranted.
Collapse
Affiliation(s)
- Yasuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan.
| | - Takahito Nishihara
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
- Department of Gastroenterology and Hepatology, Isahaya General Hospital, 24-1 Eishohigashimachi, Isahaya, Nagasaki, Japan
| | - Ryu Sasaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Masanori Fukushima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Satoshi Miuma
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Yuko Akazawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| |
Collapse
|
25
|
Lu F, Meng Y, Song X, Li X, Liu Z, Gu C, Zheng X, Jing Y, Cai W, Pinyopornpanish K, Mancuso A, Romeiro FG, Méndez-Sánchez N, Qi X. Artificial Intelligence in Liver Diseases: Recent Advances. Adv Ther 2024; 41:967-990. [PMID: 38286960 DOI: 10.1007/s12325-024-02781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Liver diseases cause a significant burden on public health worldwide. In spite of great advances during recent years, there are still many challenges in the diagnosis and treatment of liver diseases. During recent years, artificial intelligence (AI) has been widely used for the diagnosis, risk stratification, and prognostic prediction of various diseases based on clinical datasets and medical images. Accumulative studies have shown its performance for diagnosing patients with nonalcoholic fatty liver disease and liver fibrosis and assessing their severity, and for predicting treatment response and recurrence of hepatocellular carcinoma, outcomes of liver transplantation recipients, and risk of drug-induced liver injury. Herein, we aim to comprehensively summarize the current evidence regarding diagnostic, prognostic, and/or therapeutic role of AI in these common liver diseases.
Collapse
Affiliation(s)
- Feifei Lu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
| | - Yao Meng
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaoting Song
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaotong Li
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Zhuang Liu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Chunru Gu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Xiaojie Zheng
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Yi Jing
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Wei Cai
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Andrea Mancuso
- Medicina Interna 1, Azienda di Rilievo Nazionale Ad Alta Specializzazione Civico-Di Cristina-Benfratelli, Palermo, Italy.
| | | | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation, National Autonomous University of Mexico, Mexico City, Mexico.
| | - Xingshun Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China.
- Postgraduate College, Dalian Medical University, Dalian, China.
- Postgraduate College, China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Barat M, Pellat A, Hoeffel C, Dohan A, Coriat R, Fishman EK, Nougaret S, Chu L, Soyer P. CT and MRI of abdominal cancers: current trends and perspectives in the era of radiomics and artificial intelligence. Jpn J Radiol 2024; 42:246-260. [PMID: 37926780 DOI: 10.1007/s11604-023-01504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Abdominal cancers continue to pose daily challenges to clinicians, radiologists and researchers. These challenges are faced at each stage of abdominal cancer management, including early detection, accurate characterization, precise assessment of tumor spread, preoperative planning when surgery is anticipated, prediction of tumor aggressiveness, response to therapy, and detection of recurrence. Technical advances in medical imaging, often in combination with imaging biomarkers, show great promise in addressing such challenges. Information extracted from imaging datasets owing to the application of radiomics can be used to further improve the diagnostic capabilities of imaging. However, the analysis of the huge amount of data provided by these advances is a difficult task in daily practice. Artificial intelligence has the potential to help radiologists in all these challenges. Notably, the applications of AI in the field of abdominal cancers are expanding and now include diverse approaches for cancer detection, diagnosis and classification, genomics and detection of genetic alterations, analysis of tumor microenvironment, identification of predictive biomarkers and follow-up. However, AI currently has some limitations that need further refinement for implementation in the clinical setting. This review article sums up recent advances in imaging of abdominal cancers in the field of image/data acquisition, tumor detection, tumor characterization, prognosis, and treatment response evaluation.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Anna Pellat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Christine Hoeffel
- Department of Radiology, Hopital Robert Debré, CHU Reims, Université Champagne-Ardennes, 51092, Reims, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Romain Coriat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stéphanie Nougaret
- Department of Radiology, Montpellier Cancer Institute, 34000, Montpellier, France
- PINKCC Lab, IRCM, U1194, 34000, Montpellier, France
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France.
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France.
| |
Collapse
|
27
|
Tandon R, Agrawal S, Rathore NPS, Mishra AK, Jain SK. A systematic review on deep learning-based automated cancer diagnosis models. J Cell Mol Med 2024; 28:e18144. [PMID: 38426930 PMCID: PMC10906380 DOI: 10.1111/jcmm.18144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Deep learning is gaining importance due to its wide range of applications. Many researchers have utilized deep learning (DL) models for the automated diagnosis of cancer patients. This paper provides a systematic review of DL models for automated diagnosis of cancer patients. Initially, various DL models for cancer diagnosis are presented. Five major categories of cancers such as breast, lung, liver, brain and cervical cancer are considered. As these categories of cancers have a very high percentage of occurrences with high mortality rate. The comparative analysis of different types of DL models is drawn for the diagnosis of cancer at early stages by considering the latest research articles from 2016 to 2022. After comprehensive comparative analysis, it is found that most of the researchers achieved appreciable accuracy with implementation of the convolutional neural network model. These utilized the pretrained models for automated diagnosis of cancer patients. Various shortcomings with the existing DL-based automated cancer diagnosis models are also been presented. Finally, future directions are discussed to facilitate further research for automated diagnosis of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Abhinava K. Mishra
- Molecular, Cellular and Developmental Biology DepartmentUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | | |
Collapse
|
28
|
Lee H, Chang W, Kim HY, Sung P, Cho J, Lee YJ, Kim YH. Improving radiomics reproducibility using deep learning-based image conversion of CT reconstruction algorithms in hepatocellular carcinoma patients. Eur Radiol 2024; 34:2036-2047. [PMID: 37656175 DOI: 10.1007/s00330-023-10135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVES CT reconstruction algorithms affect radiomics reproducibility. In this study, we evaluate the effect of deep learning-based image conversion on CT reconstruction algorithms. METHODS This study included 78 hepatocellular carcinoma (HCC) patients who underwent four-phase liver CTs comprising non-contrast, late arterial (LAP), portal venous (PVP), and delayed phase (DP), reconstructed using both filtered back projection (FBP) and advanced modeled iterative reconstruction (ADMIRE). PVP images were used to train a convolutional neural network (CNN) model to convert images from FBP to ADMIRE and vice versa. LAP, PVP, and DP images were used for validation and testing. Radiomic features were extracted for each patient with a semi-automatic segmentation tool. We used concordance correlation coefficients (CCCs) to evaluate the radiomics reproducibility for original FBP (oFBP) vs. original ADMIRE (oADMIRE), oFBP vs. converted FBP (cFBP), and oADMIRE vs. converted ADMIRE (cADMIRE). RESULTS In the test group including 30 patients, the CCC and proportion of reproducible features (CCC ≥ 0.85) for oFBP vs. oADMIRE were 0.65 and 32.9% (524/1595) for LAP, 0.65 and 35.9% (573/1595) for PVP, and 0.69 and 43.8% (699/1595) for DP. For oFBP vs. cFBP, the values increased to 0.92 and 83.9% (1339/1595) for LAP, 0.89 and 71.0% (1133/1595) for PVP, and 0.90 and 79.7% (1271/1595) for DP. Similarly, for oADMIRE vs. cADMIRE, the values increased to 0.87 and 68.1% (1086/1595) for LAP, 0.91 and 82.1% (1309/1595) for PVP, and 0.89 and 76.2% (1216/1595) for DP. CONCLUSIONS CNN-based image conversion between CT reconstruction algorithms improved the radiomics reproducibility of HCCs. CLINICAL RELEVANCE STATEMENT This study demonstrates that using a CNN-based image conversion technique significantly improves the reproducibility of radiomic features in HCCs, highlighting its potential for enhancing radiomics research in HCC patients. KEY POINTS Radiomics reproducibility of HCC was improved via CNN-based image conversion between two different CT reconstruction algorithms. This is the first clinical study to demonstrate improvements across a range of radiomic features in HCC patients. This study promotes the reproducibility and generalizability of different CT reconstruction algorithms in radiomics research.
Collapse
Affiliation(s)
- Heejin Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Won Chang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Hae Young Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Pamela Sung
- Department of Radiology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jungheum Cho
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoon Jin Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Young Hoon Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Zhang L, Jin Z, Li C, He Z, Zhang B, Chen Q, You J, Ma X, Shen H, Wang F, Wu L, Ma C, Zhang S. An interpretable machine learning model based on contrast-enhanced CT parameters for predicting treatment response to conventional transarterial chemoembolization in patients with hepatocellular carcinoma. LA RADIOLOGIA MEDICA 2024; 129:353-367. [PMID: 38353864 DOI: 10.1007/s11547-024-01785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/10/2024] [Indexed: 03/16/2024]
Abstract
OBJECTIVE To explore the potential of pre-therapy computed tomography (CT) parameters in predicting the treatment response to initial conventional TACE (cTACE) in intermediate-stage hepatocellular carcinoma (HCC) and develop an interpretable machine learning model. METHODS This retrospective study included 367 patients with intermediate-stage HCC who received cTACE as first-line therapy from three centers. We measured the mean attenuation values of target lesions on multi-phase contrast-enhanced CT and further calculated three CT parameters, including arterial (AER), portal venous (PER), and arterial portal venous (APR) enhancement ratios. We used logistic regression analysis to select discriminative features and trained three machine learning models via 5-fold cross-validation. The performance in predicting treatment response was evaluated in terms of discrimination, calibration, and clinical utility. Afterward, a Shapley additive explanation (SHAP) algorithm was leveraged to interpret the outputs of the best-performing model. RESULTS The mean diameter, ECOG performance status, and cirrhosis were the important clinical predictors of cTACE treatment response, by multiple logistic regression. Adding the CT parameters to clinical variables showed significant improvement in performance (net reclassification index, 0.318, P < 0.001). The Random Forest model (hereafter, RF-combined model) integrating CT parameters and clinical variables demonstrated the highest performance on external validation dataset (AUC of 0.800). The decision curve analysis illustrated the optimal clinical benefits of RF-combined model. This model could successfully stratify patients into responders and non-responders with distinct survival (P = 0.001). CONCLUSION The RF-combined model can serve as a robust and interpretable tool to identify the appropriate crowd for cTACE sessions, sparing patients from receiving ineffective and unnecessary treatments.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Zhe Jin
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Chen Li
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Zicong He
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Jingjing You
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Xiao Ma
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Hui Shen
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Lingeng Wu
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine Guangzhou, Guangdong, 510627, China.
| | - Cunwen Ma
- Department of Radiology, The People's Hospital of Wenshan Prefecture, No. 228 Kaihua East Road, Wenshan, 663000, Yunnan, China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China.
| |
Collapse
|
30
|
Ahn JC, Shah VH. Artificial intelligence in gastroenterology and hepatology. ARTIFICIAL INTELLIGENCE IN CLINICAL PRACTICE 2024:443-464. [DOI: 10.1016/b978-0-443-15688-5.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Peng J, Xiao L, Zhu H, Han L, Ma H. Determining the prognosis of Lung cancer from mutated genes using a deep learning survival model: a large multi-center study. Cancer Cell Int 2023; 23:262. [PMID: 37925409 PMCID: PMC10625246 DOI: 10.1186/s12935-023-03118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Gene status has become the focus of prognosis prediction. Furthermore, deep learning has frequently been implemented in medical imaging to diagnose, prognosticate, and evaluate treatment responses in patients with cancer. However, few deep learning survival (DLS) models based on mutational genes that are directly associated with patient prognosis in terms of progression-free survival (PFS) or overall survival (OS) have been reported. Additionally, DLS models have not been applied to determine IO-related prognosis based on mutational genes. Herein, we developed a deep learning method to predict the prognosis of patients with lung cancer treated with or without immunotherapy (IO). METHODS Samples from 6542 patients from different centers were subjected to genome sequencing. A DLS model based on multi-panels of somatic mutations was trained and validated to predict OS in patients treated without IO and PFS in patients treated with IO. RESULTS In patients treated without IO, the DLS model (low vs. high DLS) was trained using the training MSK-MET cohort (HR = 0.241 [0.213-0.273], P < 0.001) and tested in the inter-validation MSK-MET cohort (HR = 0.175 [0.148-0.206], P < 0.001). The DLS model was then validated with the OncoSG, MSK-CSC, and TCGA-LUAD cohorts (HR = 0.420 [0.272-0.649], P < 0.001; HR = 0.550 [0.424-0.714], P < 0.001; HR = 0.215 [0.159-0.291], P < 0.001, respectively). Subsequently, it was fine-tuned and retrained in patients treated with IO. The DLS model (low vs. high DLS) could predict PFS and OS in the MIND, MSKCC, and POPLAR/OAK cohorts (P < 0.001, respectively). Compared with tumor-node-metastasis staging, the COX model, tumor mutational burden, and programmed death-ligand 1 expression, the DLS model had the highest C-index in patients treated with or without IO. CONCLUSIONS The DLS model based on mutational genes can robustly predict the prognosis of patients with lung cancer treated with or without IO.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medical Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China.
| | - Lushan Xiao
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo Zhu
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lijie Han
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Honglian Ma
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
32
|
Hsieh C, Laguna A, Ikeda I, Maxwell AWP, Chapiro J, Nadolski G, Jiao Z, Bai HX. Using Machine Learning to Predict Response to Image-guided Therapies for Hepatocellular Carcinoma. Radiology 2023; 309:e222891. [PMID: 37934098 DOI: 10.1148/radiol.222891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Interventional oncology is a rapidly growing field with advances in minimally invasive image-guided local-regional treatments for hepatocellular carcinoma (HCC), including transarterial chemoembolization, transarterial radioembolization, and thermal ablation. However, current standardized clinical staging systems for HCC are limited in their ability to optimize patient selection for treatment as they rely primarily on serum markers and radiologist-defined imaging features. Given the variation in treatment responses, an updated scoring system that includes multidimensional aspects of the disease, including quantitative imaging features, serum markers, and functional biomarkers, is needed to optimally triage patients. With the vast amounts of numerical medical record data and imaging features, researchers have turned to image-based methods, such as radiomics and artificial intelligence (AI), to automatically extract and process multidimensional data from images. The synthesis of these data can provide clinically relevant results to guide personalized treatment plans and optimize resource utilization. Machine learning (ML) is a branch of AI in which a model learns from training data and makes effective predictions by teaching itself. This review article outlines the basics of ML and provides a comprehensive overview of its potential value in the prediction of treatment response in patients with HCC after minimally invasive image-guided therapy.
Collapse
Affiliation(s)
- Celina Hsieh
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Amanda Laguna
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Ian Ikeda
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Aaron W P Maxwell
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Julius Chapiro
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Gregory Nadolski
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Zhicheng Jiao
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Harrison X Bai
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| |
Collapse
|
33
|
Feng S, Wang J, Wang L, Qiu Q, Chen D, Su H, Li X, Xiao Y, Lin C. Current Status and Analysis of Machine Learning in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1184-1191. [PMID: 37577233 PMCID: PMC10412715 DOI: 10.14218/jcth.2022.00077s] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 02/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common tumor. Although the diagnosis and treatment of HCC have made great progress, the overall prognosis remains poor. As the core component of artificial intelligence, machine learning (ML) has developed rapidly in the past decade. In particular, ML has become widely used in the medical field, and it has helped in the diagnosis and treatment of cancer. Different algorithms of ML have different roles in diagnosis, treatment, and prognosis. This article reviews recent research, explains the application of different ML models in HCC, and provides suggestions for follow-up research.
Collapse
Affiliation(s)
- Sijia Feng
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Jianhua Wang
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Liheng Wang
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Qixuan Qiu
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Dongdong Chen
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Huo Su
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Xiaoli Li
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Yao Xiao
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Chiayen Lin
- General Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
34
|
Radiya K, Joakimsen HL, Mikalsen KØ, Aahlin EK, Lindsetmo RO, Mortensen KE. Performance and clinical applicability of machine learning in liver computed tomography imaging: a systematic review. Eur Radiol 2023; 33:6689-6717. [PMID: 37171491 PMCID: PMC10511359 DOI: 10.1007/s00330-023-09609-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES Machine learning (ML) for medical imaging is emerging for several organs and image modalities. Our objectives were to provide clinicians with an overview of this field by answering the following questions: (1) How is ML applied in liver computed tomography (CT) imaging? (2) How well do ML systems perform in liver CT imaging? (3) What are the clinical applications of ML in liver CT imaging? METHODS A systematic review was carried out according to the guidelines from the PRISMA-P statement. The search string focused on studies containing content relating to artificial intelligence, liver, and computed tomography. RESULTS One hundred ninety-one studies were included in the study. ML was applied to CT liver imaging by image analysis without clinicians' intervention in majority of studies while in newer studies the fusion of ML method with clinical intervention have been identified. Several were documented to perform very accurately on reliable but small data. Most models identified were deep learning-based, mainly using convolutional neural networks. Potentially many clinical applications of ML to CT liver imaging have been identified through our review including liver and its lesion segmentation and classification, segmentation of vascular structure inside the liver, fibrosis and cirrhosis staging, metastasis prediction, and evaluation of chemotherapy. CONCLUSION Several studies attempted to provide transparent result of the model. To make the model convenient for a clinical application, prospective clinical validation studies are in urgent call. Computer scientists and engineers should seek to cooperate with health professionals to ensure this. KEY POINTS • ML shows great potential for CT liver image tasks such as pixel-wise segmentation and classification of liver and liver lesions, fibrosis staging, metastasis prediction, and retrieval of relevant liver lesions from similar cases of other patients. • Despite presenting the result is not standardized, many studies have attempted to provide transparent results to interpret the machine learning method performance in the literature. • Prospective studies are in urgent call for clinical validation of ML method, preferably carried out by cooperation between clinicians and computer scientists.
Collapse
Affiliation(s)
- Keyur Radiya
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway.
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.
| | - Henrik Lykke Joakimsen
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Centre for Clinical Artificial Intelligence (SPKI), University Hospital of North Norway, Tromso, Norway
| | - Karl Øyvind Mikalsen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Centre for Clinical Artificial Intelligence (SPKI), University Hospital of North Norway, Tromso, Norway
- UiT Machine Learning Group, Department of Physics and Technology, UiT the Arctic University of Norway, Tromso, Norway
| | - Eirik Kjus Aahlin
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway
| | - Rolv-Ole Lindsetmo
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Head Clinic of Surgery, Oncology and Women Health, University Hospital of North Norway, Tromso, Norway
| | - Kim Erlend Mortensen
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| |
Collapse
|
35
|
Li K, Cheng Z, Zeng J, Shu Y, He X, Peng H, Zheng Y. Real-time and accurate estimation of surgical hemoglobin loss using deep learning-based medical sponges image analysis. Sci Rep 2023; 13:15504. [PMID: 37726378 PMCID: PMC10509143 DOI: 10.1038/s41598-023-42572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
Real-time and accurate estimation of surgical hemoglobin (Hb) loss is essential for fluid resuscitation management and evaluation of surgical techniques. In this study, we aimed to explore a novel surgical Hb loss estimation method using deep learning-based medical sponges image analysis. Whole blood samples of pre-measured Hb concentration were collected, and normal saline was added to simulate varying levels of Hb concentration. These blood samples were distributed across blank medical sponges to generate blood-soaked sponges. Eight hundred fifty-one blood-soaked sponges representing a wide range of blood dilutions were randomly divided 7:3 into a training group (n = 595) and a testing group (n = 256). A deep learning model based on the YOLOv5 network was used as the target region extraction and detection, and the three models (Feature extraction technology, ResNet-50, and SE-ResNet50) were trained to predict surgical Hb loss. Mean absolute error (MAE), mean absolute percentage error (MAPE), coefficient (R2) value, and the Bland-Altman analysis were calculated to evaluate the predictive performance in the testing group. The deep learning model based on SE-ResNet50 could predict surgical Hb loss with the best performance (R2 = 0.99, MAE = 11.09 mg, MAPE = 8.6%) compared with other predictive models, and Bland-Altman analysis also showed a bias of 1.343 mg with narrow limits of agreement (- 29.81 to 32.5 mg) between predictive and actual Hb loss. The interactive interface was also designed to display the real-time prediction of surgical Hb loss more intuitively. Thus, it is feasible for real-time estimation of surgical Hb loss using deep learning-based medical sponges image analysis, which was helpful for clinical decisions and technical evaluation.
Collapse
Affiliation(s)
- Kai Li
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zexin Cheng
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junjie Zeng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Shu
- Department of Laboratory Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaobo He
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hui Peng
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Yongbin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
36
|
Sun Z, Shi Z, Xin Y, Zhao S, Jiang H, Li J, Li J, Jiang H. Contrast-Enhanced CT Imaging Features Combined with Clinical Factors to Predict the Efficacy and Prognosis for Transarterial Chemoembolization of Hepatocellular Carcinoma. Acad Radiol 2023; 30 Suppl 1:S81-S91. [PMID: 36803649 DOI: 10.1016/j.acra.2022.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 02/19/2023]
Abstract
RATIONALE AND OBJECTIVES Accurate prediction of treatment response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC) is critical for precision treatment. This study aimed to develop a comprehensive model (DLRC) that incorporates contrast-enhanced computed tomography (CECT) images and clinical factors to predict the response to TACE in patients with HCC. MATERIALS AND METHODS A total of 399 patients with intermediate-stage HCC were included in this retrospective study. Deep learning and radiomic signatures were established based on arterial phase CECT images, Correlation analysis and the least absolute shrinkage and selection (LASSO) regression analysis were applied for features selection. The DLRC model incorporating deep learning radiomic signatures and clinical factors was developed using multivariate logistic regression. The area under the receiver operating characteristic curve (AUC), calibration curve and decision curve analysis (DCA) were used to evaluate the performance of the models. Kaplan-Meier survival curves based on the DLRC were plotted to assess overall survival in the follow-up cohort (n = 261). RESULTS The DLRC model was developed using 19 quantitative radiomic features, 10 deep learning features, and 3 clinical factors. The AUC of the DLRC model was 0.937 (95% confidence interval [CI], 0.912-0.962) and 0.909 (95% CI, 0.850-0.968) in the training and validation cohorts, respectively, outperforming models established with two signatures or a single signature (p < 0.05). Stratified analysis showed that the DLRC was not statistically different between subgroups (p > 0.05), and the DCA confirmed the greater net clinical benefit. In addition, multivariable cox regression revealed that DLRC model outputs were independent risk factors for the overall survival (hazard ratios: 1.20, 95% CI: 1.03-1.40; p = 0.019). CONCLUSION The DLRC model exhibited a remarkable accuracy in predicting response to TACE, and it can be utilized as a potent tool for precision treatment.
Collapse
Affiliation(s)
- Zhongqi Sun
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhongxing Shi
- Department of Interventional Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjie Xin
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Hao Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jinping Li
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
37
|
Pan J, Lv R, Wang Q, Zhao X, Liu J, Ai L. Discrimination between leucine-rich glioma-inactivated 1 antibody encephalitis and gamma-aminobutyric acid B receptor antibody encephalitis based on ResNet18. Vis Comput Ind Biomed Art 2023; 6:17. [PMID: 37592180 PMCID: PMC10435436 DOI: 10.1186/s42492-023-00144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
This study aims to discriminate between leucine-rich glioma-inactivated 1 (LGI1) antibody encephalitis and gamma-aminobutyric acid B (GABAB) receptor antibody encephalitis using a convolutional neural network (CNN) model. A total of 81 patients were recruited for this study. ResNet18, VGG16, and ResNet50 were trained and tested separately using 3828 positron emission tomography image slices that contained the medial temporal lobe (MTL) or basal ganglia (BG). Leave-one-out cross-validation at the patient level was used to evaluate the CNN models. The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) were generated to evaluate the CNN models. Based on the prediction results at slice level, a decision strategy was employed to evaluate the CNN models' performance at patient level. The ResNet18 model achieved the best performance at the slice (AUC = 0.86, accuracy = 80.28%) and patient levels (AUC = 0.98, accuracy = 96.30%). Specifically, at the slice level, 73.28% (1445/1972) of image slices with GABAB receptor antibody encephalitis and 87.72% (1628/1856) of image slices with LGI1 antibody encephalitis were accurately detected. At the patient level, 94.12% (16/17) of patients with GABAB receptor antibody encephalitis and 96.88% (62/64) of patients with LGI1 antibody encephalitis were accurately detected. Heatmaps of the image slices extracted using gradient-weighted class activation mapping indicated that the model focused on the MTL and BG for classification. In general, the ResNet18 model is a potential approach for discriminating between LGI1 and GABAB receptor antibody encephalitis. Metabolism in the MTL and BG is important for discriminating between these two encephalitis subtypes.
Collapse
Affiliation(s)
- Jian Pan
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Ruijuan Lv
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jiangang Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China.
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China.
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
38
|
Shams MY, El-kenawy ESM, Ibrahim A, Elshewey AM. A hybrid dipper throated optimization algorithm and particle swarm optimization (DTPSO) model for hepatocellular carcinoma (HCC) prediction. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
39
|
Wang Y, Liu Z, Xu H, Yang D, Jiang J, Asayo H, Yang Z. MRI-based radiomics model and nomogram for predicting the outcome of locoregional treatment in patients with hepatocellular carcinoma. BMC Med Imaging 2023; 23:67. [PMID: 37254089 DOI: 10.1186/s12880-023-01030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Prediction of locoregional treatment response is important for further therapeutic strategy in patients with hepatocellular carcinoma. This study aimed to investigate the role of MRI-based radiomics and nomogram for predicting the outcome of locoregional treatment in patients with hepatocellular carcinoma. METHODS The initial postoperative MRI after locoregional treatment in 100 patients with hepatocellular carcinoma was retrospectively analysed. The outcome was evaluated according to mRECIST at 6 months. We delineated the tumour volume of interest on arterial phase, portal venous phase and T2WI. The radiomics features were selected by using the independent sample t test or nonparametric Mann‒Whitney U test and the least absolute shrinkage and selection operator. The clinical variables were selected by using univariate analysis and multivariate analysis. The radiomics model and combined model were constructed via multivariate logistic regression analysis. A nomogram was constructed that incorporated the Rad score and selected clinical variables. RESULTS Fifty patients had an objective response, and fifty patients had a nonresponse. Nine radiomics features in the arterial phase were selected, but none of the portal venous phase or T2WI radiomics features were predictive of the treatment response. The best radiomics model showed an AUC of 0.833. Two clinical variables (hCRP and therapy method) were selected. The AUC of the combined model was 0.867. There was no significant difference in the AUC between the combined model and the best radiomics model (P = 0.573). Decision curve analysis demonstrated the nomogram has satisfactory predictive value. CONCLUSIONS MRI-based radiomics analysis may serve as a promising and noninvasive tool to predict outcome of locoregional treatment in HCC patients, which will facilitate the individualized follow-up and further therapeutic strategies guidance.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenhao Liu
- Department of Radiology, Affiliated Hospital of Changzhi Institute of Traditional Chinese Medicine, Changzhi, 046099, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jiahui Jiang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Himeko Asayo
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
40
|
Mansur A, Vrionis A, Charles JP, Hancel K, Panagides JC, Moloudi F, Iqbal S, Daye D. The Role of Artificial Intelligence in the Detection and Implementation of Biomarkers for Hepatocellular Carcinoma: Outlook and Opportunities. Cancers (Basel) 2023; 15:2928. [PMID: 37296890 PMCID: PMC10251861 DOI: 10.3390/cancers15112928] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Liver cancer is a leading cause of cancer-related death worldwide, and its early detection and treatment are crucial for improving morbidity and mortality. Biomarkers have the potential to facilitate the early diagnosis and management of liver cancer, but identifying and implementing effective biomarkers remains a major challenge. In recent years, artificial intelligence has emerged as a promising tool in the cancer sphere, and recent literature suggests that it is very promising in facilitating biomarker use in liver cancer. This review provides an overview of the status of AI-based biomarker research in liver cancer, with a focus on the detection and implementation of biomarkers for risk prediction, diagnosis, staging, prognostication, prediction of treatment response, and recurrence of liver cancers.
Collapse
Affiliation(s)
- Arian Mansur
- Harvard Medical School, Boston, MA 02115, USA; (A.M.); (J.C.P.)
| | - Andrea Vrionis
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (A.V.); (J.P.C.)
| | - Jonathan P. Charles
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (A.V.); (J.P.C.)
| | - Kayesha Hancel
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (K.H.); (F.M.); (S.I.)
| | | | - Farzad Moloudi
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (K.H.); (F.M.); (S.I.)
| | - Shams Iqbal
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (K.H.); (F.M.); (S.I.)
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (K.H.); (F.M.); (S.I.)
| |
Collapse
|
41
|
Moroney J, Trivella J, George B, White SB. A Paradigm Shift in Primary Liver Cancer Therapy Utilizing Genomics, Molecular Biomarkers, and Artificial Intelligence. Cancers (Basel) 2023; 15:2791. [PMID: 37345129 PMCID: PMC10216313 DOI: 10.3390/cancers15102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Primary liver cancer is the sixth most common cancer worldwide and the third leading cause of cancer-related death. Conventional therapies offer limited survival benefit despite improvements in locoregional liver-directed therapies, which highlights the underlying complexity of liver cancers. This review explores the latest research in primary liver cancer therapies, focusing on developments in genomics, molecular biomarkers, and artificial intelligence. Attention is also given to ongoing research and future directions of immunotherapy and locoregional therapies of primary liver cancers.
Collapse
Affiliation(s)
- James Moroney
- Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Juan Trivella
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ben George
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sarah B. White
- Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
42
|
Khalifa A, Obeid JS, Erno J, Rockey DC. The role of artificial intelligence in hepatology research and practice. Curr Opin Gastroenterol 2023; 39:175-180. [PMID: 37144534 DOI: 10.1097/mog.0000000000000926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW The use of artificial intelligence (AI) in examining large data sets has recently gained considerable attention to evaluate disease epidemiology, management approaches, and disease outcomes. The purpose of this review is to summarize the current role of AI in contemporary hepatology practice. RECENT FINDINGS AI was found to be diagnostically valuable in the evaluation of liver fibrosis, detection of cirrhosis, differentiation between compensated and decompensated cirrhosis, evaluation of portal hypertension, detection and differentiation of particular liver masses, preoperative evaluation of hepatocellular carcinoma as well as response to treatment and estimation of graft survival in patients undergoing liver transplantation. AI additionally holds great promise in examination of structured electronic health records data as well as in examination of clinical text (using various natural language processing approaches). Despite its contributions, AI has several limitations, including the quality of existing data, small cohorts with possible sampling bias and the lack of well validated easily reproducible models. SUMMARY AI and deep learning models have extensive applicability in assessing liver disease. However, multicenter randomized controlled trials are indispensable to validate their utility.
Collapse
Affiliation(s)
- Ali Khalifa
- Medical University of South Carolina Digestive Disease Research Center
| | - Jihad S Obeid
- Department of Biomedical Informatics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jason Erno
- Medical University of South Carolina Digestive Disease Research Center
| | - Don C Rockey
- Medical University of South Carolina Digestive Disease Research Center
| |
Collapse
|
43
|
Berbís MA, Paulano Godino F, Royuela del Val J, Alcalá Mata L, Luna A. Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver. World J Gastroenterol 2023; 29:1427-1445. [PMID: 36998424 PMCID: PMC10044858 DOI: 10.3748/wjg.v29.i9.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Artificial intelligence (AI) has experienced substantial progress over the last ten years in many fields of application, including healthcare. In hepatology and pancreatology, major attention to date has been paid to its application to the assisted or even automated interpretation of radiological images, where AI can generate accurate and reproducible imaging diagnosis, reducing the physicians’ workload. AI can provide automatic or semi-automatic segmentation and registration of the liver and pancreatic glands and lesions. Furthermore, using radiomics, AI can introduce new quantitative information which is not visible to the human eye to radiological reports. AI has been applied in the detection and characterization of focal lesions and diffuse diseases of the liver and pancreas, such as neoplasms, chronic hepatic disease, or acute or chronic pancreatitis, among others. These solutions have been applied to different imaging techniques commonly used to diagnose liver and pancreatic diseases, such as ultrasound, endoscopic ultrasonography, computerized tomography (CT), magnetic resonance imaging, and positron emission tomography/CT. However, AI is also applied in this context to many other relevant steps involved in a comprehensive clinical scenario to manage a gastroenterological patient. AI can also be applied to choose the most convenient test prescription, to improve image quality or accelerate its acquisition, and to predict patient prognosis and treatment response. In this review, we summarize the current evidence on the application of AI to hepatic and pancreatic radiology, not only in regard to the interpretation of images, but also to all the steps involved in the radiological workflow in a broader sense. Lastly, we discuss the challenges and future directions of the clinical application of AI methods.
Collapse
Affiliation(s)
- M Alvaro Berbís
- Department of Radiology, HT Médica, San Juan de Dios Hospital, Córdoba 14960, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid 28049, Spain
| | | | | | - Lidia Alcalá Mata
- Department of Radiology, HT Médica, Clínica las Nieves, Jaén 23007, Spain
| | - Antonio Luna
- Department of Radiology, HT Médica, Clínica las Nieves, Jaén 23007, Spain
| |
Collapse
|
44
|
An H, Bhatia I, Cao F, Huang Z, Xie C. CT texture analysis in predicting treatment response and survival in patients with hepatocellular carcinoma treated with transarterial chemoembolization using random forest models. BMC Cancer 2023; 23:201. [PMID: 36869284 PMCID: PMC9983241 DOI: 10.1186/s12885-023-10620-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Using texture features derived from contrast-enhanced computed tomography (CT) combined with general imaging features as well as clinical information to predict treatment response and survival in patients with hepatocellular carcinoma (HCC) who received transarterial chemoembolization (TACE) treatment. METHODS From January 2014 to November 2022, 289 patients with HCC who underwent TACE were retrospectively reviewed. Their clinical information was documented. Their treatment-naïve contrast-enhanced CTs were retrieved and reviewed by two independent radiologists. Four general imaging features were evaluated. Texture features were extracted based on the regions of interest (ROIs) drawn on the slice with the largest axial diameter of all lesions using Pyradiomics v3.0.1. After excluding features with low reproducibility and low predictive value, the remaining features were selected for further analyses. The data were randomly divided in a ratio of 8:2 for model training and testing. Random forest classifiers were built to predict patient response to TACE treatment. Random survival forest models were constructed to predict overall survival (OS) and progress-free survival (PFS). RESULTS We retrospectively evaluated 289 patients (55.4 ± 12.4 years old) with HCC treated with TACE. Twenty features, including 2 clinical features (ALT and AFP levels), 1 general imaging feature (presence or absence of portal vein thrombus) and 17 texture features, were included in model construction. The random forest classifier achieved an area under the curve (AUC) of 0.947 with an accuracy of 89.5% for predicting treatment response. The random survival forest showed good predictive performance with out-of-bag error rate of 0.347 (0.374) and a continuous ranked probability score (CRPS) of 0.170 (0.067) for the prediction of OS (PFS). CONCLUSIONS Random forest algorithm based on texture features combined with general imaging features and clinical information is a robust method for predicting prognosis in patients with HCC treated with TACE, which may help avoid additional examinations and assist in treatment planning.
Collapse
Affiliation(s)
- He An
- Diagnostic Imaging Division, Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Inderjeet Bhatia
- Department of Cardiothoracic Surgery, Queen Mary Hospital, Hong Kong, China
| | - Fei Cao
- Minimally Invasive Interventional Division, Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zilin Huang
- Minimally Invasive Interventional Division, Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuanmiao Xie
- Diagnostic Imaging Division, Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
45
|
Chen M, Kong C, Qiao E, Chen Y, Chen W, Jiang X, Fang S, Zhang D, Chen M, Chen W, Ji J. Multi-algorithms analysis for pre-treatment prediction of response to transarterial chemoembolization in hepatocellular carcinoma on multiphase MRI. Insights Imaging 2023; 14:38. [PMID: 36854872 PMCID: PMC9975141 DOI: 10.1186/s13244-023-01380-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/29/2023] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVES This study compared the accuracy of predicting transarterial chemoembolization (TACE) outcomes for hepatocellular carcinoma (HCC) patients in the four different classifiers, and comprehensive models were constructed to improve predictive performance. METHODS The subjects recruited for this study were HCC patients who had received TACE treatment from April 2016 to June 2021. All participants underwent enhanced MRI scans before and after intervention, and pertinent clinical information was collected. Registry data for the 144 patients were randomly assigned to training and test datasets. The robustness of the trained models was verified by another independent external validation set of 28 HCC patients. The following classifiers were employed in the radiomics experiment: machine learning classifiers k-nearest neighbor (KNN), support vector machine (SVM), the least absolute shrinkage and selection operator (Lasso), and deep learning classifier deep neural network (DNN). RESULTS DNN and Lasso models were comparable in the training set, while DNN performed better in the test set and the external validation set. The CD model (Clinical & DNN merged model) achieved an AUC of 0.974 (95% CI: 0.951-0.998) in the training set, superior to other models whose AUCs varied from 0.637 to 0.943 (p < 0.05). The CD model generalized well on the test set (AUC = 0.831) and external validation set (AUC = 0.735). CONCLUSIONS DNN model performs better than other classifiers in predicting TACE response. Integrating with clinically significant factors, the CD model may be valuable in pre-treatment counseling of HCC patients who may benefit the most from TACE intervention.
Collapse
Affiliation(s)
- Mingzhen Chen
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China
| | - Chunli Kong
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Enqi Qiao
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China
| | - Yaning Chen
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China
| | - Weiyue Chen
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Xiaole Jiang
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Shiji Fang
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Dengke Zhang
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Minjiang Chen
- grid.469539.40000 0004 1758 2449Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000 China ,grid.268099.c0000 0001 0348 3990Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000 China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000, China. .,Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China. .,Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, 323000, China. .,Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China. .,Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China.
| |
Collapse
|
46
|
Atasever S, Azginoglu N, Terzi DS, Terzi R. A comprehensive survey of deep learning research on medical image analysis with focus on transfer learning. Clin Imaging 2023; 94:18-41. [PMID: 36462229 DOI: 10.1016/j.clinimag.2022.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
This survey aims to identify commonly used methods, datasets, future trends, knowledge gaps, constraints, and limitations in the field to provide an overview of current solutions used in medical image analysis in parallel with the rapid developments in transfer learning (TL). Unlike previous studies, this survey grouped the last five years of current studies for the period between January 2017 and February 2021 according to different anatomical regions and detailed the modality, medical task, TL method, source data, target data, and public or private datasets used in medical imaging. Also, it provides readers with detailed information on technical challenges, opportunities, and future research trends. In this way, an overview of recent developments is provided to help researchers to select the most effective and efficient methods and access widely used and publicly available medical datasets, research gaps, and limitations of the available literature.
Collapse
Affiliation(s)
- Sema Atasever
- Computer Engineering Department, Nevsehir Hacı Bektas Veli University, Nevsehir, Turkey.
| | - Nuh Azginoglu
- Computer Engineering Department, Kayseri University, Kayseri, Turkey.
| | | | - Ramazan Terzi
- Computer Engineering Department, Amasya University, Amasya, Turkey.
| |
Collapse
|
47
|
Li J, Li C, Zhu G, Yang J, Zhang Y, Yu Z, Xia J. A novel nomogram to predict survival of patients with hepatocellular carcinoma after transarterial chemoembolization: a tool for retreatment decision making. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:68. [PMID: 36819596 PMCID: PMC9929754 DOI: 10.21037/atm-22-6513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Background There is still no standardized policy regarding how to identify patients who are not benefiting from transarterial chemoembolization (TACE). We aimed to establish and validate a nomogram model to predict the survival rate of hepatocellular carcinoma (HCC) patients after TACE. Methods A total of 578 HCC patients undergoing initial TACE at the First Affiliated Hospital of Wenzhou Medical University were retrospectively recruited to the study. The patients were randomly divided into 2 cohorts: a training cohort (n=405) and a validation cohort (n=173). To develop the nomogram, Cox regression analyses were used to identify independent risk factors. The performances of the nomogram were assessed by concordance index (C-index), calibration curves, and decision curve analysis (DCA), and were compared to 4 developed prognostic models. Results We used 5 independent risk factors including postoperative albumin-bilirubin (ALBI) grade, tumor diameter, number of tumors, portal vein invasion, and tumor response to develop the nomogram. Calibration curves showed consistency between the nomogram and the actual observation. The C-index of the nomogram was 0.753 [95% confidence interval (CI): 0.722, 0.784], which was higher than the other prognostic models (P<0.001). The DCA showed that the nomogram had the highest net benefit among the models. According to predicted survival risk, the nomogram could divide patients into 3 groups (P<0.001). All the results were verified in the validation cohort. Conclusions This study developed and validated a nomogram model for HCC patients undergoing TACE, which could predict the survival rate and provide support for further treatment strategies.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengjun Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guoqing Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junhui Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunjie Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinglin Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;,Department of Interventional Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;,Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
48
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
49
|
Posa A, Barbieri P, Mazza G, Tanzilli A, Natale L, Sala E, Iezzi R. Technological Advancements in Interventional Oncology. Diagnostics (Basel) 2023; 13:228. [PMID: 36673038 PMCID: PMC9857620 DOI: 10.3390/diagnostics13020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Interventional radiology, and particularly interventional oncology, represents one of the medical subspecialties in which technological advancements and innovations play an utterly fundamental role. Artificial intelligence, consisting of big data analysis and feature extrapolation through computational algorithms for disease diagnosis and treatment response evaluation, is nowadays playing an increasingly important role in various healthcare fields and applications, from diagnosis to treatment response prediction. One of the fields which greatly benefits from artificial intelligence is interventional oncology. In addition, digital health, consisting of practical technological applications, can assist healthcare practitioners in their daily activities. This review aims to cover the most useful, established, and interesting artificial intelligence and digital health innovations and updates, to help physicians become more and more involved in their use in clinical practice, particularly in the field of interventional oncology.
Collapse
Affiliation(s)
- Alessandro Posa
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Pierluigi Barbieri
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giulia Mazza
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Alessandro Tanzilli
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Luigi Natale
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Istituto di Radiodiagnostica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Evis Sala
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Istituto di Radiodiagnostica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology—A. Gemelli University Hospital Foundation IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Istituto di Radiodiagnostica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
50
|
Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging. Diagn Interv Imaging 2023; 104:24-36. [PMID: 36272931 DOI: 10.1016/j.diii.2022.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and currently the third-leading cause of cancer-related death worldwide. Recently, artificial intelligence (AI) has emerged as an important tool to improve clinical management of HCC, including for diagnosis, prognostication and evaluation of treatment response. Different AI approaches, such as machine learning and deep learning, are both based on the concept of developing prediction algorithms from large amounts of data, or big data. The era of digital medicine has led to a rapidly expanding amount of routinely collected health data which can be leveraged for the development of AI models. Various studies have constructed AI models by using features extracted from ultrasound imaging, computed tomography imaging and magnetic resonance imaging. Most of these models have used convolutional neural networks. These tools have shown promising results for HCC detection, characterization of liver lesions and liver/tumor segmentation. Regarding treatment, studies have outlined a role for AI in evaluation of treatment response and improvement of pre-treatment planning. Several challenges remain to fully integrate AI models in clinical practice. Future research is still needed to robustly evaluate AI algorithms in prospective trials, and improve interpretability, generalizability and transparency. If such challenges can be overcome, AI has the potential to profoundly change the management of patients with HCC. The purpose of this review was to sum up current evidence on AI approaches using imaging for the clinical management of HCC.
Collapse
|