1
|
Voogd DWM, Lucassen MJJ, van der Noll R, Zielhuis SWJ, Boss D, Beijnen JH, Rosing H, Tibben M, Huitema ADR, Schellens JHM, Steeghs N. Phase I Study of Sorafenib Combined with Gemcitabine and Carboplatin in Patients with Advanced Solid Tumors. Oncol Ther 2025:10.1007/s40487-025-00340-8. [PMID: 40366624 DOI: 10.1007/s40487-025-00340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
INTRODUCTION A combination of targeted anticancer drugs with cytotoxic therapy can potentially overcome multidrug resistance. The multi-target kinase inhibitor sorafenib demonstrates synergistic activity when combined with chemotherapeutics in preclinical models. This phase I trial aimed to assess safety, tolerability, efficacy, and pharmacokinetics of sorafenib with gemcitabine and carboplatin. METHODS This single-center, open-label, dose-escalation and dose-expansion study included patients with advanced solid tumors considered for palliative treatment with gemcitabine and carboplatin. The maximum tolerated dose (MTD) was determined using a classic 3 + 3 dose-escalation design. Antitumor activity was evaluated every two treatment cycles. RESULTS In total, 45 patients received treatment. Of the patients, 49% (n = 22) were male, and median age was 58 years [range: 27-72 years]. After dose-escalation, sorafenib 400 mg once daily (q.d.) on days 1-21, gemcitabine 500 mg/m2 on day 1 and day 8 (D1D8), and carboplatin AUC3 on day 1 (D1) every 3 weeks (Q3W) were established as the MTD. Grade 4 treatment-related toxicities, all hematological, were seen in 22% of the patients. Frequently observed grade 3 adverse events were neutropenia (33%), thrombocytopenia (31%), leukopenia (16%), and fatigue (13%). Dose reductions were required in 33% of the patients across all dose levels. Disease control rate after 18 weeks was 50%. Median progression-free survival and overall survival were 5.4 months and 10.1 months, respectively. CONCLUSIONS A recommended phase 2 regimen of sorafenib 400 mg q.d. combined with gemcitabine 500 mg/m2 D1D8 and carboplatin AUC3 D1, Q3W showed a manageable toxicity profile. This combination could provide an effective treatment option for patients in whom other therapies have failed since antitumor activity was seen across heavily pretreated tumor types. Alternative dosing regimens should be studied to optimize the dosing schedule. TRIAL REGISTRATION EudraCT: 2007-004129-75.
Collapse
Affiliation(s)
- Daphne W M Voogd
- Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Merel J J Lucassen
- Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Ruud van der Noll
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sybrand W J Zielhuis
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David Boss
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Matthijs Tibben
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Bonsignore G, Ranzato E, Martinotti S. Unraveling BOLD-100 synergistic potential in pleural mesothelioma treatment: an in vitro study. Invest New Drugs 2025:10.1007/s10637-025-01540-9. [PMID: 40338466 DOI: 10.1007/s10637-025-01540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
Pleural mesothelioma (PM) is a rare cancer affecting the pleural layer on the body's serosal surfaces. Exposure to asbestos fibers, a naturally occurring fibrous material with insulating characteristics, contributes to PM's prevalence. PM has a long latency period, making major surgery ineffective and necessitating systemic treatment. Despite the progress of mesothelioma treatment, the median survival is very poor; so, there is a strong need to explore new therapeutic approaches. This study explores the use of BOLD-100, a novel therapeutic drug that targets GRP78, a protein overexpressed in PM cells. BOLD-100, a ruthenium-based small molecule therapeutic drug, is being investigated for the treatment of advanced gastrointestinal malignancies in conjunction with chemotherapy. Our aim is to investigate cellular responses of several PM cell lines to a regimen that includes BOLD-100 in addition to other commonly used treatments. BOLD-100 is a ruthenium-based anticancer therapeutic.
Collapse
Affiliation(s)
- Gregorio Bonsignore
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
- Laboratorio Integrato di Ricerca Preclinica, AOU "SS Antonio E Biagio e Cesare Arrigo", Via Venezia 16, 15121, Alessandria, Italy
| | - Elia Ranzato
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy.
- Laboratorio Integrato di Ricerca Preclinica, AOU "SS Antonio E Biagio e Cesare Arrigo", Via Venezia 16, 15121, Alessandria, Italy.
| | - Simona Martinotti
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
- Laboratorio Integrato di Ricerca Preclinica, AOU "SS Antonio E Biagio e Cesare Arrigo", Via Venezia 16, 15121, Alessandria, Italy
| |
Collapse
|
3
|
Ximei Wu, Lin C, Wang H, Gao J, Chen S, Zhou Z, Zhang L, Liu B, Wei M. Connectivity-map unveils Gemcitabine's efficacy in overcoming nelarabine resistance in T-cell acute lymphoblastic leukemia. Biochem Biophys Res Commun 2025; 769:151971. [PMID: 40354678 DOI: 10.1016/j.bbrc.2025.151971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/08/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Resistance to Nelarabine, the primary FDA-approved therapy for relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL), is a major obstacle in this high-risk pediatric malignancy. To identify alternative therapies, we have developed two nelarabine-resistant T-ALL cell models and utilized the Connectivity Map (CMap) database to screen for compounds reversing resistance-associated expression profiles., Among the inhibitors screened, gemcitabine emerged as a lead candidate by inhibiting cell proliferation, inducing apoptosis, and suppressing DNA replication in resistant T-ALL cells. RNA sequencing revealed global transcriptomic changes in cells treated with gemcitabine, which were further validated by qRT-PCR. Critically, gemcitabine effectively controlled bone marrow tumor growth in an NSG mouse model with good tolerability. These findings highlight the potential of gemcitabine as a promising therapeutic strategy to overcome nelarabine-resistance in T-ALL.
Collapse
Affiliation(s)
- Ximei Wu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, China; School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Chunxu Lin
- The Eighth People's Hospital of Longgang District, Shenzhen, China
| | - Hui Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, China; School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Jingjing Gao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, China; School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Suchang Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, China; School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Zitao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, China.
| | - Min Wei
- Center for Drug Research and Development, Guangdong Pharmaceutical University, China.
| |
Collapse
|
4
|
Choueiry F, Xu R, Gold A, Jung H, Zhu J. Online monitoring and stable isotope tracing of cancer associated volatiles in murine model captures tumor associated markers in vivo. Anal Chim Acta 2025; 1349:343826. [PMID: 40074456 DOI: 10.1016/j.aca.2025.343826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND The imperative need for early cancer detection, which is crucial for improved survival rates in many severe cancers such as lung cancer, remains challenging due to the lack of reliable early-diagnosis technologies and robust biomarkers. To address this gap, innovative screening platforms are essential to unveil the chemical signatures of lung cancer and its treatments. It is established that the oxidative tumor environment induces alterations in host metabolic processes and influences endogenous volatile synthesis. Despite efforts, consensus on unique volatile markers for cancer detection has been elusive, partly due to genetic variation leading to metabolic heterogeneity in humans and the lack of standardized procedures for analytical analyses. RESULTS In this study, we utilized advanced secondary electrospray ionization (SESI) technique coupled with a high-resolution mass spectrometer (HRMS) to non-invasively monitor lung cancer volatiles in a pre-clinical mouse model in real time. Our findings revealed 651 dysregulated volatile features upon cancer onset and identified 36 features correlated with tumor size. Endogenous tracing of glucose metabolism highlighted the γ-glutamyl cycle as a downstream pathway implicated in lung cancer, driven by an imbalance in glutathione metabolism due to reactive oxygen species (ROS) accumulation. Notably, our study unveiled unique volatile changes associated with gemcitabine and cisplatin treatment, which significantly abrogated tumor growth in vivo. Furthermore, we identified 5-oxoproline as a volatile metabolite indicative of lung cancer response to treatment. SIGNIFICANCE In conclusion, our SESI-HRMS based analysis of pre-clinical model systematically explores the volatile signatures of lung cancer, and provides a novel non-invasive platform that possess great potential for the real-time, confident, and sensitive detection and monitoring of lung cancer.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Rui Xu
- Department of Human Sciences, The Ohio State University, USA
| | - Andrew Gold
- Department of Human Sciences, The Ohio State University, USA
| | - Hyein Jung
- Department of Human Sciences, The Ohio State University, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Eldin MH, Arafa KK, Gamal O, Keshk S, El-Sherbiny IM. Inhalable pH-responsive core-shell nanocarriers with PEGylated chitosan/alginate layer-by-layer coating for sequential drug release in lung cancer therapy. Int J Biol Macromol 2025; 307:141851. [PMID: 40058440 DOI: 10.1016/j.ijbiomac.2025.141851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Lung cancer remains one of the most lethal malignancies globally, underscoring the dire need for effective therapy. Scheduled administration of gemcitabine (GMC) followed by docetaxel (DTX) is clinically employed. Yet, the detrimental systemic toxicity and pharmacokinetic inadequacies such as the short plasma half-life of the former and poor bioavailability of the latter limit their use. Herein, we report the development of a novel inhalable nanocarrier system (NC) to enable the sequential release of drugs as per the clinical protocol. The developed NC has core-shell structure, with aminated mesoporous silica (MSNs) homing DTX at the core; enclosed within the polyanionic alginate (Alg) to prevent premature DTX release and serve as an intermediary sellotape layer. The outermost shell is polycationic as-synthesized PEGylated-chitosan (PEG-CS) loaded with GMC, to ensure stealth characteristics and prompt release of GMC. The newly developed PEG-CS/Alg@MSNs core-shell nanocarriers were comprehensively characterized. Besides it was evaluated in-vitro on A549 cell line and its in-vivo biodistribution was determined using jet nebulizer. Physicochemical analysis confirmed spherical core-shell NCs, 150 nm in size with +32 ± 1.5 mV surface charge. Drug entrapment efficiency was 75.2 ± 2.1 % for DTX and 32.5 ± 6.5 % for GMC, with sequential release in physiological conditions. Next Generation Impactor (NGI) experiments showed effective lung deposition with favorable aerosolization behavior. In-vitro assays on A549 cells revealed enhanced lung cancer treatment. In-vivo biodistribution confirmed lung accumulation, and histopathology indicated safety of NC. Conclusively, inhalable targeted NCs deem promising for lung cancer treatment.
Collapse
Affiliation(s)
- Mariam Hossam Eldin
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt
| | - Kholoud K Arafa
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt
| | - Osman Gamal
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt
| | - Sarah Keshk
- Center of Genomics, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt.
| |
Collapse
|
6
|
Kicken MP, Deenen MJ, van der Wekken AJ, van den Borne BEEM, van den Heuvel MM, Ter Heine R. Opportunities for Precision Dosing of Cytotoxic Drugs in Non-Small Cell Lung Cancer: Bridging the Gap in Precision Medicine. Clin Pharmacokinet 2025; 64:511-531. [PMID: 40045151 PMCID: PMC12041064 DOI: 10.1007/s40262-025-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2025] [Indexed: 04/30/2025]
Abstract
Precision dosing of classical cytotoxic drugs in oncology remains underdeveloped, especially in treating non-small cell lung cancer (NSCLC). Despite advancements in targeted therapy and immunotherapy, classical cytotoxic agents continue to play a critical role in NSCLC treatment. However, the current body surface area (BSA)-based dosing of these agents fails to adequately address interindividual variability in pharmacokinetics. By better considering patient characteristics, treatment outcomes can be improved, reducing risks of under-exposure and over-exposure. This narrative review explores opportunities for precision dosing for key cytotoxic agents used in NSCLC treatment: cisplatin, carboplatin, pemetrexed, docetaxel, (nab-)paclitaxel, gemcitabine, and vinorelbine. A comprehensive review of regulatory reports and an extensive literature search were conducted to evaluate current dosing practices, pharmacokinetics, pharmacodynamics, and exposure-response relationships. Our findings highlight promising developments in precision dosing, although the number of directly implementable strategies remains limited. The most compelling evidence supports using the biomarker cystatin C for more precise carboplatin dosing and adopting weekly dosing schedules for docetaxel, paclitaxel, and nab-paclitaxel. Additionally, we recommend direct implementation of therapeutic drug monitoring (TDM)-guided dosing for paclitaxel. This review stresses the urgent need to reassess conventional dosing paradigms for classical cytotoxic agents to better align with the principles of the precision dosing framework. Our recommendations show the potential of precision dosing to improve NSCLC treatment, addressing gaps in the current dosing of classical cytotoxic drugs. Given the large NSCLC patient population, optimising the dosing of these agents could significantly improve treatment outcomes and reduce toxicity for many patients.
Collapse
Affiliation(s)
- M P Kicken
- Department of Clinical Pharmacy, Catharina Hospital, Michelangelolaan 2, 5623 EJ, Eindhoven, The Netherlands.
- Department of Pharmacy, Radboudumc, Research Institute for Medical Innovation, Nijmegen, The Netherlands.
| | - M J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Michelangelolaan 2, 5623 EJ, Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A J van der Wekken
- Department of Pulmonology and Tuberculosis, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - M M van den Heuvel
- Department of Pulmonology, Radboudumc, Research Institute for Medical Innovation, Nijmegen, The Netherlands
- Department of Pulmonology, University Medical Center, Utrecht, The Netherlands
| | - R Ter Heine
- Department of Pharmacy, Radboudumc, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Miller EJ, Galsky MD. An evaluation of nivolumab plus gemcitabine and cisplatin in the treatment of advanced urothelial carcinoma. Expert Rev Anticancer Ther 2025; 25:319-326. [PMID: 40016118 DOI: 10.1080/14737140.2025.2473645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION For decades, first-line treatment for advanced/metastatic urothelial cancer has been platinum-based chemotherapy. However, many patients do not respond to platinum-based chemotherapy alone, and the vast majority do not have durable responses. While immune checkpoint blockade has demonstrated benefit in this setting, initial trials of concurrent chemotherapy and immune checkpoint blockade did not demonstrate improvements in overall survival. AREAS COVERED The recent CheckMate 901 trial compared gemcitabine, cisplatin, plus nivolumab to gemcitabine and cisplatin alone for first-line treatment of advanced/metastatic urothelial cancer. This was the first trial to demonstrate significant benefit in the combined chemotherapy and immune checkpoint blockade arm in advanced/metastatic urothelial cancer, most significantly showing an improvement in the primary outcomes of progression-free survival and overall survival, and the exploratory outcomes of objective response rate, complete response rate, and duration of complete response. EXPERT OPINION The combination of gemcitabine, cisplatin, plus nivolumab represents a new first-line treatment option for metastatic urothelial cancer. This article details the clinical benefit observed and how this establishes proof-of-concept for prior hypotheses related to the importance of the specific chemotherapy regimen combined with immune checkpoint blockade, revolving around immunomodulatory mechanisms of action of cisplatin, and synergy of these mechanisms with immunotherapy.
Collapse
Affiliation(s)
- Eric J Miller
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Sunbul FS, Almuqbil RM, Zhang H, Alhudaithi SS, Fernandez ME, Aldaqqa RR, Garcia VA, Robila V, Halquist MS, Gordon SW, Bos PD, da Rocha SRP. An improved experimental model of osteosarcoma lung metastases to investigate innovative therapeutic interventions and sex as a biological variable. Int J Pharm 2025; 673:125372. [PMID: 39971171 DOI: 10.1016/j.ijpharm.2025.125372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy, with OS lung metastasis (OSLM) being the leading cause of death in OS patients. No curative pharmacotherapies for OSLM are available, highlighting the clinical need for new therapies. Improved and rigorous preclinical models of OSLM are key in supporting advancements in this field. We aimed to develop an immunocompetent mouse model of OSLM that allows monitoring pharmacotherapies' effect on the lung metastatic burden over time and assessing the impact of sex as a biological variable in tumor growth and response to therapy. We transformed K7M2 cells to express bioluminescence and fluorescence, enabling real-time tracking of OSLM in BALB/c mice following tail vein injection. Metastasis was confined to the lungs and exhibited exponential growth with typical downregulated Fas receptor expression. In vivo bioluminescence correlated strongly with ex vivo, suggesting its reliability for evaluating metastatic progression and therapy response. Fluorescence from tdT was stable upon tissue processing, providing unique opportunities to probe the tumor characteristics ex vivo. We also assessed the effect of local lung-delivered gemcitabine, which was well-tolerated and significantly reduced OSLM burden without causing pulmonary toxicity. However, treatment did not resolve metastatic disease. We also explored the effect of sex on tumor growth and response to therapy; while no difference was observed in tumor growth between male and female mice, females showed a better response to local gemcitabine administration. In sum, we established a robust and rigorous immunocompetent mouse model of OSLM that will facilitate exploring new pharmacotherapies for OSLM.
Collapse
Affiliation(s)
- Fatemah S Sunbul
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Rashed M Almuqbil
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Hanming Zhang
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Sulaiman S Alhudaithi
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Matthew E Fernandez
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Raneem R Aldaqqa
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Victoria A Garcia
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Valentina Robila
- Department of Pathology - School of Medicine, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Matthew S Halquist
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Sarah W Gordon
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Thomas JeffersonUniversity, Philadelphia, PA, the United States of America
| | - Paula D Bos
- Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Department of Pathology - School of Medicine, Virginia Commonwealth University, Richmond, VA, the United States of America; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Sandro R P da Rocha
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, the United States of America.
| |
Collapse
|
9
|
Okoro J, Bulusu R, Frimpong E, Zhu X, Rogers S, Agyare E. A novel gemcitabine analog as a potential anticancer agent: synthesis and in-vitro evaluation against pancreatic cancer. Am J Cancer Res 2025; 15:684-704. [PMID: 40084373 PMCID: PMC11897620 DOI: 10.62347/kxsr8930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/28/2024] [Indexed: 03/16/2025] Open
Abstract
Gemcitabine (Gem) is approved for use in pancreatic cancer chemotherapy. However, Gem undergoes rapid metabolism in the blood, producing an inactive metabolite. Due to this rapid metabolism, the effective dose of Gem is high, thereby predisposing patients to severe adverse effects. This study aimed to improve Gem's metabolic and therapeutic stability by modifying the amine group (4-NH2) with hydroxylamine to form 4-N-hydroxylGem hydrochloride (GemAGY). Micro-elemental analysis and Nuclear Magnetic Resonance (NMR) were used to characterize GemAGY, and its anticancer activity was investigated against MiaPaCa-2, BxPC-3, and PANC-1 pancreatic cancer cell lines. The GemAGY metabolic stability was evaluated in human liver microsomal solution. In the 2D cytotoxicity assay, the IC50 values of GemAGY-treated MiaPaCa-2, PANC-1, and BxPC-3 cells were significantly lower when compared to GemHCl-treated cultures. More so, in 3D spheroid assay results, GemAGY IC50 values were found to be 9.5 ± 1.1 µM and 12.6 ± 1.0 µM when compared to GemHCl IC50 values of 24.1 ± 1.6 µM and 30.2 ± 1.8 µM in MiaPaCa-2 and PANC-1 cells, respectively. GemAGY was stable, with 60% remaining intact after 2 hours of digestion in microsomal enzymes, compared to GemHCl, which had less than 45% remaining intact after 30 minutes. GemAGY-treated MiaPaCa-2 and PANC-1 cells at 3.12 and 6.25 μM concentrations demonstrated a significantly reduced cell migration towards the wound area compared to the GemHCl-treated cultures at the same concentrations. Further, GemAGY-treated MiaPaCa-2 cells significantly increased the expression of p53 and BAX compared to GemHCl-treated cells. GemAGY demonstrated significant anticancer activity and improved metabolic stability compared to GemHCl and is most likely to have potential anticancer activity against pancreatic cancer.
Collapse
Affiliation(s)
- Joy Okoro
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M UniversityTallahassee, Florida, USA
| | - Raviteja Bulusu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M UniversityTallahassee, Florida, USA
| | - Esther Frimpong
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M UniversityTallahassee, Florida, USA
| | - Xue Zhu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M UniversityTallahassee, Florida, USA
| | - Sherise Rogers
- Department of Medicine, Division of Hematology and Oncology, University of Florida College of MedicineGainesville, Florida, USA
| | - Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M UniversityTallahassee, Florida, USA
| |
Collapse
|
10
|
Gaumond SI, Beraja GE, Kamholtz I, Ferrari LM, Mahmoud RH, Jimenez JJ. Chemotherapy-Induced Alopecia in Ovarian Cancer: Incidence, Mechanisms, and Impact Across Treatment Regimens. Cancers (Basel) 2025; 17:411. [PMID: 39941780 PMCID: PMC11816305 DOI: 10.3390/cancers17030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Ovarian cancer is the fifth most common cancer among women, with an estimated 19,680 new cases projected in 2024. Adjuvant chemotherapy remains the standard treatment for epithelial ovarian cancers but is frequently associated with adverse events, such as chemotherapy-induced alopecia (CIA). CIA is a particularly distressing side effect that significantly affects the body image, self-esteem, and quality of life of patients. Unfortunately, CIA remains underexplored in patients with ovarian cancer. METHODS This scoping review analyzed PubMed- and EMBASE-indexed studies investigating the incidence, severity, and mechanisms of CIA in ovarian cancer patients. Eighteen studies were included for analysis. RESULTS Our analysis identified platinum-based compounds, taxanes, and topoisomerase I inhibitors as the agents most strongly correlated with severe alopecia, particularly in combination regimens such as carboplatin-paclitaxel (CP), and cyclophosphamide, adriamycin, and cisplatin (CAP). Among the monotherapies, taxanes, including paclitaxel and docetaxel, posed the highest risk of CIA. Mild-to-moderate alopecia was observed in patients treated with gemcitabine or pegylated liposomal doxorubicin. Alternative factors such as dosing schedules and prior chemotherapy exposure also significantly influence CIA severity. CONCLUSIONS Given the profound psychosocial impact of CIA, optimizing treatment protocols to reduce the severity of alopecia without compromising therapeutic efficacy is crucial. These findings offer insights that may guide future therapeutic strategies for improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Simonetta I. Gaumond
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gabriela E. Beraja
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isabella Kamholtz
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lina M. Ferrari
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rami H. Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joaquin J. Jimenez
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
11
|
Dragomir RD, Mercioni MA, Negru Ș, Popovici D, Săftescu S, Blidari AR, Sas I. Comparison of Hepatic Function and Chemotherapy-Induced Side Effects Between Pegylated Liposomal Doxorubicin (PLD), Topotecan (TOPO), and Gemcitabine in Platinum-Resistant Ovarian Cancer (PROC). J Pers Med 2025; 15:39. [PMID: 39852231 PMCID: PMC11766750 DOI: 10.3390/jpm15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Platinum-resistant ovarian cancer (PROC) is a major therapeutic challenge, as it responds poorly to standard platinum-based treatment, has limited treatment options, and offers a generally unfavorable prognosis. Chemotherapeutic agents like pegylated liposomal doxorubicin (PLD), topotecan (TOPO), and gemcitabine (GEM) are used for this setting, but with varying efficacy and toxicity profiles, leading to an increasing need to understand the optimal balance between treatment effectiveness and tolerability for improving patient outcomes. This study evaluates the efficacy and side effects of PLD, TOPO, and GEM, focusing on progression-free survival (PFS), overall survival (OS), and safety profiles. Methods: We conducted a retrospective observational study that included 856 PROC patients treated with PLD (n = 383), TOPO (n = 352), or GEM (n = 121) at the OncoHelp Oncology Center from January 2018 to December 2023. Inclusion criteria encompass diagnosis, prior platinum therapy, and Eastern Cooperative Oncology Group (ECOG) status (0-2). Treatment protocols followed standard dosing, with adjustments for toxicity. Primary endpoints included PFS and OS, with safety assessed by incidence of grade 3 and 4 toxicities per CTCAE v5.0. Kaplan-Meier analysis and Cox regression were used to compare survival, and statistical significance was set at p < 0.05. Results: TOPO showed higher toxicity than PLD and GEM, including liver damage, hematological and non-hematological side effects, while PLD induced more skin toxicity. In terms of survival, minor differences were seen between the three chemotherapeutic agents, with a slight advantage for PLD for better disease control. Conclusions: Given the comparable results in OS across the regimens, treatment decisions should be based on other factors such as patient tolerance and quality of life.
Collapse
Affiliation(s)
- Radu-Dumitru Dragomir
- Department of Obstetrics and Gynecology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (R.-D.D.); (I.S.)
| | - Marina Adriana Mercioni
- Faculty of Electronics, Telecommunications and Information Technologies, Politehnica University, 300223 Timișoara, Romania
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Șerban Negru
- Department of Oncology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (Ș.N.); (D.P.); (S.S.)
| | - Dorel Popovici
- Department of Oncology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (Ș.N.); (D.P.); (S.S.)
| | - Sorin Săftescu
- Department of Oncology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (Ș.N.); (D.P.); (S.S.)
| | - Andiana Roxana Blidari
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ioan Sas
- Department of Obstetrics and Gynecology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (R.-D.D.); (I.S.)
| |
Collapse
|
12
|
Ellison ST, Hayman I, Derr K, Derr P, Frebert S, Itkin Z, Shen M, Jones A, Olson W, Corey L, Wald A, Johnston C, Fong Y, Ferrer M, Zhu J. Identification of potent HSV antivirals using 3D bioprinted human skin equivalents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626896. [PMID: 39713402 PMCID: PMC11661117 DOI: 10.1101/2024.12.04.626896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Herpes simplex virus (HSV) infection has worldwide public health concerns and lifelong medical impacts. The standard therapy, acyclovir, has limited efficacy in preventing HSV subclinical virus shedding, and drug resistance occurs in immunocompromised patients, highlighting the need for novel therapeutics. HSV infection manifests in the skin epidermal layer, but current drug discovery utilizes Vero cells and fibroblasts monolayer cultures, capturing neither in vivo relevance nor tissue environment. To bridge the gap, we established 3D bioprinted human skin equivalents that recapitulate skin architecture in a 96-well plate format amenable for antiviral screening and preclinical testing. Screening a library of 738 compounds with broad targets and mechanisms of action, we identified potent antivirals, including most of the known anti-HSV compounds, validating the translational relevance of our assay. Acyclovir was dramatically less potent for inhibiting HSV in keratinocytes compared to donor-matched fibroblasts. In contrast, antivirals against HSV helicase/primase or host replication pathways displayed similar potency across cell types and donor sources in 2D and 3D models. The reduced potency of acyclovir in keratinocytes, the primary cell type encountered by HSV reactivation, helps explain the limited benefit acyclovir and its congeners play in reducing sexual transmission. Finally, we demonstrated that our 3D bioprinted skin platform can integrate patient-derived cells, facilitating the incorporation of variable genetic backgrounds early into drug testing. Thus, these data indicate that the 3D bioprinted human skin equivalent assay platform provides a more physiologically relevant approach to identifying potential antivirals for HSV-directed drug development.
Collapse
Affiliation(s)
- S. Tori Ellison
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health; Rockville, Maryland 20850, USA
| | - Ian Hayman
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, WA 98195, USA
| | - Kristy Derr
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health; Rockville, Maryland 20850, USA
| | - Paige Derr
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health; Rockville, Maryland 20850, USA
| | - Shayne Frebert
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health; Rockville, Maryland 20850, USA
| | - Zina Itkin
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health; Rockville, Maryland 20850, USA
| | - Min Shen
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health; Rockville, Maryland 20850, USA
| | - Anthony Jones
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, WA 98195, USA
| | - Wendy Olson
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, WA 98195, USA
| | - Lawrence Corey
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, WA 98195, USA
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
| | - Anna Wald
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, WA 98195, USA
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Department of Medicine, University of Washington; Seattle, WA 98195, USA
- Department of Global Health, University of Washington; Seattle, WA 98195, USA
| | - Christine Johnston
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, WA 98195, USA
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Department of Medicine, University of Washington; Seattle, WA 98195, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
| | - Marc Ferrer
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health; Rockville, Maryland 20850, USA
| | - Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, WA 98195, USA
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
| |
Collapse
|
13
|
Abou Chakra M, Packiam VT, McElree IM, Mott SL, O'Donnell MA. The efficacy of sequential intravesical gemcitabine and docetaxel versus BCG for the treatment of European association of urology very-high risk non-muscle invasive bladder cancer. Urol Oncol 2024:S1078-1439(24)00692-6. [PMID: 39592360 DOI: 10.1016/j.urolonc.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND The European Association of Urology (EAU) recommends early radical cystectomy (RC) for very-high-risk (VHR) nonmuscle invasive bladder cancer (NMIBC), in part due to suboptimal efficacy from BCG in this setting. Effective bladder-sparing alternatives are needed. We compared the oncological outcomes of Gemcitabine/Docetaxel (Gem/Doce) to BCG therapy in patients with VHR NMIBC. METHODS Retrospective analysis of oncological outcomes in 129 treatment naïve VHR NMIBC patients receiving intravesical Gem/Doce (n = 65) was compared to BCG (n = 64) using Cox regression. RESULTS Recurrence-free survival (RFS) at 12- and 24-months was 63% and 54% for BCG compared to 79% and 73% for Gem/Doce. Progression-free survival (PFS) at 24-months for BCG was 88% compared to 97% for Gem/Doce. Gem/Doce showed a decreased risk of tumor recurrence compared to BCG (hazard ratio, 0.55; 95% confidence interval, 0.30-0.99; P = 0.05). Moreover, patients in the Gem/Doce group were less prone to discontinue therapy (3.1% vs. 14.1%; P = 0.03). CONCLUSIONS Gem/Doce provides a level of efficacy in terms of RFS and PFS at least as good as BCG for treatment naïve VHR NMIBC. Prospective validation is needed.
Collapse
Affiliation(s)
| | - Vignesh T Packiam
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Jersey, USA
| | - Ian M McElree
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sarah L Mott
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
14
|
Carnamucio F, Foti C, Cordaro M, Saija F, Cassone G, da Rocha SRP, Giuffrè O. Metal Complexation for the Rational Design of Gemcitabine Formulations in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56789-56800. [PMID: 39378358 PMCID: PMC11503523 DOI: 10.1021/acsami.4c12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Nanoformulation of chemotherapies represents a promising strategy to enhance outcomes in cancer therapy. Gemcitabine is a chemotherapeutic agent approved by the Food and Drug Administration for the treatment of various solid tumors. Nevertheless, its therapeutic effectiveness is constrained by its poor metabolic stability and pharmacokinetic profile. Nanoformulations of gemcitabine in lipid and polymer nanocarriers usually lead to poor loading capability and an inability to effectively control its release profile due to the physicochemical characteristics of the drug and matrices. Here, we propose metal-gemcitabine complexation with biorelevant metal cations as a strategy to alter the properties of gemcitabine in a noncovalent manner, paving the way for the development of novel nanoformulations. A speciation study on gemcitabine and Mn2+, Zn2+, and Ca2+ was performed with the aim of investigating the extent of the interaction between the drug and the proposed metal cations, and selecting the best conditions of temperature, pH, and drug-to-metal molar ratio that optimize such interactions. Also, a series of density functional theory calculations and spin-polarized ab initio molecular dynamics simulations were carried out to achieve insights on the atomistic modalities of these interactions. Mn2+-gemcitabine species demonstrated the ability to maintain gemcitabine's biological activity in vitro. The scientific relevance of this study lies in its potential to propose metal-gemcitabine as a valuable strategy for developing nanoformulations with optimized quality target product profiles. The work is also clinically relevant because it will lead to improved treatment outcomes, including enhanced efficacy and pharmacokinetics, decreased toxicity, and new clinical possibilities for this potent therapeutic molecule.
Collapse
Affiliation(s)
- Federica Carnamucio
- Department
of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences
- School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23284, United States
| | - Claudia Foti
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Massimiliano Cordaro
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Franz Saija
- Institute
for Chemical-Physical Processes National Research Council of Italy, Viale Ferdinando Stagno d’Alcontres,
37, 98158 Messina, Italy
| | - Giuseppe Cassone
- Institute
for Chemical-Physical Processes National Research Council of Italy, Viale Ferdinando Stagno d’Alcontres,
37, 98158 Messina, Italy
| | - Sandro R. P. da Rocha
- Department
of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences
- School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23284, United States
| | - Ottavia Giuffrè
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| |
Collapse
|
15
|
Dominguez AA, Perz MT, Xu Y, Cedillo LG, Huang OD, McIntyre CA, Vudatha V, Trevino JG, Liu J, Wang P. Unveiling the Promise: Navigating Clinical Trials 1978-2024 for PDAC. Cancers (Basel) 2024; 16:3564. [PMID: 39518005 PMCID: PMC11544830 DOI: 10.3390/cancers16213564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Despite many decades of research, pancreatic ductal adenocarcinoma (PDAC) remains one of the most difficult cancers to diagnose and treat effectively. Although there have been improvements in the 5-year overall survival rate, it is still very low at 12.5%. The limited efficacy of current therapies, even when PDAC is detected early, underscores the aggressive nature of the disease and the urgent need for more effective treatments. Clinical management of PDAC still relies heavily on a limited repertoire of therapeutic interventions, highlighting a significant gap between research efforts and available treatments. Over 4300 clinical trials have been or are currently investigating different treatment modalities and diagnostic strategies for PDAC, including targeted therapies, immunotherapies, and precision medicine approaches. These trials aim to develop more effective treatments and improve early detection methods through advanced imaging techniques and blood-based biomarkers. This review seeks to categorize and analyze PDAC-related clinical trials across various dimensions to understand why so few chemotherapeutic options are available to patients despite the numerous trials being conducted. This review aims to provide a comprehensive and nuanced understanding of the landscape of PDAC-related clinical trials, with the overarching goal of identifying opportunities to accelerate progress in drug development and improve patient outcomes in the fight against this devastating disease.
Collapse
Affiliation(s)
- Angel A. Dominguez
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Matthew T. Perz
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Yi Xu
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Leonor G. Cedillo
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Orry D. Huang
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Caitlin A. McIntyre
- Division of Surgical Oncology and Endocrine Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (V.V.); (J.G.T.)
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (V.V.); (J.G.T.)
| | - Jun Liu
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Pei Wang
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| |
Collapse
|
16
|
Picard LC, Rich FJ, Kenwright DN, Stevens AJ. Epigenetic changes associated with Bacillus Calmette-Guerin (BCG) treatment in bladder cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189123. [PMID: 38806074 DOI: 10.1016/j.bbcan.2024.189123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Bacillus Calmette-Guérin (BCG) treatment for non-muscle invasive bladder cancer (NMIBC) is an established immunotherapeutic, however, a significant portion of patients do not respond to treatment. Despite extensive research into the therapeutic mechanism of BCG, gaps remain in our understanding. This review specifically focuses on the epigenomic contributions in the immune microenvironment, in the context of BCG treatment for NMIBC. We also summarise the current understanding of NMIBC epigenetic characteristics, and discuss how future targeted strategies for BCG therapy should incorporate epigenomic biomarkers in conjunction with genomic biomarkers.
Collapse
Affiliation(s)
- Lucy C Picard
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Fenella J Rich
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Diane N Kenwright
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Aaron J Stevens
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand.
| |
Collapse
|
17
|
Aparicio-Lopez CB, Timmerman S, Lorino G, Rogers T, Pyle M, Shrestha TB, Basel MT. Thermosensitive Liposomes for Gemcitabine Delivery to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:3048. [PMID: 39272906 PMCID: PMC11394165 DOI: 10.3390/cancers16173048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Treatment of pancreatic ductal adenocarcinoma with gemcitabine is limited by an increased desmoplasia, poor vascularization, and short plasma half-life. Heat-sensitive liposomes modified by polyethylene glycol (PEG; PEGylated liposomes) can increase plasma stability, reduce clearance, and decrease side effects. Nevertheless, translation of heat-sensitive liposomes to the clinic has been hindered by the low loading efficiency of gemcitabine and by the difficulty of inducing hyperthermia in vivo. This study was designed to investigate the effect of phospholipid content on the stability of liposomes at 37 °C and their release under hyperthermia conditions; this was accomplished by employing a two-stage heating approach. First the liposomes were heated at a fast rate, then they were transferred to a holding bath. Thermosensitive liposomes formulated with DPPC: DSPC: PEG2k (80:15:5, mole%) exhibited minimal release of carboxyfluorescein at 37 °C over 30 min, indicating stability under physiological conditions. However, upon exposure to hyperthermic conditions (43 °C and 45 °C), these liposomes demonstrated a rapid and significant release of their encapsulated content. The encapsulation efficiency for gemcitabine was calculated at 16.9%. Additionally, fluorescent analysis during the removal of unencapsulated gemcitabine revealed an increase in pH. In vitro tests with BxPC3 and KPC cell models showed that these thermosensitive liposomes induced a heat-dependent cytotoxic effect comparable to free gemcitabine at temperatures above 41 °C. This study highlights the effectiveness of the heating mechanism and cell models in understanding the current challenges in developing gemcitabine-loaded heat-sensitive liposomes.
Collapse
Affiliation(s)
- Cesar B Aparicio-Lopez
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Sarah Timmerman
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Gabriella Lorino
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Tatiana Rogers
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Marla Pyle
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Tej B Shrestha
- Nanotechnology Innovation Center of Kansas State (NICKS), Kansas State University, Manhattan, KS 66506, USA
| | - Matthew T Basel
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
18
|
Cheng J, Zink J, O'Neill E, Cornelissen B, Nonnekens J, Livieratos L, Terry SYA. Enhancing [ 177Lu]Lu-DOTA-TATE therapeutic efficacy in vitro by combining it with metronomic chemotherapeutics. EJNMMI Res 2024; 14:73. [PMID: 39136880 PMCID: PMC11322472 DOI: 10.1186/s13550-024-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Peptide receptor radionuclide therapy (PRRT) uses [177Lu]Lu-[DOTA0-Tyr3]octreotate ([177Lu]Lu-DOTA-TATE) to treat patients with neuroendocrine tumours (NETs) overexpressing the somatostatin receptor 2A (SSTR2A). It has shown significant short-term improvements in survival and symptom alleviation, but there remains room for improvement. Here, we investigated whether combining [177Lu]Lu-DOTA-TATE with chemotherapeutics enhanced the in vitro therapeutic efficacy of [177Lu]Lu-DOTA-TATE. RESULTS Transfected human osteosarcoma (U2OS + SSTR2A, high SSTR2A expression) and pancreatic NET (BON1 + STTR2A, medium SSTR2A expression) cells were subjected to hydroxyurea, gemcitabine or triapine for 24 h at 37oC and 5% CO2. Cells were then recovered for 4 h prior to a 24-hour incubation with 0.7-1.03 MBq [177Lu]Lu-DOTA-TATE (25 nM) for uptake and metabolic viability studies. Incubation of U2OS + SSTR2A cells with hydroxyurea, gemcitabine, and triapine enhanced uptake of [177Lu]Lu-DOTA-TATE from 0.2 ± 0.1 in untreated cells to 0.4 ± 0.1, 1.1 ± 0.2, and 0.9 ± 0.2 Bq/cell in U2OS + SSTR2A cells, respectively. Cell viability post treatment with [177Lu]Lu-DOTA-TATE in cells pre-treated with chemotherapeutics was decreased compared to cells treated with [177Lu]Lu-DOTA-TATE monotherapy. For example, the viability of U2OS + SSTR2A cells incubated with [177Lu]Lu-DOTA-TATE decreased from 59.5 ± 22.3% to 18.8 ± 5.2% when pre-treated with hydroxyurea. Control conditions showed no reduced metabolic viability. Cells were also harvested to assess cell cycle progression, SSTR2A expression, and cell size by flow cytometry. Chemotherapeutics increased SSTR2A expression and cell size in U2OS + SSTR2A and BON1 + STTR2A cells. The S-phase sub-population of asynchronous U2OS + SSTR2A cell cultures was increased from 45.5 ± 3.3% to 84.8 ± 2.5%, 85.9 ± 1.9%, and 86.6 ± 2.2% when treated with hydroxyurea, gemcitabine, and triapine, respectively. CONCLUSIONS Hydroxyurea, gemcitabine and triapine all increased cell size, SSTR2A expression, and [177Lu]Lu-DOTA-TATE uptake, whilst reducing cell metabolic viability in U2OS + SSTR2A cells when compared to [177Lu]Lu-DOTA-TATE monotherapy. Further investigations could transform patient care and positively increase outcomes for patients treated with [177Lu]Lu-DOTA-TATE.
Collapse
Affiliation(s)
- Jordan Cheng
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Joke Zink
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edward O'Neill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Bart Cornelissen
- Department of Nuclear Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Oncology, University of Oxford, Oxford, UK
| | - Julie Nonnekens
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lefteris Livieratos
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Nuclear Medicine, Guy's & St Thomas' Hospitals NHS Foundation Trust, London, SE1 7EH, UK
| | - Samantha Y A Terry
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
19
|
Lo MCK, Siu DMD, Lee KCM, Wong JSJ, Yeung MCF, Hsin MKY, Ho JCM, Tsia KK. Information-Distilled Generative Label-Free Morphological Profiling Encodes Cellular Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307591. [PMID: 38864546 PMCID: PMC11304271 DOI: 10.1002/advs.202307591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/17/2024] [Indexed: 06/13/2024]
Abstract
Image-based cytometry faces challenges due to technical variations arising from different experimental batches and conditions, such as differences in instrument configurations or image acquisition protocols, impeding genuine biological interpretation of cell morphology. Existing solutions, often necessitating extensive pre-existing data knowledge or control samples across batches, have proved limited, especially with complex cell image data. To overcome this, "Cyto-Morphology Adversarial Distillation" (CytoMAD), a self-supervised multi-task learning strategy that distills biologically relevant cellular morphological information from batch variations, is introduced to enable integrated analysis across multiple data batches without complex data assumptions or extensive manual annotation. Unique to CytoMAD is its "morphology distillation", symbiotically paired with deep-learning image-contrast translation-offering additional interpretable insights into label-free cell morphology. The versatile efficacy of CytoMAD is demonstrated in augmenting the power of biophysical imaging cytometry. It allows integrated label-free classification of human lung cancer cell types and accurately recapitulates their progressive drug responses, even when trained without the drug concentration information. CytoMAD also allows joint analysis of tumor biophysical cellular heterogeneity, linked to epithelial-mesenchymal plasticity, that standard fluorescence markers overlook. CytoMAD can substantiate the wide adoption of biophysical cytometry for cost-effective diagnosis and screening.
Collapse
Affiliation(s)
- Michelle C. K. Lo
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Dickson M. D. Siu
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Kelvin C. M. Lee
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Justin S. J. Wong
- Conzeb LimitedHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| | - Maximus C. F. Yeung
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam RoadHong Kong000000Hong Kong
| | - Michael K. Y. Hsin
- Department of Surgery, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam RoadHong Kong000000Hong Kong
| | - James C. M. Ho
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam RoadHong Kong000000Hong Kong
| | - Kevin K. Tsia
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong000000Hong Kong
- Advanced Biomedical Instrumentation CentreHong Kong Science Park, New TerritoriesHong Kong000000Hong Kong
| |
Collapse
|
20
|
Peters GJ. Nucleo(s)tide metabolism as basis for drug development; the Anne Simmonds award lecture. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:696-719. [PMID: 39087693 DOI: 10.1080/15257770.2024.2383681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
Aberrant metabolism of purines and pyrimidines led to development of drugs for treatment of various diseases, such as inflammatory, neurological, cardiovascular, viral infections and cancer. Purine and Pyrimidine Symposia are characterized by close interactions, leading to extensive cross-fertilization on methodology and translating not only from bench-to-bedside, but also between various disciplines such as medicinal chemistry, pharmacology, oncology, virology, rheumatology, biochemistry, pediatrics, cardiology, surgery and immunology. This background was fundamental in our studies on how to optimize application of existing drugs (5-fluorouracil [5FU], thiopurines, antifolates such as methotrexate) but also to support development of novel drugs such as gemcitabine, novel antifolates, S-1, TAS-102 and fluorocyclopentenylcytosine. Knowledge of their metabolism helped to design rational combinations such as of gemcitabine with cisplatin, one of the most widely used drug combinations for various cancers. The combination of 5FU with uridine, led to the development of triacetyluridine registered for emergency treatment of patients with lethal 5FU toxicity. Mechanisms of action were studied by careful analysis of their metabolism, using classical enzyme assays with radioactive precursors and HPLC analysis. Drug metabolism moved from manually operated HPLC systems with UV-detection for peak identification and paper rolls for quantification, to computer-operated HPLC with automatic multi-wavelength and fluorometric peak detection and more recently to ultrasensitive, highly specific mass-spectrometry-based systems. Some aspects, however, never changed; careful analysis of the results and being prepared for the unexpected. The latter actually led to the most interesting results. Investigation of (nucleoside/nucleotide) metabolism remains an exciting field of research.
Collapse
Affiliation(s)
- Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam University Medical Centers, location VUMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
21
|
Mishra M, Verma R, Sharma A, Kumar K, Chawla R. Evaluation of Gemcitabine and Epigallocatechin-3-Gallate Loaded Solid Lipid Nanoparticles on Benzopyrene Induced Lung Cancer Model Via Intranasal Route: Improved Pharmacokinetics and Safety Profile. AAPS PharmSciTech 2024; 25:176. [PMID: 39085673 DOI: 10.1208/s12249-024-02892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
The objective of this study was to create a new treatment for lung cancer using solid lipid nanoparticles (SLNs) loaded with gemcitabine (GEM) and epigallocatechin-3-gallate (EGCG) that can be administered through the nose. We analyzed the formulation for its effectiveness in terms of micromeritics, drug release, and anti-cancer activity in the benzopyrene-induced Swiss albino mice lung cancer model. We also assessed the pharmacokinetics, biodistribution, biocompatibility, and hemocompatibility of GEM-EGCG SLNs. The GEM-EGCG SLNs had an average particle size of 93.54 ± 11.02 nm, a polydispersity index of 0.146 ± 0.05, and a zeta potential of -34.7 ± 0.4 mV. The entrapment efficiency of GEM and EGCG was 93.39 ± 4.2% and 89.49 ± 5.1%, respectively, with a sustained release profile for both drugs. GEM-EGCG SLNs had better pharmacokinetics than other treatments, and a high drug targeting index value of 17.605 for GEM and 2.118 for EGCG, indicating their effectiveness in targeting the lungs. Blank SLNs showed no pathological lesions in the liver, kidney, and nasal region validating the safety of SLNs. GEM-EGCG SLNs also showed fewer pathological lesions than other treatments and a lower hemolysis rate of 1.62 ± 0.10%. These results suggest that GEM-EGCG SLNs could effectively treat lung cancer.
Collapse
Affiliation(s)
- Mohini Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rinki Verma
- Department of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Aditya Sharma
- Sri Ganganagar Homoeopathic Medical College, Hospital & Research Center, Tantia University, Sri Ganganagar, Rajasthan, 335002, India
| | - Krishan Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Ruchi Chawla
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
22
|
Ito Y, Yamada D, Kobayashi S, Sasaki K, Iwagami Y, Tomimaru Y, Asaoka T, Noda T, Takahashi H, Shimizu J, Doki Y, Eguchi H. The combination of gemcitabine plus an anti-FGFR inhibitor can have a synergistic antitumor effect on FGF-activating cholangiocarcinoma. Cancer Lett 2024; 595:216997. [PMID: 38801887 DOI: 10.1016/j.canlet.2024.216997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Anti-FGFR treatment for cholangiocarcinoma (CCA) with fibroblast growth factor receptor (FGFR) alteration is a promising treatment option. Since the antitumor mechanisms of anti-FGFR inhibitors and conventional cytotoxic drugs differ, synergistic effects can be possible. This study aimed to evaluate the efficacy of the combined administration of gemcitabine (GEM) and pemigatinib in CCA cells with FGFR2 alterations. To simulate the treatment for patients with 3 kinds of CCA, chemonaïve CCA with activation of the FGF pathway, chemo-resistant CCA with activation of the FGF pathway, and CCA without FGF pathway activation (as controls), we evaluated 3 different CCA cell lines, CCLP-1 (with a FGFR2 fusion mutation), CCLP-GR (GEM-resistant cells established from CCLP-1), and HuCCT1 (without FGFR mutations). There was no significant difference between CCLP-1 and HuCCT1 in GEM suspensibility (IC50 = 19.3, 22.6 mg/dl, p = 0.1187), and the drug sensitivity to pemigatinib did not differ between CCLP-1 and CCLP-GR (IC50 = 7.18,7.60 nM, p = 0.3089). Interestingly, only CCLP-1 showed a synergistic effect with combination therapy consisting of GEM plus pemigatinib in vitro and in vivo. In a comparison of the reaction to GEM exposure, only CCLP-1 cells showed an increase in the activation of downstream proteins in the FGF pathway, especially FRS2 and ERK. In association with this reaction, cell cycle and mitosis were increased with GEM exposure in CCLP-1, but HuCCT1/CCLP-GR did not show this reaction. Our results suggested that combination therapy with GEM plus pemigatinib is a promising treatment for chemonaïve patients with CCA with activation of the FGF pathway.
Collapse
MESH Headings
- Gemcitabine
- Humans
- Cholangiocarcinoma/drug therapy
- Cholangiocarcinoma/pathology
- Cholangiocarcinoma/genetics
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/administration & dosage
- Drug Synergism
- Animals
- Bile Duct Neoplasms/drug therapy
- Bile Duct Neoplasms/pathology
- Bile Duct Neoplasms/genetics
- Cell Line, Tumor
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Xenograft Model Antitumor Assays
- Pyrimidines/pharmacology
- Pyrimidines/administration & dosage
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Mice
- Cell Proliferation/drug effects
- Mice, Nude
- Signal Transduction/drug effects
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/genetics
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/metabolism
- Drug Resistance, Neoplasm/drug effects
- Protein Kinase Inhibitors/pharmacology
- Mutation
- Apoptosis/drug effects
- Morpholines
- Pyrroles
Collapse
Affiliation(s)
- Yoshiro Ito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan.
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan.
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho Tennoji-Ku, Osaka, 543-0035, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Junzo Shimizu
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shibahara-cho, Toyonaka, Osaka, 560-8565, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| |
Collapse
|
23
|
Akinlalu A, Flaten Z, Rasuleva K, Mia MS, Bauer A, Elamurugan S, Ejjigu N, Maity S, Arshad A, Wu M, Xia W, Fan J, Guo A, Mathew S, Sun D. Integrated proteomic profiling identifies amino acids selectively cytotoxic to pancreatic cancer cells. Innovation (N Y) 2024; 5:100626. [PMID: 38699777 PMCID: PMC11063643 DOI: 10.1016/j.xinn.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers, characterized by extremely limited therapeutic options and a poor prognosis, as it is often diagnosed during late disease stages. Innovative and selective treatments are urgently needed, since current therapies have limited efficacy and significant side effects. Through proteomics analysis of extracellular vesicles, we discovered an imbalanced distribution of amino acids secreted by PDAC tumor cells. Our findings revealed that PDAC cells preferentially excrete proteins with certain preferential amino acids, including isoleucine and histidine, via extracellular vesicles. These amino acids are associated with disease progression and can be targeted to elicit selective toxicity to PDAC tumor cells. Both in vitro and in vivo experiments demonstrated that supplementation with these specific amino acids effectively eradicated PDAC cells. Mechanistically, we also identified XRN1 as a potential target for these amino acids. The high selectivity of this treatment method allows for specific targeting of tumor metabolism with very low toxicity to normal tissues. Furthermore, we found this treatment approach is easy-to-administer and with sustained tumor-killing effects. Together, our findings reveal that exocytosed amino acids may serve as therapeutic targets for designing treatments of intractable PDAC and potentially offer alternative treatments for other types of cancers.
Collapse
Affiliation(s)
- Alfred Akinlalu
- Department of Electrical and Computer Engineering, University of Denver, 2155 E Wesley Avenue, Denver, CO 80210, USA
| | - Zachariah Flaten
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Komila Rasuleva
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Md Saimon Mia
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, 1001 S. 1401 Albrecht Boulevard Sudro Hall, Fargo, ND 58102, USA
| | - Aaron Bauer
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Santhalingam Elamurugan
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Nega Ejjigu
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Amara Arshad
- Materials and Nanotechnology Program, North Dakota State University, 1410 North 14th Avenue, CIE 201, Fargo, ND 58102, USA
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Ang Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, 1001 S. 1401 Albrecht Boulevard Sudro Hall, Fargo, ND 58102, USA
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, 1001 S. 1401 Albrecht Boulevard Sudro Hall, Fargo, ND 58102, USA
| | - Dali Sun
- Department of Electrical and Computer Engineering, University of Denver, 2155 E Wesley Avenue, Denver, CO 80210, USA
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E Wesley Avenue, Denver, CO 80210, USA
| |
Collapse
|
24
|
Sturm S, Niegisch G, Windolf J, Suschek CV. Exposure of Bladder Cancer Cells to Blue Light (λ = 453 nm) in the Presence of Riboflavin Synergistically Enhances the Cytotoxic Efficiency of Gemcitabine. Int J Mol Sci 2024; 25:4868. [PMID: 38732087 PMCID: PMC11084806 DOI: 10.3390/ijms25094868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Non-muscle invasive bladder cancer is a common tumour in men and women. In case of resistance to the standard therapeutic agents, gemcitabine can be used as off-label instillation therapy into the bladder. To reduce potential side effects, continuous efforts are made to optimise the therapeutic potential of drugs, thereby reducing the effective dose and consequently the pharmacological burden of the medication. We recently demonstrated that it is possible to significantly increase the therapeutic efficacy of mitomycin C against a bladder carcinoma cell line by exposure to non-toxic doses of blue light (453 nm). In the present study, we investigated whether the therapeutically supportive effect of blue light can be further enhanced by the additional use of the wavelength-specific photosensitiser riboflavin. We found that the gemcitabine-induced cytotoxicity of bladder cancer cell lines (BFTC-905, SW-1710, RT-112) was significantly enhanced by non-toxic doses of blue light in the presence of riboflavin. Enhanced cytotoxicity correlated with decreased levels of mitochondrial ATP synthesis and increased lipid peroxidation was most likely the result of increased oxidative stress. Due to these properties, blue light in combination with riboflavin could represent an effective therapy option with few side effects and increase the success of local treatment of bladder cancer, whereby the dose of the chemotherapeutic agent used and thus the chemical load could be significantly reduced with similar or improved therapeutic success.
Collapse
Affiliation(s)
- Sofia Sturm
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Joachim Windolf
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christoph V. Suschek
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
ALEMZADEH EFFAT, ALLAHQOLI LEILA, MAZIDIMORADI AFROOZ, ALEMZADEH ESMAT, GHASEMI FAHIMEH, SALEHINIYA HAMID, ALKATOUT IBRAHIM. Deciphering resistance mechanisms and novel strategies to overcome drug resistance in ovarian cancer: a comprehensive review. Oncol Res 2024; 32:831-847. [PMID: 38686048 PMCID: PMC11055988 DOI: 10.32604/or.2024.031006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 05/02/2024] Open
Abstract
Ovarian cancer is among the most lethal gynecological cancers, primarily due to the lack of specific symptoms leading to an advanced-stage diagnosis and resistance to chemotherapy. Drug resistance (DR) poses the most significant challenge in treating patients with existing drugs. The Food and Drug Administration (FDA) has recently approved three new therapeutic drugs, including two poly (ADP-ribose) polymerase (PARP) inhibitors (olaparib and niraparib) and one vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) for maintenance therapy. However, resistance to these new drugs has emerged. Therefore, understanding the mechanisms of DR and exploring new approaches to overcome them is crucial for effective management. In this review, we summarize the major molecular mechanisms of DR and discuss novel strategies to combat DR.
Collapse
Affiliation(s)
- EFFAT ALEMZADEH
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - LEILA ALLAHQOLI
- Department of Midwifery, Ministry of Health and Medical Education, Tehran, Iran
| | - AFROOZ MAZIDIMORADI
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - ESMAT ALEMZADEH
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - FAHIMEH GHASEMI
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - HAMID SALEHINIYA
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - IBRAHIM ALKATOUT
- Kiel School of Gynaecological Endoscopy, Campus Kiel, University Hospitals Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
26
|
Frańczak MA, van der Sande C, Giovannetti E, Peters GJ. Effects of nucleoside analogues, lipophilic prodrugs and elaidic acids on core signaling pathways in cancer cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:851-861. [PMID: 38619266 DOI: 10.1080/15257770.2024.2339952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVES Nucleoside analogs such as gemcitabine (GEM; dFdC) and cytarabine (Ara-C) require nucleoside transporters to enter cells, and deficiency in equilibrative nucleoside transporter 1 (ENT1) can lead to resistance to these drugs. To facilitate transport-independent uptake, prodrugs with a fatty acid chain attached to the 5'-position of the ribose group of gemcitabine or cytarabine were developed (CP-4126 and CP-4055, respectively). As antimetabolites can activate cellular survival pathways, we investigated whether the prodrugs or their side-chains had similar or decreased effects. METHODS Two cell lines A549 (non-small cell lung cancer) and WiDr (colon cancer cells) were exposed for 2-24hr to IC50 concentrations of GEM, Ara-C, CP-4126, CP4055 and elaidic acid (EA) concentrations corresponding to the CP-4126 and CP-4055 IC50. Cells were harvested and analyzed for proteins in cell survival pathways (p-AKT/AKT, p-ERK/ERK, p-P38/P38, GSK-3β/pGSK-3β) by using Western Blotting. RESULTS All drugs and their derivatives showed time- and cell-line-dependent effects. In A549 cells, GEM, CP-4126 and EA-4126 decreased the p-AKT/AKT ratio at 2 and 24 hr. For the p-ERK/ERK ratio, GEM, EA-4126, Ara-C, CP-4045 and EA-4055 exposure led to an increase after 6 hr in A549 cells. Interestingly, Ara-C, CP-4055 and EA-4055 decreased p-ERK/ERK ratio in WiDr cells after 4 hr. In A549 cells, the p-GSK-3β/GSK-3β ratio decreased after exposure to Ara-C and CP-4055 but in WiDr cells increased after 24 hr. In A549 cells treatment with Ara-C, CP-4055 and EA-4126 decreased the p-P38/P38 after 6 hr. CONCLUSIONS The findings suggest that both parent drugs, prodrugs, and the EA chain influence cell survival and signaling pathways.
Collapse
Affiliation(s)
- Marika A Frańczak
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Claudine van der Sande
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Fenor de la Maza MD, Villacampa G, Miñana B, Barbas Bernardos G, Andrés G, González-Padilla DA, Ramón de Fata F, Sanz J, Cambeiro M, Aristu J, Gúrpide A, Villacampa F, Gracia JLP. First-line Management of Metastatic Urothelial Cancer: Current and Future Perspectives After the EV-302 and CheckMate-901 Studies. Clin Genitourin Cancer 2024; 22:330-335. [PMID: 38172023 DOI: 10.1016/j.clgc.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The standard of care for the first-line management of metastatic urothelial carcinoma has been recently challenged, with the combination of pembrolizumab and enfortumab vedotin (P-EV) strongly arising as a practice-changing option from classical platinum-based chemotherapies. With this paradigm shift on the horizon new questions, including the most suitable second line of treatment for these patients, and the role that the molecular characterization of these tumours will have when selecting these therapies will inevitably arise. Furthermore, after the negative results of the Keynote 361 and IMvigor 130 trials, the combination of nivolumab with platinum-based chemotherapy followed by nivolumab maintenance (Nivo GC-Nivo) has also shown positive results when compared with chemotherapy alone. Translational studies at a molecular, cellular, and functional level will be key to better explain these discordant results. In this Current Perspective, we discuss the potential impact of these results in clinical practice and propose specific guidance for prospective translational research.
Collapse
Affiliation(s)
| | | | | | | | - Guillermo Andrés
- Clínica Universitaria de Navarra, Urology Department, Madrid, Spain
| | | | | | - Julián Sanz
- Clínica Universitaria de Navarra, Pathology Department, Madrid, Spain
| | - Mauricio Cambeiro
- Clínica Universitaria de Navarra, Radiation Oncology Department, Madrid, Spain
| | - Javier Aristu
- Clínica Universitaria de Navarra, Radiation Oncology Department, Madrid, Spain
| | - Alfonso Gúrpide
- Clínica Universitaria de Navarra, Medical Oncology Department, Madrid and Pamplona, Spain
| | | | - Jose Luis Pérez Gracia
- Clínica Universitaria de Navarra, Medical Oncology Department, Madrid and Pamplona, Spain
| |
Collapse
|
28
|
Zhang Y, Xie J. Induction of ferroptosis by natural phenols: A promising strategy for cancer therapy. Phytother Res 2024; 38:2041-2076. [PMID: 38391022 DOI: 10.1002/ptr.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
In recent years, heightened interest surrounds the exploration of natural phenols as potential agents for cancer therapy, specifically by inducing ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. This review delves into the roles of key natural phenols, flavonoids, phenolic acids, curcumin, and stilbenes, in modulating ferroptosis and their underlying mechanisms. Emphasizing the significance of amino acid, lipid, and iron metabolism, the study elucidates the diverse pathways through which these phenols regulate ferroptosis. Notably, curcumin, a well-known polyphenol, exhibits multifaceted interactions with cellular components involved in ferroptosis regulation, providing a distinctive therapeutic avenue. Stilbenes, another phenolic class, demonstrate promising potential in influencing lipid metabolism and iron-dependent processes, contributing to ferroptotic cell death. Understanding the intricate interplay between these natural phenols and ferroptosis not only illuminates complex cellular regulatory networks but also unveils potential avenues for novel cancer therapies. Exploring these compounds as inducers of ferroptosis presents a promising strategy for targeted cancer treatment, capitalizing on the delicate balance between cellular metabolism and regulated cell death mechanisms. This article synthesizes current knowledge, aiming to stimulate further research into the therapeutic potential of natural phenols in the context of ferroptosis-mediated cancer therapy.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
29
|
Phulara NR, Ishida CT, Espenshade PJ, Seneviratne HK. Cytosolic 5'-Nucleotidase III and Nucleoside Triphosphate Diphosphohydrolase 1 Dephosphorylate the Pharmacologically Active Metabolites of Gemcitabine and Emtricitabine. Drug Metab Dispos 2024; 52:288-295. [PMID: 38331874 DOI: 10.1124/dmd.123.001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Gemcitabine (dFdC) and emtricitabine (FTC) are first-line drugs that are used for the treatment of pancreatic cancer and human immunodeficiency virus, respectively. The above drugs must undergo sequential phosphorylation to become pharmacologically active. Interindividual variability associated with the responses of the above drugs has been reported. The molecular mechanisms underlying the observed variability are yet to be elucidated. Although this could be multifactorial, nucleotidases may be involved in the dephosphorylation of drug metabolites due to their structural similarity to endogenous nucleosides. With these in mind, we performed in vitro assays using recombinant nucleotidases to assess their enzymatic activities toward the metabolites of dFdC and FTC. From the above in vitro experiments, we noticed the dephosphorylation of dFdC-monophosphate in the presence of two 5'-nucleotidases (5'-NTs), cytosolic 5'-nucleotidase IA (NT5C1A) and cytosolic 5'-nucleotidase III (NT5C3), individually. Interestingly, FTC monophosphate was dephosphorylated only in the presence of NT5C3 enzyme. Additionally, nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1) exhibited enzymatic activity toward both triphosphate metabolites of dFdC and FTC. Enzyme kinetic analysis further revealed Michaelis-Menten kinetics for both NT5C3-mediated dephosphorylation of monophosphate metabolites, as well as NTPDase 1-mediated dephosphorylation of triphosphate metabolites. Immunoblotting results confirmed the presence of NT5C3 and NTPDase 1 in both pancreatic and colorectal tissue that are target sites for dFdC and FTC treatment, respectively. Furthermore, sex-specific expression patterns of NT5C3 and NTPDase 1 were determined using mass spectrometry-based proteomics approach. Based on the above results, NT5C3 and NTPDase 1 may function in the control of the levels of dFdC and FTC metabolites. SIGNIFICANCE STATEMENT: Emtricitabine and gemcitabine are commonly used drugs for the treatment of human immunodeficiency virus and pancreatic cancer. To become pharmacologically active, both the above drugs must be phosphorylated. The variability in the responses of the above drugs can lead to poor clinical outcomes. Although the sources of drug metabolite concentration variability are multifactorial, it is vital to understand the role of nucleotidases in the tissue disposition of the above drug metabolites due to their structural similarities to endogenous nucleosides.
Collapse
Affiliation(s)
- Nav Raj Phulara
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (N.R.P., H.K.S.); and Department of Cell Biology (C.T.I., P.J.E.) and Department of Oncology (P.J.E.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chiaki Tsuge Ishida
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (N.R.P., H.K.S.); and Department of Cell Biology (C.T.I., P.J.E.) and Department of Oncology (P.J.E.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter J Espenshade
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (N.R.P., H.K.S.); and Department of Cell Biology (C.T.I., P.J.E.) and Department of Oncology (P.J.E.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (N.R.P., H.K.S.); and Department of Cell Biology (C.T.I., P.J.E.) and Department of Oncology (P.J.E.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Hu J, Zhu BY, Niu ZX. Catalysts of Healing: A Symphony of Synthesis and Clinical Artistry in Small-Molecule Agents for Breast Cancer Alleviation. Molecules 2024; 29:1166. [PMID: 38474678 DOI: 10.3390/molecules29051166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer, characterized by its molecular intricacy, has witnessed a surge in targeted therapeutics owing to the rise of small-molecule drugs. These entities, derived from cutting-edge synthetic routes, often encompassing multistage reactions and chiral synthesis, target a spectrum of oncogenic pathways. Their mechanisms of action range from modulating hormone receptor signaling and inhibiting kinase activity, to impeding DNA damage repair mechanisms. Clinical applications of these drugs have resulted in enhanced patient survival rates, reduction in disease recurrence, and improved overall therapeutic indices. Notably, certain molecules have showcased efficacy in drug-resistant breast cancer phenotypes, highlighting their potential in addressing treatment challenges. The evolution and approval of small-molecule drugs have ushered in a new era for breast cancer therapeutics. Their tailored synthetic pathways and defined mechanisms of action have augmented the precision and efficacy of treatment regimens, paving the way for improved patient outcomes in the face of this pervasive malignancy. The present review embarks on a detailed exploration of small-molecule drugs that have secured regulatory approval for breast cancer treatment, emphasizing their clinical applications, synthetic pathways, and distinct mechanisms of action.
Collapse
Affiliation(s)
- Jing Hu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Bi-Yue Zhu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| |
Collapse
|
31
|
Sito H, Sharzehan MAK, Islam MA, Tan SC. Genetic Variants Associated With Response to Platinum-Based Chemotherapy in Non-Small Cell Lung Cancer Patients: A Field Synopsis and Meta-Analysis. Br J Biomed Sci 2024; 81:11835. [PMID: 38450253 PMCID: PMC10914946 DOI: 10.3389/bjbs.2024.11835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Background: Publications on the associations of genetic variants with the response to platinum-based chemotherapy (PBC) in NSCLC patients have surged over the years, but the results have been inconsistent. Here, a comprehensive meta-analysis was conducted to combine eligible studies for a more accurate assessment of the pharmacogenetics of PBC in NSCLC patients. Methods: Relevant publications were searched in PubMed, Scopus, and Web of Science databases through 15 May 2021. Inclusion criteria for eligible publications include studies that reported genotype and allele frequencies of NSCLC patients treated with PBC, delineated by their treatment response (sensitive vs. resistant). Publications on cell lines or animal models, duplicate reports, and non-primary research were excluded. Epidemiological credibility of cumulative evidence was assessed using the Newcastle-Ottawa Scale (NOS) and Venice criteria. Begg's and Egger's tests were used to assess publication bias. Cochran's Q-test and I2 test were used to calculate the odds ratio and heterogeneity value to proceed with the random effects or fixed-effects method. Venice criteria were used to assess the strength of evidence, replication methods and protection against bias in the studies. Results: A total of 121 publications comprising 29,478 subjects were included in this study, and meta-analyses were performed on 184 genetic variants. Twelve genetic variants from 10 candidate genes showed significant associations with PBC response in NSCLC patients with strong or moderate cumulative epidemiological evidence (increased risk: ERCC1 rs3212986, ERCC2 rs1799793, ERCC2 rs1052555, and CYP1A1 rs1048943; decreased risk: GSTM1 rs36631, XRCC1 rs1799782 and rs25487, XRCC3 rs861539, XPC rs77907221, ABCC2 rs717620, ABCG2 rs2231142, and CDA rs1048977). Bioinformatics analysis predicted possible damaging or deleterious effects for XRCC1 rs1799782 and possible low or medium functional impact for CYP1A1 rs1048943. Conclusion: Our results provide an up-to-date summary of the association between genetic variants and response to PBC in NSCLC patients.
Collapse
Affiliation(s)
- Hilary Sito
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Md Asiful Islam
- WHO Collaborating Centre for Global Women’s Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Budka J, Debowski D, Mai S, Narajczyk M, Hac S, Rolka K, Vrettos EI, Tzakos AG, Inkielewicz-Stepniak I. Design, Synthesis, and Antitumor Evaluation of an Opioid Growth Factor Bioconjugate Targeting Pancreatic Ductal Adenocarcinoma. Pharmaceutics 2024; 16:283. [PMID: 38399336 PMCID: PMC10892429 DOI: 10.3390/pharmaceutics16020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable challenge with high lethality and limited effective drug treatments. Its heightened metastatic potential further complicates the prognosis. Owing to the significant toxicity of current chemotherapeutics, compounds like [Met5]-enkephalin, known as opioid growth factor (OGF), have emerged in oncology clinical trials. OGF, an endogenous peptide interacting with the OGF receptor (OGFr), plays a crucial role in inhibiting cell proliferation across various cancer types. This in vitro study explores the potential anticancer efficacy of a newly synthesized OGF bioconjugate in synergy with the classic chemotherapeutic agent, gemcitabine (OGF-Gem). The study delves into assessing the impact of the OGF-Gem conjugate on cell proliferation inhibition, cell cycle regulation, the induction of cellular senescence, and apoptosis. Furthermore, the antimetastatic potential of the OGF-Gem conjugate was demonstrated through evaluations using blood platelets and AsPC-1 cells with a light aggregometer. In summary, this article demonstrates the cytotoxic impact of the innovative OGF-Gem conjugate on pancreatic cancer cells in both 2D and 3D models. We highlight the potential of both the OGF-Gem conjugate and OGF alone in effectively inhibiting the ex vivo pancreatic tumor cell-induced platelet aggregation (TCIPA) process, a phenomenon not observed with Gem alone. Furthermore, the confirmed hemocompatibility of OGF-Gem with platelets reinforces its promising potential. We anticipate that this conjugation strategy will open avenues for the development of potent anticancer agents.
Collapse
Affiliation(s)
- Justyna Budka
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Dawid Debowski
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland
| | - Stanislaw Hac
- Department of General Endocrine and Transplant Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | | | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of Ioannina, Institute of Materials Science and Computing, 45110 Ioannina, Greece
| | | |
Collapse
|
33
|
Lidagoster S, Ben-David R, De Leon B, Sfakianos JP. BCG and Alternative Therapies to BCG Therapy for Non-Muscle-Invasive Bladder Cancer. Curr Oncol 2024; 31:1063-1078. [PMID: 38392073 PMCID: PMC10888316 DOI: 10.3390/curroncol31020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Bladder cancer is a heterogeneous disease. Treatment decisions are mostly decided based on disease stage (non-muscle invasive or muscle invasive). Patients with muscle-invasive disease will be offered a radical treatment combined with systemic therapy, while in those with non-muscle-invasive disease, an attempt to resect the tumor endoscopically will usually be followed by different intravesical instillations. The goal of intravesical therapy is to decrease the recurrence and/or progression of the tumor. In the current landscape of bladder cancer treatment, BCG is given intravesically to induce an inflammatory response and recruit immune cells to attack the malignant cells and induce immune memory. While the response to BCG treatment has changed the course of bladder cancer management and spared many "bladders", some patients may develop BCG-unresponsive disease, leaving radical surgery as the best choice of curative treatment. As a result, a lot of effort has been put into identifying novel therapies like systemic pembrolizumab and Nadofaragene-Firadenovac to continue sparing bladders if BCG is ineffective. Moreover, recent logistic issues with BCG production caused a worldwide BCG shortage, re-sparking interest in alternative BCG treatments including mitomycin C, sequential gemcitabine with docetaxel, and others. This review encompasses both the historic and current role of BCG in the treatment of non-muscle-invasive bladder cancer, revisiting BCG alternative therapies and reviewing the novel therapeutics that were approved for the BCG-unresponsive stage or are under active investigation.
Collapse
Affiliation(s)
- Sarah Lidagoster
- Department of Urology, Ichan School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA (R.B.-D.); (B.D.L.)
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
| | - Reuben Ben-David
- Department of Urology, Ichan School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA (R.B.-D.); (B.D.L.)
| | - Benjamin De Leon
- Department of Urology, Ichan School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA (R.B.-D.); (B.D.L.)
- SUNY Downstate Health Science University, New York, NY 11203, USA
| | - John P. Sfakianos
- Department of Urology, Ichan School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA (R.B.-D.); (B.D.L.)
| |
Collapse
|
34
|
Shilbayeh SAR, Adeen IS, Ghanem EH, Aljurayb H, Aldilaijan KE, AlDosari F, Fadda A. Exploratory focused pharmacogenetic testing reveals novel markers associated with risperidone pharmacokinetics in Saudi children with autism. Front Pharmacol 2024; 15:1356763. [PMID: 38375040 PMCID: PMC10875102 DOI: 10.3389/fphar.2024.1356763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Background: Autism spectrum disorders (ASDs) encompass a broad range of phenotypes characterized by diverse neurological alterations. Genomic studies have revealed considerable overlap between the molecular mechanisms implicated in the etiology of ASD and genes involved in the pharmacokinetic (PK) and pharmacodynamic (PD) pathways of antipsychotic drugs employed in ASD management. Given the conflicting data originating from candidate PK or PD gene association studies in diverse ethnogeographic ASD populations, dosage individualization based on "actionable" pharmacogenetic (PGx) markers has limited application in clinical practice. Additionally, off-label use of different antipsychotics is an ongoing practice, which is justified given the shortage of approved cures, despite the lack of satisfactory evidence for its safety according to precision medicine. This exploratory study aimed to identify PGx markers predictive of risperidone (RIS) exposure in autistic Saudi children. Methods: This prospective cohort study enrolled 89 Saudi children with ASD treated with RIS-based antipsychotic therapy. Plasma levels of RIS and 9-OH-RIS were measured using a liquid chromatography-tandem mass spectrometry system. To enable focused exploratory testing, genotyping was performed with the Axiom PharmacoFocus Array, which included a collection of probe sets targeting PK/PD genes. A total of 720 PGx markers were included in the association analysis. Results: A total of 27 PGx variants were found to have a prominent impact on various RIS PK parameters; most were not located within the genes involved in the classical RIS PK pathway. Specifically, 8 markers in 7 genes were identified as the PGx markers with the strongest impact on RIS levels (p < 0.01). Four PGx variants in 3 genes were strongly associated with 9-OH-RIS levels, while 5 markers in 5 different genes explained the interindividual variability in the total active moiety. Notably, 6 CYP2D6 variants exhibited strong linkage disequilibrium; however, they significantly influenced only the metabolic ratio and had no considerable effects on the individual estimates of RIS, 9-OH-RIS, or the total active moiety. After correction for multiple testing, rs78998153 in UGT2B17 (which is highly expressed in the brain) remained the most significant PGx marker positively adjusting the metabolic ratio. For the first time, certain human leukocyte antigen (HLA) markers were found to enhance various RIS exposure parameters, which reinforces the gut-brain axis theory of ASD etiology and its suggested inflammatory impacts on drug bioavailability through modulation of the brain, gastrointestinal tract and/or hepatic expression of metabolizing enzymes and transporters. Conclusion: Our hypothesis-generating approach identified a broad spectrum of PGx markers that interactively influence RIS exposure in ASD children, which indicated the need for further validation in population PK modeling studies to define polygenic scores for antipsychotic efficacy and safety, which could facilitate personalized therapeutic decision-making in this complex neurodevelopmental condition.
Collapse
Affiliation(s)
- Sireen Abdul Rahim Shilbayeh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Iman Sharaf Adeen
- Department of Pediatric Behavior and Development and Adolescent Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ezzeldeen Hasan Ghanem
- Pharmaceutical Analysis Section, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Haya Aljurayb
- Molecular Pathology Laboratory, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Khawlah Essa Aldilaijan
- Health Sciences Research Center, King Abdullah Bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatimah AlDosari
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Jeddah, Saudi Arabia
| | | |
Collapse
|
35
|
Sito H, Tan SC. Genetic polymorphisms as potential pharmacogenetic biomarkers for platinum-based chemotherapy in non-small cell lung cancer. Mol Biol Rep 2024; 51:102. [PMID: 38217759 DOI: 10.1007/s11033-023-08915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
Platinum-based chemotherapy (PBC) is a widely used treatment for various solid tumors, including non-small cell lung cancer (NSCLC). However, its efficacy is often compromised by the emergence of drug resistance in patients. There is growing evidence that genetic variations may influence the susceptibility of NSCLC patients to develop resistance to PBC. Here, we provide a comprehensive overview of the mechanisms underlying platinum drug resistance and highlight the important role that genetic polymorphisms play in this process. This paper discussed the genetic variants that regulate DNA repair, cellular movement, drug transport, metabolic processing, and immune response, with a focus on their effects on response to PBC. The potential applications of these genetic polymorphisms as predictive indicators in clinical practice are explored, as are the challenges associated with their implementation.
Collapse
Affiliation(s)
- Hilary Sito
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
36
|
Chang YH, Wu KC, Wang KH, Ding DC. Ovarian Cancer Patient-Derived Organoids Used as a Model for Replicating Genetic Characteristics and Testing Drug Responsiveness: A Preliminary Study. Cell Transplant 2024; 33:9636897241281869. [PMID: 39323050 PMCID: PMC11425734 DOI: 10.1177/09636897241281869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/29/2023] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
This study aimed to explore the role of ovarian cancer patient-derived organoids (PDOs) in their replicating genetic characteristics and testing drug responsiveness. Ovarian cancer PDOs were cultured in Matrigel with a specialized medium. The successful rate and proliferation rate were calculated. Morphology, histology, and immunohistochemistry (IHC) (PAX8, P53, and WT1) were used to identify the tumor characteristics. Gene sequencing, variant allele frequency (VAF), and copy number variation were used to explore the mutation profile. The sensitivity to chemodrugs (carboplatin, paclitaxel, gemcitabine, doxorubicin, and olaparib) was conducted. Successful generation of organoids occurred in 54% (7/13) of attempts, encompassing 4 high-grade serous carcinomas (HGSC), 1 mucinous carcinoma (MC), 1 clear cell carcinoma (CCC), and 1 carcinosarcoma. The experiments used six organoids (3 HGSC, 1 CCC, 1 MC, and 1 carcinosarcoma). The derived organoids exhibited spherical-like morphology, and the diameter ranged from 100 to 500 μm. The histology and IHC exhibited the same between organoids and primary tumors. After cryopreservation, the organoid's growth rate was slower than the primary culture (14 days vs 10 days, P < 0.01). Targeted sequencing revealed shared DNA variants, including mutations in key genes, such as BRCA1, PIK3CA, ARID1A, and TP53. VAF was similar between primary tumors and organoids. The organoids maintained inherited most copy number alterations. Drug sensitivity testing revealed varying responses, with carcinosarcoma organoids showing higher sensitivity to paclitaxel and gemcitabine than HGSC organoids. Our preliminary results showed that ovarian cancer PDOs could be successfully derived and histology, mutations, and diverse copy numbers of genotypes could be faithfully captured. Drug testing could reveal the individual PDO's responsiveness to drugs. PDOs might be as valuable resources for investigating genomic biomarkers for personalized treatment.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien
| |
Collapse
|
37
|
Nair GG, Linster ED, Ray P, Quadir MA, Reindl KM. Extracellular Signal-Regulated Kinase Inhibitor SCH772984 Augments the Anti-Cancer Effects of Gemcitabine in Nanoparticle Form in Pancreatic Cancer Models. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:220-233. [PMID: 39493509 PMCID: PMC11530947 DOI: 10.22088/ijmcm.bums.13.3.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 11/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a poor response to the limited treatment options currently available. Hence, there is a need to identify new agents that could enhance the efficacy of existing treatments. This study investigated a combination therapy using gemcitabine (GEM) and SCH772984, an extracellular signal-regulated kinase (ERK) inhibitor, in both free form and nanoparticle-encapsulated form for PDAC treatment. Cell viability and Matrigel growth assays were used to determine the anti-proliferative and cytotoxic effects of GEM and SCH772984 on PDAC cells. Additionally, western blotting was used to determine the degree to which SCH772984 engaged ERK in PDAC cells. Lastly, immunohistochemistry and hematoxylin and eosin (H&E) staining were used to determine how GEM and SCH772984 affected expression of Ki-67 cell proliferation marker in PDX (patient derived xenograft) PDAC tissues. PDAC cell lines (MIA PaCa-2 and PANC-1) treated with the combination of free GEM and SCH772984 showed reduction in cell viability compared to cells treated with free GEM or SCH772984 administered as a single agent. Encapsulated forms of GEM and SCH772984 caused a greater reduction in cell viability than the free forms. Interestingly, co-administration of GEM and SCH772984 in separate nanoparticle (NP) systems exhibited the highest reduction in cell viability. Western blotting analysis confirmed ERK signaling was inhibited by both free and encapsulated SCH772984. Importantly, GEM did not interfere with the inhibitory effect of SCH772984 on phosphorylated ERK (pERK). Collectively, our studies suggest that combination therapy with GEM and SCH772984 effectively reduced PDAC cell viability and growth, and co-administration of NP encapsulated GEM and SCH772984 in separate NP systems is an effective treatment strategy for PDAC.
Collapse
Affiliation(s)
- Gauthami G Nair
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| | - Elena D Linster
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| | - Priyanka Ray
- Department of Coatings and Polymeric Materials, NDSU, Fargo, North Dakota, U.S.A.
| | - Mohiuddin A Quadir
- Department of Coatings and Polymeric Materials, NDSU, Fargo, North Dakota, U.S.A.
| | - Katie M Reindl
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| |
Collapse
|
38
|
Le Compte M, De La Hoz EC, Peeters S, Fortes FR, Hermans C, Domen A, Smits E, Lardon F, Vandamme T, Lin A, Vanlanduit S, Roeyen G, Van Laere S, Prenen H, Peeters M, Deben C. Single-organoid analysis reveals clinically relevant treatment-resistant and invasive subclones in pancreatic cancer. NPJ Precis Oncol 2023; 7:128. [PMID: 38066116 PMCID: PMC10709344 DOI: 10.1038/s41698-023-00480-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/09/2023] [Indexed: 06/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, characterized by a treatment-resistant and invasive nature. In line with these inherent aggressive characteristics, only a subset of patients shows a clinical response to the standard of care therapies, thereby highlighting the need for a more personalized treatment approach. In this study, we comprehensively unraveled the intra-patient response heterogeneity and intrinsic aggressive nature of PDAC on bulk and single-organoid resolution. We leveraged a fully characterized PDAC organoid panel (N = 8) and matched our artificial intelligence-driven, live-cell organoid image analysis with retrospective clinical patient response. In line with the clinical outcomes, we identified patient-specific sensitivities to the standard of care therapies (gemcitabine-paclitaxel and FOLFIRINOX) using a growth rate-based and normalized drug response metric. Moreover, the single-organoid analysis was able to detect resistant as well as invasive PDAC organoid clones, which was orchestrates on a patient, therapy, drug, concentration and time-specific level. Furthermore, our in vitro organoid analysis indicated a correlation with the matched patient progression-free survival (PFS) compared to the current, conventional drug response readouts. This work not only provides valuable insights on the response complexity in PDAC, but it also highlights the potential applications (extendable to other tumor types) and clinical translatability of our approach in drug discovery and the emerging era of personalized medicine.
Collapse
Affiliation(s)
- Maxim Le Compte
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | | | - Sofía Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Felicia Rodrigues Fortes
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Andreas Domen
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Timon Vandamme
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Abraham Lin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Plasma Lab for Applications in Sustainability and Medicine ANTwerp (PLASMANT), University of Antwerp, Antwerp, Belgium
| | | | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Hepatobiliary Transplantation and Endocrine Surgery, University Hospital Antwerp (UZA), Antwerp, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
39
|
Abbaspour A, Dehghani M, Setayesh M, Tavakkoli M, Rostamipour HA, Ghorbani M, Ramzi M, Omidvari S, Moosavi F, Firuzi O. Cytidine deaminase enzyme activity is a predictive biomarker in gemcitabine-treated cancer patients. Cancer Chemother Pharmacol 2023; 92:475-483. [PMID: 37668680 DOI: 10.1007/s00280-023-04579-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Gemcitabine is a chemotherapeutic agent, widely used for the treatment of many types of cancer. Cytidine deaminase (CDA) enzyme plays an important role in the metabolism of gemcitabine. This study aimed to assess the power of serum CDA residual activity in predicting drug efficacy and toxicity in gemcitabine-treated cancer patients. METHODS This prospective observational study enrolled 63 patients with different types of malignancies who received gemcitabine chemotherapy between May 2019 and January 2022. Blood samples were obtained before the initiation of chemotherapy and serum CDA residual activity was determined using a modification of the Berthelot assay. The patients were followed up for at least 12 months up to 41 months. Overall survival was recorded and treatment-related toxicities were documented according to National Cancer Institute Common Terminology Criteria. RESULTS Kaplan-Meier analysis showed that patients with a lower than median CDA value (≤ 8.06 U/mg protein) had a significantly longer survival compared to patients with higher CDA values (> 8.06 U/mg, P ˂ 0.005). Among several potentially involved factors, a significant association between CDA activity and overall survival was observed in univariate analysis (HR = 4.219, 95% CI 1.40-12.74, P = 0.011). On the other hand, the rate of anemia was significantly higher in low-CDA patients compared to high-CDA individuals (P < 0.05). CONCLUSION These findings suggest that CDA activity could be a promising biomarker to predict survival and the occurrence of anemia in cancer patients treated with gemcitabine.
Collapse
Affiliation(s)
- Alireza Abbaspour
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dehghani
- Department of Hematology and Medical Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahtab Setayesh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Ali Rostamipour
- Department of Internal Medicine, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Marziyeh Ghorbani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Department of Hematology and Medical Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shapour Omidvari
- Department of Radio-Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
40
|
Ischyropoulou M, Sabljo K, Schneider L, Niemeyer CM, Napp J, Feldmann C, Alves F. High-Load Gemcitabine Inorganic-Organic Hybrid Nanoparticles as an Image-Guided Tumor-Selective Drug-Delivery System to Treat Pancreatic Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305151. [PMID: 37587542 DOI: 10.1002/adma.202305151] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a devastating prognosis without effective treatment options. Thus, there is an urgent need for more effective and safe therapies. Here, inorganic-organic hybrid nanoparticles (GMP-IOH-NPs) are presented as a novel drug-delivery system for the selective delivery of extraordinarily high concentrations of gemcitabine monophosphate (GMP), not only to the primary tumor but also to metastatic sites. GMP-IOH-NPs have a composition of [ZrO]2+ [GMP]2 - with GMP as drug anion (76% of total IOH-NP mass). Multiscale fluorescence imaging confirms an efficient uptake in tumor cells, independent of the activity of the human-equilibrative-nucleoside transporter (hENT1), being responsible for gemcitabine (GEM) transport into cells and a key factor for GEM resistance. Delivering already phosphorylated GMP via GMP-IOH-NPs into tumor cells also allows the cellular resistance induced by the downregulation of deoxycytidine kinase to be overcome. GMP-IOH-NPs show high accumulation in tumor lesions and only minor liver trapping when given intraperitoneally. GMP-IOH-NPs result in a higher antitumor efficacy compared to free GEM, which is further enhanced applying cetuximab-functionalized GMP-CTX-IOH-NPs. By maximizing the therapeutic benefits with high drug load, tumor-specific delivery, minimizing undesired side effects, overcoming mechanisms of chemoresistance, and preventing systemic GEM inactivation, GMP-IOH-NPs are anticipated to have a high chance to significantly improve current PDAC-patient outcome.
Collapse
Affiliation(s)
- Myrto Ischyropoulou
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
- Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Hermann-Rein-Strasse 3, 37075, Goettingen, Germany
| | - Kristina Sabljo
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Leonie Schneider
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Joanna Napp
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
- Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Hermann-Rein-Strasse 3, 37075, Goettingen, Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Frauke Alves
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
- Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Hermann-Rein-Strasse 3, 37075, Goettingen, Germany
- Department of Haematology and Medical Oncology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| |
Collapse
|
41
|
White K, Anwar AI, Jin K, Bollich V, Kelkar RA, Talbot NC, Klapper RJ, Ahmadzadeh S, Viswanath O, Varrassi G, Shekoohi S, Kaye AD. Infigratinib for the Treatment of Metastatic or Locally Advanced Cholangiocarcinoma With Known FGFR2 Gene Fusions or Rearrangements. Cureus 2023; 15:e46792. [PMID: 37954763 PMCID: PMC10634393 DOI: 10.7759/cureus.46792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive and diverse malignancy with a poor prognosis. Related to a typical indolent course of progression, most cases of CCA are metastatic or locally advanced at the time of presentation. For patients with nonresectable tumors or metastatic disease, the mainstay of treatment is comprehensive with combination chemotherapy. The first-line chemotherapeutic combination for the treatment of CCA are cisplatin and gemcitabine-based chemotherapies. However, many locally advanced and progressive CCA cases are refractory to first-line management. Within the past few years, the increase in the incidence of metastatic CCA and its poor prognosis has brought to light the need for novel therapeutic approaches to treatment. With advancements in next-generation genome sequencing, multiple molecular pathways have been identified in the pathogenesis of CCA and have shown great potential as alternative treatments in cases of CCA refractory to surgical resection. FGFR2 fusions or rearrangements have been identified in 10-16% of all intrahepatic CCA and are thought to serve as a pathway of resistance for a number of nonresectable and refractory cases of cholangiocarcinoma. A novel therapeutic agent that has been discussed is infigratinib, a selective, ATP-competitive inhibitor of fibroblast growth factor receptor 2 (FGFR2). In a phase 1 trial, infigratinib showed a safe profile and showed remarkable clinical efficacy in advanced CCA with FGFR2 fusions or rearrangements in phase II trials. As of May 2021, the Food and Drug Administration (FDA) approved infigratinib for CCA largely based on tumor response and duration of response. As of 2021, infigratinib, futibatinib, and pemigatinib, similar novel selective FGFR inhibitors, have been approved by the FDA for the treatment of locally advanced or metastatic CCA harboring FGFR2 gene mutations. The present investigation reviews the development of infigratinib in particular and its clinical efficacy compared to other available treatment options for cholangiocarcinoma. While the side effect profile of infigratinib is minimal, particularly GI side effects, when compared with futibatinib and pemigatinib, the overall response rate (ORR) and median overall survival (mOS) for infigratinib (ORR=23.1%, mOS=3.8 months) was significantly lower than futibatinib (ORR=35.8%, mOS=21.1 months) and pemigatinib (ORR=35.5%, mOS=21.1 months). While there is ample promise for the use of infigratinib as molecular-directed therapy in the treatment of CCA harboring FGFR2 mutations, there is an appropriate concern for patient-acquired resistance. The heterogeneous nature of FGFR mutations and the emergence of different resistance mechanisms emphasize a need for more agents to inhibit FGFR rearrangements effectively.
Collapse
Affiliation(s)
- Kathryn White
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Ahmed I Anwar
- Department of Psychology, Quinnipiac University, Hamden, USA
| | - Kevin Jin
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria Bollich
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Rucha A Kelkar
- School of Medicine, Medical University of South Carolina, Charleston, USA
| | - Norris C Talbot
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Rachel J Klapper
- Radiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Omar Viswanath
- Pain Management, Valley Pain Consultants - Envision Physician Services, Phoenix, USA
| | | | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
42
|
Di Donato M, Medici N, Migliaccio A, Castoria G, Giovannelli P. Exosomes: Emerging Modulators of Pancreatic Cancer Drug Resistance. Cancers (Basel) 2023; 15:4714. [PMID: 37835408 PMCID: PMC10571735 DOI: 10.3390/cancers15194714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic cancer (PaC) is one of the most lethal tumors worldwide, difficult to diagnose, and with inadequate therapeutical chances. The most used therapy is gemcitabine, alone or in combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel), and the multidrug FOLFIRINOX. Unfortunately, PaC develops resistance early, thus reducing the already poor life expectancy of patients. The mechanisms responsible for drug resistance are not fully elucidated, and exosomes seem to be actively involved in this phenomenon, thanks to their ability to transfer molecules regulating this process from drug-resistant to drug-sensitive PaC cells. These extracellular vesicles are released by both normal and cancer cells and seem to be essential mediators of intercellular communications, especially in cancer, where they are secreted at very high numbers. This review illustrates the role of exosomes in PaC drug resistance. This manuscript first provides an overview of the pharmacological approaches used in PaC and, in the last part, focuses on the mechanisms exploited by the exosomes released by cancer cells to induce drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Pia Giovannelli
- Department of Precision Medicine, University of Campania “L.Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
43
|
Das K, Halder S. Synthesis of Functionalized Five-Membered Heterocycles from Epoxides: A Hydrogen-Bond Donor Catalytic Approach. J Org Chem 2023; 88:12872-12883. [PMID: 36007267 DOI: 10.1021/acs.joc.2c00902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of highly functionalized five-membered oxa- and aza-heterocycles has been reported utilizing hydrogen-bond donor (HBD) catalysis. In this method, an epoxide was taken as a substrate and reacted with functionalized arylidene/alkylidene malononitrile derivatives in the presence of a newly designed HBD catalyst. In all the cases, the products 2,5-disubstituted tetrahydrofurans (2,5-THFs) were obtained in good to excellent yields (up to 86%) with high diastereoselectivity (dr up to 99:1) as a single regioisomer. The stereochemistry at the 2- and 5-positions of the five-membered ring has been confirmed by single-crystal X-ray analysis, and cis is found to be the major product. The same strategy has been further utilized to obtain substituted oxazolidines whenever the epoxide has been reacted with isocyanate as an electrophile. In order to induce enantioselectivity, a chiral epoxide has been reacted with both the electrophiles in the presence of the same catalyst system to afford the single stereoisomer of the final products. This synthetic methodology involves a low catalyst loading and ambient reaction condition and has been generalized with various substituents present in the starting electrophiles to produce the resultant products in acceptable yields and stereoselectivity.
Collapse
Affiliation(s)
- Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| |
Collapse
|
44
|
Kutryb-Zając B, Kawecka A, Nasadiuk K, Braczko A, Stawarska K, Caiazzo E, Koszałka P, Cicala C. Drugs targeting adenosine signaling pathways: A current view. Biomed Pharmacother 2023; 165:115184. [PMID: 37506580 DOI: 10.1016/j.biopha.2023.115184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Adenosine is an endogenous nucleoside that regulates many physiological and pathological processes. It is derived from either the intracellular or extracellular dephosphorylation of adenosine triphosphate and interacts with cell-surface G-protein-coupled receptors. Adenosine plays a substantial role in protecting against cell damage in areas of increased tissue metabolism and preventing organ dysfunction in pathological states. Targeting adenosine metabolism and receptor signaling may be an effective therapeutic approach for human diseases, including cardiovascular and central nervous system disorders, rheumatoid arthritis, asthma, renal diseases, and cancer. Several lines of evidence have shown that many drugs exert their beneficial effects by modulating adenosine signaling pathways but this knowledge urgently needs to be summarized, and most importantly, actualized. The present review collects pharmaceuticals and pharmacological or diagnostic tools that target adenosine signaling in their primary or secondary mode of action. We overviewed FDA-approved drugs as well as those currently being studied in clinical trials. Among them are already used in clinic A2A adenosine receptor modulators like istradefylline or regadenoson, but also plenty of anti-platelet, anti-inflammatory, or immunosuppressive, and anti-cancer drugs. On the other hand, we investigated dozens of specific adenosine pathway regulators that are tested in clinical trials to treat human infectious and noninfectious diseases. In conclusion, targeting purinergic signaling represents a great therapeutic challenge. The actual knowledge of the involvement of adenosinergic signaling as part of the mechanism of action of old drugs has open a path not only for drug-repurposing but also for new therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Khrystyna Nasadiuk
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naple Federico II, 80131 Naples, Italy
| | - Patrycja Koszałka
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naple Federico II, 80131 Naples, Italy
| |
Collapse
|
45
|
Hruba L, Das V, Hajduch M, Dzubak P. Nucleoside-based anticancer drugs: Mechanism of action and drug resistance. Biochem Pharmacol 2023; 215:115741. [PMID: 37567317 DOI: 10.1016/j.bcp.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Nucleoside-based drugs, recognized as purine or pyrimidine analogs, have been potent therapeutic agents since their introduction in 1950, deployed widely in the treatment of diverse diseases such as cancers, myelodysplastic syndromes, multiple sclerosis, and viral infections. These antimetabolites establish complex interactions with cellular molecular constituents, primarily via activation of phosphorylation cascades leading to consequential interactions with nucleic acids. However, the therapeutic efficacy of these agents is frequently compromised by the development of drug resistance, a continually emerging challenge in their clinical application. This comprehensive review explores the mechanisms of resistance to nucleoside-based drugs, encompassing a wide spectrum of phenomena from alterations in membrane transporters and activating kinases to changes in drug elimination strategies and DNA damage repair mechanisms. The critical analysis in this review underlines complex interactions of drug and cell and also guides towards novel therapeutic strategies to counteract resistance. The development of targeted therapies, novel nucleoside analogs, and synergistic drug combinations are promising approaches to restore tumor sensitivity and improve patient outcomes.
Collapse
Affiliation(s)
- Lenka Hruba
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic.
| |
Collapse
|
46
|
Borsa BA, Hernandez LI, Jiménez T, Tellapragada C, Giske CG, Hernandez FJ. Therapeutic-oligonucleotides activated by nucleases (TOUCAN): A nanocarrier system for the specific delivery of clinical nucleoside analogues. J Control Release 2023; 361:260-269. [PMID: 37541593 DOI: 10.1016/j.jconrel.2023.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Nucleoside analogues have been in clinical use since 1960s and they are still used as the first therapeutic option for several cancers and viral infections, due to their high therapeutic efficacy. However, their wide clinical acceptance has been limited due to their high toxicity and severe side effects to patients. Herein, we report on a nanocarrier system that delivers nucleosides analogues in a target-specific manner, making nucleoside-based therapeutics safer and with the possibility to be used in other human conditions. This system, named, Therapeutic OligonUCleotides Activated by Nucleases" (TOUCAN) combines: i) the recognition power of oligonucleotides as substrates, ii) the use of nucleases as enzymatic biomarkers and iii) the clinical efficacy of nucleoside analogues, in a single approach. As a proof-of-concept, we report on a TOUCAN that is activated by a specific nuclease produced by bacteria and releases a therapeutic nucleoside, floxuridine. We demonstrate, for the first time, that, by incorporating a therapeutic nucleoside analogue into oligonucleotide probes, we can specifically inhibit bacterial growth in cultures. In this study, Staphylococcus aureus was selected as the targeted bacteria and the TOUCAN strategy successfully inhibited its growth with minimal inhibitory concentration (MIC) values ranging from 0.62 to 40 mg/L across all tested strains. Moreover, our results indicate that the intravenous administration of TOUCANs at a dose of 20 mg/kg over a 24-h period is a highly effective method for treating bacterial infections in a mouse model of pyomyositis. Importantly, no signs of toxicity were observed in our in vitro and in vivo studies. This work can significantly impact the current management of bacterial infections, laying the grounds for the development of a different class of antibiotics. Furthermore, it can provide a safer delivery platform for clinical nucleoside therapeutics in any human conditions, such as cancer and viral infection, where specific nuclease activity has been reported.
Collapse
Affiliation(s)
- Baris A Borsa
- Wallenberg Center for Molecular Medicine (WCMM), Linköping, Sweden; Department of Physics, Chemistry and Biology (IFM), Linköping University, Sweden; Nucleic Acid Technologies Laboratory (NAT-Lab), Linköping, Sweden
| | - Luiza I Hernandez
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Sweden; SOMAprobes, Science and Technology Park of Gipuzkoa, Donostia-San Sebastian, Spain
| | - Tania Jiménez
- SOMAprobes, Science and Technology Park of Gipuzkoa, Donostia-San Sebastian, Spain
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Frank J Hernandez
- Wallenberg Center for Molecular Medicine (WCMM), Linköping, Sweden; Department of Physics, Chemistry and Biology (IFM), Linköping University, Sweden; Nucleic Acid Technologies Laboratory (NAT-Lab), Linköping, Sweden.
| |
Collapse
|
47
|
Farooq F, Amin A, Wani UM, Lone A, Qadri RA. Shielding and nurturing: Fibronectin as a modulator of cancer drug resistance. J Cell Physiol 2023; 238:1651-1669. [PMID: 37269547 DOI: 10.1002/jcp.31048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
Resistance to chemotherapy and targeted therapies constitute a common hallmark of most cancers and represent a dominant factor fostering tumor relapse and metastasis. Fibronectin, an abundant extracellular matrix glycoprotein, has long been proposed to play an important role in the pathobiology of cancer. Recent research has unraveled the role of Fibronectin in the onset of chemoresistance against a variety of antineoplastic drugs including DNA-damaging agents, hormone receptor antagonists, tyrosine kinase inhibitors, microtubule destabilizing agents, etc. The current review summarizes the role played by Fibronectin in mediating drug resistance against diverse anticancer drugs. We have also discussed how the aberrant expression of Fibronectin drives the oncogenic signaling pathways ultimately leading to drug resistance through the inhibition of apoptosis, promotion of cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Faizah Farooq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Umer Majeed Wani
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asif Lone
- Department of Biochemistry, Deshbandu College, University of Delhi, Delhi, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
48
|
Wang X, Niu J, Qian S, Shen S, Straubinger RM, Qu J. Species-Deconvolved Proteomics for In Situ Investigation of Tumor-Stroma Interactions after Treatment of Pancreatic Cancer Patient-Derived Xenografts with Combined Gemcitabine and Paclitaxel. J Proteome Res 2023; 22:2436-2449. [PMID: 37311110 PMCID: PMC10561664 DOI: 10.1021/acs.jproteome.3c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor-stroma interactions are critical in pancreatic ductal adenocarcinoma (PDAC) progression and therapeutics. Patient-derived xenograft (PDX) models recapitulate tumor-stroma interactions, but the conventional antibody-based immunoassay is inadequate to discriminate tumor and stromal proteins. Here, we describe a species-deconvolved proteomics approach embedded in IonStar that can unambiguously quantify the tumor (human-derived) and stromal (mouse-derived) proteins in PDX samples, enabling unbiased investigation of tumor and stromal proteomes with excellent quantitative reproducibility. With this strategy, we studied tumor-stroma interactions in PDAC PDXs that responded differently to Gemcitabine combined with nab-Paclitaxel (GEM+PTX) treatment. By analyzing 48 PDX animals 24 h/192 h after treatment with/without GEM+PTX, we quantified 7262 species-specific proteins under stringent cutoff criteria, with high reproducibility. For the PDX sensitive to GEM+PTX, the drug-dysregulated proteins in tumor cells were involved in suppressed oxidative phosphorylation and the TCA cycle, and in the stroma, inhibition of glycolytic activity was predominant, suggesting a relieved reverse Warburg effect by the treatment. In GEM+PTX-resistant PDXs, protein changes suggested extracellular matrix deposition and activation of tumor cell proliferation. Key findings were validated by immunohistochemistry (IHC). Overall, this approach provides a species-deconvolved proteomic platform that could advance cancer therapeutic studies by enabling unbiased exploration of tumor-stroma interactions in the large number of PDX samples required for such investigations.
Collapse
Affiliation(s)
- Xue Wang
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Jin Niu
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York 14203, United States
| | - Shuo Qian
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Shichen Shen
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| | - Robert M. Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York 14203, United States
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| | - Jun Qu
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York 14203, United States
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| |
Collapse
|
49
|
Obrador E, Jihad-Jebbar A, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano MP, Navarro EA, Cibrian R, Estrela JM. Externally Applied Electromagnetic Fields and Hyperthermia Irreversibly Damage Cancer Cells. Cancers (Basel) 2023; 15:3413. [PMID: 37444524 DOI: 10.3390/cancers15133413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
At present, the applications and efficacy of non-ionizing radiations (NIR) in oncotherapy are limited. In terms of potential combinations, the use of biocompatible magnetic nanoparticles as heat mediators has been extensively investigated. Nevertheless, developing more efficient heat nanomediators that may exhibit high specific absorption rates is still an unsolved problem. Our aim was to investigate if externally applied magnetic fields and a heat-inducing NIR affect tumor cell viability. To this end, under in vitro conditions, different human cancer cells (A2058 melanoma, AsPC1 pancreas carcinoma, MDA-MB-231 breast carcinoma) were treated with the combination of electromagnetic fields (EMFs, using solenoids) and hyperthermia (HT, using a thermostated bath). The effect of NIR was also studied in combination with standard chemotherapy and targeted therapy. An experimental device combining EMFs and high-intensity focused ultrasounds (HIFU)-induced HT was tested in vivo. EMFs (25 µT, 4 h) or HT (52 °C, 40 min) showed a limited effect on cancer cell viability in vitro. However, their combination decreased viability to approximately 16%, 50%, and 21% of control values in A2058, AsPC1, and MDA-MB-231 cells, respectively. Increased lysosomal permeability, release of cathepsins into the cytosol, and mitochondria-dependent activation of cell death are the underlying mechanisms. Cancer cells could be completely eliminated by combining EMFs, HT, and standard chemotherapy or EMFs, HT, and anti-Hsp70-targeted therapy. As a proof of concept, in vivo experiments performed in AsPC1 xenografts showed that a combination of EMFs, HIFU-induced HT, standard chemotherapy, and a lysosomal permeabilizer induces a complete cancer regression.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - Ali Jihad-Jebbar
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - María Oriol-Caballo
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | | | - Enrique A Navarro
- Scientia BioTech, 46002 Valencia, Spain
- Department of Computer Sciences, Higher Technical School of Engineering, 46100 Burjassot, Spain
- IRTIC Institute, University of Valencia, 46980 Paterna, Spain
| | - Rosa Cibrian
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - José M Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
50
|
Guan SW, Lin Q, Yu HB. Intratumour microbiome of pancreatic cancer. World J Gastrointest Oncol 2023; 15:713-730. [PMID: 37275446 PMCID: PMC10237023 DOI: 10.4251/wjgo.v15.i5.713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Pancreatic cancer is a high mortality malignancy with almost equal mortality and morbidity rates. Both normal and tumour tissues of the pancreas were previously considered sterile. In recent years, with the development of technologies for high-throughput sequencing, a variety of studies have revealed that pancreatic cancer tissues contain small amounts of bacteria and fungi. The intratumour microbiome is being revealed as an influential contributor to carcinogenesis. The intratumour microbiome has been identified as a crucial factor for pancreatic cancer progression, diagnosis, and treatment, chemotherapy resistance, and immune response. A better understanding of the biology of the intratumour microbiome of pancreatic cancer contributes to the establishment of better early cancer screening and treatment strategies. This review focuses on the possible origins of the intratumour microbiome in pancreatic cancer, the intratumour localization, the interaction with the tumour microenvironment, and strategies for improving the outcome of pancreatic cancer treatment. Thus, this review offers new perspectives for improving the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Shi-Wei Guan
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Quan Lin
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hai-Bo Yu
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|