1
|
Shi Y, Zheng H, Wang T, Zhou S, Zhao S, Li M, Cao B. Targeting KRAS: from metabolic regulation to cancer treatment. Mol Cancer 2025; 24:9. [PMID: 39799325 PMCID: PMC11724471 DOI: 10.1186/s12943-024-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance. Here, we review the metabolic reprogramming of glucose, glutamine, and lipids regulated by oncogenic KRAS, with an emphasis on recent insights into the relationship between changes in metabolic mechanisms driven by KRAS mutant and related advances in targeted therapy. We also focus on advances in KRAS inhibitor discovery and related treatment strategies in colorectal, pancreatic, and non-small cell lung cancer, including current clinical trials. Therefore, this review provides an overview of the current understanding of metabolic mechanisms associated with KRAS mutation and related therapeutic strategies, aiming to facilitate the understanding of current challenges in KRAS-driven cancer and to support the investigation of therapeutic strategies.
Collapse
Affiliation(s)
- Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Tianzhen Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China
| | - Shengpu Zhou
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China.
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
EP4 receptor as a novel promising therapeutic target in colon cancer. Pathol Res Pract 2020; 216:153247. [PMID: 33190014 DOI: 10.1016/j.prp.2020.153247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023]
Abstract
The most prevalent malignancy that can occur in the gastrointestinal tract is colon cancer. The current treatment options for colon cancer patients include chemotherapy, surgery, radiotherapy, immunotherapy, and targeted therapy. Although the chance of curing the disease in the early stages is high, there is no cure for almost all patients with advanced and metastatic disease. It has been found that over-activation of cyclooxygenase 2 (COX-2), followed by the production of prostaglandin E2 (PGE2) in patients with colon cancer are significantly increased. The tumorigenic function of COX-2 is mainly due to its role in the production of PGE2. PGE2, as a main generated prostanoid, has an essential role in growth and survival of colon cancer cell's. PGE2 exerts various effects in colon cancer cells including enhanced expansion, angiogenesis, survival, invasion, and migration. The signaling of PGE2 via the EP4 receptor has been shown to induce colon tumorigenesis. Moreover, the expression levels of the EP4 receptor significantly affect tumor growth and development. Overexpression of EP4 by various mechanisms increases survival and tumor vasculature in colon cancer cells. It seems that the pathway starting with COX2, continuing with PGE2, and ending with EP4 can promote the spread and growth of colon cancer. Therefore, targeting the COX-2/PGE2/EP4 axis can be considered as a worthy therapeutic approach to treat colon cancer. In this review, we have examined the role and different mechanisms that the EP4 receptor is involved in the development of colon cancer.
Collapse
|
3
|
Hsu HH, Lin YM, Shen CY, Shibu MA, Li SY, Chang SH, Lin CC, Chen RJ, Viswanadha VP, Shih HN, Huang CY. Prostaglandin E2-Induced COX-2 Expressions via EP2 and EP4 Signaling Pathways in Human LoVo Colon Cancer Cells. Int J Mol Sci 2017; 18:E1132. [PMID: 28587064 PMCID: PMC5485956 DOI: 10.3390/ijms18061132] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the most dangerous risk faced by patients with hereditary non-polyposis colon cancer (HNPCC). The expression of matrix metalloproteinases (MMPs) has been observed in several types of human cancers and regulates the efficacy of many therapies. Here, we show that treatment with various concentrations of prostaglandin E2 (PGE2; 0, 1, 5 or 10 μM) promotes the migration ability of the human LoVo colon cancer cell line. As demonstrated by mRNA and protein expression analyses, EP2 and EP4 are the major PGE2 receptors expressed on the LoVo cell membrane. The Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt cell survival pathway was upregulated by EP2 and EP4 activation. Following the activation of the PI3K/Akt pathway, β-catenin translocated into the nucleus and triggered COX2 transcription via LEF-1 and TCF-4 and its subsequent translation. COX2 expression correlated with the elevation in the migration ability of LoVo cells. The experimental evidence shows a possible mechanism by which PGE2 induces cancer cell migration and further suggests PGE2 to be a potential therapeutic target in colon cancer metastasis. On inhibition of PGE2, in order to determine the downstream pathway, the levels of PI3K/Akt pathway were suppressed and the β-catenin expression was also modulated. Inhibition of EP2 and EP4 shows that PGE2 induces protein expression of COX-2 through EP2 and EP4 receptors in LoVo colon cancer cells.
Collapse
Affiliation(s)
- Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Freshwater 25160, Taiwan.
- Mackay Medicine, Nursing and Management College, Taipei 10449, Taiwan.
| | - Yueh-Min Lin
- Department of pathology, Changhua Christian Hospital, Changhua 500, Taiwan.
- Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung 912, Taiwan.
| | - Marthandam Asokan Shibu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Shin-Yi Li
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Sheng-Huang Chang
- Tsao-Tun Psychiatric Center, Department of Health, Executive Yuan, Taipei 10058, Taiwan.
| | - Chien-Chung Lin
- Orthopaedic Department, Armed Forces General Hospital, Taichung 404, Taiwan.
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | | | - Hui-Nung Shih
- Division of Colorectal Surgery, Mackay Memorial Hospital, Freshwater 25160, Taiwan.
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
4
|
Moreno JJ. Eicosanoid receptors: Targets for the treatment of disrupted intestinal epithelial homeostasis. Eur J Pharmacol 2016; 796:7-19. [PMID: 27940058 DOI: 10.1016/j.ejphar.2016.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
The importance of cyclooxygenase and lipoxygenase pathways and the consequent eicosanoid synthesis in the physiology and pathophysiology of the intestinal epithelium is currently being established. Each eicosanoid (prostanoid, leukotriene, hydroxyeicosatetraenoic acid) preferentially recognizes one or more receptors coupled to one or more signal-transduction processes. This overview focuses on the role of eicosanoid receptors in the maintenance of intestinal epithelium physiology through the control of proliferation/differentiation/apoptosis processes. Furthermore, it is reported that the role of these receptors on the regulation of the barrier function of the intestinal epithelium have arisen through the regulation of absorption/secretion processes, tight-junction state and the control of the intestinal immune response. Also, this review considers the implication of AA cascade in the disruption of epithelial homeostasis during inflammatory bowel diseases and colorectal cancer as well as the therapeutic values and potential of the eicosanoid receptors as novel targets for the treatments of the pathologies above mentioned.
Collapse
Affiliation(s)
- Juan J Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Avda. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
5
|
Sun L, Wei X, Liu X, Zhou D, Hu F, Zeng Y, Sun Y, Luo S, Zhang Y, Yi XP. Expression of prostaglandin E2 and EP receptors in human papillary thyroid carcinoma. Tumour Biol 2015; 37:4689-97. [PMID: 26511970 DOI: 10.1007/s13277-015-4316-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/22/2015] [Indexed: 01/15/2023] Open
Abstract
The objective of the present study is to determine the role of prostaglandin E2 (PGE2) and downstream EP receptors in the development of human papillary thyroid carcinoma (PTC). A total of 90 thyroid specimens excised from patients undergoing total or subtotal thyroidectomy in the Department of General Surgery, the Fifth Affiliated Hospital of Sun Yat-sen University, China, from August 2013 to September 2014, were analyzed. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical analyses were employed to examine the messenger RNA (mRNA) and protein expression, respectively. The expressions and significances of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), PGE2, and EP receptors in PTC and nodular goiter were investigated. The COX-2 mRNA and protein expression level significantly increased in the PTC tissues than in the paired noncarcinoma tissues adjacent to the PTC or nodular goiter tissues. The mPGES-1 protein expression was also significantly upregulated in the PTC tissues. All the four subtypes of EP receptors (EP1-4) could express in the thyroid tissues, while only the EP4 mRNA and protein levels significantly increased in the PTC tissues. The local production of PGE2 had a higher-level expression in the PTC tissues than in the noncarcinoma thyroid tissues adjacent to the PTC lesion and the benign nodular goiter tissues. The induction of PGE2 biosynthesis as well as the overexpression of EP4 in PTC suggested that this pathway might play an important role in the carcinogenesis and progression of PTC. These observations raise the possibility that pharmacological inhibition of mPGES-1 and/or EP4 may hold therapeutic promise in this common cancer.
Collapse
Affiliation(s)
- Liao Sun
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Xiaohong Wei
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Xueting Liu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Danli Zhou
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Fang Hu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yingjuan Zeng
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Ying Sun
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Shunkui Luo
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yu Zhang
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Xian Ping Yi
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| |
Collapse
|
6
|
Applegate CC, Lane MA. Role of retinoids in the prevention and treatment of colorectal cancer. World J Gastrointest Oncol 2015; 7:184-203. [PMID: 26483874 PMCID: PMC4606174 DOI: 10.4251/wjgo.v7.i10.184] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/10/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
Vitamin A and its derivatives, retinoids, have been widely studied for their use as cancer chemotherapeutic agents. With respect to colorectal cancer (CRC), several critical mutations dysregulate pathways implicated in progression and metastasis, resulting in aberrant Wnt/β-catenin signaling, gain-of-function mutations in K-ras and phosphatidylinositol-3-kinase/Akt, cyclooxygenase-2 over-expression, reduction of peroxisome proliferator-activated receptor γ activation, and loss of p53 function. Dysregulation leads to increased cellular proliferation and invasion and decreased cell-cell interaction and differentiation. Retinoids affect these pathways by various mechanisms, many involving retinoic acid receptors (RAR). RAR bind to all-trans-retinoic acid (ATRA) to induce the transcription of genes responsible for cellular differentiation. Although most research concerning the chemotherapeutic efficacy of retinoids focuses on the ability of ATRA to decrease cancer cell proliferation, increase differentiation, or promote apoptosis; as CRC progresses, RAR expression is often lost, rendering treatment of CRCs with ATRA ineffective. Our laboratory focuses on the ability of dietary vitamin A to decrease CRC cell proliferation and invasion via RAR-independent pathways. This review discusses our research and others concerning the ability of retinoids to ameliorate the defective signaling pathways listed above and decrease tumor cell proliferation and invasion through both RAR-dependent and RAR-independent mechanisms.
Collapse
|
7
|
Zheng Z, He X, Xie C, Hua S, Li J, Wang T, Yao M, Vignarajan S, Teng Y, Hejazi L, Liu B, Dong Q. Targeting cytosolic phospholipase A2 α in colorectal cancer cells inhibits constitutively activated protein kinase B (AKT) and cell proliferation. Oncotarget 2015; 5:12304-16. [PMID: 25365190 PMCID: PMC4322978 DOI: 10.18632/oncotarget.2639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/28/2014] [Indexed: 01/05/2023] Open
Abstract
A constitutive activation of protein kinase B (AKT) in a hyper-phosphorylated status at Ser473 is one of the hallmarks of anti-EGFR therapy-resistant colorectal cancer (CRC). The aim of this study was to examine the role of cytosolic phospholipase A2α (cPLA2α) on AKT phosphorylation at Ser473 and cell proliferation in CRC cells with mutation in phosphoinositide 3-kinase (PI3K). AKT phosphorylation at Ser473 was resistant to EGF stimulation in CRC cell lines of DLD-1 (PIK3CAE545K mutation) and HT-29 (PIK3CAP499T mutation). Over-expression of cPLA2α by stable transfection increased basal and EGF-stimulated AKT phosphorylation and proliferation in DLD-1 cells. In contrast, silencing of cPLA2α with siRNA or inhibition with Efipladib decreased basal and EGF-stimulated AKT phosphorylation and proliferation in HT-29. Treating animals transplanted with DLD-1 with Efipladib (10 mg/kg, i.p. daily) over 14 days reduced xenograft growth by >90% with a concomitant decrease in AKT phosphorylation. In human CRC tissue, cPLA2α expression and phosphorylation were increased in 63% (77/120) compared with adjacent normal mucosa determined by immunohistochemistry. We conclude that cPLA2α is required for sustaining AKT phosphorylation at Ser473 and cell proliferation in CRC cells with PI3K mutation, and may serve as a potential therapeutic target for treatment of CRC resistant to anti-EGFR therapy.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangyi He
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chanlu Xie
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia. School of Science and Health, The University of Western Sydney, Australia
| | - Sheng Hua
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, and Gastroenterology, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Tingfeng Wang
- Department of General Surgery, Nanhui Central Hospital. Shanghai, China
| | - Mu Yao
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Soma Vignarajan
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Ying Teng
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Leila Hejazi
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia. School of Science and Health, The University of Western Sydney, Australia
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, and Gastroenterology, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Qihan Dong
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia. School of Science and Health, The University of Western Sydney, Australia
| |
Collapse
|
8
|
Cruz-Bravo RK, Guevara-González RG, Ramos-Gómez M, Oomah BD, Wiersma P, Campos-Vega R, Loarca-Piña G. The fermented non-digestible fraction of common bean (Phaseolus vulgaris L.) triggers cell cycle arrest and apoptosis in human colon adenocarcinoma cells. GENES AND NUTRITION 2013; 9:359. [PMID: 24293398 DOI: 10.1007/s12263-013-0359-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/07/2013] [Indexed: 01/10/2023]
Abstract
Cancer is a leading cause of death worldwide with colorectal cancer (CRC) ranking as the third contributing to overall cancer mortality. Non-digestible compounds such as dietary fiber have been inversely associated with CRC in epidemiological in vivo and in vitro studies. In order to investigate the effect of fermentation products from a whole non-digestible fraction of common bean versus the short-chain fatty acid (SCFAs) on colon cancer cells, we evaluated the human gut microbiota fermented non-digestible fraction (hgm-FNDF) of cooked common bean (Phaseolus vulgaris L.) cultivar Negro 8025 and a synthetic mixture SCFAs, mimicking their concentration in the lethal concentration 50 (SCFA-LC50) of FNDF (hgm-FNDF-LC50), on the molecular changes in human colon adenocarcinoma cells (HT-29). Total mRNA from hgm-FNDF-LC50 and SCFA-LC50 treated HT-29 cells were used to perform qPCR arrays to determine the effect of the treatments on the transcriptional expression of 84 genes related to the p53-pathway. This study showed that both treatments inhibited cell proliferation in accordance with modulating RB1, CDC2, CDC25A, NFKB and E2F genes. Furthermore, we found an association between the induction of apoptosis and the modulation of APAF1, BID, CASP9, FASLG, TNFR10B and BCL2A genes. The results suggest a mechanism of action by which the fermentation of non-digestible compounds of common bean exert a beneficial effect better than the SCFA mixture by modulating the expression of antiproliferative and pro-apoptotic genes in HT-29 cells to a greater extent, supporting previous results on cell behavior, probably due to the participation of other compounds, such as phenolic fatty acids derivatives and biopetides.
Collapse
Affiliation(s)
- R K Cruz-Bravo
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010, Querétaro, QRO, Mexico
| | | | | | | | | | | | | |
Collapse
|
9
|
Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev 2013; 65:1010-52. [PMID: 23776144 DOI: 10.1124/pr.112.007195] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The EP4 prostanoid receptor is one of four receptor subtypes for prostaglandin E2. It belongs to the family of G protein-coupled receptors. It was originally identified, similar to the EP2 receptor as a G(s)α-coupled, adenylyl cyclase-stimulating receptor. EP4 signaling plays a variety of roles through cAMP effectors, i.e., protein kinase A and exchange protein activated by cAMP. However, emerging evidence from studies using pharmacological approaches and genetically modified mice suggests that EP4, unlike EP2, can also be coupled to G(i)α, phosphatidylinositol 3-kinase, β-arrestin, or β-catenin. These signaling pathways constitute unique roles for the EP4 receptor. EP4 is widely distributed in the body and thus plays various physiologic and pathophysiologic roles. In particular, EP4 signaling is closely related to carcinogenesis, cardiac hypertrophy, vasodilation, vascular remodeling, bone remodeling, gastrointestinal homeostasis, renal function, and female reproductive function. In addition to the classic anti-inflammatory action of EP4 on mononuclear cells and T cells, recent evidence has shown that EP4 signaling contributes to proinflammatory action as well. The aim of this review is to present current findings on the biologic functions of the EP4 receptor. In particular, we will discuss its diversity from the standpoint of EP4-mediated signaling.
Collapse
Affiliation(s)
- Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
10
|
Konya V, Marsche G, Schuligoi R, Heinemann A. E-type prostanoid receptor 4 (EP4) in disease and therapy. Pharmacol Ther 2013; 138:485-502. [PMID: 23523686 PMCID: PMC3661976 DOI: 10.1016/j.pharmthera.2013.03.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/06/2023]
Abstract
The large variety of biological functions governed by prostaglandin (PG) E2 is mediated by signaling through four distinct E-type prostanoid (EP) receptors. The availability of mouse strains with genetic ablation of each EP receptor subtype and the development of selective EP agonists and antagonists have tremendously advanced our understanding of PGE2 as a physiologically and clinically relevant mediator. Moreover, studies using disease models revealed numerous conditions in which distinct EP receptors might be exploited therapeutically. In this context, the EP4 receptor is currently emerging as most versatile and promising among PGE2 receptors. Anti-inflammatory, anti-thrombotic and vasoprotective effects have been proposed for the EP4 receptor, along with its recently described unfavorable tumor-promoting and pro-angiogenic roles. A possible explanation for the diverse biological functions of EP4 might be the multiple signaling pathways switched on upon EP4 activation. The present review attempts to summarize the EP4 receptor-triggered signaling modules and the possible therapeutic applications of EP4-selective agonists and antagonists.
Collapse
Key Words
- ampk, amp-activated protein kinase
- camp, cyclic adenylyl monophosphate
- cftr, cystic fibrosis transmembrane conductance regulator
- clc, chloride channel
- cox, cyclooxygenase
- creb, camp-response element-binding protein
- dp, d-type prostanoid receptor
- dss, dextran sodium sulfate
- egfr, epidermal growth factor receptor
- enos, endothelial nitric oxide synthase
- ep, e-type prostanoid receptor
- epac, exchange protein activated by camp
- eprap, ep4 receptor-associated protein
- erk, extracellular signal-regulated kinase
- fem1a, feminization 1 homolog a
- fp, f-type prostanoid receptor
- grk, g protein-coupled receptor kinase
- 5-hete, 5-hydroxyeicosatetraenoic acid
- icer, inducible camp early repressor
- icam-1, intercellular adhesion molecule-1
- ig, immunoglobulin
- il, interleukin
- ifn, interferon
- ip, i-type prostanoid receptor
- lps, lipopolysaccharide
- map, mitogen-activated protein kinase
- mcp, monocyte chemoattractant protein
- mek, map kinase kinase
- nf-κb, nuclear factor kappa-light-chain-enhancer of activated b cells
- nsaid, non-steroidal anti-inflammatory drug
- pg, prostaglandin
- pi3k, phosphatidyl insositol 3-kinase
- pk, protein kinase
- tp, t-type prostanoid receptor
- tx, thromboxane receptor
- prostaglandins
- inflammation
- vascular disease
- cancerogenesis
- renal function
- osteoporosis
Collapse
Affiliation(s)
| | | | | | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
11
|
Time-series analysis of gene expression profiles induced by nitrosamides and nitrosamines elucidates modes of action underlying their genotoxicity in human colon cells. Toxicol Lett 2011; 207:232-41. [DOI: 10.1016/j.toxlet.2011.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/21/2023]
|