1
|
Yao QX, Li ZY, Kang HL, He X, Kang M. Effect of acacetin on inhibition of apoptosis in Helicobacter pylori-infected gastric epithelial cell line. World J Gastrointest Oncol 2024; 16:3624-3634. [PMID: 39171164 PMCID: PMC11334024 DOI: 10.4251/wjgo.v16.i8.3624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection can cause extensive apoptosis of gastric epithelial cells, serving as a critical catalyst in the progression from chronic gastritis, gastrointestinal metaplasia, and atypical gastric hyperplasia to gastric carcinoma. Prompt eradication of H. pylori is paramount for ameliorating the pathophysiological conditions associated with chronic inflammation of the gastric mucosa and the primary prevention of gastric cancer. Acacetin, which has multifaceted pharmacological activities such as anti-cancer, anti-inflammatory, and antioxidative properties, has been extensively investigated across various domains. Nevertheless, the impact and underlying mechanisms of action of acacetin on H. pylori-infected gastric mucosal epithelial cells remain unclear. AIM To explore the defensive effects of acacetin on apoptosis in H. pylori-infected GES-1 cells and to investigate the underlying mechanisms. METHODS GES-1 cells were treated with H. pylori and acacetin in vitro. Cell viability was assessed using the CCK-8 assay, cell mortality rate via lactate dehydrogenase assay, alterations in cell migration and healing capacities through the wound healing assay, rates of apoptosis via flow cytometry and TUNEL staining, and expression levels of apoptosis-associated proteins through western blot analysis. RESULTS H. pylori infection led to decreased GES-1 cell viability, increased cell mortality, suppressed cell migration, increased rate of apoptosis, increased expressions of Bax and cle-caspase3, and decreased Bcl-2 expression. Conversely, acacetin treatment enhanced cell viability, mitigated apoptosis induced by H. pylori infection, and modulated the expression of apoptosis-regulatory proteins by upregulating Bcl-2 and downregulating Bax and cleaved caspase-3. CONCLUSION Acacetin significantly improved GES-1 cell viability and inhibited apoptosis in H. pylori-infected GES-1 cells, thereby exerting a protective effect on gastric mucosal epithelial cells.
Collapse
Affiliation(s)
- Qi-Xi Yao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Zi-Yu Li
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Hou-Le Kang
- Department of Emergency, Luzhou People’s Hospital, Luzhou 646000, Sichuan Province, China
| | - Xin He
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Min Kang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
2
|
Sadighi A, Aghamohammadpour Z, Sadeghpour Heravi F, Somi MH, Masnadi Shirazi Nezhad K, Hosseini S, Bahman Soufiani K, Ebrahimzadeh Leylabadlo H. The protective effects of Helicobacter pylori: A comprehensive review. JOURNAL OF RESEARCH IN CLINICAL MEDICINE 2024; 12:17. [DOI: 10.34172/jrcm.34509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2025] Open
Abstract
Previous reports have estimated that approximately half of the world’s population is infected with Helicobacter pylori, the most prevalent infectious agent responsible for gastrointestinal illnesses. Due to the life-threatening effects of H. pylori infections, numerous studies have focused on developing medical therapies for H. pylori infections, while the commensal relationship and positive impacts of this bacterium on overall human health have been largely overlooked. The inhibitory efficacy of H. pylori on the progression of several chronic inflammatory disorders and gastrointestinal diseases has recently raised concerns about whether this bacterium should be eradicated in affected individuals or maintained in an appropriate balance depending on the patient’s condition. This review investigates the beneficial effects of H. pylori in preventing various diseases and discusses the potential association of conditions such as inflammatory disorders with the absence of H. pylori.
Collapse
Affiliation(s)
- Ali Sadighi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghamohammadpour
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Samaneh Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Katayoun Bahman Soufiani
- Department of Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | | |
Collapse
|
3
|
Lin Y, Liu K, Lu F, Zhai C, Cheng F. Programmed cell death in Helicobacter pylori infection and related gastric cancer. Front Cell Infect Microbiol 2024; 14:1416819. [PMID: 39145306 PMCID: PMC11322058 DOI: 10.3389/fcimb.2024.1416819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining the normal structure and function of the digestive tract in the body. Infection with Helicobacter pylori (H. pylori) is an important factor leading to gastric damage, promoting the Correa cascade and accelerating the transition from gastritis to gastric cancer. Recent research has shown that several PCD signaling pathways are abnormally activated during H. pylori infection, and the dysfunction of PCD is thought to contribute to the development of gastric cancer and interfere with treatment. With the deepening of studies on H. pylori infection in terms of PCD, exploring the interaction mechanisms between H. pylori and the body in different PCD pathways may become an important research direction for the future treatment of H. pylori infection and H. pylori-related gastric cancer. In addition, biologically active compounds that can inhibit or induce PCD may serve as key elements for the treatment of this disease. In this review, we briefly describe the process of PCD, discuss the interaction between different PCD signaling pathways and the mechanisms of H. pylori infection or H. pylori-related gastric cancer, and summarize the active molecules that may play a therapeutic role in each PCD pathway during this process, with the expectation of providing a more comprehensive understanding of the role of PCD in H. pylori infection.
Collapse
Affiliation(s)
- Yukun Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kunjing Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Changming Zhai
- Department of Rheumatism, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Mitochondria supply sub-lethal signals for cytokine secretion and DNA-damage in H. pylori infection. Cell Death Differ 2022; 29:2218-2232. [PMID: 35505004 PMCID: PMC9613881 DOI: 10.1038/s41418-022-01009-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The bacterium Helicobacter pylori induces gastric inflammation and predisposes to cancer. H. pylori-infected epithelial cells secrete cytokines and chemokines and undergo DNA-damage. We show that the host cell's mitochondrial apoptosis system contributes to cytokine secretion and DNA-damage in the absence of cell death. H. pylori induced secretion of cytokines/chemokines from epithelial cells, dependent on the mitochondrial apoptosis machinery. A signalling step was identified in the release of mitochondrial Smac/DIABLO, which was required for alternative NF-κB-activation and contributed to chemokine secretion. The bacterial cag-pathogenicity island and bacterial muropeptide triggered mitochondrial host cell signals through the pattern recognition receptor NOD1. H. pylori-induced DNA-damage depended on mitochondrial apoptosis signals and the caspase-activated DNAse. In biopsies from H. pylori-positive patients, we observed a correlation of Smac-levels and inflammation. Non-apoptotic cells in these samples showed evidence of caspase-3-activation, correlating with phosphorylation of the DNA-damage response kinase ATM. Thus, H. pylori activates the mitochondrial apoptosis pathway to a sub-lethal level. During infection, Smac has a cytosolic, pro-inflammatory role in the absence of apoptosis. Further, DNA-damage through sub-lethal mitochondrial signals is likely to contribute to mutagenesis and cancer development.
Collapse
|
5
|
Effect of aqueous extract of seed of broccoli on inflammatory cytokines and Helicobacter pylori infection: a randomized, double-blind, controlled trial in patients without atrophic gastritis. Inflammopharmacology 2022; 30:1659-1668. [PMID: 35831736 DOI: 10.1007/s10787-022-01030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/25/2022] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to investigate the anti-inflammatory effect of an aqueous extract of seed of broccoli (AESB) in Helicobacter pylori (HP)-infected patients without atrophic gastritis. This was a double-centre, randomized, double-blind, controlled study. A total of 110 HP-infected subjects were randomized to receive either AESB or placebo for 2 months. Inflammatory cytokine (IL-8, IFN-γ, TNF-α, CRP, IL-17A, IL-1β, IL-18), pepsinogen I, II (PG I, PG II), and gastrin-17 (G-17) measurements and 13C-urea breath tests were performed at baseline and at 60 days. At 60 days, there was no significant difference in any of the inflammatory cytokines, pepsinogen or gastrin between the two groups. However, IL-8, IFN-γ, PG I, PG I/PG II ratio (PGR), and G-17 were reduced by 9.02 pg/mL, 5.08 pg/mL, 24.56 ng/mL, 1.75 and 0.3 pmol/L, respectively, in the AESB group compared with baseline (all P < 0.05). The HP eradication rates in the AESB group and placebo group were 11.11 and 3.70% at 60 days, respectively (P > 0.05). No treatment-related adverse events were reported. Thus, AESB may reduce the risk of gastric mucosal lesions and decrease the risk of gastric cancer by relieving inflammatory cytokines. The safety profile of AESB was satisfactory. This study is registered with the Chinese Clinical Trials Registry (Registration No. ChiCTR2100054249).
Collapse
|
6
|
Liu M, Zhang L, Zhou Q, Wang Y, Sun Q, Ren X. The Distinct Impact of TAM Infiltration on the Prognosis of Patients With Cardia and Non-Cardia Gastric Cancer and Its Association With H. pylori Infection. Front Oncol 2021; 11:737061. [PMID: 34926251 PMCID: PMC8677656 DOI: 10.3389/fonc.2021.737061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In stage III gastric cancer (GC), the role of tumor-associated macrophages (TAMs) and Helicobacter pylori (H. pylori) infection impact tumor progression; however, the specific mechanisms remain controversial. We speculated whether this controversy is caused by differences in the location of TAM infiltration (in the core (CT) and invasive margin (MI) of primary tumors) and the topographical subsites of GC (cardia and non-cardia). Therefore, in this study, we investigated TAMs in different locations and H. pylori infection status as prognostic biomarkers for GC. METHODS Immunohistochemical staining for CD68 (pan-macrophage), CD163 (M2-like macrophage), and H. pylori in 200 samples (100 cases of cardia-GC [CGC] and 100 cases of non-cardia GC [NCGC]) was performed. We compared the number of CD68+ and CD163+ macrophages that infiltrated the CT and MI in patients with the prognosis of CGC and NCGC, respectively. In addition, we analyzed the relationship between H. pylori status and the prognosis of patients with GC in different locations, as well as the correlation with TAM infiltration. RESULTS The distribution of TAMs had distinct characteristics in CGC and NCGC, especially differences between CT and MI subtype. A Kaplan-Meier analysis showed that a high number of CD68+ macrophages that infiltrated the CT in CGC was associated with a better prognosis, whereas infiltration at the MI in NCGC indicated a poor prognosis. Furthermore, a high number of CD163+ macrophages infiltrating the MI resulted in a poor prognosis in CGC and NCGC cohorts. Considering the larger differences in the relationship between the infiltration of CD68+ macrophages at different locations and prognosis, we divided the GC cases into marginal and central GC, based on this difference. This resulted in an accurate estimation of the prognosis. Moreover, positive H. pylori status in central GC was significantly associated with a better prognosis and TAM infiltration. CONCLUSION TAMs in different locations and H. pylori status were identified as independent prognostic markers, with an obvious correlation between them. Therefore, it is important to clarify the impact of TAM location on the prognosis of patients with GC, which contributes to the development of potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
7
|
Jia LL, Zhang M, Liu H, Sun J, Pan LL. Early-life fingolimod treatment improves intestinal homeostasis and pancreatic immune tolerance in non-obese diabetic mice. Acta Pharmacol Sin 2021; 42:1620-1629. [PMID: 33473182 PMCID: PMC8463616 DOI: 10.1038/s41401-020-00590-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
Fingolimod has beneficial effects on multiple diseases, including type 1 diabetes (T1D) and numerous preclinical models of colitis. Intestinal dysbiosis and intestinal immune dysfunction contribute to disease pathogenesis of T1D. Thus, the beneficial effect of fingolimod on T1D may occur via the maintenance of intestinal homeostasis to some extent. Herein, we investigated the role of fingolimod in intestinal dysfunction in non-obese diabetic (NOD) mice and possible mechanisms. NOD mice were treated with fingolimod (1 mg · kg-1 per day, i.g.) from weaning (3-week-old) to 31 weeks of age. We found that fingolimod administration significantly enhanced the gut barrier (evidenced by enhanced expression of tight junction proteins and reduced intestinal permeability), attenuated intestinal microbial dysbiosis (evidenced by the reduction of enteric pathogenic Proteobacteria clusters), as well as intestinal immune dysfunction (evidenced by inhibition of CD4+ cells activation, reduction of T helper type 1 cells and macrophages, and the expansion of regulatory T cells). We further revealed that fingolimod administration suppressed the activation of CD4+ cells and the differentiation of T helper type 1 cells, promoted the expansion of regulatory T cells in the pancreas, which might contribute to the maintenance of pancreatic immune tolerance and the reduction of T1D incidence. The protection might be due to fingolimod inhibiting the toll-like receptor 2/4/nuclear factor-κB/NOD-like receptor protein 3 inflammasome pathway in the colon. Collectively, early-life fingolimod treatment attenuates intestinal microbial dysbiosis and intestinal immune dysfunction in the T1D setting, which might contribute to its anti-diabetic effect.
Collapse
Affiliation(s)
- Ling-Ling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - He Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Reshetnyak VI, Burmistrov AI, Maev IV. Helicobacter pylori: Commensal, symbiont or pathogen? World J Gastroenterol 2021; 27:545-560. [PMID: 33642828 PMCID: PMC7901052 DOI: 10.3748/wjg.v27.i7.545] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
This review considers the data on Helicobacter pylori (H. pylori), which have been accumulated over 40 years since its description as an etiological factor in gastrointestinal diseases. The majority of modern publications are devoted to the study of the pathogenic properties of the microorganism in the development of chronic gastritis, peptic ulcer disease, and gastric cancer, as well as methods for its eradication. However, in recent years, there have been more and more studies which have suggested that H. pylori has a beneficial, or potentially positive, effect on the human body. The authors have attempted to objectively analyze the information accumulated in the literature on H. pylori. Some studies consider it as one of the recently identified human bacterial pathogens, and special attention is paid to the evidence suggesting that it is probably part of the composition of the human microbiome as a commensal (commensal from French to English is a table companion) or even a symbiont. The presented data discussing the presence or absence of the effect of H. pylori on human health suggest that there is an apparent ambiguity of the problem. The re-assessment of the data available on H. pylori infection is important in order to answer the question of whether it is necessary to create a program of mass H. pylori eradication or to apply a more personalized approach to treating patients with H. pylori-associated gastrointestinal diseases and to perform eradication therapy.
Collapse
Affiliation(s)
- Vasiliy Ivanovich Reshetnyak
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Alexandr Igorevich Burmistrov
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor Veniaminovich Maev
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| |
Collapse
|
9
|
FitzGerald R, Sinha C, Yadegar A, Smith SM. Helicobacter pylori Virulence Factor Genotyping. Methods Mol Biol 2021; 2283:93-106. [PMID: 33765313 DOI: 10.1007/978-1-0716-1302-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helicobacter pylori (H. pylori) infection causes chronic gastritis, peptic ulcers, gastric adenocarcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma. Bacterial, host, and environmental factors influence the progression of disease from superficial gastritis to cancer. H. pylori is genetically diverse, and expression of its specific virulence factors has been linked to increased risk of more severe pathologies. Described in this chapter is a protocol for detecting important H. pylori virulence factors by firstly extracting DNA from culture material or stomach tissue biopsies, followed by PCR amplification and agarose gel electrophoresis.
Collapse
Affiliation(s)
| | - Chavi Sinha
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sinéad M Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
10
|
Abstract
Helicobacter pylori (H. pylori) represents one of the most widespread bacterial infections globally. Infection causes chronic gastritis and increases the risk of peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. The pioneering discovery of H. pylori by Marshall and Warren in the early 1980s has initiated fervent research into H. pylori as a pathogen ever since. This chapter aims to provide an overview of our understanding of H. pylori infection and its management, with a focus on current options for diagnosis, the challenges associated with H. pylori eradication, and the need for alternative therapeutic strategies based on furthering our understanding of host: H. pylori interactions.
Collapse
Affiliation(s)
| | - Sinéad M Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
11
|
Zuo ZT, Ma Y, Sun Y, Bai CQ, Ling CH, Yuan FL. The Protective Effects of Helicobacter pylori Infection on Allergic Asthma. Int Arch Allergy Immunol 2020; 182:53-64. [PMID: 33080611 DOI: 10.1159/000508330] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
As an ancient Gram-negative bacterium, Helicobacter pylori has settled in human stomach. Eradicating H. pylori increases the morbidities of asthma and other allergic diseases. Therefore, H. pylori might play a protective role against asthma. The "disappearing microbiota" hypothesis suggests that the absence of certain types of the ancestral microbiota could change the development of immunology, metabolism, and cognitive ability in our early life, contributing to the development of some diseases. And the Hygiene Hypothesis links early environmental and microbial exposure to the prevalence of atopic allergies and asthma. Exposure to the environment and microbes can influence the growing immune system and protect subsequent immune-mediated diseases. H. pylori can inhibit allergic asthma by regulating the ratio of helper T cells 1/2 (Th1/Th2), Th17/regulatory T cells (Tregs), etc. H. pylori can also target dendritic cells to promote immune tolerance and enhance the protective effect on allergic asthma, and this effect relies on highly suppressed Tregs. The remote regulation of lung immune function by H. pylori is consistent with the gut-lung axis theory. Perhaps, H. pylori also protects against asthma by altering levels of stomach hormones, affecting the autonomic nervous system and lowering the expression of heat shock protein 70. Therapeutic products from H. pylori may be used to prevent and treat asthma. This paper reviews the possible protective influence of H. pylori on allergic asthma and the possible application of H. pylori in treating asthma.
Collapse
Affiliation(s)
- Zhi Tong Zuo
- Department of Respiratory Disease, The Hospital Affiliated to Jiangnan University, Wuxi, China,
| | - Ya Ma
- Wuxi Medical College of Jiangnan University, Wuxi, China
| | - Yan Sun
- Department of Respiratory Disease, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Cui Qing Bai
- Department of Respiratory Disease, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Chun Hua Ling
- Department of Respiratory Disease, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
YU X, FENG D, WANG G, DONG Z, ZHOU Q, ZHANG Y. Correlation Analysis of Helicobacter pylori Infection and Digestive Tract Symptoms in Children and Related Factors of Infection. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:1912-1920. [PMID: 33346225 PMCID: PMC7719659 DOI: 10.18502/ijph.v49i10.4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/15/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND To analyze the correlation between Helicobacter pylori infection and digestive tract symptoms in children and other related factors, and to explore the risk factors of H. pylori infection in children and the expression of inflammatory factors in H. pylori-positive and H. pylori-negative children. METHODS Overall, 234 children with H. pylori test in Xuzhou Children's Hospital, Xuzhou Medical University (Xuzhou, China) were enrolled. Among them, 73 children were H. pylori-positive and 161 were H. pylori-negative. The expression levels of cytokines interleukin-8 (IL-8), interleukin-18 (IL-18) and interferon-γ (IFN-γ) in H. pylori-positive and H. pylori-negative children were determined by ELISA. The correlation between H. pylori-positive and general data, digestive tract symptoms, other clinical symptoms, living habits, eating habits, family history and other related factors was statistically analyzed. Multivariate Logistic regression analysis was used to analyze the independent risk factors of H. pylori infection in children. RESULTS Family monthly income, inattentive eating, sharing toothbrushes and cups, gnawing fingers, eating fried food, drinking raw water, eating smoked and pickled food, father suffering from gastropathy and mother suffering from gastropathy were independent risk factors for H. pylori infection in children. The most common digestive tract symptoms of children with H. pylori infection were abdominal pain, accompanied by one or more clinical symptoms. The expression levels of IL-8, IL-18 and IFN-γ in H. pylori-positive children were significantly higher than those in H. pylori-negative children. CONCLUSION Prevention of H. pylori infection in children is helpful for healthy growth of children, and cytokines IL-8, IL-18, IFN-γ have the potential to be used as biomarkers for diagnosis of H. pylori-positive children.
Collapse
Affiliation(s)
- Xiaohong YU
- Digestive System Department, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221000, P.R. China
| | - Dongjin FENG
- Digestive System Department, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221000, P.R. China
| | - Guangmeng WANG
- Digestive System Department, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221000, P.R. China
| | - Zhongmao DONG
- Digestive System Department, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221000, P.R. China
| | - Qi ZHOU
- Digestive System Department, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221000, P.R. China
| | - Yuan ZHANG
- Digestive System Department, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221000, P.R. China
| |
Collapse
|
13
|
Liu F, Fu J, Bergstrom K, Shan X, McDaniel JM, McGee S, Bai X, Chen W, Xia L. Core 1-derived mucin-type O-glycosylation protects against spontaneous gastritis and gastric cancer. J Exp Med 2020; 217:e20182325. [PMID: 31645367 PMCID: PMC7037257 DOI: 10.1084/jem.20182325] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 08/12/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Core 1-derived mucin-type O-glycans (O-glycans) are a major component of gastric mucus with an unclear role. To address this, we generated mice lacking gastric epithelial O-glycans (GEC C1galt1-/-). GEC C1galt1-/- mice exhibited spontaneous gastritis that progressed to adenocarcinoma with ∼80% penetrance by 1 yr. GEC C1galt1-/- gastric epithelium exhibited defective expression of a major mucus forming O-glycoprotein Muc5AC relative to WT controls, which was associated with impaired gastric acid homeostasis. Inflammation and tumorigenesis in GEC C1galt1-/- stomach were concurrent with activation of caspases 1 and 11 (Casp1/11)-dependent inflammasome. GEC C1galt1-/- mice genetically lacking Casp1/11 had reduced gastritis and gastric cancer progression. Notably, expression of Tn antigen, a truncated form of O-glycan, and CASP1 activation was associated with tumor progression in gastric cancer patients. These results reveal a critical role of O-glycosylation in gastric homeostasis and the protection of the gastric mucosa from Casp1-mediated gastric inflammation and cancer.
Collapse
Affiliation(s)
- Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jianxin Fu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Kirk Bergstrom
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - J. Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Xia Bai
- Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
14
|
Clyne M, Rowland M. The Role of Host Genetic Polymorphisms in Helicobacter pylori Mediated Disease Outcome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:151-172. [PMID: 31016623 DOI: 10.1007/5584_2019_364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical outcome of infection with the chronic gastric pathogen Helicobacter pylori is not the same for all individuals and also differs in different ethnic groups. Infection occurs in early life (<3 years of age), and while all infected persons mount an immune response and develop gastritis, the majority of individuals are asymptomatic. However, up to 10-15% develop duodenal ulceration, up to 1% develop gastric cancer (GC) and up to 0.1% can develop gastric mucosa-associated lymphoid tissue (MALT) lymphoma. The initial immune response fails to clear infection and H. pylori can persist for decades. H. pylori has been classified as a group one carcinogen by the WHO. Interestingly, development of duodenal ulceration protects against GC. Factors that determine the outcome of infection include the genotype of the infecting strains and the environment. Host genetic polymorphisms have also been identified as factors that play a role in mediating the clinical outcome of infection. Several studies present compelling evidence that polymorphisms in genes involved in the immune response such as pro and anti-inflammatory cytokines and pathogen recognition receptors (PRRs) play a role in modulating disease outcome. However, as the number of studies grows emerging confounding factors are small sample size and lack of appropriate controls, lack of consideration of environmental and bacterial factors and ethnicity of the population. This chapter is a review of current evidence that host genetic polymorphisms play a role in mediating persistent H. pylori infection and the consequences of the subsequent inflammatory response.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | - Marion Rowland
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Activity and Functional Importance of Helicobacter pylori Virulence Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:35-56. [PMID: 31016624 DOI: 10.1007/5584_2019_358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori is a very successful Gram-negative pathogen colonizing the stomach of humans worldwide. Infections with this bacterium can generate pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The best characterized H. pylori virulence factors that cause direct cell damage include an effector protein encoded by the cytotoxin-associated gene A (CagA), a type IV secretion system (T4SS) encoded in the cag-pathogenicity island (cag PAI), vacuolating cytotoxin A (VacA), γ-glutamyl transpeptidase (GGT), high temperature requirement A (HtrA, a serine protease) and cholesterol glycosyl-transferase (CGT). Since these H. pylori factors are either surface-exposed, secreted or translocated, they can directly interact with host cell molecules and are able to hijack cellular functions. Studies on these bacterial factors have progressed substantially in recent years. Here, we review the current status in the characterization of signaling cascades by these factors in vivo and in vitro, which comprise the disruption of cell-to-cell junctions, induction of membrane rearrangements, cytoskeletal dynamics, proliferative, pro-inflammatory, as well as, pro-apoptotic and anti-apoptotic responses or immune evasion. The impact of these signal transduction modules in the pathogenesis of H. pylori infections is discussed.
Collapse
|
16
|
Falkeis-Veits C, Vieth M. Non-malignant Helicobacter pylori-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:121-134. [PMID: 31016630 DOI: 10.1007/5584_2019_362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori infection of the human stomach is associated with chronic gastritis, peptic ulcer disease or gastric carcinoma, and thus a high burden for the public health systems worldwide. Fortunately, only a small subfraction of up to 15-20% of infected individuals will develop serious complications. Unfortunately, it is not always known upfront, who will be affected by serious diesease outcome. For risk stratifications, it is therefore necessary to establish a common terminology and grading system, that can be applied worldwide to compare population data. The updated Sydney System for classification of gastritis with its semi-quantitative analogue scale is the system, that is currently used worldwide. Additionally, pathologists should always try to classify the etiology of the inflammatory infiltrates in the stomach to instruct the clinicians for choosing a proper treatment regime. Risk factors such as intestinal metaplasia, atrophy and scoring systems to classify these risk factors into a clinical context such as OLGA and OLGIM are discussed. Also, special forms of gastritis like lymphocytic gastritis, autoimmune gastritis and peptic ulcer disease are explained and discussed e.g. how to diagnose and how to treat. Extra-gastric sequelae of H. pylori infections inside and outside the stomach are shown in this chapter as well. Important host and bacterial risk factors such as pathogenicity islands are dicussed to draw a complete landscape around a H. pylori infection, that still can be diagnosed in patients. However, it needs to be noted that some countries have almost no H. pylori infection anymore, while others have still a very high frequency of infections with or without serious complications. The understanding and application of risk assessements may help to save money and quality of life. Extra-gastric H. pylori infections are rarely reported in the literature until today. The pathogenitiy is still under debate, but especially in the bile ducts and gallbladder, several pathological conditions may be also based on H. pylori infection, and will be also discussed.
Collapse
Affiliation(s)
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany.
| |
Collapse
|
17
|
Noto JM, Rose KL, Hachey AJ, Delgado AG, Romero-Gallo J, Wroblewski LE, Schneider BG, Shah SC, Cover TL, Wilson KT, Israel DA, Roa JC, Schey KL, Zavros Y, Piazuelo MB, Peek RM. Carcinogenic Helicobacter pylori Strains Selectively Dysregulate the In Vivo Gastric Proteome, Which May Be Associated with Stomach Cancer Progression. Mol Cell Proteomics 2019; 18:352-371. [PMID: 30455363 PMCID: PMC6356085 DOI: 10.1074/mcp.ra118.001181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is the strongest risk factor for gastric cancer. Initial interactions between H. pylori and its host originate at the microbial-gastric epithelial cell interface, and contact between H. pylori and gastric epithelium activates signaling pathways that drive oncogenesis. One microbial constituent that increases gastric cancer risk is the cag pathogenicity island, which encodes a type IV secretion system that translocates the effector protein, CagA, into host cells. We previously demonstrated that infection of Mongolian gerbils with a carcinogenic cag+H. pylori strain, 7.13, recapitulates many features of H. pylori-induced gastric cancer in humans. Therefore, we sought to define gastric proteomic changes induced by H. pylori that are critical for initiation of the gastric carcinogenic cascade. Gastric cell scrapings were harvested from H. pylori-infected and uninfected gerbils for quantitative proteomic analyses using isobaric tags for relative and absolute quantitation (iTRAQ). Quantitative proteomic analysis of samples from two biological replicate experiments quantified a total of 2764 proteins, 166 of which were significantly altered in abundance by H. pylori infection. Pathway mapping identified significantly altered inflammatory and cancer-signaling pathways that included Rab/Ras signaling proteins. Consistent with the iTRAQ results, RABEP2 and G3BP2 were significantly up-regulated in vitro, ex vivo in primary human gastric monolayers, and in vivo in gerbil gastric epithelium following infection with H. pylori strain 7.13 in a cag-dependent manner. Within human stomachs, RABEP2 and G3BP2 expression in gastric epithelium increased in parallel with the severity of premalignant and malignant lesions and was significantly elevated in intestinal metaplasia and dysplasia, as well as gastric adenocarcinoma, compared with gastritis alone. These results indicate that carcinogenic strains of H. pylori induce dramatic and specific changes within the gastric proteome in vivo and that a subset of altered proteins within pathways with oncogenic potential may facilitate the progression of gastric carcinogenesis in humans.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kristie L Rose
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amanda J Hachey
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alberto G Delgado
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Judith Romero-Gallo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lydia E Wroblewski
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Barbara G Schneider
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shailja C Shah
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Timothy L Cover
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee;; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keith T Wilson
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee;; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dawn A Israel
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Kevin L Schey
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yana Zavros
- Department of Pharmacology and System Physiology, University of Cincinnati, Cincinnati, Ohio
| | - M Blanca Piazuelo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee;.
| |
Collapse
|
18
|
Morey P, Meyer TF. The Sweeping Role of Cholesterol Depletion in the Persistence of Helicobacter pylori Infections. Curr Top Microbiol Immunol 2019; 421:209-227. [PMID: 31123891 DOI: 10.1007/978-3-030-15138-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability of Helicobacter pylori to persist lifelong in the human gastric mucosa is a striking phenomenon. It is even more surprising since infection is typically associated with a vivid inflammatory response. Recent studies revealed the mechanism by which this pathogen inhibits the epithelial responses to IFN-γ and other central inflammatory cytokines in order to abolish an effective antimicrobial defense. The mechanism is based on the modification and depletion of cholesterol by the pathogen's cholesterol-α-glucosyltransferase. It abrogates the assembly of numerous cytokine receptors due to the reduction of lipid rafts. Particularly, the receptors for IFN-γ, IL-22, and IL-6 then fail to assemble properly and to activate JAK/STAT signaling. Consequently, cholesterol depletion prevents the release of antimicrobial peptides, including the highly effective β-defensin-3. Intriguingly, the inhibition is spatially restricted to heavily infected cells, while the surrounding epithelium continues to respond normally to cytokine stimulation, thus providing a platform of the intense inflammation typically observed in H. pylori infections. It appears that pathogen and host establish a homeostatic balance between tightly colonized and rather inflamed sites. This homeostasis is influenced by the levels of available cholesterol, which potentially exacerbate H. pylori-induced inflammation. The observed blockage of epithelial effector mechanisms by H. pylori constitutes a convincing explanation for the previous failures of T-cell-based vaccination against H. pylori, since infected epithelial cells remain inert upon stimulation by effector cytokines. Moreover, the mechanism provides a rationale for the carcinogenic action of this pathogen in that persistent infection and chronic inflammation represent a pro-carcinogenic environment. Thus, cholesterol-α-glucosyltransferase has been revealed as a central pathogenesis determinant of H. pylori.
Collapse
Affiliation(s)
- Pau Morey
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain.
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
19
|
Reyes VE, Peniche AG. Helicobacter pylori Deregulates T and B Cell Signaling to Trigger Immune Evasion. Curr Top Microbiol Immunol 2019; 421:229-265. [PMID: 31123892 DOI: 10.1007/978-3-030-15138-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a prevalent human pathogen that successfully establishes chronic infection, which leads to clinically significant gastric diseases including chronic gastritis, peptic ulcer disease (PUD), and gastric cancer (GC). H. pylori is able to produce a persistent infection due in large part to its ability to hijack the host immune response. The host adaptive immune response is activated to strategically and specifically attack pathogens and normally clears them from the infected host. Since B and T lymphocytes are central mediators of adaptive immunity, in this chapter we review their development and the fundamental mechanisms regulating their activation in order to understand how some of the normal processes are subverted by H. pylori. In this review, we place particular emphasis on the CD4+ T cell responses, their subtypes, and regulatory mechanisms because of the expanding literature in this area related to H. pylori. T lymphocyte differentiation and function are finely orchestrated through a series of cell-cell interactions, which include immune checkpoint receptors. Among the immune checkpoint receptor family, there are some with inhibitory properties that are exploited by tumor cells to facilitate their immune evasion. Gastric epithelial cells (GECs), which act as antigen-presenting cells (APCs) in the gastric mucosa, are induced by H. pylori to express immune checkpoint receptors known to sway T lymphocyte function and thus circumvent effective T effector lymphocyte responses. This chapter reviews these and other mechanisms used by H. pylori to interfere with host immunity in order to persist.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Alex G Peniche
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
20
|
Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267-302. [PMID: 31123893 DOI: 10.1007/978-3-030-15138-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1β and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1β plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1β production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.
Collapse
|
21
|
Resolution of Gastric Cancer-Promoting Inflammation: A Novel Strategy for Anti-cancer Therapy. Curr Top Microbiol Immunol 2019; 421:319-359. [PMID: 31123895 DOI: 10.1007/978-3-030-15138-6_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The connection between inflammation and cancer was initially recognized by Rudolf Virchow in the nineteenth century. During the last decades, a large body of evidence has provided support to his hypothesis, and now inflammation is recognized as one of the hallmarks of cancer, both in etiopathogenesis and ongoing tumor growth. Infection with the pathogen Helicobacter pylori is the primary causal factor in 90% of gastric cancer (GC) cases. As we increase our understanding of how chronic inflammation develops in the stomach and contributes to carcinogenesis, there is increasing interest in targeting cancer-promoting inflammation as a strategy to treat GC. Moreover, once cancer develops and anti-cancer immune responses are suppressed, there is evidence of a substantial shift in the microenvironment and new targets for immune therapy emerge. In this chapter, we provide insight into inflammation-related factors, including T lymphocytes, macrophages, pro-inflammatory chemokines, and cytokines, which promote H. pylori-associated GC initiation and growth. While intervening with chronic inflammation is not a new practice in rheumatology or gastroenterology, this approach has not been fully explored for its potential to prevent carcinogenesis or to contribute to the treatment of GC. This review highlights current and possible strategies for therapeutic intervention including (i) targeting pro-inflammatory mediators, (ii) targeting growth factors and pathways involved in angiogenesis in the gastric tumor microenvironment, and (iii) enhancing anti-tumor immunity. In addition, we highlight a significant number of clinical trials and discuss the importance of individual tumor characterization toward offering personalized immune-related therapy.
Collapse
|
22
|
Albrecht N, Tegtmeyer N, Sticht H, Skórko-Glonek J, Backert S. Amino-Terminal Processing of Helicobacter pylori Serine Protease HtrA: Role in Oligomerization and Activity Regulation. Front Microbiol 2018; 9:642. [PMID: 29713313 PMCID: PMC5911493 DOI: 10.3389/fmicb.2018.00642] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/19/2018] [Indexed: 12/17/2022] Open
Abstract
The HtrA family of serine proteases is found in most bacteria, and plays an essential role in the virulence of the gastric pathogen Helicobacter pylori. Secreted H. pylori HtrA (HtrA Hp ) cleaves various junctional proteins such as E-cadherin disrupting the epithelial barrier, which is crucial for bacterial transmigration across the polarized epithelium. Recent studies indicated the presence of two characteristic HtrA Hp forms of 55 and 52 kDa (termed p55 and p52, respectively), in worldwide strains. In addition, p55 and p52 were produced by recombinant HtrA Hp , indicating auto-cleavage. However, the cleavage sites and their functional importance are yet unclear. Here, we determined the amino-terminal ends of p55 and p52 by Edman sequencing. Two proteolytic cleavage sites were identified (H46/D47 and K50/D51). Remarkably, the cleavage site sequences are conserved in HtrA Hp from worldwide isolates, but not in other Gram-negative pathogens, suggesting a highly specific assignment in H. pylori. We analyzed the role of the amino-terminal cleavage sites on activity, secretion and function of HtrA Hp . Three-dimensional modeling suggested a trimeric structure and a role of amino-terminal processing in oligomerization and regulation of proteolytic activity of HtrA Hp . Furthermore, point and deletion mutants of these processing sites were generated in the recently reported Campylobacter jejuni ΔhtrA/htrAHp genetic complementation system and the minimal sequence requirements for processing were determined. Polarized Caco-2 epithelial cells were infected with these strains and analyzed by immunofluorescence microscopy. The results indicated that HtrA Hp processing strongly affected the ability of the protease to disrupt the E-cadherin-based cell-to-cell junctions. Casein zymography confirmed that the amino-terminal region is required for maintaining the proteolytic activity of HtrA Hp . Furthermore, we demonstrated that this cleavage influences the secretion of HtrA Hp in the extracellular space as an important prerequisite for its virulence activity. Taken together, our data demonstrate that amino-terminal cleavage of HtrA Hp is conserved in this pathogen and affects oligomerization and thus, secretion and regulatory activities, suggesting an important role in the pathogenesis of H. pylori.
Collapse
Affiliation(s)
- Nicole Albrecht
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Joanna Skórko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
23
|
Backert S, Haas R, Gerhard M, Naumann M. The Helicobacter pylori Type IV Secretion System Encoded by the cag Pathogenicity Island: Architecture, Function, and Signaling. Curr Top Microbiol Immunol 2018. [DOI: 10.1007/978-3-319-75241-9_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Mejías-Luque R, Gerhard M. Immune Evasion Strategies and Persistence of Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:53-71. [PMID: 28124149 DOI: 10.1007/978-3-319-50520-6_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori infection is commonly acquired during childhood, can persist lifelong if not treated, and can cause different gastric pathologies, including chronic gastritis, peptic ulcer disease, and eventually gastric cancer. H. pylori has developed a number of strategies in order to cope with the hostile conditions found in the human stomach as well as successful mechanisms to evade the strong innate and adaptive immune responses elicited upon infection. Thus, by manipulating innate immune receptors and related signaling pathways, inducing tolerogenic dendritic cells and inhibiting effector T cell responses, H. pylori ensures low recognition by the host immune system as well as its persistence in the gastric epithelium. Bacterial virulence factors such as cytotoxin-associated gene A, vacuolating cytotoxin A, or gamma-glutamyltranspeptidase have been extensively studied in the context of bacterial immune escape and persistence. Further, the bacterium possesses other factors that contribute to immune evasion. In this chapter, we discuss in detail the main evasion and persistence strategies evolved by the bacterium as well as the specific bacterial virulence factors involved.
Collapse
Affiliation(s)
- Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany. .,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
25
|
Abadi ATB. Strategies used by helicobacter pylori to establish persistent infection. World J Gastroenterol 2017; 23:2870-2882. [PMID: 28522905 PMCID: PMC5413782 DOI: 10.3748/wjg.v23.i16.2870] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative and motile bacterium that colonizes the hostile microniche of the human stomach, then persists for the host's entire life, if not effectively treated. Clinically, H. pylori plays a causative role in the development of a wide spectrum of diseases including chronic active gastritis, peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Due to the global distribution of H. pylori, it is no exaggeration to conclude that smart strategies are contributing to adaptation of the bacterium to its permanent host. Thirty-four years after the discovery of this bacterium, there are still many unanswered questions. For example, which strategies help the bacterium to survive in this inhospitable microniche? This question is slightly easier to answer if we presume the same clinical concept for both persistent infection and disease. Understanding the mechanisms governing H. pylori persistence will improve identification of the increased risk of diseases such as gastric cancer in patients infected with this bacterium. A well-defined and long-term equilibrium between the human host and H. pylori allows bacterial persistence in the gastric microniche; although this coexistence leads to a high risk of severe diseases such as gastric cancer. To escape the bactericidal activity of stomach acid, H. pylori secretes large amounts of surface-associated and cytosolic urease. The potential to avoid acidic conditions and immune evasion are discussed in order to explain the persistence of H. pylori colonization in the gastric mucosa, and data on bacterial genetic diversity are included. Information on the mechanisms related to H. pylori persistence can also provide the direction for future research concerning effective therapy and management of gastroduodenal disorders. The topics presented in the current review are important for elucidating the strategies used by H. pylori to help the bacterium persist in relation to the immune system and the many unfavorable features of living in the gastric microniche.
Collapse
|
26
|
Lin C, Zhang J. Inflammasomes in Inflammation-Induced Cancer. Front Immunol 2017; 8:271. [PMID: 28360909 PMCID: PMC5350111 DOI: 10.3389/fimmu.2017.00271] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022] Open
Abstract
The inflammasome is an important multiprotein complex that functions during inflammatory immune responses. The activation of inflammasome will lead to the autoactivation of caspase-1 and subsequent cleavage of proIL-1β and proIL-18, which are key sources of inflammatory manifestations. Recently, the roles of inflammasomes in cancers have been extensively explored, especially in inflammation-induced cancers. In different and specific contexts, inflammasomes exhibit distinct and even contrasting effects in cancer development. In some cases, inflammasomes initiate carcinogenesis through the extrinsic pathway and maintain the malignant cancer microenvironment through the intrinsic pathway. On the contrary, inflammasomes also exert anticancer effects by specialized programmed cell death called pyroptosis and immune regulatory functions. The phases and compartments in which inflammasomes are activated strongly influence the final immune effects. We systemically summarize the functions of inflammasomes in inflammation-induced cancers, especially in gastrointestinal and skin cancers. Besides, information about the current therapeutic use of inflammasome-related products and potential future developing directions are also introduced.
Collapse
Affiliation(s)
- Chu Lin
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology, National Health and Family Planning Commission of the People's Republic of China, Peking University Health Science Center , Beijing , China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology, National Health and Family Planning Commission of the People's Republic of China, Peking University Health Science Center , Beijing , China
| |
Collapse
|