1
|
Zoheir KMA, Ali NI, Ashour AE, Kishta MS, Othman SI, Rudayni HA, Rashad AA, Allam AA. Lipoic acid improves wound healing through its immunomodulatory and anti-inflammatory effects in a diabetic mouse model. J Diabetes Metab Disord 2025; 24:56. [PMID: 39868353 PMCID: PMC11759746 DOI: 10.1007/s40200-025-01559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/28/2024] [Indexed: 01/28/2025]
Abstract
Objectives Diabetes mellitus is a chronic disease that has become more prevalent worldwide because of lifestyle changes. It leads to serious complications, including increased atherosclerosis, protein glycosylation, endothelial dysfunction, and vascular denervation. These complications impair neovascularization and wound healing, resulting in delayed recovery from injuries and an elevated risk of infections. The present study aimed to investigate the effect of lipoic acid (LA) on the key mediators involved in the wound healing process, specifically CD4 + CD25 + T cell subsets, CD4 + CD25 + Foxp3 + regulatory T (Treg) cells, T-helper-17 (Th17) cells that generate IL-17 A, glucocorticoid-induced tumor necrosis factor receptor (GITR) expressing cells, as well as cytokines such as IL-2, IL-1β, IL-6, and TNF-α and IFN-γ. These mediators play crucial roles in epidermal and dermal proliferation, hypertrophy, and cell migration. Methods We divided mice into 5 groups: the non-diabetic (normal control; NC), wounded non-diabetic mice (N + W), wounded diabetic mice (D + W), wounded diabetic mice treated with 50 mg/kg lipoic acid (D + W + L50) for 14 days, and wounded diabetic mice treated with 100 mg/kg lipoic acid (D + W + L100) for 14 days. Results Flow cytometric analysis indicated that lipoic acid-treated mice exhibited a significant decrease in the frequency of intracellular cytokines (IL-17 A, TNF-α and IFN-γ) in CD4 + T cells, as well as a reduction in the number of GITR-expressing cells. Conversely, a significant upregulation in the number CD4+, CD25+, FOXp3 + and CD4 + CD25 + Foxp3 + regulatory T (Treg) cells was observed in this group compared to both the normal + wounded (N + W) and diabetic + wounded (D + W) groups. Additionally, the mRNA Levels of inflammatory mediators (IL-2, IL-1β, IL-6, and TNF-α) were downregulated in lipoic acid-treated mice compared to other groups. T thereby he histological findings of diabetic skin wounds treated with lipoic acid showed well-healed surgical wounds. Conclusions These findings support the beneficial role of lipoic acid in fine-tuning the balance between anti-inflammatory and pro-inflammatory cytokines, influencing both their release and gene expression.
Collapse
Affiliation(s)
- Khairy M. A. Zoheir
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622 Egypt
| | - Neama I. Ali
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622 Egypt
| | - Abdelkader E. Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai Egypt
| | - Mohamed S. Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, 12622 Egypt
| | - Sarah I. Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, 11671 Riyadh, Saudi Arabia
| | - Hassan A. Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623 Saudi Arabia
| | - Ahmed A. Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829 Egypt
| | - Ahmed A. Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623 Saudi Arabia
| |
Collapse
|
2
|
Tamura S, Pasang CET, Tsuda M, Ma S, Shindo H, Nagaoka N, Ohkubo T, Fujiyama Y, Tamai M, Tagawa YI. Tri-culture model of intestinal epithelial cell, macrophage, and bacteria for the triggering of inflammatory bowel disease on a microfluidic device. Eur J Cell Biol 2025; 104:151495. [PMID: 40409019 DOI: 10.1016/j.ejcb.2025.151495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/15/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025] Open
Abstract
Inflammatory bowel disease (IBD) involves gastrointestinal inflammation, due to intestinal epithelial barrier destruction caused by excessive immune activation. Conventional cell culture systems do not provide a model system that can recapitulate the complex interactions between epithelial cells, immune cells, and intestinal bacteria. To address this, we developed a microfluidic device that mimics the inflammatory response associated with microbial invasion of the intestinal mucosa. The device consisted of two media channels, an upper and a lower channel, and a porous membrane between these channels on which C2BBe1 intestinal epithelial cells were seeded to form a tight junction layer. Each electrode was placed in contact with both channels to continuously monitor the tight junction state. Fresh medium flow allowed bacterial numbers to be controlled and bacterial toxins to be removed, allowing co-culture of mammalian cells and bacteria. In addition, RAW264 macrophage cells were attached to the bottom of the lower channel. By introducing E. coli into the lower channel, the RAW264 cells were activated and produced TNF-α, successfully recapitulating a culture model of inflammation in which the C2BBe1cell tight junction layer was destroyed. The main structure of the device was initially made of polydimethylsiloxane to facilitate its widespread use, but with a view to introducing anaerobic bacteria in the future, a similar phenomenon was successfully reproduced using polystyrene. When TPCA-1, an IκB kinase 2 inhibitor was added into this IBD culture model, the tight junction destruction was significantly suppressed. The results suggest that this IBD culture model also is useful as a screening system for anti-IBD drugs.
Collapse
Affiliation(s)
- Shiori Tamura
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Clarissa Ellice Talitha Pasang
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Minami Tsuda
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Shilan Ma
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Hiromasa Shindo
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Noriyuki Nagaoka
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Tomoki Ohkubo
- Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Yoichi Fujiyama
- Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Miho Tamai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan; Department of Pharmacy, Yasuda Women's University, Japan
| | - Yoh-Ichi Tagawa
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan.
| |
Collapse
|
3
|
Lin YR, Lam LY, Chang CM, Lam HYP. Concomitant occurrence of chronic Schistosoma mansoni infection and chronic colitis restore immune imbalance and dysbiosis leading to protection against intestinal colitis and schistosome egg-induced intestinal fibrosis. Mem Inst Oswaldo Cruz 2025; 120:e240045. [PMID: 40332187 PMCID: PMC12051921 DOI: 10.1590/0074-02760240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/23/2024] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Schistosomiasis is one of the most devastating tropical diseases in developing countries and is usually misdiagnosed with colitis because the prevalence of co-occurrence of both diseases is high. Previously, infection of Schistosoma japonicum cercariae has been shown to provide immediate protection against dextran sodium sulphate (DSS)-induced acute colitis in mice models. Studies using synthesised peptides or soluble proteins from parasites also revealed similar protection against colitis. However, most of these studies were done within a short timeframe, which cannot completely represent the actual situation where natural infection of Schistosoma or colitis is usually chronic. OBJECTIVES This study aims to investigate how chronic schistosomiasis affects chronic intestinal inflammation. METHODS Mice were infected with Schistosoma mansoni and induced simultaneously with chronic colitis. The symptoms and severity of intestinal inflammation and fibrosis were investigated by disease activity index, histology, enzyme-linked immunosorbent assay (ELISA), and quantitative polymerase chain reaction (qPCR). Furthermore, immune analysis by ELISA and qPCR and microbiome analysis by 16S rDNA sequencing were done to investigate the underlying mechanism. FINDINGS Concomitant occurrence of chronic schistosomiasis and chronic colitis significantly alleviated colitis symptoms, lessened intestinal inflammation, and reduced egg-induced fibrosis. Further analysis revealed an alternation of the intestinal immunity and gut microbiome community in mice with both diseases, which could be the potential reason for this outcome. MAIN CONCLUSIONS Our results represent a mechanism of how schistosomiasis and chronic intestinal inflammation affect each other.
Collapse
Affiliation(s)
- You-Ren Lin
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
| | - Long Yin Lam
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, Kowloon, Hong Kong SAR, China
| | - Chun-Ming Chang
- Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Department of General Surgery, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
- Tzu Chi University, School of Medicine, Department of Biochemistry, Hualien, Taiwan
| |
Collapse
|
4
|
Song Y, Feng Y, Liu G, Duan Y, Zhang H. Research progress on edible mushroom polysaccharides as a novel therapeutic strategy for inflammatory bowel disease. Int J Biol Macromol 2025; 305:140994. [PMID: 39952533 DOI: 10.1016/j.ijbiomac.2025.140994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Inflammatory bowel disease (IBD) is a complex condition linked to the gut microbiota, host metabolism, and the immune system. Edible mushroom polysaccharides (EMPs) are gaining attention for their benefits, particularly as prebiotics that help balance gut microbial, a key factor in IBD. With their scalable production, diverse hydrophilic properties, and demonstrated anti-inflammatory effects in both laboratory and animal studies, EMPs show promise for easing IBD symptoms. By supporting a healthy gut microbiome through various mechanisms, EMPs can play an important role in preventing and managing IBD, ultimately benefiting overall health and opening new treatment avenues. This review examines how EMPs affect IBD, focusing on their role in shaping gut microbiota, restoring gut barriers, regulating immune function, and influencing pathways related to colitis. It also explores their impact on the microbiota-gut-multi organ axis and overall host health, as well as the relationship between EMPs preparation, structure, and bioactivity, along with their potential applications in food and medicine. This investigation provides valuable insights into the intricate connections between the gut, immune system, and systemic inflammation system, highlighting how EMPs are key players in this complex interaction.
Collapse
Affiliation(s)
- Yating Song
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Gao Z, Shao S, Xu Z, Nie J, Li C, Du C. IDO1 induced macrophage M1 polarization via ER stress-associated GRP78-XBP1 pathway to promote ulcerative colitis progression. Front Med (Lausanne) 2025; 12:1524952. [PMID: 40370742 PMCID: PMC12075526 DOI: 10.3389/fmed.2025.1524952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/17/2025] [Indexed: 05/16/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disorder distinguished by alternating phases of remission and exacerbation. Restoring immune balance through the modulation of M1 macrophage polarization represents a potentially valuable therapeutic strategy for UC. Indoleamine 2,3-dioxygenase-1 (IDO1) has been shown to contribute to macrophage plasticity, but its role in the pathogenesis of UC via regulating M1 macrophage polarization has not been studied yet. For the clinical component, we analyzed IDO1 expression in UC using bioinformatics analysis of Gene Expression Omnibus (GEO) datasets and validated the result using western blotting of colonic tissues from new recruited UC patients. Colitis was induced in mice via dextran sulfate sodium (DSS) treatment and subsequently treated with oral administration of 1-methyl-DL-tryptophan (1-MT), an inhibitor of IDO1 pathway. The results indicated that IDO1 expression was significantly elevated in UC patients and correlated with M1 macrophage polarization observed in both human data and colitis mice. Furthermore, 1-MT markedly ameliorated DSS-induced weight loss, colonic shortening and disease severity via inhibiting IDO1 expression level, downregulating GRP78-XBP1 pathway and reducing M1 proportion. Notably, in vitro study revealed that overexpressing IDO1 in RAW264.7 cells induced macrophage M1 polarization with increased expression levels of GRP78 and XBP1, which was attenuated by 1-MT treatment. Additionally, the catalytic effect exerted by IDO1 overexpression on M1 polarization was neutralized by employing an inhibitor targeting the endoplasmic reticulum (ER) stress pathway. Thus, our findings suggest that IDO1 may promote UC progression by skewing macrophages towards M1 polarization through ER stress-associated GRP78-XBP1 pathway.
Collapse
Affiliation(s)
- Zijian Gao
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
- Department of Gastroenterology, Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
| | - Shuai Shao
- Department of Gastroenterology, Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
| | - Zhen Xu
- Department of Gastroenterology, Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
| | - Jiao Nie
- Department of Gastroenterology, Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
| | - Chenglin Li
- Department of Oncology, Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
| | - Chao Du
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, China
- Department of Gastroenterology, Weihai Municipal Hospital, Shandong University, Weihai, China
| |
Collapse
|
6
|
Zhang Y, Li L, Kong J, Long Y, Lu X, Erb CJ, Miao Y, Kammula SV, Popov J, Tinana AJ, Selaru FM, Mao HQ. Long-acting injectable nanoparticle formulation for sustained release of anti-TNF-α antibody therapeutic in ulcerative colitis treatment. J Control Release 2025; 380:1005-1016. [PMID: 39978474 DOI: 10.1016/j.jconrel.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Inflammatory bowel diseases (IBD) are chronic, remitting, and relapsing conditions of the gastrointestinal tract with incompletely elucidated etiology. The anti-TNF-α mAbs represent one of aflash nanocomplexation and flash nanoprecipitation process, resulting in particles with a narrow size distribution and tunable release profile, with the longest in vitro release lasting over four months. These mAb-releasing NPs are then incorporated into hyaluronic acid hydrogel microparticles (MPs) to enhance tissue retention, thus extending the duration of mAb release in vivo. A single i.m. injection of the LAI can maintain the serum mAb level above the therapeutically effective concentration for over 100 days in healthy mice. In a 9-week study using a dextran sulfate-induced chronic colitis model, the anti-TNF-α LAI formulation demonstrates substantial therapeutic efficacy and a better safety profile than free mAb injections. This work demonstrates the effectiveness of this LAI system in maintaining a persistent serum mAb level and its potential as a versatile, safer, and effective delivery system for antibody therapeutics.
Collapse
Affiliation(s)
- Yicheng Zhang
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ling Li
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jiayuan Kong
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yuanmuhuang Long
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Whiting School of Engineering and School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaoya Lu
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher J Erb
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yurun Miao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Sachin V Kammula
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan Popov
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Whiting School of Engineering and School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander J Tinana
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Florin M Selaru
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Whiting School of Engineering and School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Whiting School of Engineering and School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Jia R, Han Y, Zhu Q, Zhang J, Zhang H, Ka M, Ma Y, Gamah M, Zhang W. Activation of notch signaling pathway is a potential mechanism for mucin2 reduction and intestinal mucosal barrier dysfunction in high-altitude hypoxia. Sci Rep 2025; 15:12154. [PMID: 40204779 PMCID: PMC11982276 DOI: 10.1038/s41598-025-96176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
High-altitude hypoxia can cause gastrointestinal issues and damage the intestinal mucosal barrier, which is crucial for digestion and nutrient absorption. The Notch signaling pathway affects this barrier's integrity. This study explores the Notch pathway's role in hypoxia-induced intestinal injury. C57BL/6 mice were used to model intestinal mucosal barrier injury through dextran sodium sulfate (DSS) and hypobaric hypoxia (simulating 5000 m altitude for 7 days). Mice were treated with Notch inhibitor Dibenzazepine (DBZ) and Mucin2 (MUC2) activator Prostaglandin E2 (PGE2). We evaluated weight, colon length, histology, Zonula occludens 1 (ZO-1) and Claudin-1 levels, MUC2 and Notch1 staining, serum diamine oxidase (DAO) and D-lactate (D-La), inflammatory markers, and Notch pathway proteins. DSS and hypoxia caused weight loss, colon shortening, ulcers, and inflammation, with fewer goblet cells and lower MUC2 levels. Elevated serum DAO, D-La, and inflammatory markers indicated severe intestinal damage. DBZ treatment post-DSS and hypoxia significantly reduced these symptoms. PGE2 activation of MUC2 also alleviated symptoms and mitigated intestinal damage. Hypoxia worsens DSS-induced mucosal barrier disruption by activating the Notch pathway, shifting stem cell differentiation towards absorptive cells instead of goblet cells, reducing MUC2 secretion, and intensifying damage. Targeting the Notch pathway and enhancing MUC2 expression could effectively treat hypoxia-induced intestinal injury.
Collapse
Affiliation(s)
- Ruhan Jia
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ying Han
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Jingxuan Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Huan Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China
| | - Maojia Ka
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Yi Ma
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Mohammed Gamah
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.
| |
Collapse
|
8
|
Denny JE, Flores JN, Mdluli NV, Abt MC. Standard mouse diets lead to differences in severity in infectious and non-infectious colitis. mBio 2025; 16:e0330224. [PMID: 40126017 PMCID: PMC11980566 DOI: 10.1128/mbio.03302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/04/2025] [Indexed: 03/25/2025] Open
Abstract
Clostridioides difficile infects the large intestine and can result in debilitating and potentially fatal colitis. The intestinal microbiota is a major factor influencing the severity of disease following infection. Factors like diet that shape microbiota composition and function may modulate C. difficile colitis. Here, we report that mice fed two distinct standard mouse chows (LabDiet 5010 and LabDiet 5053) exhibited significantly different susceptibility to severe C. difficile infection. Both diets are grain-based with comparable profiles of macro and micronutrient composition. Diet 5010-fed mice had severe morbidity and mortality compared to Diet 5053-fed mice despite no differences in C. difficile colonization or toxin production. Furthermore, Diet 5053 protected mice from toxin-induced epithelial damage. This protection was microbiota-dependent as germ-free mice or mice harboring a reduced diversity microbiota fed Diet 5053 were not protected from severe infection. However, cohousing with mice harboring a complex microbiota restored the protective capacity of Diet 5053 but not Diet 5010. Metabolomic profiling revealed distinct metabolic capacities between Diet 5010- and Diet 5053-fed intestinal microbiotas. Diet 5053-mediated protection extended beyond C. difficile infection as Diet 5053-fed mice displayed less severe dextran sodium sulfate-induced colitis than Diet 5010-fed mice, highlighting a potentially broader capacity for Diet 5053 to limit colitis. These findings demonstrate that standard diet formulations in combination with the host microbiota can drive variability in severity of infectious and non-infectious murine colitis systems, and that diet holds therapeutic potential to limit the severity of C. difficile infection through modulating the functional capacity of the microbiota.IMPORTANCEDiet is a major modulator of the microbiota and intestinal health. This report finds that two different standard mouse diets starkly alter the severity of colitis observed in a pathogen-mediated (Clostridioides difficile) and non-infectious (dextran sodium sulfate) mouse colitis experimental systems. These findings in part explain study-to-study variability using these mouse systems to study disease. Since the gut microbiota plays a key role in intestinal homeostasis, diet-derived modulation of the microbiota is a promising avenue to control disease driven by intestinal inflammation and may represent a potential intervention strategy for at-risk patients.
Collapse
Affiliation(s)
- Joshua E. Denny
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julia N. Flores
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nontokozo V. Mdluli
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C. Abt
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Alqudah A, Qnais E, Gammoh O, Bseiso Y, Wedyan M, Alqudah M, Aljabali AAA, Tambuwala M. Exploring Scopoletin's Therapeutic Efficacy in DSS-Induced Ulcerative Colitis: Insights into Inflammatory Pathways, Immune Modulation, and Microbial Dynamics. Inflammation 2025; 48:575-589. [PMID: 38918333 PMCID: PMC12053357 DOI: 10.1007/s10753-024-02048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
This study aimed to investigate the therapeutic potential of scopoletin in ulcerative colitis, with a primary focus on its impact on crucial inflammatory pathways and immune responses. A male mouse model of DSS-induced colitis was employed with six distinct groups: a control group, a group subjected to DSS only, three groups treated with varying scopoletin doses, and the final group treated with dexamethasone. The investigation included an assessment of the effects of scopoletin on colitis symptoms, including alterations in body weight, Disease Activity Index (DAI), and histopathological changes in colonic tissue. Furthermore, this study scrutinized the influence of scopoletin on cytokine production, PPARγ and NF-κB expression, NLRP3 inflammasome, and the composition of intestinal bacteria. Scopoletin treatment yielded noteworthy improvements in DSS-induced colitis in mice, as evidenced by reduced weight loss and colonic shortening (p < 0.05, < 0.01, respectively). It effectively diminished TNF-α, IL-1β, and IL-12 cytokine levels (p < 0.01, p < 0.05), attenuated NLRP3 inflammasome activation and the associated cytokine release (p < 0.05, p < 0.01), and modulated the immune response by elevating PPARγ expression while suppressing NF-κB pathway activation (p < 0.05, p < 0.01). Additionally, scopoletin induced alterations in the gut microbiota composition, augmenting beneficial Lactobacillus and Bifidobacteria while reducing E. coli (p < 0.05). It also enhanced tight junction proteins, signifying an improvement in the intestinal barrier integrity (p < 0.05, < 0.01). Scopoletin is a promising therapeutic agent for managing ulcerative colitis, showing benefits that extend beyond mere anti-inflammatory actions to encompass regulatory effects on gut microbiota and restoration of intestinal integrity.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammad Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
10
|
Giambra V, Caldarelli M, Franza L, Rio P, Bruno G, di Iasio S, Mastrogiovanni A, Gasbarrini A, Gambassi G, Cianci R. The Role of Notch Signaling and Gut Microbiota in Autoinflammatory Diseases: Mechanisms and Future Views. Biomedicines 2025; 13:768. [PMID: 40299348 PMCID: PMC12024679 DOI: 10.3390/biomedicines13040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Notch signaling is an evolutionarily conserved, multifunctional pathway involved in cell fate determination and immune modulation and contributes to the pathogenesis of autoinflammatory diseases. Emerging evidence reveals a bidirectional interaction between Notch and the gut microbiota (GM), whereby GM composition is capable of modulating Notch signaling through the binding of microbial elements to Notch receptors, leading to immune modulation. Furthermore, Notch regulates the GM by promoting SCFA-producing bacteria while suppressing proinflammatory strains. Beneficial microbes, such as Lactobacillus and Akkermansia muciniphila, modulate Notch and reduce proinflammatory cytokine production (such as IL-6 and TNF-α). The interaction between GM and Notch can either amplify or attenuate inflammatory pathways in inflammatory bowel diseases (IBDs), Behçet's disease, and PAPA syndrome. Together, these findings provide novel therapeutic perspectives for autoinflammatory diseases by targeting the GM via probiotics or inhibiting Notch signaling. This review focuses on Notch-GM crosstalk and how GM-based and/or Notch-targeted approaches may modulate immune responses and promote better clinical outcomes.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Laura Franza
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
- Department of Emergency Medicine, AOU Modena, 41125 Modena, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Gaja Bruno
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Serena di Iasio
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Andrea Mastrogiovanni
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| |
Collapse
|
11
|
Garfias Noguez C, Ramírez Damián M, Ortiz Moreno A, Márquez Flores YK, Alamilla Beltrán L, Márquez Lemus M, Bermúdez Humarán LG, Sánchez Pardo ME. Microencapsulation and Probiotic Characterization of Lactiplantibacillus plantarum LM-20: Therapeutic Application in a Murine Model of Ulcerative Colitis. Nutrients 2025; 17:749. [PMID: 40077619 PMCID: PMC11901509 DOI: 10.3390/nu17050749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Microencapsulation improves the storage, handling, and administration of probiotics by protecting them from environmental factors and adverse conditions in the gastrointestinal tract. This process facilitates their controlled delivery in the body, which can simplify their use in therapies without compromising their therapeutic efficacy. OBJECTIVES This study investigates the microencapsulation of Lactiplantibacillus plantarum LM-20, its probiotic properties, and its effects in a murine model of ulcerative colitis. METHODS/RESULTS Synbiotic microencapsulation was carried out using spray drying with maltodextrin, gum Arabic, and inulin, achieving an encapsulation efficiency of 90.76%. The resulting microcapsules exhibited remarkable resistance to simulated gastrointestinal conditions in vitro, maintaining a survival rate of 90%. The drying process did not compromise the probiotic characteristics of the bacteria, as they demonstrated enhanced auto-aggregation, hydrophobicity, and phenol tolerance. The therapeutic potential of the microencapsulated synbiotic was evaluated in a murine model of dextran sodium sulfate-induced ulcerative colitis. The results revealed that mice treated with microencapsulated Lactiplantibacillus plantarum LM-20 showed an 83.3% reduction in the disease activity index (DAI) compared to the ulcerative colitis control group. Moreover, a significant decrease was observed in pro-inflammatory cytokine levels (IL-1β and TNF-α) and myeloperoxidase activity, with values comparable to those of the healthy control group. CONCLUSIONS These findings suggest that microencapsulated Lactiplantibacillus plantarum LM-20 could be a promising candidate for therapeutic applications in the prevention and management of ulcerative colitis.
Collapse
Affiliation(s)
- Cynthia Garfias Noguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Morayma Ramírez Damián
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Alicia Ortiz Moreno
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Yazmín Karina Márquez Flores
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Liliana Alamilla Beltrán
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Mario Márquez Lemus
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| | - Luis G. Bermúdez Humarán
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domain de Vilvert, 78350 Jouy-en-Josas, France;
| | - María Elena Sánchez Pardo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (C.G.N.); (M.R.D.); (A.O.M.); (Y.K.M.F.); (L.A.B.); (M.M.L.)
| |
Collapse
|
12
|
Wang H, Huang W, Pan X, Tian M, Chen J, Liu X, Li Q, Qi J, Ye Y, Gao L. Quzhou Aurantii Fructus Flavonoids Ameliorate Inflammatory Responses, Intestinal Barrier Dysfunction in DSS-Induced Colitis by Modulating PI3K/AKT Signaling Pathway and Gut Microbiome. J Inflamm Res 2025; 18:1855-1874. [PMID: 39931170 PMCID: PMC11809370 DOI: 10.2147/jir.s500014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/25/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose To explore the protective effect and underlying mechanism of Quzhou Aurantii Fructus flavonoids (QAFF) on Ulcerative colitis (UC). Methods The constituents of QAFF were accurately determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The therapeutic impacts of QAFF were assessed in dextran sulfate sodium (DSS)-induced UC mice, focusing on the changes in body weight, disease activity index (DAI), colon length, histological assessment of colonic tissues, levels of pro-inflammatory cytokines, and expression of tight junction proteins. Western blotting confirmed key regulatory proteins within the differential signaling pathways, guided by transcriptome analysis. Additionally, the influence of QAFF on the gut microbiome was explored through 16S ribosomal RNA (rRNA) sequencing. The alterations in endogenous metabolites were detected by untargeted metabolomics, and their potential correlation with intestinal flora was then examined utilizing Spearman correlation analysis. Subsequently, the regulation of gut microbiome by QAFF was validated by fecal microbiota transplantation (FMT). Results Eleven flavonoids, including Naringin and hesperidin, were initially identified from QAFF. In vivo experiments demonstrated that QAFF effectively ameliorated colitis symptoms, reduced IL-6, IL-1β, and TNF-α levels, enhanced intestinal barrier integrity, and downregulated PI3K/AKT pathway activation. Furthermore, QAFF elevated the levels of beneficial bacteria like Lachnospiraceae_NK4A136_group and Alloprevotella and concurrently reduced the pathogenic bacteria such as Escherichia-Shigella, [Eubacterium]_siraeum_group, and Parabacteroides. Metabolomics analysis revealed that 34 endogenous metabolites exhibited significant alterations, predominantly associated with Glycerophospholipid metabolism. These metabolites were significantly correlated with those differential bacteria modulated by QAFF. Lastly, the administration of QAFF via FMT ameliorated the colitis symptoms. Conclusion QAFF could ameliorate inflammatory responses and intestinal barrier dysfunction in DSS-induced UC mice probably by modulating the PI3K/AKT signaling pathway and gut microbiome, offering promising evidence for the therapeutic potential of QAFF in UC treatment.
Collapse
Affiliation(s)
- Haiou Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenkang Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Xiaoya Pan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Meizi Tian
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Jiahui Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Xiaotong Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yiping Ye
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Lijuan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| |
Collapse
|
13
|
Rajakaruna S, Bandow B, Pérez-Burillo S, Navajas-Porras B, Rufián-Henares JÁ, Cool DR, Cho KJ, Paliy O. Human gut microbiota-fermented asparagus powder protects human epithelial cells from injury and inflammation. Food Funct 2025; 16:1060-1071. [PMID: 39821238 DOI: 10.1039/d4fo03504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Dietary consumption of green asparagus has been associated with several health benefits. These beneficial properties are attributed to the presence of many bioactive compounds in asparagus, including saponins, phenolics, flavonoids, as well as dietary fiber mostly comprising fructans and inulins, which are prebiotics capable of supporting the growth of beneficial members of gut microbiota. In this study, we used the in vitro Human Gut Simulator system to assess the fermentation of oro-gastro-intestinally digested asparagus powder by the human gut microbiota. Microbial community composition differed between communities grown on the asparagus digest and on the Western diet derived medium. Asparagus supported beneficial Ruminococcus but also hydrogen sulfide producing members of Desulfovibrionaceae. Fermentation of asparagus released more antioxidants into the environment compared to the Western diet medium, and supernatant of asparagus-grown cultures protected cultured human epithelial cells against damage and inflammation. We thus showed that asparagus powder has potential to be used as a functional food, offering protection against intestinal damage and inflammation - effects mediated by the gut microbiota.
Collapse
Affiliation(s)
- Sumudu Rajakaruna
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | - Brant Bandow
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | - Sergio Pérez-Burillo
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | - Beatriz Navajas-Porras
- Department of Nutrition and Food Sciences, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, University of Granada, Granada, Spain.
| | - José Ángel Rufián-Henares
- Department of Nutrition and Food Sciences, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, University de Granada, Granada, Spain.
| | - David R Cool
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | - Oleg Paliy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| |
Collapse
|
14
|
Zhou X, Yang Y, Yan C, Feng S, Zhan C. MC-LR induces and exacerbates Colitis in mice through the JAK1/STAT3 pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025:1-11. [PMID: 39865252 DOI: 10.1080/15287394.2024.2443227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage. Male C57BL/6 mice were treated with either MC-LR alone or concurrently with dextran-sulfate sodium (DSS). Mice were divided into 4 groups (1): PBS gavage (control, CT) (2); 200 μg/kg MC-LR gavage (MC-LR) (3); 3% DSS Drinking Water (DSS); and (4) 3% DSS Drinking Water + 200 μg/kg MC-LR gavage (DSS + MC-LR). The mice in each experimental group exhibited reduced body weight, shortened colon length, increased disease activity index (DAI) score, a disrupted intestinal barrier, and elevated levels of proinflammatory cytokines compared to control. Compared to the group treated with MC-LR alone, colitis symptoms were exacerbated following combined exposure to both DSS and MC-LR. Subsequent experiments confirmed that MC-LR or DSS increased protein phosphorylation levels of Janus Kinase1 (JAK1) and Signal Transducer and Activator of Transcription3 (STAT3). Compared to group treated with MC-LR alone, the combined treatment of DSS and MC-LR also significantly upregulated the expression of related proteins. In conclusion, our study indicates that MC-LR-induced colitis involves activation of JAK1/STAT3 signaling pathway and that MC-LR exacerbates DSS-induced colitis through the same pathway.
Collapse
Affiliation(s)
- Xiaodie Zhou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| | - Yue Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| | - Canqun Yan
- School of Public Health, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuidong Feng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| | - Chunhua Zhan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
- Department of Public Health, the Central Hospital of Shaoyang, Shaoyang, China
| |
Collapse
|
15
|
Antoine T, Béduneau A, Chrétien C, Cornu R, Bonnefoy F, Moulari B, Perruche S, Pellequer Y. Clinically relevant cell culture model of inflammatory bowel diseases for identification of new therapeutic approaches. Int J Pharm 2025; 669:125062. [PMID: 39653295 DOI: 10.1016/j.ijpharm.2024.125062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Inflammatory Bowel Diseases (IDB) are chronic disorders characterized by gut inflammation, mucosal damage, increased epithelial permeability and altered mucus layer. No accurate in vitro model exists to simulate these characteristics. In this context, drug development for IBD or intestinal inflammation requires in vivo evaluations to verify treatments efficacy. A new model with altered mucus layer composition; altered epithelial permeability and pro-inflammatory crosstalk between immune and epithelial cells will be developed to enhance in vitro models for studying IBD treatments. The effects of dextran sulfate sodium and/or lipopolysaccharides on intestinal permeability, cytokines synthesis (IL-6, IL-8, TNF-α and IL-1β), mucins (MUC2, MUC5AC) and tight junction proteins expression (Claudin-1, ZO-1 and Occludin) were investigated in a tri-coculture model combining differentiated Caco-2/HT29-MTX cells and THP-1 cells. Two anti-inflammatory agents were evaluated to assess the model's therapeutic strategy applicability (corticoids and pro-resolving factors). Two in vitro models have been developed. The first model, characterized by increased permeability of the epithelial layer and subsequent secretion of inflammatory cytokines, can reproduce the different phases of inflammation, and enables the evaluation of preventive treatments. The second model simulates the acute phase of inflammation and allows for the assessment of curative treatments. Both models demonstrated reversibility when treated with betamethasone and pro-resolving factors. These in vitro models are valuable for selecting therapeutic agents prior to their application in in vivo models. They enable the assessment of agents' anti-inflammatory effects and their ability to permeate the inflamed epithelial layer and interact with immune cells.
Collapse
Affiliation(s)
- Thomas Antoine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Claire Chrétien
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Raphaël Cornu
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Francis Bonnefoy
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France; MED'INN'Pharma, F-25000 Besançon, France
| | - Brice Moulari
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France
| | - Sylvain Perruche
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France; MED'INN'Pharma, F-25000 Besançon, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France.
| |
Collapse
|
16
|
Sun R, Chao C, Yu J, Copeland L, Wang S. Type 5 Resistant Starch Can Effectively Alleviate Experimentally Induced Colitis in Mice by Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2103-2113. [PMID: 39639478 DOI: 10.1021/acs.jafc.4c07046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Resistant starch (RS) has been shown to modulate intestinal microbiota in animal models in ways that could reduce the effects of dysbiosis-related diseases. However, the mechanism of how this is achieved is not understood. The present study aimed to reveal the mechanism of how RS mitigates dextran sulfate sodium (DSS)-induced colitis in mice by using a starch-lipid complex (RS type 5), with an RS type 2 from high-amylose maize starch as a comparison. Both RS5 and RS2 induced changes in the diversity and composition of the gut bacteria, leading to the alleviation of the induced colitis symptoms including decreasing the loss in body weight, disease activity index score, and colonic shortening. The levels of inflammatory cytokines were modulated and accompanied by an increase in goblet cell numbers and thickening of the intestinal mucus layer. RS5 was more effective, compared to RS2, in alleviating all of the colitis symptoms, mainly through improving the gut microflora dysbiosis and stimulating the generation of short-chain fatty acids (SCFAs). Our study shows that RS5 could effectively alleviate the symptoms of colitis, highlighting a potential use for RS5, particularly in relieving inflammatory bowel disease.
Collapse
Affiliation(s)
- Rong Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
17
|
Ham N, Park M, Bae YA, Yeo EJ, Jung Y. Differential pathological changes in colon microenvironments in acute and chronic mouse models of inflammatory bowel disease. Anim Cells Syst (Seoul) 2025; 29:100-112. [PMID: 39839656 PMCID: PMC11748878 DOI: 10.1080/19768354.2025.2451408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
Inflammatory bowel disease is a chronic condition characterized by inflammation of the gastrointestinal tract, resulting from an abnormal immune response to normal stimuli, such as food and intestinal flora. Since the etiology of this disease remains largely unknown, murine models induced by the consumption of dextran-sodium sulfate serve as a pivotal tool for studying colon inflammation. In this study, we employed both acute and chronic colitis mouse models induced by varying durations of dextran-sodium sulfate consumption to investigate the pathological and immunologic characteristics throughout the disease course. During the acute phase, activated innate inflammation marked by M1 macrophage infiltration was prominent. In contrast, the chronic phase was characterized by tissue remodeling, with a significant increase in M2 macrophages and lymphocytes. RNA-sequencing revealed genetic changes in acute and chronic colitis, marked by the maintenance of genomic integrity in the acute phase and extracellular matrix dynamics in the chronic phase. These phase-specific alterations reflect the multifaceted physiological processes involved in the initiation and progression of inflammation in the large intestine, underscoring the necessity for distinct experimental approaches for each phase. The findings demonstrate that the factors shaping the large intestinal immune microenvironment change specifically during the acute and chronic phases of experimental inflammatory bowel disease, highlighting the importance of developing therapeutic strategies that align with the disease course.
Collapse
Affiliation(s)
- NaYeon Ham
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, South Korea
| | - Minji Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, South Korea
| | - Young-An Bae
- Department of Microbiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute Incheon, Gachon University, Incheon, South Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute Incheon, Gachon University, Incheon, South Korea
| | - YunJae Jung
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, South Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, South Korea
- Department of Microbiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute Incheon, Gachon University, Incheon, South Korea
| |
Collapse
|
18
|
Liu Z, Wang M, Hu Y, Li J, Gong W, Guo X, Song S, Zhu B. Ulva lactuca polysaccharides combined with fecal microbiota transplantation ameliorated dextran sodium sulfate-induced colitis in C57BL/6J mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:422-432. [PMID: 39212113 DOI: 10.1002/jsfa.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) of healthy donors improves ulcerative colitis (UC) patients by restoring the balance of the gut microbiota. However, donors vary in microbial diversity and composition, often resulting in weak or even ineffective FMT. Improving the efficacy of FMT through combination treatment has become a promising strategy. Ulva lactuca polysaccharides (ULP) have been found to benefit host health by regulating gut microbiota. The effect of the combination of ULP and FMT in ameliorating UC has not yet been evaluated. RESULTS The present study found that supplementation with ULP combined with FMT showed better effects in ameliorating UC than supplementation with FMT alone. Results suggested that FMT or ULP combined with FMT alleviated the symptoms of UC in mice, as evidenced by prevention of body weight loss, improvement of disease activity index and protection of the intestinal mucus. Notably, ULP in combination with FMT was more effective than FMT in reducing levels of cytokines and related inflammatory enzymes. In addition, ULP combined with FMT effectively restored the dysbiosis induced by dextran sulfate sodium (DSS) and further enriched probiotics (such as Bifidobacterium). The production of short-chain fatty acids, especially acetic acid, was also significantly enriched by ULP combined with FMT. CONCLUSION Supplementation of ULP combined with FMT could significantly ameliorate DSS-induced colitis in mice by inhibiting inflammation and restoring dysbiosis of gut microbiota. These results suggested that ULP combined with FMT has potential application in ameliorating UC. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Shuang Song
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| |
Collapse
|
19
|
Yang S, Duan H, Zeng J, Yan Z, Niu T, Ma X, Zhang Y, Hu J, Zhang L, Zhao X. Luteolin modulates macrophage phenotypic switching via the AMPK-PPARγ pathway to alleviate ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119157. [PMID: 39603400 DOI: 10.1016/j.jep.2024.119157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lonicerae japonicae flos (LJF), the dried flower bud or newly bloomed flower of Lonicera japonica Thunb., is widely used in Traditional Chinese medicine (TCM), exhibiting anti-inflammatory and immune-enhancing properties. Luteolin (Lut) is a major bioactive component of LJF, demonstrating a regulatory role in immune disorders. However, the specific role of Lut in regulating macrophage-mediated intestinal inflammation and its underlying molecular mechanisms have not yet been fully explored. AIM OF THE STUDY This study was designed to explore whether Lut alleviates Ulcerative colitis (UC) in mice and to elucidate its underlying mechanism in intestinal inflammation. MATERIALS AND METHODS Mice were administered Dextran sodium sulfate (DSS) for 7 d to establish a UC model, followed by oral administration of Lut (12.5, 25, and 50 mg/kg body weight). RNA-sequencing (RNA-Seq) was used to screen signaling pathways. RAW264.7 cells were cultured and treated with Lut (6.25, 12.5, and 25 μM) and lipopolysaccharide (LPS, 1 μg/mL) for 24 h. To examine the role of the AMP-activated protein kinase (AMPK)/Peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway, the cells were treated with compound C (an AMPK inhibitor) and GW9662 (a PPARγ antagonist). RESULTS Lut suppressed the inflammation of DSS-induced colitis in vivo, attenuated DSS-induced clinical man-ifestations, reversed colon length reduction, and reduced histological injury. Lut induced a shift in the macrophage phenotype from classical (M1) to alternative (M2) by suppressing M1 marker gene expression and enhancing M2 marker gene expression following DSS or LPS induction. RNA-seq revealed that PPARγ was involved in the regulation of macrophages by Lut. Furthermore, the polarization effect of Lut on macrophages was shown to be mediated through the AMPK-PPARγ signaling pathway. CONCLUSION These findings indicate that Lut effectively ameliorates UC in mice through the activation of the AMPK-PPARγ signaling pathway, leading to the inhibition of macrophage M1 polarization and promotion of M2 polarization. This study provides insight into future research on the utilization of Lut-rich TCM dietary supplements as a prophylactic treatment strategy in the prevention of UC.
Collapse
Affiliation(s)
- Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Tian Niu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
20
|
Yang S, Duan H, Yan Z, Xue C, Niu T, Cheng W, Zhang Y, Zhao X, Hu J, Zhang L. Luteolin Alleviates Ulcerative Colitis in Mice by Modulating Gut Microbiota and Plasma Metabolism. Nutrients 2025; 17:203. [PMID: 39861331 PMCID: PMC11768085 DOI: 10.3390/nu17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Ulcerative colitis (UC) is a chronic and easily recurrent inflammatory bowel disease. The gut microbiota and plasma metabolites play pivotal roles in the development and progression of UC. Therefore, therapeutic strategies targeting the intestinal flora or plasma metabolites offer promising avenues for the treatment of UC. Luteolin (Lut), originating from a variety of vegetables and fruits, has attracted attention for its potent anti-inflammatory properties and potential to modulate intestinal flora. METHODS The therapeutic efficacy of Lut was evaluated in an established dextran sodium sulfate (DSS)-induced colitis mice model. The clinical symptoms were analyzed, and biological samples were collected for microscopic examination and the evaluation of the epithelial barrier function, microbiome, and metabolomics. RESULTS The findings revealed that Lut administration at a dose of 25 mg/kg significantly ameliorated systemic UC symptoms in mice, effectively reduced the systemic inflammatory response, and significantly repaired colonic barrier function. Furthermore, Lut supplementation mitigated gut microbiota dysbiosis in a UC murine model, increasing the abundance of Muribaculaceae, Rikenella, and Prevotellaceae while decreasing Escherichia_Shigella and Bacteroides levels. These alterations in gut microbiota also influenced plasma metabolism, significantly increasing phosphatidylcholine (PC), 6'-Deamino- 6'-hydroxyneomycin C, and gamma-L-glutamyl-butyrosine B levels and decreasing Motapizone and Arachidoyl-Ethanolamide (AEA) levels. CONCLUSIONS This study reveals that Lut supplementation modulates intestinal inflammation by restoring the gut microbiota community structure, thereby altering the synthesis of inflammation-related metabolites. Lut is a potential nutritional supplement with anti-inflammatory properties and offers a novel alternative for UC intervention and mitigation. In addition, further studies are needed to ascertain whether specific microbial communities or metabolites can mediate the recovery from UC.
Collapse
Affiliation(s)
- Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chen Xue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Tian Niu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Wenjing Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
21
|
Yin W, Liu M, Jin Z, Hao Z, Liu C, Liu J, Liu H, Zheng M, Cai D. Ameliorative effects of insoluble dietary fiber and its bound polyphenols from adzuki bean seed coat on acute murine colitis induced by DSS: The inflammatory response, intestinal barrier and gut microbiota. Int J Biol Macromol 2025; 286:138343. [PMID: 39638184 DOI: 10.1016/j.ijbiomac.2024.138343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The incidence of ulcerative colitis (UC) is closely associated with dietary fiber (DF) intake. This study aims to evaluate the ameliorative effects of insoluble dietary fiber from adzuki bean seed coat (AIDF) on dextran sulfate sodium (DSS)-induced UC in mice, both with and without bound polyphenols (BPs). We employed a model based on the "remove/backfill" of components. Compared to dephenolized dietary fiber (AIDF-DF) and AIDF-DF with replaced BPs (AIDF-BP), AIDF was found to effectively reduce the splenic index, alleviate colonic histopathological damage, lower serum levels of inflammatory mediators (TNF-α, IL-1β, IFN-γ, IL-6), decrease activities of LPS, DAO, MPO, and iNOS, regulate intestinal tight junction (TJ) mRNA and protein expression, and restore the integrity of the colonic epithelial cell barrier. AIDF mitigated the inflammatory response in UC by inhibiting the TLR4/NF-κB inflammatory signaling pathway. It increased the abundance of beneficial gut microbiota (e.g., Akkermansia, Verrucomicrobiota) while reducing the abundance of harmful bacteria (e.g., Proteobacteria), thereby alleviating intestinal disturbances in DSS-induced colitis in mice. In conclusion, the presence of BPs in AIDF plays a critical role in attenuating DSS-induced UC in mice.
Collapse
Affiliation(s)
- Wandi Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Zhina Hao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chenyu Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
22
|
Yu T, Bai R, Wang Z, Qin Y, Wang J, Wei Y, Zhao R, Nie G, Han B. Colon-targeted engineered postbiotics nanoparticles alleviate osteoporosis through the gut-bone axis. Nat Commun 2024; 15:10893. [PMID: 39738035 PMCID: PMC11686147 DOI: 10.1038/s41467-024-55263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site. These engineered postbiotics nanoparticles can effectively suppress macrophage inflammatory activation, modulate the redox balance, and regulate the composition of the gut microbiota, thereby restoring epithelial barriers, inhibiting bacterial invasion, and down-regulating pro-inflammatory responses. As a result, the remission of systemic inflammation is accompanied by a rebalancing of osteoblast and osteoclast activity, alleviating inflammatory bowel disease-related and post-menopausal bone loss. Specifically, the treatment of engineered postbiotics nanoparticles can also improve the quality and quantity of bone with restoration of deteriorative mechanical properties, which indicating a therapeutic potential on fracture prevention. This study provides valuable insights into the gut-bone axis and establishes a promising and safe therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Zeming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Jingwei Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
23
|
Ji W, Zhang Y, Qian X, Hu C, Huo Y. Palmatine alleviates inflammation and modulates ferroptosis against dextran sulfate sodium (DSS)-induced ulcerative colitis. Int Immunopharmacol 2024; 143:113396. [PMID: 39423661 DOI: 10.1016/j.intimp.2024.113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
UC, also known as ulcerative colitis, is an inflammatory bowel disease that is chronic and nonspecific. Palmatine (PAL), a natural alkaloid active ingredient, has demonstrated predominant protective effects on UC. In spite of this, PAL on UC is unclear in terms of its underlying mechanisms. Thus, this study aimed to investigate its effects and mechanism. By inducing rats with 5 % dextran sulfate sodium (DSS), an in vivo model of UC was developed. and then oral PAL administration. In vitro viability of NCM460 cells was measured using Cell Counting Kit-8. An enzyme-linked immunosorbent assay was used to determine the levels of inflammatory factores. The levels of oxidative stress parameters were also assessed, and the expression level of cyclooxygenase-2 (COX-2), acyl-CoA synthetase long-chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4), NF-E2-related factor 2(Nrf2), phospho-Nrf2, and heme oxygenase-1 (HO-1) was detected by Western blot. An iron kit was employed to measure iron content in cells and colonic tissues. Results indicated that PAL treatment significantly improved UC in rats, as shown by reduced disease activity index scores and increased colon length, which decreased IL-18, IL-1β, IL-6, TNF-α, MDA, NO, and LDH levels, but increased GSH level in DSS-induced rats and NCM460 cells. Further, PAL treatment markedly decreased COX-2, ACSL4, Nrf2, and HO-1 expression levels while increasing that of GPX4 and phospho-Nrf2. Furthermore, PAL inhibited the iron overload in the cells and colonic tissues. PAL may protect against UC by inhibiting the inflammatory response, oxidative stress, iron load, and suppressing ferroptosis pathway.
Collapse
Affiliation(s)
- Wanli Ji
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yifan Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Xiaojing Qian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Hu
- Science and Technology Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Huo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
24
|
Liu Z, Wang M, Li J, Liang Y, Jiang K, Hu Y, Gong W, Guo X, Guo Q, Zhu B. Hizikia fusiforme polysaccharides synergized with fecal microbiota transplantation to alleviate gut microbiota dysbiosis and intestinal inflammation. Int J Biol Macromol 2024; 283:137851. [PMID: 39566790 DOI: 10.1016/j.ijbiomac.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ulcerative colitis (UC) is closely associated with disruptions in gut microbiota. Restoring balance to gut microbiota and reducing intestinal inflammation has become a promising therapeutic approach for UC. However, challenges remain, including limited efficacy in some treatments. This study explores the synergistic effects and underlying mechanisms of Hizikia fusiforme polysaccharides (HFP) combined with fecal microbiota transplantation (FMT) to improve UC symptoms. Seven-week-old C57/BL6J mice were induced with UC using dextran sodium sulfate (DSS). Supplementation with either FMT alone or in combination with HFP effectively alleviated UC symptoms, reduced colonic inflammation, and corrected gut microbiota imbalance. Notably, HFP combined with FMT yielded showed better effects in ameliorating DSS-induced UC in mice than did FMT alone. Enrichment of probiotics, such as Bifidobacterium, and upregulation of beneficial metabolites, such as betaine, were identified as potential mechanisms for the enhanced effects of HFP combined with FMT against DSS-induced UC. These findings suggest that the combination of Hizikia fusiforme polysaccharides with FMT has potential applications in rectifying dysbiosis and ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuxuan Liang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Kaiyu Jiang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Qingbin Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
25
|
Zhong M, Li L, Liu W, Wen W, Ma L, Jin X, Li G, Yang J. Acceptable daily intake of aspartame aggravates enteritis pathology and systemic inflammation in colitis mouse model. J Food Sci 2024; 89:10202-10221. [PMID: 39475342 DOI: 10.1111/1750-3841.17505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 12/28/2024]
Abstract
In this study, a dextran sodium sulfate-induced ulcerative colitis model in C57BL/6 mice was used to explore the effect of acceptable daily intake (ADI) of aspartame on inflammation in colonic tissues. The effects of aspartame on the inflammatory state of the colon in mice were comprehensively evaluated by comparing the body weight, colon length/colon length index, splenic index, disease activity index (DAI) score, histological activity index (HAI) score, the expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, claudin-3, and occludin, the infiltration characteristics of macrophage and neutrophil and the composition of the gut microbiota in the control group, aspartame group, ulcerative colitis model group, and aspartame + ulcerative colitis group. We demonstrated that, in a mouse model of dextran sulfate-induced ulcerative colitis, ADI of aspartame caused a significant decrease in body weight, colon length/colon length index, DAI scores, and expression levels of the proteins claudin-3 and occludin. Moreover, ADI of aspartame caused an increase in the splenic index, HAI scores, the levels of proinflammatory factors TNF-α, IL-1β, and IL-6 both in intestinal tissue and serum and infiltration of macrophages and neutrophils in colon tissues. These results showed that ADI of aspartame promoted intestinal pathology and systemic inflammation in a mouse model of colitis.
Collapse
Affiliation(s)
- Mengdan Zhong
- Grade 2021, School of The First Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Lifang Li
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wenhui Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wenzhi Wen
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Luheng Ma
- Grade 2023, School of Stomatology, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Bioactive Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Guoying Li
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Medical Association, Guangzhou, Guangdong, China
| | - Junhua Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Alqudah A, Qnais E, Gammoh O, Bseiso Y, Wedyan M, Oqal M. Panduratin A mitigates inflammation and oxidative stress in DSS-induced colitis mice model. Future Sci OA 2024; 10:2428129. [PMID: 39559852 PMCID: PMC11581177 DOI: 10.1080/20565623.2024.2428129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
AIM This study explored Panduratin A's protective effects against DSS-induced colitis in mice, focusing on reducing inflammation and oxidative stress in the colon. METHODS Mice were treated with dextran sodium sulfate (DSS) and Panduratin A (3, 6, 18 mg/kg), and changes in body weight, colon length, Disease Activity Index (DAI), histopathology, inflammation markers including tumor necrosis factor- α (TNF-α), Interleukin-1 β (IL-1β), Myeloperoxidase (MPO), and oxidative stress, Malondialdehyde (MDA) were evaluated. RESULTS Panduratin A significantly reversed DSS-induced symptoms, including body weight loss, colonic length shortening, and DAI increase, while reducing histopathological damage. It lowered inflammatory markers and oxidative stress, suppressed NF-κB activation, and enhanced Nrf2 and HO-1 expression. CONCLUSION Panduratin A shows promise as a colitis treatment, warranting further research for broader clinical application.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Muna Oqal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
27
|
Li D, Li Z, Wang L, Zhang Y, Ning S. Oral inoculation of Fusobacterium nucleatum exacerbates ulcerative colitis via the secretion of virulence adhesin FadA. Virulence 2024; 15:2399217. [PMID: 39221673 PMCID: PMC11385161 DOI: 10.1080/21505594.2024.2399217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Fusobacterium nucleatum (F. nucleatum), an anaerobic resident of the oral cavity, is increasingly recognized as a contributing factor to ulcerative colitis (UC). The adhesive properties of F. nucleatum are mediated by its key virulence protein, FadA adhesin. However, further investigations are needed to understand the pathogenic mechanisms of this oral pathogen in UC. The present study aimed to explore the role of the FadA adhesin in the colonization and invasion of oral F. nucleatum in dextran sulphate sodium (DSS)-induced colitis mice via molecular techniques. In this study, we found that oral inoculation of F. nucleatum strain carrying the FadA adhesin further exacerbated DSS-induced colitis, leading to elevated alveolar bone loss, disease severity, and mortality. Additionally, CDH1 gene knockout mice treated with DSS presented increases in body weight and alveolar bone density, as well as a reduction in disease severity. Furthermore, FadA adhesin adhered to its mucosal receptor E-cadherin, leading to the phosphorylation of β-catenin and the degradation of IκBα, the activation of the NF-κB signalling pathway and the upregulation of downstream cytokines. In conclusion, this research revealed that oral inoculation with F. nucleatum facilitates experimental colitis via the secretion of the virulence adhesin FadA. Targeting the oral pathogen F. nucleatum and its virulence factor FadA may represent a promising therapeutic approach for a portion of UC patients.
Collapse
Affiliation(s)
- Donghao Li
- Department of Gastroenterology, Air Force Medical Center of Chinese People’s Liberation Army, Beijing, China
| | - Zongwei Li
- Department of Gastroenterology, Air Force Medical Center of Chinese People’s Liberation Army, Beijing, China
| | - Lei Wang
- Department of Gastroenterology, Air Force Medical Center of Chinese People’s Liberation Army, Beijing, China
| | - Yan Zhang
- Department of Gastroenterology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Shoubin Ning
- Department of Gastroenterology, Air Force Medical Center of Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
28
|
Huang X, Lin R, Liu H, Dai M, Guo J, Hui W, Liu W, Haerken M, Zheng R, Yushanjiang T, Gao F. Resatorvid (TAK-242) Ameliorates Ulcerative Colitis by Modulating Macrophage Polarization and T Helper Cell Balance via TLR4/JAK2/STAT3 Signaling Pathway. Inflammation 2024; 47:2108-2128. [PMID: 38760646 DOI: 10.1007/s10753-024-02028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Resatorvid (TAK-242), a specific inhibitor of Toll-like receptor-4 (TLR4), has attracted attention for its anti-inflammatory properties. Despite this, few studies have evaluated its effects on ulcerative colitis (UC). This study aimed to investigate the effects of TAK-242 on macrophage polarization and T helper cell balance and the mechanism by which it alleviates UC. Our findings indicated that TLR4 expression was elevated in patients with UC, a mouse model of UC, and HT29 cells undergoing an inflammatory response. TAK‑242 treatment reduced apoptosis in TNF-α and LPS-stimulated HT29 cells and alleviated symptoms of dextran sulfate sodium (DSS)‑induced colitis in vivo. TAK‑242 downregulated TLR4 expression and decreased the secretion of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β while enhancing IL-10 production. TAK-242 also reduced M1 macrophage polarization and diminished Th1 and Th17 cell infiltration while increasing Th2 cell infiltration and M2 macrophage polarization both in vitro and in vivo. Mechanistically, TAK-242 inhibited the JAK2/STAT3 signaling pathway, an important regulator of macrophage polarization and T helper cell balance. Furthermore, the in vivo and in vitro effects of TAK-242 were partially negated by the administration of the JAK2/STAT3 antagonist AG490, suggesting that TAK-242 inhibits the JAK2/STAT3 pathway to exert its biological activities. Taken together, this study underscores TAK-242 as a promising anti-UC agent, functioning by modulating macrophage polarization and T helper cell balance via the TLR4/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Huan Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Mengying Dai
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiejie Guo
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Wenjia Hui
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Weidong Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Milamuguli Haerken
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Ruixue Zheng
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tangnuer Yushanjiang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Feng Gao
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China.
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
29
|
Liu J, Xu L, Wang L, Wang Q, Yu L, Zhang S. Naringin Alleviates Intestinal Fibrosis by Inhibiting ER Stress-Induced PAR2 Activation. Inflamm Bowel Dis 2024; 30:1946-1956. [PMID: 38557865 DOI: 10.1093/ibd/izae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Fibrosis characterized by intestinal strictures is a common complication of Crohn's disease (CD), without specific antifibrotic drugs, which usually relies on surgical intervention. The transcription factor XBP1, a key component of endoplasmic reticulum (ER) stress, is required for degranulation of mast cells and linked to PAR2 activation and fibrosis. Many studies have confirmed that naringin (NAR) can inhibit ER stress and reduce organ fibrosis. We hypothesized that ER stress activated the PAR2-induced epithelial-mesenchymal transition process by stimulating mast cell degranulation to release tryptase and led to intestinal fibrosis in CD patients; NAR might play an antifibrotic role by inhibiting ER stress-induced PAR2 activation. We report that the expression levels of XBP1, mast cell tryptase, and PAR2 are upregulated in fibrotic strictures of CD patients. Molecular docking simulates the interaction of NAR and spliced XBP1. ER stress stimulates degranulation of mast cells to secrete tryptase, activates PAR2-induced epithelial-mesenchymal transition process, and promotes intestinal fibrosis in vitro and vivo experiments, which is inhibited by NAR. Moreover, F2rl1 (the coding gene of PAR2) deletion in intestinal epithelial cells decreases the antifibrotic effect of NAR. Hence, the ER stress-mast cell tryptase-PAR2 axis can promote intestinal fibrosis, and NAR administration can alleviate intestinal fibrosis by inhibiting ER stress-induced PAR2 activation.
Collapse
Affiliation(s)
- Jinguo Liu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Wang
- Department of Surgery, Huangshi Traditional Chinese Medicine Hospital, Hubei Chinese Medical University, Huangshi, China
| | - Qianqian Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangliang Yu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Menescal-de-Oliveira L, Brentegani MR, Teixeira FP, Giusti H, Saia RS. Immune-mediated impairment of tonic immobility defensive behavior in an experimental model of colonic inflammation. Pflugers Arch 2024; 476:1743-1760. [PMID: 39218820 DOI: 10.1007/s00424-024-03011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Ulcerative colitis has been associated with psychological distress and an aberrant immune response. The immunomodulatory role of systemic cytokines produced during experimental intestinal inflammation in tonic immobility (TI) defensive behavior remains unknown. The present study characterized the TI defensive behavior of guinea pigs subjected to colitis induction at the acute stage and after recovery from intestinal mucosa injury. Moreover, we investigated whether inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-10, and prostaglandins) act on the mesencephalic nucleus, periaqueductal gray matter (PAG). Colitis was induced in guinea pigs by intrarectal administration of acetic acid. The TI defensive behavior, histology, cytokine production, and expression of c-FOS, IBA-1, and cyclooxygenase (COX)-2 in PAG were evaluated. Colitis reduced the duration of TI episodes from the first day, persisting throughout the 7-day experimental period. Neuronal c-FOS immunoreactivity was augmented in both columns of the PAG (ventrolateral (vlPAG) and dorsal), but there were no changes in IBA-1 expression. Dexamethasone, infliximab, and parecoxib treatments increased the duration of TI episodes, suggesting a modulatory role of peripheral inflammatory mediators in this behavior. Immunoneutralization of TNF-α, IL-1β, and IL-8 in the vlPAG reversed all effects produced by colitis. In contrast, IL-10 neutralization further reduced the duration of TI episodes. Our results reveal that peripherally produced inflammatory mediators during colitis may modulate neuronal functioning in mesencephalic structures such as vlPAG.
Collapse
Affiliation(s)
- Leda Menescal-de-Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Mariulza Rocha Brentegani
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fernanda Pincelli Teixeira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Humberto Giusti
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Simone Saia
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| |
Collapse
|
31
|
Lu X, Ren K, Pan L, Liu X. Sheep ( Ovis aries) Milk Exosomal miRNAs Attenuate Dextran Sulfate Sodium-Induced Colitis in Mice via TLR4 and TRAF-1 Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21030-21040. [PMID: 39283309 DOI: 10.1021/acs.jafc.4c05524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Mammalian milk exosomal miRNAs play an important role in maintaining intestinal immune homeostasis and protecting epithelial barrier function, but the specific miRNAs and whether miRNA-mediated mechanisms are responsible for these benefits remain a matter of investigation. This study isolated sheep milk-derived exosomes (sheep MDEs), identifying the enriched miRNAs in sheep MDEs, oar-miR-148a, and oar-let-7b as key components targeting TLR4 and TRAF1, which was validated by a dual-luciferase reporter assay. In dextran sulfate sodium-induced colitis mice, administration of sheep MDEs alleviated colitis symptoms, reduced colonic inflammation, and systemic oxidative stress, as well as significantly increased colonic oar-miR-148a and oar-let-7b while reducing toll-like receptor 4 (TLR4) and TNF-receptor-associated factor 1 (TRAF1) level. Further characterization in TNF-α-challenged Caco-2 cells showed that overexpression of these miRNAs suppressed the TLR4/TRAF1-IκBα-p65 pathway and reduced IL-6 and IL-12 production. These findings indicate that sheep MDEs exert gastrointestinal anti-inflammatory effects through the miRNA-mediated modulation of TLR4 and TRAF1, highlighting their potential in managing colitis.
Collapse
Affiliation(s)
- Xi Lu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Ke Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Lei Pan
- Tangdu Hospital, Air Force Military Medical University, Xi'an 710000, China
| | - Xiaocao Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
32
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S. Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Encarnacion-Garcia MR, De la Torre-Baez R, Hernandez-Cueto MA, Velázquez-Villegas LA, Candelario-Martinez A, Sánchez-Argáez AB, Horta-López PH, Montoya-García A, Jaimes-Ortega GA, Lopez-Bailon L, Piedra-Quintero Z, Carrasco-Torres G, De Ita M, Figueroa-Corona MDP, Muñoz-Medina JE, Sánchez-Uribe M, Ortiz-Fernández A, Meraz-Ríos MA, Silva-Olivares A, Betanzos A, Baay-Guzman GJ, Navarro-Garcia F, Villa-Treviño S, Garcia-Sierra F, Cisneros B, Schnoor M, Ortíz-Navarrete VF, Villegas-Sepúlveda N, Valle-Rios R, Medina-Contreras O, Noriega LG, Nava P. IFN-γ stimulates Paneth cell secretion through necroptosis mTORC1 dependent. Eur J Immunol 2024; 54:e2350716. [PMID: 38837757 DOI: 10.1002/eji.202350716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Immune mediators affect multiple biological functions of intestinal epithelial cells (IECs) and, like Paneth and Paneth-like cells, play an important role in intestinal epithelial homeostasis. IFN-γ a prototypical proinflammatory cytokine disrupts intestinal epithelial homeostasis. However, the mechanism underlying the process remains unknown. In this study, using in vivo and in vitro models we demonstrate that IFN-γ is spontaneously secreted in the small intestine. Furthermore, we observed that this cytokine stimulates mitochondrial activity, ROS production, and Paneth and Paneth-like cell secretion. Paneth and Paneth-like secretion downstream of IFN-γ, as identified here, is mTORC1 and necroptosis-dependent. Thus, our findings revealed that the pleiotropic function of IFN-γ also includes the regulation of Paneth cell function in the homeostatic gut.
Collapse
Affiliation(s)
- Maria R Encarnacion-Garcia
- Departament of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Raúl De la Torre-Baez
- Departament of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - María A Hernandez-Cueto
- Clinical Laboratory of Infectology, National Hospital "La Raza" Medical Center, IMSS, Mexico City, Mexico
| | - Laura A Velázquez-Villegas
- Physiology of Nutrition Department, The National Institute of Health Sciences and Nutrition "Salvador Zubirán", Mexico City, Mexico
| | - Aurora Candelario-Martinez
- Departament of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Ana Beatriz Sánchez-Argáez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Perla H Horta-López
- Departament of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Armando Montoya-García
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Gustavo Alberto Jaimes-Ortega
- Immunology and Proteomics Research Laboratory, Children's Hospital of Mexico "Federico Gómez" (HIMFG), Mexico City, Mexico
- Experimental Biology Postgraduate Program, Department of Biological and Health Sciences, Metropolitan Autonomous University (UAM), Mexico City, Mexico
| | - Luis Lopez-Bailon
- Immunology Department and Immunology Postgraduate Program, National School of Biological Sciences of the National Polytechnic Institute (ENCB-IPN), Mexico City, Mexico
| | - Zayda Piedra-Quintero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Gabriela Carrasco-Torres
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya, 62790, México
| | - Marlon De Ita
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
- Medical Research Unit in Human Genetics, UMAE Children's Hospital, National Medical Center "Siglo XXI", IMSS, Ciudad de México, 06720, Mexico
| | - María Del Pilar Figueroa-Corona
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - José Esteban Muñoz-Medina
- Clinical Laboratory of Infectology, National Hospital "La Raza" Medical Center, IMSS, Mexico City, Mexico
| | - Magdalena Sánchez-Uribe
- Pathological Anatomy, Specialized hospital "Dr. Antonio Fraga Mouret", National Hospital "La Raza" Medical Center, IMSS, Ciudad de México, México
| | - Arturo Ortiz-Fernández
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Marco Antonio Meraz-Ríos
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Angélica Silva-Olivares
- Departament of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Abigail Betanzos
- Departament of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | | | - Fernando Navarro-Garcia
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Francisco Garcia-Sierra
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Vianney F Ortíz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Nicolás Villegas-Sepúlveda
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Ricardo Valle-Rios
- Immunology and Proteomics Research Laboratory, Children's Hospital of Mexico "Federico Gómez" (HIMFG), Mexico City, Mexico
- University Research Unit, Research Division, Faculty of Medicine, National Autonomous University of Mexico-Children's Hospital of Mexico "Federico Gomez" (UNAM-HIMFG), Mexico City, Mexico
| | - Oscar Medina-Contreras
- Epidemiology, Endocrinology & Nutrition Research Unit, Children's Hospital of Mexico "Federico Gomez", Mexico City, Mexico
| | - Lilia G Noriega
- Physiology of Nutrition Department, The National Institute of Health Sciences and Nutrition "Salvador Zubirán", Mexico City, Mexico
| | - Porfirio Nava
- Departament of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
34
|
da Silva MDV, da Silva Bonassa L, Piva M, Basso CR, Zaninelli TH, Machado CCA, de Andrade FG, Miqueloto CA, Sant Ana DDMG, Aktar R, Peiris M, Aziz Q, Blackshaw LA, Verri WA, de Almeida Araújo EJ. Perineuronal net in the extrinsic innervation of the distal colon of mice and its remodeling in ulcerative colitis. J Neurochem 2024; 168:1937-1955. [PMID: 38426587 DOI: 10.1111/jnc.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
The perineuronal net (PNN) is a well-described highly specialized extracellular matrix structure found in the central nervous system. Thus far, no reports of its presence or connection to pathological processes have been described in the peripheral nervous system. Our study demonstrates the presence of a PNN in the spinal afferent innervation of the distal colon of mice and characterizes structural and morphological alterations induced in an ulcerative colitis (UC) model. C57Bl/6 mice were given 3% dextran sulfate sodium (DSS) to induce acute or chronic UC. L6/S1 dorsal root ganglia (DRG) were collected. PNNs were labeled using fluorescein-conjugated Wisteria Floribunda (WFA) l lectin, and calcitonin gene-related peptide (CGRP) immunofluorescence was used to detect DRG neurons. Most DRG cell bodies and their extensions toward peripheral nerves were found surrounded by the PNN-like structure (WFA+), labeling neurons' cytoplasm and the pericellular surfaces. The amount of WFA+ neuronal cell bodies was increased in both acute and chronic UC, and the PNN-like structure around cell bodies was thicker in UC groups. In conclusion, a PNN-like structure around DRG neuronal cell bodies was described and found modulated by UC, as changes in quantity, morphology, and expression profile of the PNN were detected, suggesting a potential role in sensory neuron peripheral sensitization, possibly modulating the pain profile of ulcerative colitis.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Larissa da Silva Bonassa
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Maiara Piva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Camila Regina Basso
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Tiago Henrique Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Camila Cristina Alves Machado
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Fábio Goulart de Andrade
- Laboratory of Histopathological Analysis, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Carlos Alberto Miqueloto
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Rubina Aktar
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Qasim Aziz
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - L Ashley Blackshaw
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | | |
Collapse
|
35
|
Wang D, Zhang H, Liao X, Li J, Zeng J, Wang Y, Zhang M, Ma X, Wang X, Ren F, Wang Y, Li M, Xu J, Jin P, Sheng J. Oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles attenuates gastric and small intestinal mucosal ferroptosis caused by hypoxia through inhibiting HIF-1α- and HIF-2α-mediated lipid peroxidation. J Nanobiotechnology 2024; 22:479. [PMID: 39134988 PMCID: PMC11321022 DOI: 10.1186/s12951-024-02663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
The prevention and treatment of gastrointestinal mucosal injury caused by a plateau hypoxic environment is a clinical conundrum due to the unclear mechanism of this syndrome; however, oxidative stress and microbiota dysbiosis may be involved. The Robinia pseudoacacia L. flower, homologous to a functional food, exhibits various pharmacological effects, such as antioxidant, antibacterial, and hemostatic activities. An increasing number of studies have revealed that plant exosome-like nanoparticles (PELNs) can improve the intestinal microbiota and exert antioxidant effects. In this study, the oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles (RFELNs) significantly ameliorated hypoxia-induced gastric and small intestinal mucosal injury in mice by downregulating hypoxia-inducible factor-1α (HIF-1α) and HIF-2α expression and inhibiting hypoxia-mediated ferroptosis. In addition, oral RFELNs partially improved hypoxia-induced microbial and metabolic disorders of the stomach and small intestine. Notably, RFELNs displayed specific targeting to the gastrointestinal tract. In vitro experiments using gastric and small intestinal epithelial cell lines showed that cell death caused by elevated HIF-1α and HIF-2α under 1% O2 mainly occurred via ferroptosis. RFELNs obviously inhibited HIF-1α and HIF-2α expression and downregulated the expression of NOX4 and ALOX5, which drive reactive oxygen species production and lipid peroxidation, respectively, suppressing ferroptosis under hypoxia. In conclusion, our findings underscore the potential of oral RFELNs as novel, naturally derived agents targeting the gastrointestinal tract, providing a promising therapeutic approach for hypoxia-induced gastric and small intestinal mucosal ferroptosis.
Collapse
Affiliation(s)
- Dezhi Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Heng Zhang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xingchen Liao
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Jun Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Jie Zeng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yilin Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Mingjie Zhang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xianzong Ma
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Meng Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
| | - Peng Jin
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
| | - Jianqiu Sheng
- Medical School of Chinese PLA, Chinese PLA General Hospital, Road Fuxing No. 28, Haidian District, Beijing, 100853, China.
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China.
| |
Collapse
|
36
|
Cheng S, Chen W, Guo Z, Ding C, Zuo R, Liao Q, Liu G. Paeonol alleviates ulcerative colitis by modulating PPAR-γ and nuclear factor-κB activation. Sci Rep 2024; 14:18390. [PMID: 39117680 PMCID: PMC11310503 DOI: 10.1038/s41598-024-68992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the gastrointestinal tract. Although paeonol has been used for treating UC due to its anti-inflammatory and antioxidant effects, the underlying mechanisms remain unclear. In this study, we investigated the mechanisms of paeonol's action on UC by conducting in-vitro and in-vivo studies using NCM460 cells and RAW264.7 cells, and the DSS-induced mice colitis model. The in vitro studies demonstrate that paeonol exerts inhibitory effects on the activation of the NF-κB signaling pathway through upregulating PPARγ expression, thereby attenuating pro-inflammatory cytokine production, reducing reactive oxygen species levels, and promoting M2 macrophage polarization. These effects are significantly abrogated upon addition of the PPARγ inhibitor GW9662. Moreover, UC mice treated with paeonol showed increased PPARγ expression, which reduced inflammation and apoptosis to maintain intestinal epithelial barrier integrity. In conclusion, our findings suggest that paeonol inhibits the NF-κB signaling pathway by activating PPARγ, reducing inflammation and oxidative stress and improving Dss-induced colitis. This study provides a new insight into the mechanism of treating UC by paeonol.
Collapse
Affiliation(s)
- Shuyu Cheng
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wujin Chen
- The Third People's Hospital of Fujian Province, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Chenchun Ding
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Renjie Zuo
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Quan Liao
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guoyan Liu
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China.
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 350108, China.
| |
Collapse
|
37
|
Yasumura Y, Teshima T, Nagashima T, Michishita M, Taira Y, Suzuki R, Matsumoto H. Effective enhancement of the immunomodulatory capacity of canine adipose-derived mesenchymal stromal cells on colitis by priming with colon tissue from mice with colitis. Front Vet Sci 2024; 11:1437648. [PMID: 39176394 PMCID: PMC11338805 DOI: 10.3389/fvets.2024.1437648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The therapeutic efficacy of mesenchymal stromal cells (MSCs) in inflammatory bowel disease is not completely known and is not consistent. Priming with inflammatory cytokines has been proposed to adapt MSCs to an inflammatory environment to have them ready to counteract it, but may have undesirable effects on MSCs, such as increased immunogenicity. In this study, we hypothesized that priming MSCs with inflamed intestinal tissue would more effectively enhance their therapeutic effect on intestinal inflammation. Methods The capacity of canine adipose-derived MSCs (cADSCs) primed with colon tissue homogenates from mice with experimentally induced colitis or a combination of tumor necrosis factor-α and interferon-γ to inhibit T-cell proliferation was analyzed, along with their own apoptosis, proliferation, cell surface marker expression, and transcriptome. In addition, colitis mice were treated with the primed cADSCs to assess colitis severity and immune cell profile. Results Priming with cytokines induced apoptosis, decreased cell proliferation, and major histocompatibility complex-II gene expression in cADSCs, but these adverse effects were mild or absent with colitis-tissue priming. cADSCs primed with colitis tissue reduced the severity of colitis via the induction of M2 macrophages and T-regulatory cells and suppression of T-helper (Th)1/Th17-cell responses, and their effects were comparable to those of cytokine-primed cells. Discussion Our results emphasize the importance of the activation of MSCs by the appropriate microenvironment to maximize their therapeutic effect.
Collapse
Affiliation(s)
- Yuyo Yasumura
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Yoshiaki Taira
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Hirotaka Matsumoto
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| |
Collapse
|
38
|
Qin D, Liu J, Guo W, Ju T, Fu S, Liu D, Hu G. Arbutin alleviates intestinal colitis by regulating neutrophil extracellular traps formation and microbiota composition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155741. [PMID: 38772182 DOI: 10.1016/j.phymed.2024.155741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic recurrent intestinal disease lacking effective treatments. β-arbutin, a glycoside extracted from the Arctostaphylos uva-ursi leaves, that can regulate many pathological processes. However, the effects of β-arbutin on UC remain unknown. PURPOSE In this study, we investigated the role of β-arbutin in relieving colitis and explored its potential mechanisms in a mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS In C75BL/6 J mice, DSS was used to induce colitis and concomitantly β-arbutin (50 and 100 mg/kg) was taken orally to evaluate its curative effect by evaluating disease activity index (DAI) score, colon length and histopathology. Alcian blue periodic acid schiff (AB-PAS) staining, immunohistochemistry (IHC), immunofluorescence (IF) and TdT-mediated dUTP Nick-End Labeling (Tunel) staining were used to assess intestinal barrier function. Flow cytometry, double-IF and western blotting (WB) were performed to verify the regulatory mechanism of β-arbutin on neutrophil extracellular traps (NETs) in vivo and in vitro. NETs depletion experiments were used to demonstrate the role of NETs in UC. Subsequently, the 16S rRNA gene sequencing was used to analyze the intestinal microflora of mouse. RESULTS Our results showed that β-arbutin can protect mice from DSS-induced colitis characterized by a lower DAI score and intestinal pathological damage. β-arbutin reduced inflammatory factors secretion, notably regulated neutrophil functions, and inhibited NETs formation in an ErK-dependent pathway, contributing to the resistance to colitis as demonstrated by in vivo and in vitro experiments. Meanwhile, remodeled the intestinal flora structure and increased the diversity and richness of intestinal microbiota, especially the abundance of probiotics and butyric acid-producing bacteria. It further promoted the protective effect in the resistance of colitis. CONCLUSION β-arbutin promoted the maintenance of intestinal homeostasis by inhibiting NETs formation, maintaining mucosal-barrier integrity, and shaping gut-microbiota composition, thereby alleviating DSS-induced colitis. This study provided a scientific basis for the rational use of β-arbutin in preventing colitis and other related diseases.
Collapse
Affiliation(s)
- Di Qin
- College of Animal Science, Jilin University, Changchun, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Weiwei Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Tianyuan Ju
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun, China.
| | - Guiqiu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
39
|
Xu X, Han Y, Deng J, Wang S, Zhuo S, Zhao K, Zhou W. Repurposing disulfiram with CuET nanocrystals: Enhancing anti-pyroptotic effect through NLRP3 inflammasome inhibition for treating inflammatory bowel diseases. Acta Pharm Sin B 2024; 14:2698-2715. [PMID: 38828135 PMCID: PMC11143773 DOI: 10.1016/j.apsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
Drug repurposing offers a valuable strategy for identifying new therapeutic applications for existing drugs. Recently, disulfiram (DSF), a drug primarily used for alcohol addiction treatment, has emerged as a potential treatment for inflammatory diseases by inhibiting pyroptosis, a form of programmed cell death. The therapeutic activity of DSF can be further enhanced by the presence of Cu2+, although the underlying mechanism of this enhancement remains unclear. In this study, we investigated the mechanistic basis of Cu2+-induced enhancement and discovered that it is attributed to the formation of a novel copper ethylthiocarbamate (CuET) complex. CuET exhibited significantly stronger anti-pyroptotic activity compared to DSF and employed a distinct mechanism of action. However, despite its potent activity, CuET suffered from poor solubility and limited permeability, as revealed by our druggability studies. To overcome these intrinsic limitations, we developed a scalable method to prepare CuET nanocrystals (CuET NCs) using a metal coordination-driven self-assembly approach. Pharmacokinetic studies demonstrated that CuET NCs exhibited a 6-fold improvement in bioavailability. Notably, CuET NCs exhibited high biodistribution in the intestine, suggesting their potential application for the treatment of inflammatory bowel diseases (IBDs). To evaluate their therapeutic efficacy in vivo, we employed a murine model of DSS-induced colitis and observed that CuET NCs effectively attenuated inflammation and ameliorated colitis symptoms. Our findings highlight the discovery of CuET as a potent anti-pyroptotic agent, and the development of CuET NCs represents a novel approach to enhance the druggability of CuET.
Collapse
Affiliation(s)
- Xueming Xu
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanfeng Han
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jiali Deng
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Chidren's Hospital, Changsha 410007, China
| | - Shengfeng Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shijie Zhuo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kai Zhao
- Hematology and Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha 410008, China
| |
Collapse
|
40
|
Alqudah A, Qnais E, Gammoh O, Bseiso Y, Wedyan M, Alqudah M, Oqal M, Abudalo R, Abdalla SS. Exploring the therapeutic potential of Anastatica hierochuntica essential oil in DSS-induced colitis. Inflammopharmacology 2024; 32:2035-2048. [PMID: 38520575 DOI: 10.1007/s10787-024-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
The aim of this investigation was to explore the protective impacts and mechanisms of Anastatica hierochuntica essential oil (EOAH) against dextran sulfate sodium (DSS)-induced experimental colitis in mice. EOAH demonstrated a reduction in DSS-induced body weight decline, disease activity index (DAI), colon length reduction, colonic tissue damage, and myeloperoxidase (MPO) activity. The essential oil significantly mitigated the production of pro-inflammatory agents including TNF-α, IL-1β, and IL-12. Further analysis revealed that EOAH's anti-inflammatory effects involved the regulation of NF-κB and PPARγ pathways, as well as the inhibition of NLRP3 activation in colitis mice. Notably, EOAH treatment elevated the levels of beneficial commensal bacteria such as Lactobacillus and Bifidobacteria, while reducing Escherichia coli levels in the mice's feces. In addition, EOAH restored the expression of occludin and ZO-1 proteins in colonic tissues affected by ulcerative colitis (UC). These findings indicate that supplementing with EOAH might offer a novel therapeutic approach for UC prevention.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Muna Oqal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Rawan Abudalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Shtaywy S Abdalla
- Department of Biological Sciences, Faculty of Science, University of Jordan, Amman, Jordan
| |
Collapse
|
41
|
Apte A, Bardill JR, Canchis J, Skopp SM, Fauser T, Lyttle B, Vaughn AE, Seal S, Jackson DM, Liechty KW, Zgheib C. Targeting Inflammation and Oxidative Stress to Improve Outcomes in a TNBS Murine Crohn's Colitis Model. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:894. [PMID: 38786849 PMCID: PMC11124096 DOI: 10.3390/nano14100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Inflammation and oxidative stress are implicated in the pathogenesis of Crohn's disease. Cerium oxide nanoparticle (CNP) conjugated to microRNA 146a (miR146a) (CNP-miR146a) is a novel compound with anti-inflammatory and antioxidative properties. We hypothesized that local administration of CNP-miR146a would improve colitis in a 2,4,6-Trinitrobenzenesulfonic acid (TNBS) mouse model for Crohn's disease by decreasing colonic inflammation. Balb/c mice were instilled with TNBS enemas to induce colitis. Two days later, the mice received cellulose gel enema, cellulose gel with CNP-miR146a enema, or no treatment. Control mice received initial enemas of 50% ethanol and PBS enemas on day two. The mice were monitored daily for weight loss and clinical disease activity. The mice were euthanized on days two or five to evaluate their miR146a expression, inflammation on histology, and colonic IL-6 and TNF gene expressions and protein concentrations. CNP-miR146a enema successfully increased colonic miR146a expression at 12 h following delivery. At the end of five days from TNBS instillation, the mice treated with CNP-miR146a demonstrated reduced weight loss, improved inflammation scores on histology, and reduced gene expressions and protein concentrations of IL-6 and TNF. The local delivery of CNP-miR146a in a TNBS mouse model of acute Crohn's colitis dramatically decreased inflammatory signaling, resulting in improved clinical disease.
Collapse
Affiliation(s)
- Anisha Apte
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - James R. Bardill
- Department of Surgery, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (J.R.B.)
| | - Jimena Canchis
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - Stacy M. Skopp
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - Tobias Fauser
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - Bailey Lyttle
- Department of Surgery, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (J.R.B.)
| | - Alyssa E. Vaughn
- Department of Surgery, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (J.R.B.)
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, University of Central Florida, Orlando, FL 32827, USA
| | | | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| |
Collapse
|
42
|
Yang YJ, Kim MJ, Lee HJ, Lee WY, Yang JH, Kim HH, Shim MS, Heo JW, Son JD, Kim WH, Kim GS, Lee HJ, Kim YW, Kim KY, Park KI. Ziziphus jujuba Miller Ethanol Extract Restores Disrupted Intestinal Barrier Function via Tight Junction Recovery and Reduces Inflammation. Antioxidants (Basel) 2024; 13:575. [PMID: 38790680 PMCID: PMC11118233 DOI: 10.3390/antiox13050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by the disruption of the intestinal barrier. The intestinal barrier is maintained by tight junctions (TJs), which sustain intestinal homeostasis and prevent pathogens from entering the microbiome and mucosal tissues. Ziziphus jujuba Miller (Z. jujuba) is a natural substance that has been used in traditional medicine as a therapy for a variety of diseases. However, in IBD, the efficacy of Z. jujuba is unknown. Therefore, we evaluated ZJB in Caco2 cells and a dextran sodium sulfate (DSS)-induced mouse model to demonstrate its efficacy in IBD. Z. jujuba extracts were prepared using 70% ethanol and were named ZJB. ZJB was found to be non-cytotoxic and to have excellent antioxidant effects. We confirmed its anti-inflammatory properties via the down-regulation of inflammatory factors, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). To evaluate the effects of ZJB on intestinal barrier function and TJ improvement, the trans-epithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran 4 kDa (FITC-Dextran 4) permeability were assessed. The TEER value increased by 61.389% and permeability decreased by 27.348% in the 200 μg/mL ZJB group compared with the 50 ng/mL IL-6 group after 24 h. Additionally, ZJB alleviated body weight loss, reduced the disease activity index (DAI) score, and induced colon shortening in 5% DSS-induced mice; inflammatory cytokines, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were down-regulated in the serum. TJ proteins, such as Zonula occludens (ZO)-1 and occludin, were up-regulated by ZJB in an impaired Caco2 mouse model. Additionally, according to the liquid chromatography results, in tandem with mass spectrometry (LC-MS/MS) analysis, seven active ingredients were detected in ZJB. In conclusion, ZJB down-regulated inflammatory factors, protected intestinal barrier function, and increased TJ proteins. It is thus a safe, natural substance with the potential to be used as a therapeutic agent in IBD treatment.
Collapse
Affiliation(s)
- Ye Jin Yang
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Min Jung Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Ho Jeong Lee
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Republic of Korea;
| | - Won-Yung Lee
- School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Ju-Hye Yang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70 Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea;
| | - Hun Hwan Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Min Sup Shim
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA;
| | - Ji Woong Heo
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Jae Dong Son
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Woo H. Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Gon Sup Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Hu-Jang Lee
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Young-Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kwang Youn Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70 Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea;
| | - Kwang Il Park
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (H.H.K.); (J.W.H.); (J.D.S.); (W.H.K.); (G.S.K.); (H.-J.L.)
| |
Collapse
|
43
|
Husien HM, Rehman SU, Duan Z, Wang M. Effect of Moringa oleifera leaf polysaccharide on the composition of intestinal microbiota in mice with dextran sulfate sodium-induced ulcerative colitis. Front Nutr 2024; 11:1409026. [PMID: 38765820 PMCID: PMC11099247 DOI: 10.3389/fnut.2024.1409026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Moringa oleifera (M. oleifera) is a natural plant that has excellent nutritional and medicinal potential. M. oleifera leaves (MOL) contain several bioactive compounds. The aim of this study was to evaluate the potential effect of MOL polysaccharide (MOLP) on intestinal flora in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. DSS-induced colitis was deemed to be a well-characterized experimental colitis model for investigating the protective effect of drugs on UC. In this study, we stimulated the experimental mice with DSS 4% for 7 days and prepared the high dose of MOLP (MOLP-H) in order to evaluate its effect on intestinal flora in DSS-induced UC mice, comparing three experimental groups, including the control, DSS model, and DSS + MOLP-H (100 mg/kg/day). At the end of the experiment, feces were collected, and the changes in intestinal flora in DSS-induced mice were analyzed based on 16S rDNA high throughput sequencing technology. The results showed that the Shannon, Simpson, and observed species indices of abundance decreased in the DSS group compared with the control group. However, the indices mentioned above were increased in the MOLP-H group. According to beta diversity analysis, the DSS group showed low bacterial diversity and the distance between the control and MOLP-H groups, respectively. In addition, compared with the control group, the relative abundance of Firmicutes in the DSS group decreased and the abundance of Helicobacter increased, while MOLP-H treatment improves intestinal health by enhancing the number of beneficial organisms, including Firmicutes, while reducing the number of pathogenic organisms, such as Helicobacter. In conclusion, these findings suggest that MOLP-H may be a viable prebiotic with health-promoting properties.
Collapse
Affiliation(s)
- Hosameldeen Mohamed Husien
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Albutana University, Rufaa, Sudan
| | - Shahab Ur Rehman
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenyu Duan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| |
Collapse
|
44
|
Yang C, Merlin D. Unveiling Colitis: A Journey through the Dextran Sodium Sulfate-induced Model. Inflamm Bowel Dis 2024; 30:844-853. [PMID: 38280217 PMCID: PMC11063560 DOI: 10.1093/ibd/izad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 01/29/2024]
Abstract
Animal models of inflammatory bowel disease (IBD) are valuable tools for investigating the factors involved in IBD pathogenesis and evaluating new therapeutic options. The dextran sodium sulfate (DSS)-induced model of colitis is arguably the most widely used animal model for studying the pathogenesis of and potential treatments for ulcerative colitis (UC), which is a primary form of IBD. This model offers several advantages as a research tool: it is highly reproducible, relatively easy to generate and maintain, and mimics many critical features of human IBD. Recently, it has also been used to study the role of gut microbiota in the development and progression of IBD and to investigate the effects of other factors, such as diet and genetics, on colitis severity. However, although DSS-induced colitis is the most popular and flexible model for preclinical IBD research, it is not an exact replica of human colitis, and some results obtained from this model cannot be directly applied to humans. This review aims to comprehensively discuss different factors that may be involved in the pathogenesis of DSS-induced colitis and the issues that should be considered when using this model for translational purposes.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| |
Collapse
|
45
|
Curvino EJ, Roe EF, Freire Haddad H, Anderson AR, Woodruff ME, Votaw NL, Segura T, Hale LP, Collier JH. Engaging natural antibody responses for the treatment of inflammatory bowel disease via phosphorylcholine-presenting nanofibres. Nat Biomed Eng 2024; 8:628-649. [PMID: 38012308 PMCID: PMC11128482 DOI: 10.1038/s41551-023-01139-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Inflammatory bowel disease lacks a long-lasting and broadly effective therapy. Here, by taking advantage of the anti-infection and anti-inflammatory properties of natural antibodies against the small-molecule epitope phosphorylcholine (PC), we show in multiple mouse models of colitis that immunization of the animals with self-assembling supramolecular peptide nanofibres bearing PC epitopes induced sustained levels of anti-PC antibodies that were both protective and therapeutic. The strength and type of immune responses elicited by the nanofibres could be controlled through the relative valency of PC epitopes and exogenous T-cell epitopes on the nanofibres and via the addition of the adjuvant CpG. The nanomaterial-assisted induction of the production of therapeutic antibodies may represent a durable therapy for inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Emily F Roe
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Alexa R Anderson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mia E Woodruff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicole L Votaw
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Laura P Hale
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
46
|
Wen C, Chen D, Zhong R, Peng X. Animal models of inflammatory bowel disease: category and evaluation indexes. Gastroenterol Rep (Oxf) 2024; 12:goae021. [PMID: 38634007 PMCID: PMC11021814 DOI: 10.1093/gastro/goae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Inflammatory bowel disease (IBD) research often relies on animal models to study the etiology, pathophysiology, and management of IBD. Among these models, rats and mice are frequently employed due to their practicality and genetic manipulability. However, for studies aiming to closely mimic human pathology, non-human primates such as monkeys and dogs offer valuable physiological parallels. Guinea pigs, while less commonly used, present unique advantages for investigating the intricate interplay between neurological and immunological factors in IBD. Additionally, New Zealand rabbits excel in endoscopic biopsy techniques, providing insights into mucosal inflammation and healing processes. Pigs, with their physiological similarities to humans, serve as ideal models for exploring the complex relationships between nutrition, metabolism, and immunity in IBD. Beyond mammals, non-mammalian organisms including zebrafish, Drosophila melanogaster, and nematodes offer specialized insights into specific aspects of IBD pathology, highlighting the diverse array of model systems available for advancing our understanding of this multifaceted disease. In this review, we conduct a thorough analysis of various animal models employed in IBD research, detailing their applications and essential experimental parameters. These include clinical observation, Disease Activity Index score, pathological assessment, intestinal barrier integrity, fibrosis, inflammatory markers, intestinal microbiome, and other critical parameters that are crucial for evaluating modeling success and drug efficacy in experimental mammalian studies. Overall, this review will serve as a valuable resource for researchers in the field of IBD, offering insights into the diverse array of animal models available and their respective applications in studying IBD.
Collapse
Affiliation(s)
- Changlin Wen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Dan Chen
- Acupuncture and Moxibustion School of Teaching, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Rao Zhong
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
47
|
Vesci L, Tundo G, Soldi S, Galletti S, Stoppoloni D, Bernardini R, Modolea AB, Luberto L, Marra E, Giorgi F, Marini S. A Novel Lactobacillus brevis Fermented with a Vegetable Substrate (AL0035) Counteracts TNBS-Induced Colitis by Modulating the Gut Microbiota Composition and Intestinal Barrier. Nutrients 2024; 16:937. [PMID: 38612971 PMCID: PMC11013894 DOI: 10.3390/nu16070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Crohn's and ulcerative colitis are common conditions associated with inflammatory bowel disease as well as intestinal flora and epithelial barrier dysfunction. A novel fermented Lactobacillus brevis (AL0035) herein assayed in a trinitro benzene sulfonic acid (TNBS)-induced colitis mice model after oral administration significantly counteracted the body weight loss and improves the disease activity index and histological injury scores. AL0035 significantly decreased the mRNA and protein expression of different pro-inflammatory cytokines (TNFalpha, IL-1beta, IL-6, IL-12, IFN-gamma) and enhanced the expression of IL-10. In addition, the probiotic promoted the expression of tight junction proteins, such as ZO-1, keeping the intestinal mucosal barrier function to attenuate colitis symptoms in mice. Markers of inflammation cascade such as myeloperoxidase (MPO) and PPAR-gamma measured in the colon were also modified by AL0035 treatment. AL0035 was also able to reduce different lymphocyte markers' infiltration in the colon (GATA-3, T-Bet, NK1.1) and monocyte chemoattractant protein-1 (MCP-1/CCL2), a key chemokine involved in the migration and infiltration of monocytes/macrophages in the immunological surveillance of tissues and inflammation. In colonic microbiota profile analysis through 16S rRNA sequencing, AL0035 increased the microbial diversity depleted by TNBS administration and the relative abundance of the Lactobacillaceae and Lachnospiraceae families, whereas it decreased the abundance of Proteobacteria. Altogether, these data indicated that AL0035 could lower the severity of colitis induced by TNBS by regulating inflammatory cytokines, increasing the expression of tight junction proteins and modulating intestinal microbiota, thus preventing tissue damage induced by colitis.
Collapse
Affiliation(s)
- Loredana Vesci
- Corporate R&D, Alfasigma S.p.A., Via Pontina km 30.400, Pomezia, 00071 Rome, Italy;
| | - Grazia Tundo
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (A.B.M.); (S.M.)
| | - Sara Soldi
- AAT Advanced Analytical Technologies Srl, Via P. Majavacca 12, 29017 Fiorenzuola d’Arda, Italy; (S.S.); (S.G.)
| | - Serena Galletti
- AAT Advanced Analytical Technologies Srl, Via P. Majavacca 12, 29017 Fiorenzuola d’Arda, Italy; (S.S.); (S.G.)
| | | | - Roberta Bernardini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (A.B.M.); (S.M.)
- Centro Interdipartimentale di Medicina Comparata, Tecniche Alternative ed Acquacoltura (CIMETA), University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Anamaria Bianca Modolea
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (A.B.M.); (S.M.)
| | - Laura Luberto
- Takis Castel Romano, 00128 Rome, Italy; (D.S.); (L.L.); (E.M.)
| | - Emanuele Marra
- Takis Castel Romano, 00128 Rome, Italy; (D.S.); (L.L.); (E.M.)
| | - Fabrizio Giorgi
- Corporate R&D, Alfasigma S.p.A., Via Pontina km 30.400, Pomezia, 00071 Rome, Italy;
| | - Stefano Marini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (A.B.M.); (S.M.)
| |
Collapse
|
48
|
Wang Y, Gao JZ, Sakaguchi T, Maretzky T, Gurung P, Narayanan NS, Short S, Xiong Y, Kang Z. LRRK2 G2019S Promotes Colon Cancer Potentially via LRRK2-GSDMD Axis-Mediated Gut Inflammation. Cells 2024; 13:565. [PMID: 38607004 PMCID: PMC11011703 DOI: 10.3390/cells13070565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a serine-threonine protein kinase belonging to the ROCO protein family. Within the kinase domain of LRRK2, a point mutation known as LRRK2 G2019S has emerged as the most prevalent variant associated with Parkinson's disease. Recent clinical studies have indicated that G2019S carriers have an elevated risk of cancers, including colon cancer. Despite this observation, the underlying mechanisms linking LRRK2 G2019S to colon cancer remain elusive. In this study, employing a colitis-associated cancer (CAC) model and LRRK2 G2019S knock-in (KI) mouse model, we demonstrate that LRRK2 G2019S promotes the pathogenesis of colon cancer, characterized by increased tumor number and size in KI mice. Furthermore, LRRK2 G2019S enhances intestinal epithelial cell proliferation and inflammation within the tumor microenvironment. Mechanistically, KI mice exhibit heightened susceptibility to DSS-induced colitis, with inhibition of LRRK2 kinase activity ameliorating colitis severity and CAC progression. Our investigation also reveals that LRRK2 G2019S promotes inflammasome activation and exacerbates gut epithelium necrosis in the colitis model. Notably, GSDMD inhibitors attenuate colitis in LRRK2 G2019S KI mice. Taken together, our findings offer experimental evidence indicating that the gain-of-kinase activity in LRRK2 promotes colorectal tumorigenesis, suggesting LRRK2 as a potential therapeutic target in colon cancer patients exhibiting hyper LRRK2 kinase activity.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Joyce Z. Gao
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Taylor Sakaguchi
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Thorsten Maretzky
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Prajwal Gurung
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nandakumar S. Narayanan
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah Short
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yiqin Xiong
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Zizhen Kang
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
49
|
Xu WD, Wang DC, Zhao M, Huang AF. An updated advancement of bifunctional IL-27 in inflammatory autoimmune diseases. Front Immunol 2024; 15:1366377. [PMID: 38566992 PMCID: PMC10985211 DOI: 10.3389/fimmu.2024.1366377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Interleukin-27 (IL-27) is a member of the IL-12 family. The gene encoding IL-27 is located at chromosome 16p11. IL-27 is considered as a heterodimeric cytokine, which consists of Epstein-Barr virus (EBV)-induced gene 3 (Ebi3) and IL-27p28. Based on the function of IL-27, it binds to receptor IL-27rα or gp130 and then regulates downstream cascade. To date, findings show that the expression of IL-27 is abnormal in different inflammatory autoimmune diseases (including systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, Behcet's disease, inflammatory bowel disease, multiple sclerosis, systemic sclerosis, type 1 diabetes, Vogt-Koyanagi-Harada, and ankylosing spondylitis). Moreover, in vivo and in vitro studies demonstrated that IL-27 is significantly in3volved in the development of these diseases by regulating innate and adaptive immune responses, playing either an anti-inflammatory or a pro-inflammatory role. In this review, we comprehensively summarized information about IL-27 and autoimmunity based on available evidence. It is hoped that targeting IL-27 will hold great promise in the treatment of inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
50
|
Sun Q, Bravo Iniguez A, Tian Q, Du M, Zhu MJ. Dietary Cannabidiol Activates PKA/AMPK Signaling and Attenuates Chronic Inflammation and Leaky Gut in DSS-Induced Colitis Mice. Mol Nutr Food Res 2024; 68:e2300446. [PMID: 38175840 DOI: 10.1002/mnfr.202300446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Indexed: 01/06/2024]
Abstract
SCOPE Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gut, accompanied by impaired epithelial integrity, increased macrophage infiltration, and enhanced colon cancer risk. METHODS AND RESULTS Cannabidiol (CBD), a phytocannabinoid isolated from cannabis plants, is supplemented into mice diet, and its beneficial effects against dextran sulfate sodium (DSS)-induced experimental colitis is evaluated. Eight-week-old mice were fed a standard diet supplemented with or without CBD (200 mg kg-1 ) for 5 weeks. In the 4th week of dietary treatment, mice were subjected to 2.5% DSS induction for 7 days, followed by 7 days of recovery, to induce colitis. CBD supplementation reduced body weight loss, gross bleeding, fecal consistency, and disease activity index. In addition, CBD supplementation protected the colonic structure, promoted tissue recovery, and ameliorated macrophage infiltration in the colonic tissue, which was associated with the activation of cyclic AMP-protein kinase A, extracellular signal-regulated kinase ½, and AMP-activated protein kinase signaling pathways. CBD supplementation also suppressed NLRP3 inflammasome activation and related pro-inflammatory marker secretion. Consistently, CBD feeding reduced tight junction protein claudin2 and myosin light chain kinase in DSS-treated mice. CONCLUSION Dietary CBD protects against inflammation and colitis symptoms induced by DSS, providing an alternative approach to IBD management.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | | | - Qiyu Tian
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|