1
|
Corrao S, Calvo L, Granà W, Scibetta S, Mirarchi L, Amodeo S, Falcone F, Argano C. Metabolic dysfunction-associated steatotic liver disease: A pathophysiology and clinical framework to face the present and the future. Nutr Metab Cardiovasc Dis 2025; 35:103702. [PMID: 39358105 DOI: 10.1016/j.numecd.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
AIMS This review aims to provide a straightforward conceptual framework for the knowledge and understanding of Metabolic dysfunction-associated steatotic liver disease (MASLD) in the broad spectrum of steatotic liver disease and to point out the need to consider metabolic dysfunction and comorbidities as interrelated factors for a holistic approach to fatty liver disease. DATA SYNTHESIS MASLD is the new proposed term for steatotic liver disease that replaces the old terminology of non-alcoholic fatty liver disease. This term focused on the relationship between metabolic alteration and hepatic steatosis, reflecting a growing comprehension of the association between metabolic dysfunction and hepatic steatosis. Numerous factors and conditions contribute to the underlying mechanisms, including central obesity, insulin resistance, adiponectin, lipid metabolism, liver function, dietary influences, the composition of intestinal microbiota, and genetic factors. The development of the condition, however, involves a more intricate network of components, such as neurotensin and Advanced Glycation End Products, highlighting the complexity of its pathogenesis. CONCLUSIONS MASLD must be regarded as a complex clinical problem in which only a holistic approach can win through the coordination of multi-professional and multi-speciality interventions.
Collapse
Affiliation(s)
- Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties [PROMISE], University of Palermo, Italy.
| | - Luigi Calvo
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Walter Granà
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Salvatore Scibetta
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Luigi Mirarchi
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Simona Amodeo
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| | - Fabio Falcone
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties [PROMISE], University of Palermo, Italy
| | - Christiano Argano
- Department of Clinical Medicine, Internal Medicine Unit, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, Palermo, Italy
| |
Collapse
|
2
|
Kaplan DE, Teerlink CC, Schwantes-An TH, Norden-Krichmar TM, DuVall SL, Morgan TR, Tsao PS, Voight BF, Lynch JA, Vujković M, Chang KM. Clinical and genetic risk factors for progressive fibrosis in metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2024; 8:e0487. [PMID: 38967582 PMCID: PMC11227360 DOI: 10.1097/hc9.0000000000000487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Fibrosis-4 (FIB4) is a recommended noninvasive test to assess hepatic fibrosis among patients with metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we used FIB4 trajectory over time (ie, "slope" of FIB4) as a surrogate marker of liver fibrosis progression and examined if FIB4 slope is associated with clinical and genetic factors among individuals with clinically defined MASLD within the Million Veteran Program Cohort. METHODS In this retrospective cohort study, FIB4 slopes were estimated through linear regression for participants with clinically defined MASLD and FIB4 <2.67 at baseline. FIB4 slope was correlated with demographic parameters and clinical outcomes using logistic regression and Cox proportional hazard models. FIB4 slope as a quantitative phenotype was used in a genome-wide association analysis in ancestry-specific analysis and multiancestry meta-analysis using METAL. RESULTS FIB4 slopes, generated from 98,361 subjects with MASLD (16,045 African, 74,320 European, and 7996 Hispanic), showed significant associations with sex, ancestry, and cardiometabolic risk factors (p < 0.05). FIB4 slopes also correlated strongly with hepatic outcomes and were independently associated with time to cirrhosis. Five genetic loci showed genome-wide significant associations (p < 5 × 10-8) with FIB4 slope among European ancestry subjects, including 2 known (PNPLA3 and TM6SF2) and 3 novel loci (TERT 5.1 × 10-11; LINC01088, 3.9 × 10-8; and MRC1, 2.9 × 10-9). CONCLUSIONS Linear trajectories of FIB4 correlated significantly with time to progression to cirrhosis, with liver-related outcomes among individuals with MASLD and with known and novel genetic loci. FIB4 slope may be useful as a surrogate measure of fibrosis progression.
Collapse
Affiliation(s)
- David E. Kaplan
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Craig C. Teerlink
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Trina M. Norden-Krichmar
- Department of Medicine, Gastroenterology Section, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Scott L. DuVall
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Timothy R. Morgan
- Department of Medicine, Gastroenterology Section, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
- Department of Medicine, University of California, Irvine, California, USA
| | - Philip S. Tsao
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, Palo Alto, California, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin F. Voight
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Julie A. Lynch
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Marijana Vujković
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyong-Mi Chang
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Pilarczyk M, Gąssowska-Dobrowolska M, Jarmużek P, Szućko-Kociuba I, Kulik-Sajewicz J, Chlubek D, Baranowska-Bosiacka I. Phospholipid Acyltransferases: Characterization and Involvement of the Enzymes in Metabolic and Cancer Diseases. Cancers (Basel) 2024; 16:2115. [PMID: 38893234 PMCID: PMC11171337 DOI: 10.3390/cancers16112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Jarmużek
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | | | - Justyna Kulik-Sajewicz
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
4
|
Pan Z, Khatry MA, Yu ML, Choudhury A, Sebastiani G, Alqahtani SA, Eslam M. MAFLD: an ideal framework for understanding disease phenotype in individuals of normal weight. Ther Adv Endocrinol Metab 2024; 15:20420188241252543. [PMID: 38808010 PMCID: PMC11131400 DOI: 10.1177/20420188241252543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is significant, impacting almost one-third of the global population. MAFLD constitutes a primary cause of end-stage liver disease, liver cancer and the need for liver transplantation. Moreover, it has a strong association with increased mortality rates due to various extrahepatic complications, notably cardiometabolic diseases. While MAFLD is typically correlated with obesity, not all individuals with obesity develop the disease and a significant percentage of MAFLD occurs in patients without obesity, termed lean MAFLD. The clinical features, progression and underlying physiological mechanisms of patients with lean MAFLD remain inadequately characterized. The present review aims to provide a comprehensive summary of current knowledge on lean MAFLD and offer a perspective on defining MAFLD in individuals with normal weight. Key to this process is the concept of metabolic health and flexibility, which links states of dysmetabolism to the development of lean MAFLD. This perspective offers a more nuanced understanding of MAFLD and its underlying mechanisms and highlights the importance of considering the broader metabolic context in which the disease occurs. It also bridges the knowledge gap and offers insights that can inform clinical practice.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Maryam Al Khatry
- Department of Gastroenterology, Obaidullah Hospital, Emirates Health Services, Ministry of Health, Ras Al Khaimah, United Arab Emirates
| | - Ming-Lung Yu
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, 176 Hawkesbury Road, Westmead 2145, NSW, Australia
| |
Collapse
|
5
|
Varadharajan V, Ramachandiran I, Massey WJ, Jain R, Banerjee R, Horak AJ, McMullen MR, Huang E, Bellar A, Lorkowski SW, Gulshan K, Helsley RN, James I, Pathak V, Dasarathy J, Welch N, Dasarathy S, Streem D, Reizes O, Allende DS, Smith JD, Simcox J, Nagy LE, Brown JM. Membrane-bound O-acyltransferase 7 (MBOAT7) shapes lysosomal lipid homeostasis and function to control alcohol-associated liver injury. eLife 2024; 12:RP92243. [PMID: 38648183 PMCID: PMC11034944 DOI: 10.7554/elife.92243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss of function promotes ALD via reorganization of lysosomal lipid homeostasis. Circulating levels of MBOAT7 metabolic products are significantly reduced in heavy drinkers compared to healthy controls. Hepatocyte- (Mboat7-HSKO), but not myeloid-specific (Mboat7-MSKO), deletion of Mboat7 exacerbates ethanol-induced liver injury. Lipidomic profiling reveals a reorganization of the hepatic lipidome in Mboat7-HSKO mice, characterized by increased endosomal/lysosomal lipids. Ethanol-exposed Mboat7-HSKO mice exhibit dysregulated autophagic flux and lysosomal biogenesis, associated with impaired transcription factor EB-mediated lysosomal biogenesis and autophagosome accumulation. This study provides mechanistic insights into how MBOAT7 influences ALD progression through dysregulation of lysosomal biogenesis and autophagic flux, highlighting hepatocyte-specific MBOAT7 loss as a key driver of ethanol-induced liver injury.
Collapse
Affiliation(s)
- Venkateshwari Varadharajan
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Iyappan Ramachandiran
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - William J Massey
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anthony J Horak
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Megan R McMullen
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Emily Huang
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Annette Bellar
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Shuhui W Lorkowski
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
| | - Kailash Gulshan
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State UniversityClevelandUnited States
| | - Robert N Helsley
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Department of Pharmacology & Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky College of MedicineLexingtonUnited States
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Vai Pathak
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Jaividhya Dasarathy
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Family Medicine, Metro Health Medical Center, Case Western Reserve UniversityClevelandUnited States
| | - Nicole Welch
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Srinivasan Dasarathy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - David Streem
- Lutheran Hospital, Cleveland ClinicClevelandUnited States
| | - Ofer Reizes
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Daniela S Allende
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Anatomical Pathology, Cleveland ClinicClevelandUnited States
| | - Jonathan D Smith
- Department of Cancer Biology, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Laura E Nagy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - J Mark Brown
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Northern Ohio Alcohol Center (NOAC), Lerner Research Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
6
|
Pan Z, Alharthi J, Bayoumi A, George J, Eslam M. A Cell Specific Effect of MBOAT7 MAFLD-risk Variant on Immune Cells. FRONT BIOSCI-LANDMRK 2024; 29:148. [PMID: 38682204 DOI: 10.31083/j.fbl2904148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Disease risk variants are likely to affect gene expression in a context- and cell-type specific manner. The membrane bound O-acyltransferase domain containing 7 (MBOAT7) rs8736 metabolic-dysfunction-associated fatty liver disease (MAFLD)-risk variant was recently reported to be a negative regulator of toll-like receptors (TLRs) signalling in macrophages. Whether this effect is generic or cell-type specific in immune cells is unknown. METHODS We investigated the impact of modulating TLR signaling on MBOAT7 expression in peripheral blood mononuclear cells (PBMCs). We also examined whether the rs8736 polymorphism in MBOAT7 regulates this effect. Furthermore, we measured the allele-specific expression of MBOAT7 in various immune cell populations under both unstimulated and stimulated conditions. RESULTS We show that MBOAT7 is down-regulated by TLRs in PBMCs. This effect is modulated by the MBOAT7 rs8736 polymorphism. Additionally, we provide evidence that MBOAT7 acts primarily as a modulator of TLR signalling in mononuclear phagocytes. CONCLUSION Our results highlight the importance of studying Genome-Wide Association Studies (GWAS) signals in the specific cell types in which alterations of gene expression are found.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW 2145, Australia
| | - Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW 2145, Australia
- Department of Biotechnology, Faculty of Science, Taif University, 21944 Taif, Saudi Arabia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW 2145, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW 2145, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
7
|
Varadharajan V, Ramachandiran L, Massey WJ, Jain R, Banerjee R, Horak AJ, McMullen MR, Huang E, Bellar A, Lorkowski SW, Guilshan K, Helsley RN, James I, Pathak V, Dasarathy J, Welch N, Dasarathy S, Streem D, Reizes O, Allende DS, Smith JD, Simcox J, Nagy LE, Brown JM. Membrane Bound O-Acyltransferase 7 (MBOAT7) Shapes Lysosomal Lipid Homeostasis and Function to Control Alcohol-Associated Liver Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559533. [PMID: 37808828 PMCID: PMC10557709 DOI: 10.1101/2023.09.26.559533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Several recent genome-wide association studies (GWAS) have identified single nucleotide polymorphism (SNPs) near the gene encoding membrane-bound O -acyltransferase 7 ( MBOAT7 ) that is associated with advanced liver diseases. In fact, a common MBOAT7 variant (rs641738), which is associated with reduced MBOAT7 expression, confers increased susceptibility to non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis in those chronically infected with hepatitis viruses B and C. The MBOAT7 gene encodes a lysophosphatidylinositol (LPI) acyltransferase enzyme that produces the most abundant form of phosphatidylinositol 38:4 (PI 18:0/20:4). Although these recent genetic studies clearly implicate MBOAT7 function in liver disease progression, the mechanism(s) by which MBOAT7-driven LPI acylation regulates liver disease is currently unknown. Previously we showed that antisense oligonucleotide (ASO)-mediated knockdown of Mboat7 promoted non-alcoholic fatty liver disease (NAFLD) in mice (Helsley et al., 2019). Here, we provide mechanistic insights into how MBOAT7 loss of function promotes alcohol-associated liver disease (ALD). In agreement with GWAS studies, we find that circulating levels of metabolic product of MBOAT7 (PI 38:4) are significantly reduced in heavy drinkers compared to age-matched healthy controls. Hepatocyte specific genetic deletion ( Mboat7 HSKO ), but not myeloid-specific deletion ( Mboat7 MSKO ), of Mboat7 in mice results in enhanced ethanol-induced hepatic steatosis and high concentrations of plasma alanine aminotransferase (ALT). Given MBOAT7 is a lipid metabolic enzyme, we performed comprehensive lipidomic profiling of the liver and identified a striking reorganization of the hepatic lipidome upon ethanol feeding in Mboat7 HSKO mice. Specifically, we observed large increases in the levels of endosomal/lysosomal lipids including bis(monoacylglycero)phosphates (BMP) and phosphatidylglycerols (PGs) in ethanol-exposed Mboat7 HSKO mice. In parallel, ethanol-fed Mboat7 HSKO mice exhibited marked dysregulation of autophagic flux and lysosomal biogenesis when exposed to ethanol. This was associated with impaired transcription factor EB (TFEB)-mediated lysosomal biogenesis and accumulation of autophagosomes. Collectively, this works provides new molecular insights into how genetic variation in MBOAT7 impacts ALD progression in humans and mice. This work is the first to causally link MBOAT7 loss of function in hepatocytes, but not myeloid cells, to ethanol-induced liver injury via dysregulation of lysosomal biogenesis and autophagic flux.
Collapse
|
8
|
Radwan E, Abdelaziz A, Mandour MAM, Meki ARMA, El-Kholy MM, Mohamed MN. MBOAT7 expression is associated with disease progression in COVID-19 patients. Mol Biol Rep 2024; 51:79. [PMID: 38183501 PMCID: PMC10771377 DOI: 10.1007/s11033-023-09009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND AIM The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 caused a pandemic of acute respiratory disease, named coronavirus disease 2019 (COVID-19). COVID-19 became one of the most challenging health emergencies, hence the necessity to find different prognostic factors for disease progression, and severity. Membrane bound O-acyltransferase domain containing 7 (MBOAT7) demonstrates anti-inflammatory effects through acting as a fine-tune regulator of the amount of cellular free arachidonic acid. We aimed in this study to evaluate MBOAT7 expression in COVID-19 patients and to correlate it with disease severity and outcomes. METHODS This case-control study included 56 patients with confirmed SARS-CoV-2 diagnosis and 28 control subjects. Patients were further classified into moderate (n = 28) and severe (n = 28) cases. MBOAT7, tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) mRNA levels were evaluated in peripheral blood mononuclear cells (PBMC) samples isolated from patients and control subjects by real time quantitative polymerase chain reaction (RT-qPCR). In addition, circulating MBOAT7 protein levels were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS Significant lower levels of circulating MBOAT7 mRNA and protein were observed in COVID-19 patients compared to control subjects with severe COVID-19 cases showing significant lower levels compared to moderate cases. Moreover, severe cases showed a significant upregulation of TNF-α and IL-1ß mRNA. MBOAT7 mRNA and protein levels were significantly correlated with inflammatory markers (TNF-α, IL-1ß, C-reactive protein (CRP), and ferritin), liver enzymes, severity, and oxygen saturation levels. CONCLUSION COVID-19 is associated with downregulation of MBAOT7, which correlates with disease severity.
Collapse
Affiliation(s)
- Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
- Department of Biochemistry, Sphinx University, New Assiut City, Assiut 10, Egypt.
| | - Ahmed Abdelaziz
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt
| | - Manal A M Mandour
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Abdel-Raheim M A Meki
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
- Department of Biochemistry, Sphinx University, New Assiut City, Assiut 10, Egypt
| | - Maha M El-Kholy
- Department of Chest diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwan N Mohamed
- Department of Chest diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Lai M, Qin YL, Jin QY, Chen WJ, Hu J. Association of MBOAT7 rs641738 polymorphism with hepatocellular carcinoma susceptibility: A systematic review and meta-analysis. World J Gastrointest Oncol 2023; 15:2225-2236. [PMID: 38173430 PMCID: PMC10758655 DOI: 10.4251/wjgo.v15.i12.2225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND The MBOAT7 rs641738 single-nucleotide polymorphism (SNP) has been proven to influence various liver diseases, but its association with hepatocellular carcinoma (HCC) susceptibility has been debated. To address this discrepancy, we conducted the current systematic review and meta-analysis. AIM To perform a systematic review and meta-analysis on association of MBOAT7 SNP and HCC susceptibility. METHODS We performed a systematic review in PubMed, Web of Science, Scopus, and EMBASE; applied specific inclusion and exclusion criteria; and extracted the data. Meta-analysis was conducted with the meta package in R. Sensitivity and subgroup analyses were also performed. This meta-analysis was registered in PROSPERO (CRD42023458046). RESULTS Eight studies were included in the systematic review, and 12 cohorts from 6 studies were included in the meta-analysis. Our meta-analysis revealed an association between the MBOAT7 SNP and HCC susceptibility in both the dominant [odds ratio (OR): 1.14, 95% confidence interval (95%CI): 1.02-1.26, P = 0.020] and recessive (OR: 1.21, 95%CI: 1.05-1.39, P = 0.008) models. Subgroup analysis revealed that stratification of the included patients by geographical origin showed a significant association in Asia (OR: 1.20, 95%CI: 1.03-1.39). CONCLUSION This meta-analysis underscores the contribution of the MBOAT7 rs641738 SNP to hepatocarcinogenesis, especially in Asian populations, which warrants further investigation.
Collapse
Affiliation(s)
- Min Lai
- Department of Gastroenterology, the Third Affiliated Hospital of Chengdu Medical College/Chengdu Pidu District People's Hospital, Chengdu 611730, Sichuan Province, China
| | - Ya-Lu Qin
- Department of Cardiology, the Affiliated Third Hospital of Chengdu Traditional Chinese Medicine University/Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu 611730, Sichuan Province, China
| | - Qiong-Yu Jin
- Department of Gastroenterology, the Third Affiliated Hospital of Chengdu Medical College/Chengdu Pidu District People's Hospital, Chengdu 611730, Sichuan Province, China
| | - Wen-Jing Chen
- Department of Gastroenterology, the Third Affiliated Hospital of Chengdu Medical College/Chengdu Pidu District People's Hospital, Chengdu 611730, Sichuan Province, China
| | - Jia Hu
- Department of Gastroenterology, the Third Affiliated Hospital of Chengdu Medical College/Chengdu Pidu District People's Hospital, Chengdu 611730, Sichuan Province, China
| |
Collapse
|
10
|
Caddeo A, Spagnuolo R, Maurotti S. MBOAT7 in liver and extrahepatic diseases. Liver Int 2023; 43:2351-2364. [PMID: 37605540 DOI: 10.1111/liv.15706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
MBOAT7 is a protein anchored to endomembranes by several transmembrane domains. It has a catalytic dyad involved in remodelling of phosphatidylinositol with polyunsaturated fatty acids. Genetic variants in the MBOAT7 gene have been associated with the entire spectrum of non-alcoholic fatty liver (NAFLD), recently redefined as metabolic dysfunction-associated fatty liver disease (MAFLD) and, lately, steatotic liver disease (SLD), and to an increasing number of extrahepatic conditions. In this review, we will (a) elucidate the molecular mechanisms by which MBOAT7 loss-of-function predisposes to MAFLD and neurodevelopmental disorders and (b) discuss the growing number of genetic studies linking MBOAT7 to hepatic and extrahepatic diseases. MBOAT7 complete loss of function causes severe changes in brain development resulting in several neurological manifestations. Lower MBOAT7 hepatic expression at both the mRNA and protein levels, due to missense nucleotide polymorphisms (SNPs) in the locus containing the MBOAT7 gene, affects specifically metabolic and viral diseases in the liver from simple steatosis to hepatocellular carcinoma, and potentially COVID-19 disease. This body of evidence shows that phosphatidylinositol remodelling is a key factor for human health.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Rocco Spagnuolo
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
11
|
Eslam M, George J. Two years on, a perspective on MAFLD. EGASTROENTEROLOGY 2023; 1:e100019. [PMID: 39943998 PMCID: PMC11770426 DOI: 10.1136/egastro-2023-100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 01/03/2025]
Abstract
To provide clarity for research studies and clinical care, a set of positive criteria for adults and children with metabolic (dysfunction) associated fatty liver disease (MAFLD) was recently published and has subsequently been widely endorsed. The development and subsequent validation of the criteria for MAFLD has created a positive momentum for change. During the course of the ongoing discussion on the redefinition, some concerns have surfaced that we thought needs clarification. In this review, we provide a perspective on MAFLD and bringing clarity to some of the key aspects that have been recently raised.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Wang K, Lee CW, Sui X, Kim S, Wang S, Higgs AB, Baublis AJ, Voth GA, Liao M, Walther TC, Farese RV. The structure of phosphatidylinositol remodeling MBOAT7 reveals its catalytic mechanism and enables inhibitor identification. Nat Commun 2023; 14:3533. [PMID: 37316513 PMCID: PMC10267149 DOI: 10.1038/s41467-023-38932-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Cells remodel glycerophospholipid acyl chains via the Lands cycle to adjust membrane properties. Membrane-bound O-acyltransferase (MBOAT) 7 acylates lyso-phosphatidylinositol (lyso-PI) with arachidonyl-CoA. MBOAT7 mutations cause brain developmental disorders, and reduced expression is linked to fatty liver disease. In contrast, increased MBOAT7 expression is linked to hepatocellular and renal cancers. The mechanistic basis of MBOAT7 catalysis and substrate selectivity are unknown. Here, we report the structure and a model for the catalytic mechanism of human MBOAT7. Arachidonyl-CoA and lyso-PI access the catalytic center through a twisted tunnel from the cytosol and lumenal sides, respectively. N-terminal residues on the ER lumenal side determine phospholipid headgroup selectivity: swapping them between MBOATs 1, 5, and 7 converts enzyme specificity for different lyso-phospholipids. Finally, the MBOAT7 structure and virtual screening enabled identification of small-molecule inhibitors that may serve as lead compounds for pharmacologic development.
Collapse
Affiliation(s)
- Kun Wang
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xuewu Sui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Siyoung Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Shuhui Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aidan B Higgs
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aaron J Baublis
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Harvard T.H. Chan Advanced Multi-Omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Harvard T.H. Chan Advanced Multi-Omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
Massey WJ, Varadharajan V, Banerjee R, Brown AL, Horak AJ, Hohe RC, Jung BM, Qiu Y, Chan ER, Pan C, Zhang R, Allende DS, Willard B, Cheng F, Lusis AJ, Brown JM. MBOAT7-driven lysophosphatidylinositol acylation in adipocytes contributes to systemic glucose homeostasis. J Lipid Res 2023; 64:100349. [PMID: 36806709 PMCID: PMC10041558 DOI: 10.1016/j.jlr.2023.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023] Open
Abstract
We previously demonstrated that antisense oligonucleotide-mediated knockdown of Mboat7, the gene encoding membrane bound O-acyltransferase 7, in the liver and adipose tissue of mice promoted high fat diet-induced hepatic steatosis, hyperinsulinemia, and systemic insulin resistance. Thereafter, other groups showed that hepatocyte-specific genetic deletion of Mboat7 promoted striking fatty liver and NAFLD progression in mice but does not alter insulin sensitivity, suggesting the potential for cell autonomous roles. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. We generated Mboat7 floxed mice and created hepatocyte- and adipocyte-specific Mboat7 knockout mice using Cre-recombinase mice under the control of the albumin and adiponectin promoter, respectively. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. The expression of Mboat7 in white adipose tissue closely correlates with diet-induced obesity across a panel of ∼100 inbred strains of mice fed a high fat/high sucrose diet. Moreover, we found that adipocyte-specific genetic deletion of Mboat7 is sufficient to promote hyperinsulinemia, systemic insulin resistance, and mild fatty liver. Unlike in the liver, where Mboat7 plays a relatively minor role in maintaining arachidonic acid-containing PI pools, Mboat7 is the major source of arachidonic acid-containing PI pools in adipose tissue. Our data demonstrate that MBOAT7 is a critical regulator of adipose tissue PI homeostasis, and adipocyte MBOAT7-driven PI biosynthesis is closely linked to hyperinsulinemia and insulin resistance in mice.
Collapse
Affiliation(s)
- William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amanda L Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anthony J Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rachel C Hohe
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bryan M Jung
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yunguang Qiu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Calvin Pan
- Departments of Medicine, Microbiology, and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniela S Allende
- Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
14
|
Genetic Variants Determine Treatment Response in Autoimmune Hepatitis. J Pers Med 2023; 13:jpm13030540. [PMID: 36983720 PMCID: PMC10052918 DOI: 10.3390/jpm13030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Autoimmune hepatitis (AIH) is a rare entity; in addition, single-nucleotide polymorphisms (SNPs) may impact its course and outcome. We investigated liver-related SNPs regarding its activity, as well as in relation to its stage and treatment response in a Central European AIH cohort. Methods: A total of 113 AIH patients (i.e., 30 male/83 female, median 57.9 years) were identified. In 81, genotyping of PNPLA3-rs738409, MBOAT7-rs626238, TM6SF2-rs58542926, and HSD17B13-rs72613567:TA, as well as both biochemical and clinical data at baseline and follow-up, were available. Results: The median time of follow-up was 2.8 years; five patients died and one underwent liver transplantation. The PNPLA3-G/G homozygosity was linked to a worse treatment response when compared to wildtype [wt] (ALT 1.7 vs. 0.6 × ULN, p < 0.001). The MBOAT7-C/C homozygosity was linked to non-response vs. wt and heterozygosity (p = 0.022). Male gender was associated with non-response (OR 14.5, p = 0.012) and a higher prevalence of PNPLA3 (G/G vs. C/G vs. wt 41.9/40.0/15.0% males, p = 0.03). The MBOAT7 wt was linked to less histological fibrosis (p = 0.008), while no effects for other SNPs were noted. A polygenic risk score was utilized comprising all the SNPs and correlated with the treatment response (p = 0.04). Conclusions: Our data suggest that genetic risk variants impact the treatment response of AIH in a gene-dosage-dependent manner. Furthermore, MBOAT7 and PNPLA3 mediated most of the observed effects, the latter explaining, in part, the predisposition of male subjects to worse treatment responses.
Collapse
|
15
|
Sulaiman SA, Dorairaj V, Adrus MNH. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022; 11:106. [PMID: 36672614 PMCID: PMC9855725 DOI: 10.3390/biomedicines11010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with a wide spectrum of liver conditions ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The prevalence of NAFLD varies across populations, and different ethnicities have specific risks for the disease. NAFLD is a multi-factorial disease where the genetics, metabolic, and environmental factors interplay and modulate the disease's development and progression. Several genetic polymorphisms have been identified and are associated with the disease risk. This mini-review discussed the NAFLD's genetic polymorphisms and focusing on the differences in the findings between the populations (diversity), including of those reports that did not show any significant association. The challenges of genetic diversity are also summarized. Understanding the genetic contribution of NAFLD will allow for better diagnosis and management explicitly tailored for the various populations.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa’cob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (V.D.); (M.N.H.A.)
| | | | | |
Collapse
|
16
|
Alharthi J, Bayoumi A, Thabet K, Pan Z, Gloss BS, Latchoumanin O, Lundberg M, Twine NA, McLeod D, Alenizi S, Adams LA, Weltman M, Berg T, Liddle C, George J, Eslam M. A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. Nat Commun 2022; 13:7430. [PMID: 36473860 PMCID: PMC9726889 DOI: 10.1038/s41467-022-35158-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The breakdown of toll-like receptor (TLR) tolerance results in tissue damage, and hyperactivation of the TLRs and subsequent inflammatory consequences have been implicated as risk factors for more severe forms of disease and poor outcomes from various diseases including COVID-19 and metabolic (dysfunction) associated fatty liver disease (MAFLD). Here we provide evidence that membrane bound O-acyltransferase domain containing 7 (MBOAT7) is a negative regulator of TLR signalling. MBOAT7 deficiency in macrophages as observed in patients with MAFLD and in COVID-19, alters membrane phospholipid composition. We demonstrate that this is associated with a redistribution of arachidonic acid toward proinflammatory eicosanoids, induction of endoplasmic reticulum stress, mitochondrial dysfunction, and remodelling of the accessible inflammatory-related chromatin landscape culminating in macrophage inflammatory responses to TLRs. Activation of MBOAT7 reverses these effects. These outcomes are further modulated by the MBOAT7 rs8736 (T) MAFLD risk variant. Our findings suggest that MBOAT7 can potentially be explored as a therapeutic target for diseases associated with dysregulation of the TLR signalling cascade.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Khaled Thabet
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 6111, Egypt
| | - Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Mischa Lundberg
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- The University of Queensland Faculty of Medicine, Brisbane, QLD, Australia
| | - Natalie A Twine
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | - Duncan McLeod
- Department of Anatomical Pathology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Sydney, NSW, Australia
| | - Shafi Alenizi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Leon A Adams
- Medical School, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Martin Weltman
- Department of Gastroenterology and Hepatology, Nepean Hospital, Sydney, NSW, Australia
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Pal SC, Eslam M, Mendez-Sanchez N. Detangling the interrelations between MAFLD, insulin resistance, and key hormones. Hormones (Athens) 2022; 21:573-589. [PMID: 35921046 DOI: 10.1007/s42000-022-00391-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has increasingly become a significant and highly prevalent cause of chronic liver disease, displaying a wide array of risk factors and pathophysiologic mechanisms of which only a few have so far been clearly elucidated. A bidirectional interaction between hormonal discrepancies and metabolic-related disorders, including obesity, type 2 diabetes mellitus (T2DM), and polycystic ovarian syndrome (PCOS) has been described. Since the change in nomenclature from non-alcoholic fatty liver disease (NAFLD) to MAFLD is based on the clear impact of metabolic elements on the disease, the reciprocal interactions of hormones such as insulin, adipokines (leptin and adiponectin), and estrogens have strongly pointed to the intrinsic links that lead to the heterogeneous epidemiology, clinical presentations, and risk factors involved in MAFLD in different populations. The objective of this work is twofold. Firstly, there is a brief discussion regarding the change in nomenclature as well as epidemiology, risk factors, and pathophysiologic mechanisms other than hormonal effects, which include nutrition and the gut microbiome, as well as genetic and epigenetic influences. Secondly, we review the basis of the most important hormonal factors involved in the development and progression of MAFLD that act both independently and in an interrelated manner.
Collapse
Affiliation(s)
- Shreya C Pal
- Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Coyoacán, 4510, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150. Col. Toriello Guerra, 14050, Tlalpan, Mexico City, Mexico
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Nahum Mendez-Sanchez
- Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Coyoacán, 4510, Mexico City, Mexico.
- Liver Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150. Col. Toriello Guerra, 14050, Tlalpan, Mexico City, Mexico.
| |
Collapse
|
18
|
Zhu X, Xia M, Gao X. Update on genetics and epigenetics in metabolic associated fatty liver disease. Ther Adv Endocrinol Metab 2022; 13:20420188221132138. [PMID: 36325500 PMCID: PMC9619279 DOI: 10.1177/20420188221132138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most frequent chronic liver disease worldwide. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is suggested to replace the nomenclature of NAFLD. For individuals with metabolic dysfunction, multiple NAFLD-related factors also contribute to the development and progression of MAFLD including genetics and epigenetics. The application of genome-wide association study (GWAS) and exome-wide association study (EWAS) uncovers single-nucleotide polymorphisms (SNPs) in MAFLD. In addition to the classic SNPs in PNPLA3, TM6SF2, and GCKR, some new SNPs have been found recently to contribute to the pathogenesis of liver steatosis. Epigenetic factors involving DNA methylation, histone modifications, non-coding RNAs regulations, and RNA methylation also play a critical role in MAFLD. DNA methylation is the most reported epigenetic modification. Developing a non-invasion biomarker to distinguish metabolic steatohepatitis (MASH) or liver fibrosis is ongoing. In this review, we summarized and discussed the latest progress in genetic and epigenetic factors of NAFLD/MAFLD, in order to provide potential clues for MAFLD treatment.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Potential Therapeutic Implication of Herbal Medicine in Mitochondria-Mediated Oxidative Stress-Related Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11102041. [PMID: 36290765 PMCID: PMC9598588 DOI: 10.3390/antiox11102041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are double-membrane organelles that play a role in ATP synthesis, calcium homeostasis, oxidation-reduction status, apoptosis, and inflammation. Several human disorders have been linked to mitochondrial dysfunction. It has been found that traditional therapeutic herbs are effective on alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) which are leading causes of liver cirrhosis and hepatocellular carcinoma. The generation of reactive oxygen species (ROS) in response to oxidative stress is caused by mitochondrial dysfunction and is considered critical for treatment. The role of oxidative stress, lipid toxicity, and inflammation in NAFLD are well known. NAFLD is a chronic liver disease that commonly progresses to cirrhosis and chronic liver disease, and people with obesity, insulin resistance, diabetes, hyperlipidemia, and hypertension are at a higher risk of developing NAFLD. NAFLD is associated with a number of pathological factors, including insulin resistance, lipid metabolic dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. As a result, the improvement in steatosis and inflammation is enough to entice researchers to look into liver disease treatment. However, antioxidant treatment has not been very effective for liver disease. Additionally, it has been suggested that the beneficial effects of herbal medicines on immunity and inflammation are governed by various mechanisms for lipid metabolism and inflammation control. This review provided a summary of research on herbal medicines for the therapeutic implementation of mitochondria-mediated ROS production in liver disease as well as clinical applications through herbal medicine. In addition, the pathophysiology of common liver disorders such as ALD and NAFLD would be investigated in the role that mitochondria play in the process to open new therapeutic avenues in the management of patients with liver disease.
Collapse
|
20
|
Eslam M, El-Serag HB, Francque S, Sarin SK, Wei L, Bugianesi E, George J. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat Rev Gastroenterol Hepatol 2022; 19:638-651. [PMID: 35710982 DOI: 10.1038/s41575-022-00635-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) affects up to a third of the global population; its burden has grown in parallel with rising rates of type 2 diabetes mellitus and obesity. MAFLD increases the risk of end-stage liver disease, hepatocellular carcinoma, death and liver transplantation and has extrahepatic consequences, including cardiometabolic disease and cancers. Although typically associated with obesity, there is accumulating evidence that not all people with overweight or obesity develop fatty liver disease. On the other hand, a considerable proportion of patients with MAFLD are of normal weight, indicating the importance of metabolic health in the pathogenesis of the disease regardless of body mass index. The clinical profile, natural history and pathophysiology of patients with so-called lean MAFLD are not well characterized. In this Review, we provide epidemiological data on this group of patients and consider overall metabolic health and metabolic adaptation as a framework to best explain the pathogenesis of MAFLD and its heterogeneity in individuals of normal weight and in those who are above normal weight. This framework provides a conceptual schema for interrogating the MAFLD phenotype in individuals of normal weight that can translate to novel approaches for diagnosis and patient care.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
21
|
Stalla F, Armandi A, Marinoni C, Fagoonee S, Pellicano R, Caviglia GP. Chronic hepatitis B virus infection and fibrosis: novel non-invasive approaches for diagnosis and risk stratification. Minerva Gastroenterol (Torino) 2022; 68:306-318. [PMID: 33871225 DOI: 10.23736/s2724-5985.21.02911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the availability of an effective vaccination, chronic hepatitis B virus (HBV) infection is still a major health concern worldwide. Chronic HBV infection can lead to fibrosis accumulation and overtime to cirrhosis, the principal risk factor for liver failure and hepatocellular carcinoma development. Liver biopsy is still considered the gold standard for fibrosis assessment, even though it is invasive and not exempt of complications. Overtime, several non-invasive methods for the detection of liver fibrosis have been developed and gradually introduced into clinical practice. However, their main limitation is the poor performance for the detection of intermediate stages of fibrosis. Finally, novel serological biomarkers, polygenic risk scores and imaging methods have been proposed in last years as novel promising tools to correctly identify the degree of liver fibrosis and to monitor liver disease progression. In this narrative review, we provide an overview on the novel non-invasive approaches for the evaluation of liver fibrosis and risk stratification of patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Francesco Stalla
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Chiara Marinoni
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | - Rinaldo Pellicano
- Division of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Gian P Caviglia
- Department of Medical Sciences, University of Turin, Turin, Italy -
| |
Collapse
|
22
|
Shao G, Liu Y, Lu L, Zhang G, Zhou W, Wu T, Wang L, Xu H, Ji G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front Pharmacol 2022; 13:944088. [PMID: 35873545 PMCID: PMC9301043 DOI: 10.3389/fphar.2022.944088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Astarini FD, Ratnasari N, Wasityastuti W. Update on Non-Alcoholic Fatty Liver Disease-Associated Single Nucleotide Polymorphisms and Their Involvement in Liver Steatosis, Inflammation, and Fibrosis: A Narrative Review. IRANIAN BIOMEDICAL JOURNAL 2022; 26:252-268. [PMID: 36000237 PMCID: PMC9432469 DOI: 10.52547/ibj.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/18/2022] [Indexed: 11/18/2022]
Abstract
Genetic factors are involved in the development, progression, and severity of non-alcoholic fatty liver disease (NAFLD). Polymorphisms in genes regulating liver functions may increase liver susceptibility to NAFLD. Therefore, we conducted this literature study to present recent findings on NAFLD-associated polymorphisms from published articles in PubMed from 2016 to 2021. From 69 selected research articles, 20 genes and 34 SNPs were reported to be associated with NAFLD. These mutated genes affect NAFLD by promoting liver steatosis (PNPLA3, MBOAT7, TM2SF6, PTPRD, FNDC5, IL-1B, PPARGC1A, UCP2, TCF7L2, SAMM50, IL-6, AGTR1, and NNMT), inflammation (PNPLA3, TNF-α, AGTR1, IL-17A, IL-1B, PTPRD, and GATAD2A), and fibrosis (IL-1B, PNPLA3, MBOAT7, TCF7L2, GATAD2A, IL-6, NNMT, UCP, AGTR1, and TM2SF6). The identification of these genetic factors helps to better understand the pathogenesis pathways of NAFLD.
Collapse
Affiliation(s)
- Fajar Dwi Astarini
- Master in Biomedical Sciences, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, 55281 Indonesia
| | - Neneng Ratnasari
- Subdivision of Gastroenterohepatology, Department of Internal Medicine, Dr. Sardjito Hospital, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| | - Widya Wasityastuti
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| |
Collapse
|
24
|
Varadharajan V, Massey WJ, Brown JM. Membrane-bound O-acyltransferase 7 (MBOAT7)-driven phosphatidylinositol remodeling in advanced liver disease. J Lipid Res 2022; 63:100234. [PMID: 35636492 PMCID: PMC9240865 DOI: 10.1016/j.jlr.2022.100234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Advanced liver diseases account for approximately 2 million deaths annually worldwide. Roughly, half of liver disease-associated deaths arise from complications of cirrhosis and the other half driven by viral hepatitis and hepatocellular carcinoma. Unfortunately, the development of therapeutic strategies to treat subjects with advanced liver disease has been hampered by a lack of mechanistic understanding of liver disease progression and a lack of human-relevant animal models. An important advance has been made within the past several years, as several genome-wide association studies have discovered that an SNP near the gene encoding membrane-bound O-acyltransferase 7 (MBOAT7) is associated with severe liver diseases. This common MBOAT7 variant (rs641738, C>T), which reduces MBOAT7 expression, confers increased susceptibility to nonalcoholic fatty liver disease, alcohol-associated liver disease, and liver fibrosis in patients chronically infected with viral hepatitis. Recent studies in mice also show that Mboat7 loss of function can promote hepatic steatosis, inflammation, and fibrosis, causally linking this phosphatidylinositol remodeling enzyme to liver health in both rodents and humans. Herein, we review recent insights into the mechanisms by which MBOAT7-driven phosphatidylinositol remodeling influences liver disease progression and discuss how rapid progress in this area could inform drug discovery moving forward.
Collapse
Affiliation(s)
- Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
25
|
Niu L, Geyer PE, Gupta R, Santos A, Meier F, Doll S, Wewer Albrechtsen NJ, Klein S, Ortiz C, Uschner FE, Schierwagen R, Trebicka J, Mann M. Dynamic human liver proteome atlas reveals functional insights into disease pathways. Mol Syst Biol 2022; 18:e10947. [PMID: 35579278 PMCID: PMC9112488 DOI: 10.15252/msb.202210947] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Deeper understanding of liver pathophysiology would benefit from a comprehensive quantitative proteome resource at cell type resolution to predict outcome and design therapy. Here, we quantify more than 150,000 sequence-unique peptides aggregated into 10,000 proteins across total liver, the major liver cell types, time course of primary cell cultures, and liver disease states. Bioinformatic analysis reveals that half of hepatocyte protein mass is comprised of enzymes and 23% of mitochondrial proteins, twice the proportion of other liver cell types. Using primary cell cultures, we capture dynamic proteome remodeling from tissue states to cell line states, providing useful information for biological or pharmaceutical research. Our extensive data serve as spectral library to characterize a human cohort of non-alcoholic steatohepatitis and cirrhosis. Dramatic proteome changes in liver tissue include signatures of hepatic stellate cell activation resembling liver cirrhosis and providing functional insights. We built a web-based dashboard application for the interactive exploration of our resource (www.liverproteome.org).
Collapse
Affiliation(s)
- Lili Niu
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Philipp E Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Rajat Gupta
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Present address:
Pfizer Worldwide Research and DevelopmentSan DiegoCAUSA
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Center for Health Data ScienceFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Big Data InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Florian Meier
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Functional ProteomicsJena University HospitalJenaGermany
| | - Sophia Doll
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Sabine Klein
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Cristina Ortiz
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
| | - Frank E Uschner
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Robert Schierwagen
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Jonel Trebicka
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
- European Foundation for the Study of Chronic Failure, EFCLIFBarcelonaSpain
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
26
|
Wang TY, Wang RF, Bu ZY, Targher G, Byrne CD, Sun DQ, Zheng MH. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat Rev Nephrol 2022; 18:259-268. [PMID: 35013596 DOI: 10.1038/s41581-021-00519-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of fat in more than 5% of hepatocytes in the absence of excessive alcohol consumption and other secondary causes of hepatic steatosis. In 2020, the more inclusive term metabolic (dysfunction)-associated fatty liver disease (MAFLD) - defined by broader diagnostic criteria - was proposed to replace the term NAFLD. The new terminology and revised definition better emphasize the pathogenic role of metabolic dysfunction and uses a set of definitive, inclusive criteria for diagnosis. Diagnosis of MAFLD is based on evidence of hepatic steatosis (as assessed by liver biopsy, imaging techniques or blood biomarkers and scores) in persons who are overweight or obese and have type 2 diabetes mellitus or metabolic dysregulation, regardless of the coexistence of other liver diseases or excessive alcohol consumption. The known association between NAFLD and chronic kidney disease (CKD) and our understanding that CKD can occur as a consequence of metabolic dysfunction suggests that individuals with MAFLD - who by definition have fatty liver and metabolic comorbidities - are at increased risk of CKD. In this Perspective article, we discuss the clinical associations between MAFLD and CKD, the pathophysiological mechanisms by which MAFLD may increase the risk of CKD and the potential drug treatments that may benefit both conditions.
Collapse
Affiliation(s)
- Ting-Yao Wang
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui-Fang Wang
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhi-Ying Bu
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Dan-Qin Sun
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China.
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
27
|
Yip TCF, Lee HW, Chan WK, Wong GLH, Wong VWS. Asian perspective on NAFLD-associated HCC. J Hepatol 2022; 76:726-734. [PMID: 34619251 DOI: 10.1016/j.jhep.2021.09.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022]
Abstract
Recent data suggest that non-alcoholic fatty liver disease (NAFLD) has become a major public health problem in Asia, with an updated population prevalence of 34%. In parallel, NAFLD-associated hepatocellular carcinoma (HCC) is also on the rise. In this review, we describe the changing epidemiology of HCC in Asia over the past 30 years. While traditional risk factors for HCC (older age, male sex and metabolic factors) are also important in Asia, the PNPLA3 gene polymorphism is particularly prevalent in East Asia and may increase the risk of HCC. NAFLD among non-obese individuals is also commonly described in Asia. Because NAFLD is often undiagnosed, few patients receive HCC surveillance, and the target surveillance population beyond patients with cirrhosis remains poorly defined. As a result, NAFLD-associated HCC is often diagnosed at an advanced stage, rendering curative treatment impossible. Finally, despite around 20-30 years of universal vaccination, chronic HBV infection remains prevalent in Asia, and emerging evidence highlights the importance of metabolic factors and concomitant hepatic steatosis on HCC development in infected patients. Future studies should explore the role of metabolic treatments in HCC prevention among patients with hepatic steatosis and concomitant liver diseases.
Collapse
Affiliation(s)
- Terry Cheuk-Fung Yip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong; Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Wah Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong; Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong; Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
28
|
Lin H, Wong GLH, Whatling C, Chan AWH, Leung HHW, Tse CH, Shu SST, Chim AML, Lai JCT, Yip TCF, Wong VWS. Association of genetic variations with NAFLD in lean individuals. Liver Int 2022; 42:149-160. [PMID: 34610207 DOI: 10.1111/liv.15078] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS How adiposity influences the effect of genetic variants on non-alcoholic fatty liver disease (NAFLD) in the Asian population remains unclear. We aimed to study the association between genetic risk variants and susceptibility/severity of NAFLD in the lean, overweight and obese individuals. METHODS Nine hundred and four community subjects underwent proton-magnetic resonance spectroscopy and transient elastography examination. Lean (<23 kg/m2 ), overweight (23-24.9 kg/m2 ) and obesity (≥25 kg/m2 ) were defined according to the body mass index cut-offs for Asians. NAFLD was defined as intrahepatic triglycerides ≥5%. PNPLA3, TM6SF2, MBOAT7 and 9 other gene polymorphisms were analysed by rhAMPTM SNP assays. RESULTS Five hundred and twenty-nine (58.5%), 162 (17.9%) and 213 (23.6%) subjects were lean, overweight and obese, respectively. The prevalence of NAFLD was 12.4%, 41.4% and 59.1% in the three groups (P < .001). Amongst those with NAFLD, lean subjects (30.3%) were more likely to carry the PNPLA3 rs738409 GG genotype than overweight (17.9%) and obese subjects (17.4%) (P = .003). Compared with the CC genotype, the GG genotype was associated with the greatest increase in the risk of NAFLD in lean subjects (odds ratio [OR] 6.04), compared with overweight (OR 3.43, 95% CI [1.06, 11.14]) and obese subjects (OR 2.51, 95% CI [0.93, 6.78]). Additionally, the TM6SF2 rs58542926 TT genotype was associated with reduced serum triglycerides only in lean subjects. A gene-BMI effect was not observed for the other gene polymorphisms. CONCLUSIONS The PNPLA3 rs738409 gene polymorphism has a greater effect on liver fat in Asian lean individuals than in overweight or obese ones.
Collapse
Affiliation(s)
- Huapeng Lin
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Medical Data Analytic Centre, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Grace L-H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Medical Data Analytic Centre, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Carl Whatling
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anthony W-H Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Howard H-W Leung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi-Hang Tse
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Sally S-T Shu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Angel M-L Chim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jimmy C-T Lai
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Medical Data Analytic Centre, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Terry C-F Yip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Medical Data Analytic Centre, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Vincent W-S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Medical Data Analytic Centre, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
29
|
Grgurevic I, Bozin T, Mikus M, Kukla M, O’Beirne J. Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease: From Epidemiology to Diagnostic Approach. Cancers (Basel) 2021; 13:5844. [PMID: 34830997 PMCID: PMC8616369 DOI: 10.3390/cancers13225844] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the leading cause of liver morbidity worldwide and, as such, represents the pathogenic background for the increasing incidence of hepatocellular carcinoma (HCC). The annual incidence of NAFLD-related HCC is expected to increase by 45-130% by 2030. Diabetes mellitus is the most important risk factor for HCC development in NAFLD, with the risk further increased when associated with other metabolic traits, such as obesity, arterial hypertension and dyslipidemia. The highest risk of HCC exists in patients with advanced fibrosis or cirrhosis, although 20-50% of HCC cases arise in NAFLD patients with an absence of cirrhosis. This calls for further investigation of the pathogenic mechanisms that are involved in hepatocarcinogenesis, including genetics, metabolomics, the influence of the gut microbiota and immunological responses. Early identification of patients with or at risk of NAFLD is of utmost importance to improve outcomes. As NAFLD is highly prevalent in the community, the identification of cases should rely upon simple demographic and clinical characteristics. Once identified, these patients should then be evaluated for the presence of advanced fibrosis or cirrhosis and subsequently enter HCC surveillance programs if appropriate. A significant problem is the early recognition of non-cirrhotic NAFLD patients who will develop HCC, where new biomarkers and scores are potential solutions to tackle this issue.
Collapse
Affiliation(s)
- Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10 000 Zagreb, Croatia;
- Faculty of Pharmacy and Biochemistry, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Tonci Bozin
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10 000 Zagreb, Croatia;
| | - Mislav Mikus
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia;
| | - Michal Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagiellonian University Medical College, 30688 Cracow, Poland;
| | - James O’Beirne
- Department of Hepatology, University of the Sunshine Coast, Sunshine Coast 4556, Australia;
| |
Collapse
|
30
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
31
|
Di Sessa A, Guarino S, Passaro AP, Liguori L, Umano GR, Cirillo G, Miraglia Del Giudice E, Marzuillo P. NAFLD and renal function in children: is there a genetic link? Expert Rev Gastroenterol Hepatol 2021; 15:975-984. [PMID: 33851883 DOI: 10.1080/17474124.2021.1906649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Introduction: Over the past decades, a large amount of both adult and pediatric data has shown relationship between Nonalcoholic Fatty Liver Disease (NAFLD) and chronic kidney disease (CKD), resulting in an overall increased cardiometabolic burden. In view of the remarkable role of the genetic background in the NAFLD pathophysiology, a potential influence of the major NAFLD polymorphisms (e.g. the I148M variant of the Patatin-like phospholipase containing domain 3 (PNPLA3) gene, the E167K allele of the Transmembrane 6 superfamily member 2 (TM6SF2), the hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13), and the Membrane bound O-acyltransferase domain containing 7-transmembrane channel-like 4 (MBOAT7-TMC4) genes) on renal function has been supposed. A shared metabolic and proinflammatory pathogenesis has been hypothesized, but the exact mechanism is still unknown.Areas covered: We provide a comprehensive review of the potential genetic link between NAFLD and CKD in children. Convincing both adult and pediatric evidence supports this association, but there is some dispute especially in childhood.Expert opinion: Evidence supporting a potential genetic link between NAFLD and CKD represents an intriguing aspect with a major clinical implication because of its putative role in improving strategy programs to counteract the higher cardiometabolic risk of these patients.
Collapse
Affiliation(s)
- Anna Di Sessa
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Stefano Guarino
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonio Paride Passaro
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Laura Liguori
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Grazia Cirillo
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Pierluigi Marzuillo
- Department of Woman Child and of General and Specialized Surgery, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
32
|
Vvedenskaya O, Rose TD, Knittelfelder O, Palladini A, Wodke JAH, Schuhmann K, Ackerman JM, Wang Y, Has C, Brosch M, Thangapandi VR, Buch S, Züllig T, Hartler J, Köfeler HC, Röcken C, Coskun Ü, Klipp E, von Schoenfels W, Gross J, Schafmayer C, Hampe J, Pauling JK, Shevchenko A. Nonalcoholic fatty liver disease stratification by liver lipidomics. J Lipid Res 2021; 62:100104. [PMID: 34384788 PMCID: PMC8488246 DOI: 10.1016/j.jlr.2021.100104] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic dysfunction leading to hepatic steatosis. However, NAFLD's global impact on the liver lipidome is poorly understood. Using high-resolution shotgun mass spectrometry, we quantified the molar abundance of 316 species from 22 major lipid classes in liver biopsies of 365 patients, including nonsteatotic patients with normal or excessive weight, patients diagnosed with NAFL (nonalcoholic fatty liver) or NASH (nonalcoholic steatohepatitis), and patients bearing common mutations of NAFLD-related protein factors. We confirmed the progressive accumulation of di- and triacylglycerols and cholesteryl esters in the liver of NAFL and NASH patients, while the bulk composition of glycerophospho- and sphingolipids remained unchanged. Further stratification by biclustering analysis identified sphingomyelin species comprising n24:2 fatty acid moieties as membrane lipid markers of NAFLD. Normalized relative abundance of sphingomyelins SM 43:3;2 and SM 43:1;2 containing n24:2 and n24:0 fatty acid moieties, respectively, showed opposite trends during NAFLD progression and distinguished NAFL and NASH lipidomes from the lipidome of nonsteatotic livers. Together with several glycerophospholipids containing a C22:6 fatty acid moiety, these lipids serve as markers of early and advanced stages of NAFL.
Collapse
Affiliation(s)
- Olga Vvedenskaya
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Tim Daniel Rose
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Yuting Wang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Canan Has
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mario Brosch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Veera Raghavan Thangapandi
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Department of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus of Technische Universität Dresden, Dresden, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Witigo von Schoenfels
- Department of Visceral and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel Campus, Christian-Albrechts-University Kiel, Kiel, Germany; Christian Albrechts University in Kiel Center of Clinical Anatomy Kiel, Schleswig-Holstein, Germany
| | - Justus Gross
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Josch Konstantin Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
33
|
Gilgenkrantz H, Mallat A, Moreau R, Lotersztajn S. Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol 2021; 74:1442-1454. [PMID: 33631228 DOI: 10.1016/j.jhep.2021.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
In recent years, there have been major advances in our understanding of the mechanisms underlying fibrosis progression and regression, and how coordinated interactions between parenchymal and non-parenchymal cells impact on the fibrogenic process. Recent studies have highlighted that metabolic reprogramming of parenchymal cells, immune cells (immunometabolism) and hepatic stellate cells is required to support the energetic and anabolic demands of phenotypic changes and effector functions. In this review, we summarise how targeting cell-intrinsic metabolic modifications of the main fibrogenic cell actors may impact on fibrosis progression and we discuss the antifibrogenic potential of metabolically targeted interventions.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Ariane Mallat
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Richard Moreau
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Sophie Lotersztajn
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France.
| |
Collapse
|
34
|
Zusi C, Morandi A, Maguolo A, Corradi M, Costantini S, Mosca A, Crudele A, Mantovani A, Alisi A, Miraglia Del Giudice E, Targher G, Maffeis C. Association between MBOAT7 rs641738 polymorphism and non-alcoholic fatty liver in overweight or obese children. Nutr Metab Cardiovasc Dis 2021; 31:1548-1555. [PMID: 33810963 DOI: 10.1016/j.numecd.2021.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM The association between non-alcoholic fatty liver (NAFL) and the variant rs641738 within the membrane bound O-acyltransferase domain-containing 7 (MBOAT7) gene is currently uncertain, especially in the paediatric population. We examined whether there is an association between this genetic variant and NAFL in a large multicentre, hospital-based cohort of Italian overweight/obese children. METHODS AND RESULTS We studied 1760 overweight or obese children [mean age (SD): 11.1(2.9) years, z-body mass index (zBMI) 3.2(0.9)], who underwent ultrasonography for the diagnosis of NAFL. A subgroup of these children (n = 182) also underwent liver biopsy. Genotyping of the MBOAT7 rs641738 polymorphism was performed by TaqMan-Based RT-PCR system in each subject. Overall, 1131 (64.3%) children had ultrasound-detected NAFL; 528 (30%) had rs641738 CC genotype, 849 (48.2%) had rs641738 CT genotype, and 383 (21.8%) had rs641738 TT genotype, respectively. In the whole cohort, the interaction of MBOAT7 genotypes with zBMI was not associated with NAFL after adjustment for age, sex, serum triglycerides, serum alanine aminotransferase levels and patatin-like phospholipase domain-containing protein-3 (PNPLA3) genotype (adjusted-odds ratio 1.02 [95% CI 0.98-1.06]). Similarly, no association was found between MBOAT7 genotypes and NAFL after stratification by obesity status. MBOAT7 genotypes were not associated with the presence of non-alcoholic steatohepatitis or the stage of liver fibrosis in a subgroup of 182 children with biopsy-proven NAFLD. CONCLUSIONS The results of this study did not show any significant contribution of MBOAT7 rs641738 polymorphism to the risk of having either NAFL on ultrasonography or NASH on histology in a large hospital-based cohort of Italian overweight/obese children.
Collapse
Affiliation(s)
- C Zusi
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - A Morandi
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - A Maguolo
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - M Corradi
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - S Costantini
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - A Mosca
- Hepatology, Gastroenterology and Nutrition Unit, "Bambino Gesù"Children's Hospital and IRCCS, Rome, Italy
| | - A Crudele
- Research Unit of Molecular Genetics of Complex Phenotypes, "Bambino Gesù" Children's Hospital and IRCCS, Rome, Italy
| | - A Mantovani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - A Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, "Bambino Gesù" Children's Hospital and IRCCS, Rome, Italy
| | - E Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - G Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - C Maffeis
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgery, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy.
| |
Collapse
|
35
|
Thangapandi VR, Knittelfelder O, Brosch M, Patsenker E, Vvedenskaya O, Buch S, Hinz S, Hendricks A, Nati M, Herrmann A, Rekhade DR, Berg T, Matz-Soja M, Huse K, Klipp E, Pauling JK, Wodke JA, Miranda Ackerman J, Bonin MV, Aigner E, Datz C, von Schönfels W, Nehring S, Zeissig S, Röcken C, Dahl A, Chavakis T, Stickel F, Shevchenko A, Schafmayer C, Hampe J, Subramanian P. Loss of hepatic Mboat7 leads to liver fibrosis. Gut 2021; 70:940-950. [PMID: 32591434 PMCID: PMC8040158 DOI: 10.1136/gutjnl-2020-320853] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The rs641738C>T variant located near the membrane-bound O-acyltransferase domain containing 7 (MBOAT7) locus is associated with fibrosis in liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease, hepatitis B and C. We aim to understand the mechanism by which the rs641738C>T variant contributes to pathogenesis of NAFLD. DESIGN Mice with hepatocyte-specific deletion of MBOAT7 (Mboat7Δhep) were generated and livers were characterised by histology, flow cytometry, qPCR, RNA sequencing and lipidomics. We analysed the association of rs641738C>T genotype with liver inflammation and fibrosis in 846 NAFLD patients and obtained genotype-specific liver lipidomes from 280 human biopsies. RESULTS Allelic imbalance analysis of heterozygous human liver samples pointed to lower expression of the MBOAT7 transcript on the rs641738C>T haplotype. Mboat7Δhep mice showed spontaneous steatosis characterised by increased hepatic cholesterol ester content after 10 weeks. After 6 weeks on a high fat, methionine-low, choline-deficient diet, mice developed increased hepatic fibrosis as measured by picrosirius staining (p<0.05), hydroxyproline content (p<0.05) and transcriptomics, while the inflammatory cell populations and inflammatory mediators were minimally affected. In a human biopsied NAFLD cohort, MBOAT7 rs641738C>T was associated with fibrosis (p=0.004) independent of the presence of histological inflammation. Liver lipidomes of Mboat7Δhep mice and human rs641738TT carriers with fibrosis showed increased total lysophosphatidylinositol levels. The altered lysophosphatidylinositol and phosphatidylinositol subspecies in MBOAT7Δhep livers and human rs641738TT carriers were similar. CONCLUSION Mboat7 deficiency in mice and human points to an inflammation-independent pathway of liver fibrosis that may be mediated by lipid signalling and a potentially targetable treatment option in NAFLD.
Collapse
Affiliation(s)
- Veera Raghavan Thangapandi
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Oskar Knittelfelder
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Mario Brosch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Eleonora Patsenker
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Olga Vvedenskaya
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Sebastian Hinz
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Alexander Hendricks
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| | - Alexander Herrmann
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Devavrat Ravindra Rekhade
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Oncology, Gastroenterology, Hepatology Pulmonology, and Infectious Diseases, University Hospital Leipzig, Leipzig, Sachsen, Germany
| | - Madlen Matz-Soja
- Division of Hepatology, Department of Oncology, Gastroenterology, Hepatology Pulmonology, and Infectious Diseases, University Hospital Leipzig, Leipzig, Sachsen, Germany
- Rudolf Schönheimer- Institute of Biochemistry, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Klaus Huse
- Leibniz Institute for Age Research Fritz-Lipmann Institute, Jena, Thüringen, Germany
| | - Edda Klipp
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josch K Pauling
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Bayern, Germany
| | - Judith Ah Wodke
- Department of Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Malte von Bonin
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- German Cancer Consortium, Heidelberg, Baden-Württemberg, Germany
| | - Elmar Aigner
- Department of Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private University of Salzburg, Obendorf, Austria
| | - Witigo von Schönfels
- Department of Visceral and Thoracic Surgery, Universitatsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Sophie Nehring
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Sebastian Zeissig
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Andreas Dahl
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Sachsen, Germany
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplantation Surgery, University of Rostock, Rostock, Mecklenburg-Vorpommern, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Sachsen, Germany
| |
Collapse
|
36
|
Fouad Y, Lazarus JV, Negro F, Peck-Radosavljevic M, Sarin SK, Ferenci P, Esmat G, Ghazinian H, Nakajima A, Silva M, Lee S, Colombo M. MAFLD considerations as a part of the global hepatitis C elimination effort: an international perspective. Aliment Pharmacol Ther 2021; 53:1080-1089. [PMID: 33751604 DOI: 10.1111/apt.16346] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The World Health Organization (WHO) set a goal to eliminate hepatitis C (HCV) infection globally by 2030, with specific targets to reduce new viral hepatitis infections by 80% and reduce related deaths by 65%. However, an overlooked aspect that may hinder these efforts is the impact other liver diseases could have by continuing to drive liver disease progression and offset the beneficial impact of DAAs on end-stage liver disease and hepatocellular carcinoma (HCC). In particular, the decrease in HCV prevalence has been countered by a marked increase in the prevalence of metabolic-associated fatty liver disease (MAFLD). AIMS To review the potential interaction of HCV and MAFLD. METHODS We have reviewed the literature relating to an arrange of interaction of HCV, metabolic dysfunction and MAFLD. RESULTS In this viewpoint, international experts suggest a holistic and multidisciplinary approach for the management of the growing number of treated HCV patients who achieved SVR, taking into consideration the overlooked impact of MAFLD for reducing morbidity and mortality in people who have had HCV. CONCLUSIONS This will strengthen and improve the continuum of care cascade for patients with liver disease(s) and holds the potential to alleviate the cost burden of disease; and increase quality of life for patients following DAAs treatment.
Collapse
|
37
|
Bianco C, Casirati E, Malvestiti F, Valenti L. Genetic predisposition similarities between NASH and ASH: Identification of new therapeutic targets. JHEP Rep 2021; 3:100284. [PMID: 34027340 PMCID: PMC8122117 DOI: 10.1016/j.jhepr.2021.100284] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty liver disease can be triggered by a combination of excess alcohol, dysmetabolism and other environmental cues, which can lead to steatohepatitis and can evolve to acute/chronic liver failure and hepatocellular carcinoma, especially in the presence of shared inherited determinants. The recent identification of the genetic causes of steatohepatitis is revealing new avenues for more effective risk stratification. Discovery of the mechanisms underpinning the detrimental effect of causal mutations has led to some breakthroughs in the comprehension of the pathophysiology of steatohepatitis. Thanks to this approach, hepatocellular fat accumulation, altered lipid droplet remodelling and lipotoxicity have now taken centre stage, while the role of adiposity and gut-liver axis alterations have been independently validated. This process could ignite a virtuous research cycle that, starting from human genomics, through omics approaches, molecular genetics and disease models, may lead to the development of new therapeutics targeted to patients at higher risk. Herein, we also review how this knowledge has been applied to: a) the study of the main PNPLA3 I148M risk variant, up to the stage of the first in-human therapeutic trials; b) highlight a role of MBOAT7 downregulation and lysophosphatidyl-inositol in steatohepatitis; c) identify IL-32 as a candidate mediator linking lipotoxicity to inflammation and liver disease. Although this precision medicine drug discovery pipeline is mainly being applied to non-alcoholic steatohepatitis, there is hope that successful products could be repurposed to treat alcohol-related liver disease as well.
Collapse
Key Words
- AA, arachidonic acid
- ASH, alcoholic steatohepatitis
- DAG, diacylglycerol
- DNL, de novo lipogenesis
- ER, endoplasmic reticulum
- FFAs, free fatty acids
- FGF19, fibroblast growth factor 19
- FLD, fatty liver disease
- FXR, farnesoid X receptor
- GCKR, glucokinase regulator
- GPR55, G protein-coupled receptor 55
- HCC, hepatocellular carcinoma
- HFE, homeostatic iron regulator
- HSC, hepatic stellate cells
- HSD17B13, hydroxysteroid 17-beta dehydrogenase 13
- IL-, interleukin-
- IL32
- LDs, lipid droplets
- LPI, lysophosphatidyl-inositol
- MARC1, mitochondrial amidoxime reducing component 1
- MBOAT7
- MBOAT7, membrane bound O-acyltransferase domain-containing 7
- NASH, non-alcoholic steatohepatitis
- PNPLA3
- PNPLA3, patatin like phospholipase domain containing 3
- PPAR, peroxisome proliferator-activated receptor
- PRS, polygenic risk score
- PUFAs, polyunsaturated fatty acids
- SREBP, sterol response element binding protein
- TAG, triacylglycerol
- TNF-α, tumour necrosis factor-α
- alcoholic liver disease
- cirrhosis
- fatty liver disease
- genetics
- interleukin-32
- non-alcoholic fatty liver disease
- precision medicine
- steatohepatitis
- therapy
Collapse
Affiliation(s)
- Cristiana Bianco
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
38
|
Wang P, Li Y, Li L, Zhong R, Shen N. MBOAT7-TMC4 rs641738 Is Not Associated With the Risk of Hepatocellular Carcinoma or Persistent Hepatitis B Infection. Front Oncol 2021; 11:639438. [PMID: 34113561 PMCID: PMC8185222 DOI: 10.3389/fonc.2021.639438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE A hot genetic variant, rs641738 within the membrane-bound O-acyltransferase domain containing 7(MBOAT7) and transmembrane channel-like 4 (TMC4), was recently reported to be associated with several liver diseases. However, the results remain controversial. Therefore, this study aimed to explore the role of MBOAT7-TMC4 rs641738 in the risk of hepatocellular carcinoma (HCC) and persistent hepatitis B virus (HBV) infection. METHODS We first conducted a case-control study that included 779 HCC cases and 1412 cancer-free controls. Controls consisted of 678 persistent HBV carriers and 734 spontaneously recovered subjects. The gene variant rs641738 was genotyped using the MassARRAY platform. The results were analyzed in five genetic models using multivariate logistic regression analyses. Next, we performed a systematic review and meta-analysis to further explore the role of this variant in HCC risk. RESULTS The results suggested no association between MBOAT7-TMC4 rs641738 and HCC risk in most genetic models (all P > 0.05). Although a marginally significant association was observed in TT vs. CC (P = 0.037) and the recessive models (P = 0.044). The meta-analysis of 2135 HCC cases and 4388 controls supported that this variant was not related to HCC risk, even in the TT vs. CC and recessive models. We also determined that this variant did not influence persistent HBV infection. CONCLUSION Our work highlights that MBOAT7-TMC4 rs641738 is not associated with the risk of HCC or persistent HBV infection. This study provides some clues to identify the "truth" of potential disease-related genetic factors in the post-genome era.
Collapse
Affiliation(s)
- Peng Wang
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Li
- Research Center for Translational Medicine, Shantou University Medical College, Shantou, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, MOE Key Laboratory of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Na Shen,
| |
Collapse
|
39
|
Teo K, Abeysekera KWM, Adams L, Aigner E, Anstee QM, Banales JM, Banerjee R, Basu P, Berg T, Bhatnagar P, Buch S, Canbay A, Caprio S, Chatterjee A, Ida Chen YD, Chowdhury A, Daly AK, Datz C, de Gracia Hahn D, DiStefano JK, Dong J, Duret A, Emdin C, Fairey M, Gerhard GS, Guo X, Hampe J, Hickman M, Heintz L, Hudert C, Hunter H, Kelly M, Kozlitina J, Krawczyk M, Lammert F, Langenberg C, Lavine J, Li L, Lim HK, Loomba R, Luukkonen PK, Melton PE, Mori TA, Palmer ND, Parisinos CA, Pillai SG, Qayyum F, Reichert MC, Romeo S, Rotter JI, Im YR, Santoro N, Schafmayer C, Speliotes EK, Stender S, Stickel F, Still CD, Strnad P, Taylor KD, Tybjærg-Hansen A, Umano GR, Utukuri M, Valenti L, Wagenknecht LE, Wareham NJ, Watanabe RM, Wattacheril J, Yaghootkar H, Yki-Järvinen H, Young KA, Mann JP. rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: A meta-analysis. J Hepatol 2021; 74:20-30. [PMID: 32882372 PMCID: PMC7755037 DOI: 10.1016/j.jhep.2020.08.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in NAFLD; however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and to characterise its role in the regulation of related metabolic phenotypes through a meta-analysis. METHODS We performed a meta-analysis of studies with data on the association between rs641738C>T genotype and liver fat, NAFLD histology, and serum alanine aminotransferase (ALT), lipids or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed a random effects meta-analysis using recessive, additive and dominant genetic models. RESULTS Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI 0.02-0.05], pz = 4.8×10-5) and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05-1.3], pz = 0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI 1.03-1.45], pz = 0.021) in Caucasian adults using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT (pz = 0.002) and lower serum triglycerides (pz = 1.5×10-4). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD. CONCLUSIONS Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent. LAY SUMMARY Fatty liver disease is a common condition where fat builds up in the liver, which can cause liver inflammation and scarring (including 'cirrhosis'). It is closely linked to obesity and diabetes, but some genes are also thought to be important. We did this study to see whether one specific change ('variant') in one gene ('MBOAT7') was linked to fatty liver disease. We took data from over 40 published studies and found that this variant near MBOAT7 is linked to more severe fatty liver disease. This means that drugs designed to work on MBOAT7 could be useful for treating fatty liver disease.
Collapse
Affiliation(s)
- Kevin Teo
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Leon Adams
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Department of Hepatology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University Salzburg, Austria
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jesus M Banales
- Department on Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | | | | | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | | | - Stephan Buch
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Ali Canbay
- Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sonia Caprio
- Yale University, Department of Pediatrics, New Haven, CT, USA
| | | | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Abhijit Chowdhury
- Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria
| | | | - Johanna K DiStefano
- Diabetes and Fibrotic Disease Unit Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Jiawen Dong
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Amedine Duret
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Connor Emdin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Madison Fairey
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Matthew Hickman
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Lena Heintz
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Christian Hudert
- Department of Pediatric Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Harriet Hunter
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Joel Lavine
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Lin Li
- BioStat Solutions LLC, Frederick, MD, USA
| | - Hong Kai Lim
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Epidemiology, University of California at San Diego, La Jolla, CA, USA
| | - Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Yale University School of Medicine, New Haven, CT, USA
| | - Phillip E Melton
- School of Global Population Health, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Trevor A Mori
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Constantinos A Parisinos
- Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK
| | | | - Faiza Qayyum
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yu Ri Im
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nicola Santoro
- Yale University, Department of Pediatrics, New Haven, CT, USA; Department of Medicine and Health Sciences 'V. Tiberio' University of Molise, Campobasso, Italy
| | - Clemens Schafmayer
- Department of Visceral and Thoracic Surgery, Kiel University, Kiel, Germany
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Michigan Health System, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Pavel Strnad
- Medical Clinic III, University Hospital RWTH Aachen, Aachen, Germany
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Giuseppina Rosaria Umano
- Yale University, Department of Pediatrics, New Haven, CT, USA; Department of the Woman, the Child, of General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mrudula Utukuri
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Richard M Watanabe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julia Wattacheril
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Jake P Mann
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
40
|
MAFLD vs. NAFLD: shared features and potential changes in epidemiology, pathophysiology, diagnosis, and pharmacotherapy. Chin Med J (Engl) 2020; 134:8-19. [PMID: 33323806 PMCID: PMC7862804 DOI: 10.1097/cm9.0000000000001263] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, placing an increasing burden on human health. NAFLD is a complex multifactorial disease involving genetic, metabolic, and environmental factors. It is closely associated with metabolic syndrome, obesity, and type 2 diabetes, of which insulin resistance is the main pathophysiological mechanism. Over the past few decades, investigation of the pathogenesis, diagnosis, and treatments has revealed different aspects of NAFLD, challenging the accuracy of definition and therapeutic strategy for the clinical practice. Recently, experts reach a consensus that NAFLD does not reflect the current knowledge, and metabolic (dysfunction) associated fatty liver disease (MAFLD) is suggested as a more appropriate term. The new definition puts increased emphasis on the important role of metabolic dysfunction in it. Herein, the shared features and potential changes in epidemiology, pathophysiology, diagnosis, and pharmacotherapy of the newly defined MAFLD, as compared with the formerly defined NAFLD, are reviewed for updating our understanding.
Collapse
|
41
|
Tang C, Cao D, Wang L. The association between SNPs and hepatitis B virus related acute-on-chronic liver failure. INFECTION GENETICS AND EVOLUTION 2020; 86:104615. [PMID: 33152536 DOI: 10.1016/j.meegid.2020.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study intended to investigate the association between ten single nucleotide polymorphisms (rs1143623, rs12692386, rs1799983, rs2297518, rs2910164, rs3129859, rs4251961, rs4846085, rs641738, rs873457) with susceptibility and prognosis of hepatitis B related acute-on-chronic liver failure (HBV-ACLF). METHODS This is a hospital-based case-control study included 274 patients with HBV-ACLF and 534 patients with chronic hepatitis B. The patients who were successfully followed were divided into the survival group and the death group according to the clinical outcome during the hospitalization and 90 days after discharge. The ten SNPs were genotyped in all subjects by using imLDR. Genotype, allele frequency, dominant model, recessive model and codominant model were constructed to investigate the association between single nucleotide polymorphisms with susceptibility and prognosis of HBV-ACLF. RESULTS The genotype distribution of rs1143623 was statistically different between the two groups (P = 0.04), but the allele frequency was not statistically significant (P = 0.44). GC and GG + CG genotypes at rs1143623 reduced the risk of HBV-ACLF. There were only two GG and GT genotypes in rs1799983 in our study, and the genotype and allele frequency were statistically different between the death group and the survival group (P = 0.027, P = 0.023). Patients with T allele may reduce the risk of death in patients with HBV-ACLF. The genotype and allele frequency of rs2297518 showed no significant difference. In dominant models, patients with GA + AA genotypes at rs2297518 had a reduced risk of death.
Collapse
Affiliation(s)
- Congchen Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Dan Cao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lichun Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| |
Collapse
|
42
|
Koo BK, An JN, Joo SK, Kim D, Lee S, Bae JM, Park JH, Kim JH, Chang MS, Kim W. Association Between a Polymorphism in MBOAT7 and Chronic Kidney Disease in Patients With Biopsy-Confirmed Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol 2020; 18:2837-2839.e2. [PMID: 31546054 DOI: 10.1016/j.cgh.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and chronic kidney disease (CKD) share risk factors, and recent meta-analysis confirmed that NAFLD is an independent risk factor for incident CKD.1 Genetic variants associated with NAFLD, such as patatin-like phospholipase domain-containing-3 (PNPLA3) rs7384092 and transmembrane 6 superfamily member 2 (TM6SF2) rs5854292,2 have been reported to be associated with renal function in NAFLD subjects.
Collapse
Affiliation(s)
- Bo Kyung Koo
- Division of Endocrinology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Jung Nam An
- Division of Nephrology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Seonhwa Lee
- Department of Bio-convergence Engineering, Korea University, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea.
| |
Collapse
|
43
|
Rahal HK, Tabibian JH. The MBOAT7 rs641738 variant in primary sclerosing cholangitis: A novel biomarker for prognostication. Clin Res Hepatol Gastroenterol 2020; 44:619-621. [PMID: 31924553 DOI: 10.1016/j.clinre.2019.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Harman K Rahal
- Department of Internal Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - James H Tabibian
- Division of Gastroenterology, Department of Internal Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA; Director of Endoscopy, Department of Medicine, 14445, Olive View Drive Sylmar, 91342 Sylmar, CA, USA.
| |
Collapse
|
44
|
Ismaiel A, Dumitrascu DL. Genetic predisposition in metabolic-dysfunction-associated fatty liver disease and cardiovascular outcomes-Systematic review. Eur J Clin Invest 2020; 50:e13331. [PMID: 32589269 DOI: 10.1111/eci.13331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the demonstrated increased cardiovascular (CV) risk associated with metabolic-dysfunction-associated fatty liver disease (MAFLD), genetic variants predisposing to MAFLD were not constantly associated with CV events. Recently, rs641738C > T near membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) has been studied in MAFLD and CV outcomes. Therefore, we aimed to evaluate the association between rs641738C > T in the presence and severity of hepatic steatosis, fibrosis, biochemical markers and progression to hepatocellular carcinoma (HCC), in addition to CV outcomes in MAFLD. MATERIALS AND METHODS An electronic search on PubMed, Embase and Cochrane Library for articles published till 23 March 2020 was systematically performed. Articles were screened, and data extracted from eligible studies by two reviewers independently. RESULTS Studies conducted on adults with MAFLD involving European, Hispanic and African American populations evaluating rs641738 reported reduced hepatic expression of MBOAT7, increased hepatic fat content, severity of MAFLD, susceptibility to develop NASH, advanced fibrosis and HCC in adults. However, most articles involving Asian individuals contradicted these findings. Studies involving obese children associated rs641738 with increased plasma alanine aminotransferase (ALT) levels, while its association with MAFLD remains inconsistent. The rs641738 variant was assessed as a MAFLD susceptibility gene in coronary artery disease (CAD) reporting neutral effects. CONCLUSIONS Despite inconclusive results in Asian populations, rs641738C > T near MBOAT7 is associated with increased hepatic fat, MAFLD severity, susceptibility to develop NASH, advanced fibrosis and HCC in adults from Caucasian, Hispanic and African American ethnicities with MAFLD, as well as elevated ALT levels in children, while exerting neutral effects in CAD.
Collapse
Affiliation(s)
- Abdulrahman Ismaiel
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2nd Department of Internal Medicine, Cluj-Napoca, Romania
| | - Dan L Dumitrascu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2nd Department of Internal Medicine, Cluj-Napoca, Romania
| |
Collapse
|
45
|
Schulz M, Tacke F. Identifying High-Risk NASH Patients: What We Know so Far. ACTA ACUST UNITED AC 2020; 12:125-138. [PMID: 32982495 PMCID: PMC7493213 DOI: 10.2147/hmer.s265473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Steatosis is a condition of hepatic fat overload that is associated with overweight and the metabolic syndrome. Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease with a global impact on healthcare. A proportion of NAFLD patients develops nonalcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis or hepatocellular carcinoma (HCC). Identifying patients at risk for potentially life-threatening complications is crucial in their prevention, surveillance and treatment. In addition to hepatic disease progression (cirrhosis, portal hypertension, HCC), NAFLD patients are also at risk of cardiovascular and metabolic diseases as well as extrahepatic malignancies. Liver fibrosis is related to morbidity and mortality in NASH patients, and biomarkers, imaging techniques (ultrasound, elastography, MRI) as well as liver biopsy help in diagnosing fibrosis. In this review, we discuss the tools for identifying patients at risk and their reasonable application in clinical routine in order to stratify prevention and treatment of this emerging disease.
Collapse
Affiliation(s)
- Marten Schulz
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) Und Campus Charité Mitte (CCM), Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) Und Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
46
|
Lonardo A, Leoni S, Alswat KA, Fouad Y. History of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:5888. [PMID: 32824337 PMCID: PMC7460697 DOI: 10.3390/ijms21165888] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Based on the assumption that characterizing the history of a disease will help in improving practice while offering a clue to research, this article aims at reviewing the history of nonalcoholic fatty liver disease (NAFLD) in adults and children. To this end, we address the history of NAFLD histopathology, which begins in 1980 with Ludwig's seminal studies, although previous studies date back to the 19th century. Moreover, the principal milestones in the definition of genetic NAFLD are summarized. Next, a specific account is given of the evolution, over time, of our understanding of the association of NAFLD with metabolic syndrome, spanning from the outdated concept of "NAFLD as a manifestation of the Metabolic Syndrome", to the more appropriate consideration that NAFLD has, with metabolic syndrome, a mutual and bi-directional relationship. In addition, we also report on the evolution from first intuitions to more recent studies, supporting NAFLD as an independent risk factor for cardiovascular disease. This association probably has deep roots, going back to ancient Middle Eastern cultures, wherein the liver had a significance similar to that which the heart holds in contemporary society. Conversely, the notions that NAFLD is a forerunner of hepatocellular carcinoma and extra-hepatic cancers is definitely more modern. Interestingly, guidelines issued by hepatological societies have lagged behind the identification of NAFLD by decades. A comparative analysis of these documents defines both shared attitudes (e.g., ultrasonography and lifestyle changes as the first approaches) and diverging key points (e.g., the threshold of alcohol consumption, screening methods, optimal non-invasive assessment of liver fibrosis and drug treatment options). Finally, the principal historical steps in the general, cellular and molecular pathogenesis of NAFLD are reviewed. We conclude that an in-depth understanding of the history of the disease permits us to better comprehend the disease itself, as well as to anticipate the lines of development of future NAFLD research.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Ospedale Civile di Baggiovara, UOC Medicina Metabolica, Dipartimento di Medicina Interna Generale, d’Urgenza e post Acuzie, Azienda Ospedaliero-Universitaria di Modena, Via Giardini 1135, 41125 Modena, Italy
| | - Simona Leoni
- Internal Medicine Unit, Department of Digestive Diseases, S.Orsola-Malpighi Hospital, Via Massarenti 9, 40136 Bologna, Italy;
| | - Khalid A. Alswat
- Liver Research Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11322, Saudi Arabia;
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minya 19111, Egypt;
| |
Collapse
|
47
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
48
|
Meroni M, Longo M, Fracanzani AL, Dongiovanni P. MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD. EBioMedicine 2020; 57:102866. [PMID: 32629394 PMCID: PMC7339032 DOI: 10.1016/j.ebiom.2020.102866] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, which include steatosis, nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, that is a critical risk factor for hepatocellular carcinoma (HCC) development. Its pathogenesis is intertwined with obesity and type 2 diabetes (T2D). However, the predisposition to develop MAFLD is severely influenced by environmental and inherited cues. The rs641738 variant close to MBOAT7 gene has been identified by a genome-wide association screening in heavy drinkers. Although this variant has been associated with the entire spectrum of MAFLD, these results have not been completely replicated and the debate is still opened. Thus, functional studies that unravel the biological mechanisms underlying the genetic association with fatty liver are required. This review aims to summarize the clinical and experimental findings regarding the rs641738 variation and MBOAT7 function, with the purpose to shed light to its role as novel player in MAFLD pathophysiology.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Anna L Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy.
| |
Collapse
|
49
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver diseases and can progress to advanced fibrosis and end-stage liver disease. Thus, intensive research has been performed to develop noninvasive methods for the diagnosis of nonalcoholic steatohepatitis (NASH) and fibrosis. Currently, no single noninvasive tool covers all of the stages of pathologies and conditions of NAFLD, and the cost and feasibility of known techniques are also important issues. Blood biomarkers for NAFLD may be useful to select subjects who need ultrasonography (US) screening for NAFLD, and noninvasive tools for assessing fibrosis may be helpful to exclude the probability of significant fibrosis and to predict advanced fibrosis, thus guiding the decision of whether to perform liver biopsy in patients with NAFLD. Among various methods, magnetic resonance-based methods have been shown to perform better than other methods in assessing steatosis as well as in detecting hepatic fibrosis. Many genetic markers are associated with the development and progression of NAFLD. Further well-designed studies are needed to determine which biomarker panels, imaging studies, genetic marker panels, or combinations thereof perform well for diagnosing NAFLD, differentiating NASH and fibrosis, and following-up NAFLD, respectively.
Collapse
Affiliation(s)
- Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
50
|
Alharthi J, Latchoumanin O, George J, Eslam M. Macrophages in metabolic associated fatty liver disease. World J Gastroenterol 2020; 26:1861-1878. [PMID: 32390698 PMCID: PMC7201150 DOI: 10.3748/wjg.v26.i16.1861] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD), formerly named non-alcoholic fatty liver disease is the most common liver disorder in many countries. The inflammatory subtype termed steatohepatitis is a driver of disease progression to cirrhosis, hepatocellular carcinoma, liver transplantation, and death, but also to extrahepatic complications including cardiovascular disease, diabetes and chronic kidney disease. The plasticity of macrophages in response to various environmental cues and the fact that they can orchestrate cross talk between different cellular players during disease development and progression render them an ideal target for drug development. This report reviews recent advances in our understanding of macrophage biology during the entire spectrum of MAFLD including steatosis, inflammation, fibrosis, and hepatocellular carcinoma, as well as for the extra-hepatic manifestations of MAFLD. We discuss the underlying molecular mechanisms of macrophage activation and polarization as well as cross talk with other cell types such as hepatocytes, hepatic stellate cells, and adipose tissue. We conclude with a discussion on the potential translational implications and challenges for macrophage based therapeutics for MAFLD.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| |
Collapse
|