BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Mao WB, Lyu JY, Vaishnani DK, Lyu YM, Gong W, Xue XL, Shentu YP, Ma J. Application of artificial neural networks in detection and diagnosis of gastrointestinal and liver tumors. World J Clin Cases 2020; 8(18): 3971-3977 [PMID: 33024753 DOI: 10.12998/wjcc.v8.i18.3971]
URL: https://www.wjgnet.com/1948-5204/full/v8/i18/3971.htm
Number Citing Articles
1
Suaib Al Mahmud, Wazed Ibne Noor, Azhar Mohd Ibrahim, Ahmad Faris Ismail. An artificial neural network-based automated identification system for selection of appropriate turbulence model for numerical simulation of tube thermal enhancement using nanofluidsNeural Computing and Applications 2025;  doi: 10.1007/s00521-025-11397-x
2
Manisha Pathak, Sonali Patil, Sanjay Kumar, Deeksha Pathak, Ashish Gupta, Deepak Gupta, Khemchand Shakywar. Liver Tumour Detection and Classification using Image Processing and Machine Learning2024 MIT Art, Design and Technology School of Computing International Conference (MITADTSoCiCon) 2024; : 1 doi: 10.1109/MITADTSoCiCon60330.2024.10575459
3
Hai-Yang Nong, Yong-Yi Cen, Shan-Jin Lu, Rui-Sui Huang, Qiong Chen, Li-Feng Huang, Jian-Ning Huang, Xue Wei, Man-Rong Liu, Lin Li, Ke Ding. Predictive value of a constructed artificial neural network model for microvascular invasion in hepatocellular carcinoma: A retrospective studyWorld Journal of Gastrointestinal Oncology 2025; 17(1): 96439 doi: 10.4251/wjgo.v17.i1.96439
4
Saloni Joshi, Bhawna Bisht, Vinod Kumar, Narpinder Singh, Shabaaz Begum Jameel Pasha, Nardev Singh, Sanjay Kumar. Artificial intelligence assisted food science and nutrition perspective for smart nutrition research and healthcareSystems Microbiology and Biomanufacturing 2024; 4(1): 86 doi: 10.1007/s43393-023-00200-4
5
Ibtihaj Khurram Faridi, Evangelos Tsotsas, Wolfram Heineken, Marcus Koegler, Abdolreza Kharaghani. Spatio-temporal prediction of temperature in fluidized bed biomass gasifier using dynamic recurrent neural network methodApplied Thermal Engineering 2023; 219: 119334 doi: 10.1016/j.applthermaleng.2022.119334
6
Garry Brydges, Abhineet Uppal, Vijaya Gottumukkala. Application of Machine Learning in Predicting Perioperative Outcomes in Patients with Cancer: A Narrative Review for CliniciansCurrent Oncology 2024; 31(5): 2727 doi: 10.3390/curroncol31050207
7
Sarthak Grover, Surbhi Gupta. Automated diagnosis and classification of liver cancers using deep learning techniques: a systematic reviewDiscover Applied Sciences 2024; 6(10) doi: 10.1007/s42452-024-06218-0
8
Nasir Mehmood, Rashid Ahmad, Aqsa Gul, Anwar Zaman, Ghulam Murtaza, Jamil Ahmad, Fida Younus Khattak. Prediction of lattice constants for the full-Heusler alloys by vector regression model and Artificial Neural NetworksComputational Condensed Matter 2021; 29: e00605 doi: 10.1016/j.cocom.2021.e00605
9
V. Durga Prasad Jasti, Enagandula Prasad, Manish Sawale, Shivlal Mewada, Manoj L. Bangare, Pushpa M. Bangare, Sunil L. Bangare, F. Sammy, Mukesh Soni. [Retracted] Image Processing and Machine Learning‐Based Classification and Detection of Liver TumorBioMed Research International 2022; 2022(1) doi: 10.1155/2022/3398156
10
Sanjeevi Pandiyan, Li Wang. A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligenceComputers in Biology and Medicine 2022; 150: 106140 doi: 10.1016/j.compbiomed.2022.106140
11
Guanghui Yuan, Bohan Lv, Cuifang Hao. Application of artificial neural networks in reproductive medicineHuman Fertility 2023; 26(5): 1195 doi: 10.1080/14647273.2022.2156301
12
Md. Hasib Hasan, Supprio Ghosh Nil, Md. Najmus Sakib Sourov, Jannatul Ferdous Nishi, Mohammad Shidujaman, Md. Tarek Habib. AI-Driven Smart Device for Non-Invasive Detection of Peptic Ulcers for Sustainable Healthcare2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI) 2025; : 1386 doi: 10.1109/ICMCSI64620.2025.10883450
13
Xianglong Meng, Yijing Lang, Xiaofen Li, Yuting Li, Zhulin Bu, Yuhui Wu, Shuosheng Zhang. Progress in the application of AI in the standardization of traditional Chinese medicine: A review based on machine learning and deep learningPharmacological Research - Modern Chinese Medicine 2025; 16: 100639 doi: 10.1016/j.prmcm.2025.100639
14
Md. Nehal. International Conference on Signal, Machines, Automation, and AlgorithmAdvances in Intelligent Systems and Computing 2024; 1461: 181 doi: 10.1007/978-981-97-6352-8_12
15
Yifan Jiang, Xuan Wang, Min Zhang, Zhiyong Xu, Yibo Wu, Liang Chen. Analysis of sub-health status and related factors in medical students in the Chinese Mainland from the perspective of health ecologyBMC Public Health 2025; 25(1) doi: 10.1186/s12889-025-22708-1
16
Ritu Tandon, Shweta Agrawal, Narendra Pal Singh Rathore, Abhinava K. Mishra, Sanjiv Kumar Jain. A systematic review on deep learning‐based automated cancer diagnosis modelsJournal of Cellular and Molecular Medicine 2024; 28(6) doi: 10.1111/jcmm.18144
17
Muhammad-Redha Abdullah-Zawawi, Shing Cheng Tan, M. Aiman Mohtar, Saiful Effendi Syafruddin, Teck Yew Low, Muhammad Irfan Abdul Jalal. Artificial Intelligence and Bioinformatics in Cancer: An Interdisciplinary ApproachInterdisciplinary Cancer Research 2024; 18: 51 doi: 10.1007/16833_2024_449
18
Kangjam Rekha Devi, Jagat Pradhan, Rinchenla Bhutia, Peggy Dadul, Atanu Sarkar, Nitumoni Gohain, Kanwar Narain. Molecular diversity of Mycobacterium tuberculosis complex in Sikkim, India and prediction of dominant spoligotypes using artificial intelligenceScientific Reports 2021; 11(1) doi: 10.1038/s41598-021-86626-z
19
Hong Jiang, Sinuo Ren, Shengbo Zhang, Xudan Luo, Rui He, Shuai Fei Wang, Jian Dong Yan, Shan Zhou, Chengliang Yin, Ying Xiao, Zhihuan Li. Analyzing factors influencing hospitalization costs for five common cancers in China using neural network modelsJournal of Medical Economics 2025; 28(1): 615 doi: 10.1080/13696998.2025.2494459
20
Sumagna Dey, Rohan Pal, Saptarshi Biswas. Biosignal ProcessingBiomedical Engineering 2022; 14 doi: 10.5772/intechopen.103075
21
Wenqing Zhang, Mengjiao Zhou, Xingxu Yan, Siyu Chen, Wenxiu Qian, Yue Zhang, Xinyue Zhang, Guoxiang Jia, Shan Zhao, Yaqi Yao, Yubo Li. Development of drug-induced gastrointestinal injury models based on ANN and SVM algorithms and their applications in the field of natural productsNew Journal of Chemistry 2024; 48(38): 16906 doi: 10.1039/D4NJ02680B
22
G Valarmathy, M Rashme, N Umapathi, R Saai Srivathsan, K Sri Dhivya Krishnan. Liver Tumor detection and segmentation using Cascaded FCNN2024 International Conference on Computational Intelligence for Green and Sustainable Technologies (ICCIGST) 2024; : 1 doi: 10.1109/ICCIGST60741.2024.10717613
23
Syed Muhammad Adnan, Samreen Fatima. Comparison of statistical and machine learning methods for survival prediction of diabetic foot ulcersInternational Journal of Health Sciences 2025; 19: 14 doi: 10.25259/OJS_8970
24
Feng Luo, Guang Hong, Qianbing Wan. Artificial Intelligence in Biomedical Applications of ZirconiaFrontiers in Dental Medicine 2021; 2 doi: 10.3389/fdmed.2021.689288
25
Samah Gaysar, Zeinab Mustafa, A. M. Zein. Deep Learning Algorithms for Studying the Impact of Tumor Suppressor Gene Mutations on Breast CancerJournal of Clinical Engineering 2025; 50(1): 35 doi: 10.1097/JCE.0000000000000681
26
Sasikumar Pitchaikani, Pothiaraj Govindan, Harshavardhan Shakila. Microbiome in Neurological Conditions: Biology, Mechanisms, and Diagnostic ApproachInternational Review of Neurobiology 2025; 180: 501 doi: 10.1016/bs.irn.2025.04.008