1
|
Ghahramani E, Grimm PD, Weiss BE, Schoenleb NS, Knapp AJ, Wang J, Ahmad SA, Shah SA, Quillin Iii RC, Patel SH, Mast TD. Real-time control of radiofrequency ablation using three-dimensional ultrasound echo decorrelation imaging in normal and diseased ex vivohuman liver. Phys Med Biol 2025; 70:045007. [PMID: 39813814 DOI: 10.1088/1361-6560/adaacb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Objective. Ultrasound echo decorrelation imaging can successfully monitor and control thermal ablation of animal liver and tumor tissueex vivoandin vivo. However, normal and diseased human liver has substantially different physical properties that affect echo decorrelation. Here, effects of human liver tissue condition on ablation guidance by three-dimensional echo decorrelation imaging are elucidated in experiments testing closed-loop control of radiofrequency ablation (RFA) in normal and diseased human liver tissueex vivo. Approach. Samples of normal, steatotic, and cirrhotic human liver tissue underwent RFA, targeting a 20 mm-diameter spherical ablation zone. For each tissue condition, RFA was controlled by echo decorrelation inN> 14 trials, automatically ceasing if average cumulative decorrelation within the targeted ablation zone surpassed a predetermined threshold (successfully controlled trials), or otherwise completing a standard ablation cycle of the RFA generator (unsuccessfully controlled). For comparison,N= 14 RFA trials for each tissue condition followed the RFA generator's standard algorithm without echo decorrelation feedback (uncontrolled). Receiver operating characteristic (ROC) and precision-recall curve analyses compared 3D echo decorrelation maps to segmented ablation zones. To assess effects of closed-loop control and liver condition on treatment reliability, ablation volumes, rates, and Dice coefficients for measured vs. targeted ablation zones were statistically compared among control conditions and liver types.Results. ROC curves showed effective prediction of local ablation by echo decorrelation across all liver types and control conditions (0.876 ⩽AUROC ⩽ 0.953). Successful control was significantly more frequent, ablated volumes were generally larger, and optimal echo decorrelation thresholds were smaller for normal compared to diseased liver.Significance. This study validates three-dimensional echo decorrelation imaging for monitoring and control of RFA in healthy and diseased human liver while elucidating the dependence of RFA and echo decorrelation outcomes on liver condition and resulting implications for clinical applications.
Collapse
Affiliation(s)
- Elmira Ghahramani
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Peter D Grimm
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Benjamin E Weiss
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Nicholas S Schoenleb
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alexander J Knapp
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Jiang Wang
- Department of Pathology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Syed A Ahmad
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Shimul A Shah
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ralph C Quillin Iii
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Sameer H Patel
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
2
|
Pu Z, Wu Y, Zhu Z, Zhao H, Cui D. A new horizon for neuroscience: terahertz biotechnology in brain research. Neural Regen Res 2025; 20:309-325. [PMID: 38819036 PMCID: PMC11317941 DOI: 10.4103/nrr.nrr-d-23-00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 06/01/2024] Open
Abstract
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences. In this article, we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry. Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease, cerebrovascular disease, glioma, psychiatric disease, traumatic brain injury, and myelin deficit. In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases. Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood, the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications. However, the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications. This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang Province, China
| | - Yu Wu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Zhongjie Zhu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Hongwei Zhao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Schreiner OD, Socotar D, Ciobanu RC, Schreiner TG, Tamba BI. Statistical Analysis of Gastric Cancer Cells Response to Broadband Terahertz Radiation with and without Contrast Nanoparticles. Cancers (Basel) 2024; 16:2454. [PMID: 39001516 PMCID: PMC11240478 DOI: 10.3390/cancers16132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The paper describes the statistical analysis of the response of gastric cancer cells and normal cells to broadband terahertz radiation up to 4 THz, both with and without the use of nanostructured contrast agents. The THz spectroscopy analysis was comparatively performed under the ATR procedure and transmission measurement procedure. The statistical analysis was conducted towards multiple pairwise comparisons, including a support medium (without cells) versus a support medium with nanoparticles, normal cells versus normal cells with nanoparticles, and, respectively, tumor cells versus tumor cells with nanoparticles. When generally comparing the ATR procedure and transmission measurement procedure for a broader frequency domain, the differentiation between normal and tumor cells in the presence of contrast agents is superior when using the ATR procedure. THz contrast enhancement by using contrast agents derived from MRI-related contrast agents leads to only limited benefits and only for narrow THz frequency ranges, a disadvantage for THz medical imaging.
Collapse
Affiliation(s)
- Oliver Daniel Schreiner
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania; (O.D.S.); (D.S.)
| | - Diana Socotar
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania; (O.D.S.); (D.S.)
| | - Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania; (O.D.S.); (D.S.)
| | - Thomas Gabriel Schreiner
- CEMEX-Center for Experimental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700259 Iasi, Romania (B.I.T.)
| | - Bogdan Ionel Tamba
- CEMEX-Center for Experimental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700259 Iasi, Romania (B.I.T.)
| |
Collapse
|
4
|
Bawden SJ, Hoad C, Kaye P, Stephenson M, Dolman G, James MW, Wilkes E, Austin A, Guha IN, Francis S, Gowland P, Aithal GP. Comparing magnetic resonance liver fat fraction measurements with histology in fibrosis: the difference between proton density fat fraction and tissue mass fat fraction. MAGMA (NEW YORK, N.Y.) 2023; 36:553-563. [PMID: 36538248 PMCID: PMC10468948 DOI: 10.1007/s10334-022-01052-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Magnetic resonance spectroscopy (MRS) provides a powerful method of measuring fat fraction. However, previous studies have shown that MRS results give lower values compared with visual estimates from biopsies in fibrotic livers. This study investigated these discrepancies and considered whether a tissue water content correction, as assessed by MRI relaxometry, could provide better agreement. MATERIALS AND METHODS 110 patients were scanned in a 1.5 T Philips scanner and biopsies were obtained. Multiple echo MRS (30 × 30 × 30 mm volume) was used to determine Proton Density Fat Fraction (PDFF). Biopsies were assessed by visual assessment for fibrosis and steatosis grading. Digital image analysis (DIA) was also used to quantify fat fraction within tissue samples. T1 relaxation times were then used to estimate tissue water content to correct PDFF for confounding factors. RESULTS PDFF values across the four visually assessed steatosis grades were significantly less in the higher fibrosis group (F3-F4) compared to the lower fibrosis group (F0-F2). The slope of the linear regression of PDFF vs DIA fat fraction was ~ 1 in the low fibrosis group and 0.77 in the high fibrosis group. Correcting for water content based on T1 increased the gradient but it did not reach unity. DISCUSSION In fibrotic livers, PDFF underestimated fat fraction compared to DIA methods. Values were improved by applying a water content correction, but fat fractions were still underestimated.
Collapse
Affiliation(s)
- Stephen James Bawden
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, NG7 2RD, UK.
- Sir Peter Mansfield Imaging Centre, SPMIC, University Park, Physics and Astronomy, University of Nottingham, Nottingham, UK.
| | - Caroline Hoad
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, NG7 2RD, UK
| | - Philip Kaye
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, NG7 2RD, UK
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Mary Stephenson
- Clinical Imaging Research Centre (CIRC), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Grace Dolman
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, NG7 2RD, UK
| | - Martin W James
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, NG7 2RD, UK
| | - Emilie Wilkes
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Indra Neil Guha
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, NG7 2RD, UK
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, SPMIC, University Park, Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, SPMIC, University Park, Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
5
|
Ge H, Sun Z, Jiang Y, Wu X, Jia Z, Cui G, Zhang Y. Recent Advances in THz Detection of Water. Int J Mol Sci 2023; 24:10936. [PMID: 37446112 DOI: 10.3390/ijms241310936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The frequency range of terahertz waves (THz waves) is between 0.1 and 10 THz and they have properties such as low energy, penetration, transients, and spectral fingerprints, which are especially sensitive to water. Terahertz, as a frontier technology, have great potential in interpreting the structure of water molecules and detecting biological water conditions, and the use of terahertz technology for water detection is currently frontier research, which is of great significance. Firstly, this paper introduces the theory of terahertz technology and summarizes the current terahertz systems used for water detection. Secondly, an overview of theoretical approaches, such as the relaxation model and effective medium theory related to water detection, the relationship between water molecular networks and terahertz spectra, and the research progress of the terahertz detection of water content and water distribution visualization, are elaborated. Finally, the challenge and outlook of applications related to the terahertz wave detection of water are discussed. The purpose of this paper is to explore the research domains on water and its related applications using terahertz technology, as well as provide a reference for innovative applications of terahertz technology in moisture detection.
Collapse
Affiliation(s)
- Hongyi Ge
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhenyu Sun
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuying Jiang
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China
| | - Xuyang Wu
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiyuan Jia
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guangyuan Cui
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Zhang
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
6
|
Qi X, Bertling K, Stark MS, Taimre T, Kao YC, Lim YL, Han S, O’Brien B, Collins A, Walsh M, Torniainen J, Gillespie T, Donose BC, Dean P, Li LH, Linfield EH, Davies AG, Indjin D, Soyer HP, Rakić AD. Terahertz imaging of human skin pathologies using laser feedback interferometry with quantum cascade lasers. BIOMEDICAL OPTICS EXPRESS 2023; 14:1393-1410. [PMID: 37078035 PMCID: PMC10110320 DOI: 10.1364/boe.480615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 05/03/2023]
Abstract
Early detection of skin pathologies with current clinical diagnostic tools is challenging, particularly when there are no visible colour changes or morphological cues present on the skin. In this study, we present a terahertz (THz) imaging technology based on a narrow band quantum cascade laser (QCL) at 2.8 THz for human skin pathology detection with diffraction limited spatial resolution. THz imaging was conducted for three different groups of unstained human skin samples (benign naevus, dysplastic naevus, and melanoma) and compared to the corresponding traditional histopathologic stained images. The minimum thickness of dehydrated human skin that can provide THz contrast was determined to be 50 µm, which is approximately one half-wavelength of the THz wave used. The THz images from different types of 50 µm-thick skin samples were well correlated with the histological findings. The per-sample locations of pathology vs healthy skin can be separated from the density distribution of the corresponding pixels in the THz amplitude-phase map. The possible THz contrast mechanisms relating to the origin of image contrast in addition to water content were analyzed from these dehydrated samples. Our findings suggest that THz imaging could provide a feasible imaging modality for skin cancer detection that is beyond the visible.
Collapse
Affiliation(s)
- Xiaoqiong Qi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karl Bertling
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mitchell S. Stark
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia
| | - Thomas Taimre
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yung-Ching Kao
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia
| | - Yah Leng Lim
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - She Han
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Blake O’Brien
- Sullivan Nicolaides Pathology, Brisbane, QLD, Australia
| | - Angus Collins
- Sullivan Nicolaides Pathology, Brisbane, QLD, Australia
| | - Michael Walsh
- Sullivan Nicolaides Pathology, Brisbane, QLD, Australia
| | - Jari Torniainen
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy Gillespie
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bogdan C. Donose
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul Dean
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Lian He Li
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Edmund H. Linfield
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - A. Giles Davies
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Dragan Indjin
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - H. Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Aleksandar D. Rakić
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Sadeghi A, Naghavi SMH, Mozafari M, Afshari E. Nanoscale biomaterials for terahertz imaging: A non-invasive approach for early cancer detection. Transl Oncol 2023; 27:101565. [PMID: 36343417 PMCID: PMC9643578 DOI: 10.1016/j.tranon.2022.101565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Terahertz (THz) technology is developing a non-invasive imaging system for biosensing and clinical diagnosis. THz medical imaging mainly benefits from great sensitivity in detecting changes in water content and structural variations in diseased cells versus normal tissues. Compared to healthy tissues, cancerous tumors contain a higher level of water molecules and show structural changes, resulting in different THz absorption. Here we described the principle of THz imaging and advancement in the field of translational biomedicine and early detection of pathologic tissue, with a particular focus on oncology. In addition, although the main forte of THz imaging relies on detecting differences in water content to distinguish the exact margin of tumor, THz displays limited contrast in living tissue for in-vivo clinical imaging. In the last few years, nanotechnology has attracted attention to aid THz medical imaging and various nanoparticles have been investigated as contrast enhancements to improve the accuracy, sensitivity, and specificity of THz images. Most of these multimodal contrast agents take advantage of the temperature-dependent of THz spectrum to the conformational variation of the water molecule. We discuss advances in developing THz contrast agents to accelerate the advancement of non-invasive THz imaging with improved sensitivity and specificity for translational clinical oncology.
Collapse
Affiliation(s)
- Ali Sadeghi
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.
| | - S M Hossein Naghavi
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Masoud Mozafari
- Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Ehsan Afshari
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Ding WZ, Wei H, Wu JP, Cheng ZG, Han ZY, Liu FY, Yu J, Liang P. Liver cirrhosis and tumor location can affect the range of intrahepatic microwave ablation zone. Int J Hyperthermia 2023; 40:2181843. [PMID: 36854449 DOI: 10.1080/02656736.2023.2181843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The range of an ablation zone (AZ) plays a crucial role in the treatment effect of microwave ablation (MWA). The aim of this study was to analyze the factors influencing the AZ range. METHODS Fourteen factors in four areas were included: patient-related factors (sex, age), disease-related factors (tumor location, liver cirrhosis), serological factors (ALT, AST, total protein, albumin, total bilirubin, direct bilirubin, and platelets), and MWA parameters (ablation time, power, and needle type). Multiple sequence MRI was used to delineate AZ by three radiologists using 3D Slicer. MATLAB was used to calculate the AZ length, width, and area of the largest section. Linear regression analysis was used to analyze influencing factors. Moreover, a subgroup analysis was conducted for patients with viral hepatitis. RESULT 220 patients with 290 tumors were included between 2010-2021. In addition to MWA parameters, cirrhosis and tumor location were significant factors that influenced AZ (p < 0.001). The standardized coefficient (beta) of cirrhosis (cirrhosis vs. non-cirrhosis) was positive, which meant cirrhosis would lead to a decrease in AZ range. The beta of tumor location (near the hepatic hilar zone, intermediate zone, and periphery zone) was negative, indicating that AZ range decreased as the tumor location approached the hepatic hilum. For viral hepatitis patients, Fibrosis 4 (FIB4) score was a significant factor influencing AZ (p < 0.001), and the beta was negative, indicating that AZ range decreased as FIB4 increased. CONCLUSION Liver cirrhosis, tumor location, and FIB4 affect the AZ range and should be considered when planning MWA parameters.
Collapse
Affiliation(s)
- Wen-Zhen Ding
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Hao Wei
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Jia-Peng Wu
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zhi-Gang Cheng
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zhi-Yu Han
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Fang-Yi Liu
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Jie Yu
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ping Liang
- Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Yanina IY, Nikolaev VV, Zakharova OA, Borisov AV, Dvoretskiy KN, Berezin KV, Kochubey VI, Kistenev YV, Tuchin VV. Measurement and Modeling of the Optical Properties of Adipose Tissue in the Terahertz Range: Aspects of Disease Diagnosis. Diagnostics (Basel) 2022; 12:2395. [PMID: 36292084 PMCID: PMC9600075 DOI: 10.3390/diagnostics12102395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the measurement and modeling of optical properties in the terahertz (THz) range of adipose tissue and its components with temperature changes were performed. Spectral measurements were made in the frequency range 0.25-1 THz. The structural models of main triglycerides of fatty acids are constructed using the B3LYP/6-31G(d) method and the Gaussian03, Revision B.03 program. The optical density (OD) of adipose tissue samples decreases as temperature increases, which can be associated mostly with the dehydration of the sample. Some inclusion of THz wave scattering suppression into the OD decrease can also be expected due to refractive index matching provided by free fatty acids released from adipocytes at thermally induced cell lipolysis. It was shown that the difference between the THz absorption spectra of water and fat makes it possible to estimate the water content in adipose tissue. The proposed model was verified on the basis of molecular modeling and a comparison with experimental data for terahertz spectra of adipose tissue during its heating. Knowing the exact percentage of free and bound water in adipose tissue can help diagnose and monitor diseases, such as diabetes, obesity, and cancer.
Collapse
Affiliation(s)
- Irina Y. Yanina
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia
| | - Viktor V. Nikolaev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia
| | - Olga A. Zakharova
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia
| | - Alexei V. Borisov
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia
| | | | - Kirill V. Berezin
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| | - Vyacheslav I. Kochubey
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia
| | - Yuri V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia
| | - Valery V. Tuchin
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 410028 Saratov, Russia
| |
Collapse
|
10
|
Chen H, Han J, Ma S, Li X, Qiu T, Chen X. Clinical Diagnosis of Gastric Cancer by High-Sensitivity THz Fiber-Based Fast-Scanning Near-Field Imaging. Cancers (Basel) 2022; 14:cancers14163932. [PMID: 36010923 PMCID: PMC9405868 DOI: 10.3390/cancers14163932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary In order to realize rapid and complete pre-screening in the pathological examination of gastric cancer and assist in quickly determining the boundary between cancerous and healthy cells, we developed a fast-scanning near-field terahertz (THz) imaging system. This imaging system is compact, low-cost, and easy to operate. THz examination does not need any processing after sectioning, and the diagnostic results are directly displayed in images within one minute. Compared with the H&E staining method, THz imaging diagnosis uses a quantitative absorption coefficient to distinguish cancer tissue and healthy tissue, which makes the automation of the tissue sampling pre-screening procedure possible and will save valuable time to help quickly define cancer tissue. At the same time, the spatial resolution of our near-field imaging system reaches λ/17. Using THz imaging to accurately define the margins of cancer can not only conserve healthy tissues but also minimize the number of second surgical procedures, which would save a lot of additional hospital resources. Abstract The distinguishable absorption contrast among healthy gastric tissues, carcinoma in situ and cancer tissues in the THz frequency range is one of the keys to realizing gastric cancer diagnosis by THz imaging. Based on microwave devices and a sub-wavelength fiber, we developed a fast-scanning THz imaging system combined with the principle of surface plasmon resonance enhancement. This imaging system has a near-field λ/17 spatial resolution and imaging S/N ratio as high as 108:1, and the image results are directly displayed within 1 min. We also successfully demonstrated the image diagnostic capability on sliced tissues from eight patients with gastric cancer. The results indicate that THz absorption images can not only clearly distinguish cancer tissue from healthy tissues but also accurately define the margins of cancer. Through a medical statistical study of 40 sliced tissues from 40 patients, we prove that THz imaging can be used as a standalone method to diagnose gastric cancer tissues with a diagnostic specificity and sensitivity of 100%. Compared with the H&E staining method, THz imaging diagnosis makes the automation of tissue-sampling pre-screening procedure possible and assists in quickly determining the boundary between cancerous and healthy tissues.
Collapse
Affiliation(s)
- Hua Chen
- School of Physics, Southeast University, Nanjing 211189, China
- Correspondence:
| | - Juan Han
- School of Physics, Southeast University, Nanjing 211189, China
| | - Shihua Ma
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xiao Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tianzhu Qiu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Oncology, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing 211800, China
| |
Collapse
|
11
|
High doses of eugenol cause structural and functional damage to the rat liver. Life Sci 2022; 304:120696. [DOI: 10.1016/j.lfs.2022.120696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 12/20/2022]
|
12
|
Robustness of the Krebs Cycle under Physiological Conditions and in Cancer: New Clues for Evaluating Metabolism-Modifying Drug Therapies. Biomedicines 2022; 10:biomedicines10051199. [PMID: 35625935 PMCID: PMC9138339 DOI: 10.3390/biomedicines10051199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The Krebs cycle in cells that contain mitochondria is necessary for both energy production and anabolic processes. In given cell/condition, the Krebs cycle is dynamic but remains at a steady state. In this article, we first aimed at comparing the properties of a closed cycle versus the same metabolism in a linear array. The main finding is that, unlike a linear metabolism, the closed cycle can reach a steady state (SS) regardless of the nature and magnitude of the disturbance. When the cycle is modeled with input and output reactions, the “open” cycle is robust and reaches a steady state but with exceptions that lead to sustained accumulation of intermediate metabolites, i.e., conditions at which no SS can be achieved. The modeling of the cycle in cancer, trying to obtain marked reductions in flux, shows that these reductions are limited and therefore the Warburg effect is moderate at most. In general, our results of modeling the cycle in different conditions and looking for the achievement, or not, of SS, suggest that the cycle may have a regulation, not yet discovered, to go from an open cycle to a closed one. Said regulation could allow for reaching the steady state, thus avoiding the unwanted effects derived from the aberrant accumulation of metabolites in the mitochondria. The information in this paper might be useful to evaluate metabolism-modifying medicines.
Collapse
|
13
|
Wang L. Terahertz Imaging for Breast Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:6465. [PMID: 34640784 PMCID: PMC8512288 DOI: 10.3390/s21196465] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2021] [Accepted: 09/26/2021] [Indexed: 12/02/2022]
Abstract
Terahertz (THz) imaging has the potential to detect breast tumors during breast-conserving surgery accurately. Over the past decade, many research groups have extensively studied THz imaging and spectroscopy techniques for identifying breast tumors. This manuscript presents the recent development of THz imaging techniques for breast cancer detection. The dielectric properties of breast tissues in the THz range, THz imaging and spectroscopy systems, THz radiation sources, and THz breast imaging studies are discussed. In addition, numerous chemometrics methods applied to improve THz image resolution and data collection processing are summarized. Finally, challenges and future research directions of THz breast imaging are presented.
Collapse
Affiliation(s)
- Lulu Wang
- Biomedical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China;
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
14
|
Freer S, Sui C, Hanham SM, Grover LM, Navarro-Cía M. Hybrid reflection retrieval method for terahertz dielectric imaging of human bone. BIOMEDICAL OPTICS EXPRESS 2021; 12:4807-4820. [PMID: 34513226 PMCID: PMC8407848 DOI: 10.1364/boe.427648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Terahertz imaging is becoming a biological imaging modality in its own right, alongside the more mature infrared and X-ray techniques. Nevertheless, extraction of hyperspectral, biometric information of samples is limited by experimental challenges. Terahertz time domain spectroscopy reflection measurements demand highly precise alignment and suffer from limitations of the sample thickness. In this work, a novel hybrid Kramers-Kronig and Fabry-Pérot based algorithm has been developed to overcome these challenges. While its application is demonstrated through dielectric retrieval of glass-backed human bone slices for prospective characterisation of metastatic defects or osteoporosis, the generality of the algorithm offers itself to wider application towards biological materials.
Collapse
Affiliation(s)
- Suzanna Freer
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
| | - Cong Sui
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Stephen M. Hanham
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Liam M. Grover
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Miguel Navarro-Cía
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
15
|
Vohra N, Chavez T, Troncoso JR, Rajaram N, Wu J, Coan PN, Jackson TA, Bailey K, El-Shenawee M. Mammary tumors in Sprague Dawley rats induced by N-ethyl-N-nitrosourea for evaluating terahertz imaging of breast cancer. J Med Imaging (Bellingham) 2021; 8:023504. [PMID: 33928181 DOI: 10.1117/1.jmi.8.2.023504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/31/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: The objective of this study is to quantitatively evaluate terahertz (THz) imaging for differentiating cancerous from non-cancerous tissues in mammary tumors developed in response to injection of N-ethyl-N-nitrosourea (ENU) in Sprague Dawley rats. Approach: While previous studies have investigated the biology of mammary tumors of this model, the current work is the first study to employ an imaging modality to visualize these tumors. A pulsed THz imaging system is utilized to experimentally collect the time-domain reflection signals from each pixel of the rat's excised tumor. A statistical segmentation algorithm based on the expectation-maximization (EM) classification method is implemented to quantitatively assess the obtained THz images. The model classification of cancer is reported in terms of the receiver operating characteristic (ROC) curves and the areas under the curves. Results: The obtained low-power microscopic images of 17 ENU-rat tumor sections exhibited the presence of healthy connective tissue adjacent to cancerous tissue. The results also demonstrated that high reflection THz signals were received from cancerous compared with non-cancerous tissues. Decent tumor classification was achieved using the EM method with values ranging from 83% to 96% in fresh tissues and 89% to 96% in formalin-fixed paraffin-embedded tissues. Conclusions: The proposed ENU breast tumor model of Sprague Dawley rats showed a potential to obtain cancerous tissues, such as human breast tumors, adjacent to healthy tissues. The implemented EM classification algorithm quantitatively demonstrated the ability of THz imaging in differentiating cancerous from non-cancerous tissues.
Collapse
Affiliation(s)
- Nagma Vohra
- University of Arkansas, Bell Engineering Center, Department of Electrical Engineering, Fayetteville, Arkansas, United States
| | - Tanny Chavez
- University of Arkansas, Bell Engineering Center, Department of Electrical Engineering, Fayetteville, Arkansas, United States
| | - Joel R Troncoso
- University of Arkansas, Bell Engineering Center, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Narasimhan Rajaram
- University of Arkansas, Bell Engineering Center, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Jingxian Wu
- University of Arkansas, Bell Engineering Center, Department of Electrical Engineering, Fayetteville, Arkansas, United States
| | - Patricia N Coan
- Oklahoma State University, Animal Resources Unit, Stillwater, Oklahoma, United States
| | - Todd A Jackson
- Oklahoma State University, Animal Resources Unit, Stillwater, Oklahoma, United States
| | - Keith Bailey
- University of Illinois, Urbana-Champaign, Veterinary Diagnostic Laboratory, Urbana, Illinois, United States
| | - Magda El-Shenawee
- University of Arkansas, Bell Engineering Center, Department of Electrical Engineering, Fayetteville, Arkansas, United States
| |
Collapse
|
16
|
Cassar Q, Caravera S, MacGrogan G, Bücher T, Hillger P, Pfeiffer U, Zimmer T, Guillet JP, Mounaix P. Terahertz refractive index-based morphological dilation for breast carcinoma delineation. Sci Rep 2021; 11:6457. [PMID: 33742042 PMCID: PMC7979939 DOI: 10.1038/s41598-021-85853-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 11/08/2022] Open
Abstract
This paper reports investigations led on the combination of the refractive index and morphological dilation to enhance performances towards breast tumour margin delineation during conserving surgeries. The refractive index map of invasive ductal and lobular carcinomas were constructed from an inverse electromagnetic problem. Morphological dilation combined with refractive index thresholding was conducted to classify the tissue regions as malignant or benign. A histology routine was conducted to evaluate the performances of various dilation geometries associated with different thresholds. It was found that the combination of a wide structuring element and high refractive index was improving the correctness of tissue classification in comparison to other configurations or without dilation. The method reports a sensitivity of around 80% and a specificity of 82% for the best case. These results indicate that combining the fundamental optical properties of tissues denoted by their refractive index with morphological dilation may open routes to define supporting procedures during breast-conserving surgeries.
Collapse
Affiliation(s)
- Quentin Cassar
- Integration from Material to Systems Laboratory, University of Bordeaux, 33405, Talence, France
| | - Samuel Caravera
- Department of Pathology, Bergonié Institute, 33076, Bordeaux, France
| | - Gaëtan MacGrogan
- Department of Pathology, Bergonié Institute, 33076, Bordeaux, France
| | - Thomas Bücher
- Institute for High-Frequency and Communication Technology, University of Wuppertal, 42119, Wuppertal, Germany
| | - Philipp Hillger
- Institute for High-Frequency and Communication Technology, University of Wuppertal, 42119, Wuppertal, Germany
| | - Ullrich Pfeiffer
- Institute for High-Frequency and Communication Technology, University of Wuppertal, 42119, Wuppertal, Germany
| | - Thomas Zimmer
- Integration from Material to Systems Laboratory, University of Bordeaux, 33405, Talence, France
| | - Jean-Paul Guillet
- Integration from Material to Systems Laboratory, University of Bordeaux, 33405, Talence, France
| | - Patrick Mounaix
- Integration from Material to Systems Laboratory, University of Bordeaux, 33405, Talence, France.
| |
Collapse
|
17
|
Abstract
In the past few decades, the applications of terahertz (THz) spectroscopy and imaging technology have seen significant developments in the fields of biology, medical diagnosis, food safety, and nondestructive testing. Label-free diagnosis of malignant tumours has been obtained and also achieved significant development in THz biomedical imaging. This review mainly presents the research status and prospects of several common continuous-wave (CW) THz medical imaging systems and applications of THz medical imaging in biological tissues. Here, we first introduce the properties of THz waves and how these properties play a role in biomedical imaging. Then, we analyse both the advantages and disadvantages of the CW THz imaging methods and the progress of these methods in THz biomedical imaging in recent ten years. Finally, we summarise the obstacles in the way of the application of THz bio-imaging application technology in clinical detection, which need to be investigated and overcome in the future.
Collapse
|
18
|
Vafapour Z, Keshavarz A, Ghahraloud H. The potential of terahertz sensing for cancer diagnosis. Heliyon 2020; 6:e05623. [PMID: 33305055 PMCID: PMC7718469 DOI: 10.1016/j.heliyon.2020.e05623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
The terahertz (THz) region lies between the microwave and infrared regions of the electromagnetic (EM) spectrum such that it is strongly attenuated by water and very sensitive to water content. Here, we numerically present what is to our knowledge the detecting system based on THz reflectance spectral responses data in the diagnosis of in vivo and ex vivo of some cancer's samples such as skin, breast and colon cancer tissue samples. The numerical analysis on the use of semiconductor metamaterial design/device as a complex refractive index (CRI) biosensor have been carried out. We demonstrate the application of terahertz pulse detecting (TPD) in reflection geometry for the study of normal and cancerous biological tissues. THz radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. The sensitivity of THz radiation to polar molecules, such as water, makes TPD suitable to study the diseases in human body. By studying the THz pulse shape in the time domain, we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC), breast and colon cancers. These results demonstrate the potential of TPD for the study of skin tissue and its related disorders, both in vivo and ex vivo. Findings of this study demonstrate the potential of TPD to depict breast and colon cancers and both in vivo and ex vivo of skin cancer and encourage further studies to determine the sensitivity and specificity of the technique.
Collapse
Affiliation(s)
- Zohreh Vafapour
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.,Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Afsaneh Keshavarz
- Department of Physics, College of Science, Shiraz University, Shiraz, 71946, Fars, Iran
| | - Hossain Ghahraloud
- Department of Chemical Engineering, Shiraz University, Shiraz, 71345, Fars, Iran.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, 21218, MD, USA
| |
Collapse
|
19
|
Li D, Yang Z, Fu A, Chen T, Chen L, Tang M, Zhang H, Mu N, Wang S, Liang G, Wang H. Detecting melanoma with a terahertz spectroscopy imaging technique. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118229. [PMID: 32193158 DOI: 10.1016/j.saa.2020.118229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 05/18/2023]
Abstract
Transmission mode terahertz time-domain spectroscopy system was employed to image BALB/c mouse skin tissue slices containing melanoma. The melanoma was unambiguously identified in the frequency region of 0.6-1.8 THz because melanoma has a higher refractive index as well as a higher absorption coefficient than the normal region of the skin tissue. Based on the results of hematoxylin-eosin staining and mass weighing, it was further suggested that the higher density of nucleic acids, higher water content, and lower fat content in the melanoma compared to the normal region are major factors responsible for melanoma's higher refractive index and absorption coefficient than normal tissue. The present work validates that terahertz time-domain spectroscopy imaging technique is possible to be used for the diagnosis of melanoma.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhongbo Yang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ligang Chen
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mingjie Tang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hua Zhang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ning Mu
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Shi Wang
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Huabin Wang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
20
|
Vohra N, Bowman T, Bailey K, El-Shenawee M. Terahertz Imaging and Characterization Protocol for Freshly Excised Breast Cancer Tumors. J Vis Exp 2020:10.3791/61007. [PMID: 32310233 PMCID: PMC7179081 DOI: 10.3791/61007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This manuscript presents a protocol to handle, characterize, and image freshly excised human breast tumors using pulsed terahertz imaging and spectroscopy techniques. The protocol involves terahertz transmission mode at normal incidence and terahertz reflection mode at an oblique angle of 30°. The collected experimental data represent time domain pulses of the electric field. The terahertz electric field signal transmitted through a fixed point on the excised tissue is processed, through an analytical model, to extract the refractive index and absorption coefficient of the tissue. Utilizing a stepper motor scanner, the terahertz emitted pulse is reflected from each pixel on the tumor providing a planar image of different tissue regions. The image can be presented in time or frequency domain. Furthermore, the extracted data of the refractive index and absorption coefficient at each pixel are utilized to provide a tomographic terahertz image of the tumor. The protocol demonstrates clear differentiation between cancerous and healthy tissues. On the other hand, not adhering to the protocol can result in noisy or inaccurate images due to the presence of air bubbles and fluid remains on the tumor surface. The protocol provides a method for surgical margins assessment of breast tumors.
Collapse
Affiliation(s)
- Nagma Vohra
- Department of Electrical Engineering, University of Arkansas;
| | - Tyler Bowman
- Department of Electrical Engineering, University of Arkansas
| | - Keith Bailey
- Oklahoma Animal Disease Diagnostic Laboratory, Oklahoma State University
| | | |
Collapse
|
21
|
Cao Y, Huang P, Chen J, Ge W, Hou D, Zhang G. Qualitative and quantitative detection of liver injury with terahertz time-domain spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:982-993. [PMID: 32133233 PMCID: PMC7041463 DOI: 10.1364/boe.381660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 05/05/2023]
Abstract
Terahertz technology has been widely used as a nondestructive and effective detection method. Herein, terahertz time-domain spectroscopy was used to detect drug-induced liver injury in mice. Firstly, the boxplots were used to detect abnormal data. Then the maximal information coefficient method was used to search for the features strongly correlated with the degree of injury. After that, the liver injury model was built using the random forests method in machine learning. The results show that this method can effectively identify the degree of liver injury and thus provide an auxiliary diagnostic method for detecting minor liver injury.
Collapse
Affiliation(s)
- Yuqi Cao
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Pingjie Huang
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Weiting Ge
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Dibo Hou
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Guangxin Zhang
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Vilagosh Z, Lajevardipour A, Wood AW. Computational absorption and reflection studies of normal human skin at 0.45 THz. BIOMEDICAL OPTICS EXPRESS 2020; 11:417-431. [PMID: 32010525 PMCID: PMC6968741 DOI: 10.1364/boe.377424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 05/03/2023]
Abstract
Applications using terahertz (THz) frequency radiation will inevitably lead to increased human exposure. The power density and specific absorption rate (SAR) simulations of thin skin at 0.45 THz show the bulk of the energy being absorbed in the upper stratum spinosum, and the maximal temperature rise is in the lower stratum spinosum. There are regions of SAR increase of 100% above the local average at the stratum spinosum/stratum basale boundary. The dead Stratum Corneum layer protects underlying tissues in thick skin. Reflection studies suggest that acute angles and the use of polarised incident radiation may enhance the assessment of diabetic neuropathy.
Collapse
Affiliation(s)
- Zoltan Vilagosh
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - Alireza Lajevardipour
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - Andrew W. Wood
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| |
Collapse
|
23
|
Huang P, Cao Y, Chen J, Ge W, Hou D, Zhang G. Analysis and inspection techniques for mouse liver injury based on terahertz spectroscopy. OPTICS EXPRESS 2019; 27:26014-26026. [PMID: 31510462 DOI: 10.1364/oe.27.026014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/09/2019] [Indexed: 05/21/2023]
Abstract
At present, researchers are exploring biological tissue detection method using terahertz techniques. In this paper, techniques to inspect mouse liver injury by using terahertz spectroscopy were studied. The boxplots were applied to remove abnormal data, and the maximal information coefficient was employed to select crucial features from the absorption coefficient and refractive index spectra. Random Forests and AdaBoost were applied to recognize different levels of liver injury. We found that AdaBoost had better performance on low-level injury classification. This work suggests that terahertz techniques have the potential to detect liver injury at an early stage and evaluate liver treatment strategies.
Collapse
|
24
|
Zhao X, Lin Z, Wang Y, Yang X, Yang K, Zhang Y, Peng J, Lamy de la Chapelle M, Zhang L, Fu W. Label-free self-referenced sensing of living cells by terahertz metamaterial-based reflection spectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:1196-1206. [PMID: 30891339 PMCID: PMC6420280 DOI: 10.1364/boe.10.001196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 05/26/2023]
Abstract
Terahertz (THz) metamaterial-based reflection spectroscopy is proposed for label-free sensing of living cells by a self-referenced method. When sensing the living Madin-Darby canine kidney cell monolayer and phosphate buffered saline solution, self-referenced signals showed significant differences in peak intensity because of inherent discrepancy in the imaginary part of their complex refractive indices, as confirmed by 3D-FDTD simulations. The resonance peak intensity was unaffected by cell monolayer thickness variation, demonstrating feasibility for sensing various cells. Simulations and experiments showed that saponin-induced changes in cell permeability could be monitored in real-time. The self-referenced signal was linearly dependent on the adherent cell density, illustrating a label-free in situ THz metamaterial-based cell sensor.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhongquan Lin
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ke Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Zhang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jia Peng
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Marc Lamy de la Chapelle
- Institut des Molécules et Matériaux du Mans (IMMM - UMR CNRS 6283), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Liqun Zhang
- Department of Laboratory Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
25
|
Vilagosh Z, Lajevardipour A, Wood AW. Computational phantom study of frozen melanoma imaging at 0.45 terahertz. Bioelectromagnetics 2019; 40:118-127. [PMID: 30699238 DOI: 10.1002/bem.22169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/05/2019] [Indexed: 01/31/2023]
Abstract
Terahertz radiation (THz) is highly absorbed by liquid water. This creates the possibility of medical imaging on the basis of the water content difference between normal and diseased tissue. The effective penetration of THz is limited, however, to a tissue depth of 0.2-0.3 mm at body temperature. A unique feature of the 0.1-2.0 THz frequency is that there is a high disparity between liquid water absorption and ice absorption, with ice being 100 times more permeable to the radiation than liquid water. This results in 90% of the radiation surviving to 1.0 mm in ice, permitting the imaging of frozen tissues to a depth of 5.0 mm. This method is practical as an in vivo procedure before or during surgical excision. Finite difference time domain (FDTD) computational modeling of frozen normal skin and frozen melanoma was undertaken using tissue phantoms. The study suggests that sufficient contrast exists to differentiate normal frozen skin and melanoma on the basis of the difference of water content alone. When the melanin pigment in melanomas is modeled as a significant absorber of THz, the contrast changes. Based on the modeling, further exploration of the "THz-skin freeze" imaging technique is justified. In the modeling, the boundary between the frozen tissue and non-frozen tissue is shown to be strongly reflective. If the reflective properties of the boundary are substantiated, the "THz-skin freeze" technique will have applications in other areas of skin diagnostics and therapeutics. Bioelectromagnetics. 40:118-127, 2019. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Zoltan Vilagosh
- Swinburne University of Technology Melbourne, Hawthorn, Victoria, Australia.,Australian Centre for Electromagnetic Bioeffects Research, Hawthorn, Victoria, Australia
| | - Alireza Lajevardipour
- Swinburne University of Technology Melbourne, Hawthorn, Victoria, Australia.,Australian Centre for Electromagnetic Bioeffects Research, Hawthorn, Victoria, Australia
| | - Andrew W Wood
- Swinburne University of Technology Melbourne, Hawthorn, Victoria, Australia.,Australian Centre for Electromagnetic Bioeffects Research, Hawthorn, Victoria, Australia
| |
Collapse
|
26
|
Wang J, Stantchev RI, Sun Q, Chiu TW, Ahuja AT, MacPherson EP. THz in vivo measurements: the effects of pressure on skin reflectivity. BIOMEDICAL OPTICS EXPRESS 2018; 9:6467-6476. [PMID: 31065443 PMCID: PMC6491008 DOI: 10.1364/boe.9.006467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 11/06/2018] [Indexed: 05/18/2023]
Abstract
Terahertz (THz) light is non-ionizing and highly sensitive to subtle changes in water concentration which can be indicative of disease. The short THz penetration depth in bio-samples restricts in vivo measurements to be in a reflection geometry and the sample is often placed onto an imaging window. Upon contacting the imaging window, occlusion and compression of the skin affect the THz response. If not appropriately controlled, this could cause misleading results. In this work, we investigate and quantify how the applied pressure affects the THz response of skin and employ a stratified model to help understand the mechanisms at play. This work will enable future THz studies to have a more rigorous experimental protocol, which in turn will facilitate research in various potential biomedical applications under investigation.
Collapse
Affiliation(s)
- Jiarui Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Rayko I. Stantchev
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiushuo Sun
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tor-Wo Chiu
- Division of Plastic Reconstructive and Aesthetic Surgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Anil T. Ahuja
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Emma Pickwell MacPherson
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Physics, Warwick University, Coventry, UK
| |
Collapse
|
27
|
Wang M, Yuan F, Wei Y, Xia C, Hu F, Song B. Hepatocellular Carcinoma: In Vivo Evaluation of Water Percentage as a Prognostic Biomarker Using Magnetic Resonance Imaging 3D-VIBE Multiecho Dixon. Cancer Biother Radiopharm 2018; 33:300-306. [PMID: 30109954 DOI: 10.1089/cbr.2018.2483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION It is urgent to find an effective method to diagnose and prognose early hepatocellular carcinoma (HCC). The purpose of this study was to investigate the correlation between HCC histological degree and water percentage (WP) obtained from magnetic resonance imaging 3D-VIBE multiecho Dixon, and to evaluate the feasibility of WP in the postoperative prediction of early HCC recurrence. METHODS AND MATERIALS From June 2016 to July 2017, 76 patients with diagnostic HCC all underwent 3D-VIBE Multiecho Dixon and ultrahigh b value diffusion-weighted imaging (DWI) examination. Freehand regions of interests were placed to measure the WP and apparent diffusion coefficient (ADC) value. The Edmondson-Steiner (E-S) grades proved by histopathological results were acquired from all patients. Comparisons between mean WP and ADC with E-S grades I-IV were performed using Kruskal-Wallis test and one-way ANOVA. Least Significant Difference t-test (LSD-t test) was applied to compare particular pairs of mean ADC value between every two E-S groups. Correlations between WP, ADC, and E-S grades were assessed by Spearman's rank correlation test. The Mann-Whitney U test was utilized to compare the difference of mean WP between recurrence and nonrecurrence group. The receiver operating characteristic (ROC) curves were calculated to estimate the diagnostic effect of 3D-VIBE Multiecho Dixon and ultrahigh b value DWI to HCC. Kaplan-Meier method was used to evaluate the recurrence free survival (RFS) after surgical resection. RESULTS Mean WP values among groups E-S I to IV were 91.8%, 95.2%, 96.4%, and 97.7%, respectively. A positive correlation was exhibited between the WP and histopathological E-S grades (r = 0.480, p < 0.01). The ADC values based on E-S grades were 0.93, 0.82, 0.74, and 0.62 × 10-3 mm2/s, respectively. Significant differences were found between every two E-S groups (p < 0.01), and a negative correlation between ADC and E-S grades (r = -0.784, p = 0.000) was observed. Mean value of WP was 97.2% in recurrence group and 94.6% in nonrecurrence group (p < 0.01). The optimal cutoff value was 95.7%. The maximal area under the ROC curve was 0.747 ± 0.06 for WP, 0.631 ± 0.07 for ADC, and 0.753 ± 0.06 for the combination of WP and ADC. Mean RFS was 18.1 months in the lower WP and 10.7 months in higher WP group (p < 0.01). CONCLUSIONS WP can be used as a potential biomarker for the diagnosis and prognosis of HCC. A lower value of WP may imply a better outcome in patients after surgical resection.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiology, West China Hospital, Sichuan University , Chengdu, China
| | - Fang Yuan
- Department of Radiology, West China Hospital, Sichuan University , Chengdu, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University , Chengdu, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University , Chengdu, China
| | - Fubi Hu
- Department of Radiology, West China Hospital, Sichuan University , Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University , Chengdu, China
| |
Collapse
|
28
|
Cassar Q, Al-Ibadi A, Mavarani L, Hillger P, Grzyb J, MacGrogan G, Zimmer T, Pfeiffer UR, Guillet JP, Mounaix P. Pilot study of freshly excised breast tissue response in the 300-600 GHz range. BIOMEDICAL OPTICS EXPRESS 2018; 9:2930-2942. [PMID: 29984076 PMCID: PMC6033580 DOI: 10.1364/boe.9.002930] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 05/25/2023]
Abstract
The failure to accurately define tumor margins during breast conserving surgery (BCS) results in a 20% re-excision rate. The present paper reports the investigation to evaluate the potential of terahertz imaging for breast tissue recognition within the under-explored 300 - 600 GHz range. Such a frequency window matches new BiCMOS technology capabilities and thus opens up the opportunity for near-field terahertz imaging using these devices. To assess the efficacy of this frequency band, data from 16 freshly excised breast tissue samples were collected and analyzed directly after excision. Complex refractive indices have been extracted over the as-mentioned frequency band, and amplitude frequency images show some contrast between tissue types. Principal component analysis (PCA) has also been applied to the data in an attempt to automate tissue classification. Our observations suggest that the dielectric response could potentially provide contrast for breast tissue recognition within the 300 - 600 GHz range. These results open the way for silicon-based terahertz subwavelength near field imager design, efficient up to 600 GHz to address ex vivo life-science applications.
Collapse
Affiliation(s)
- Quentin Cassar
- Integration: from Material to Systems Laboratory, UMR CNRS 5218, University of Bordeaux, 33400 Talence, France
| | - Amel Al-Ibadi
- Integration: from Material to Systems Laboratory, UMR CNRS 5218, University of Bordeaux, 33400 Talence, France
| | - Laven Mavarani
- Institute for High-Frequency and Communication Technology, University of Wuppertal, 42119 Wuppertal, Germany
| | - Philipp Hillger
- Institute for High-Frequency and Communication Technology, University of Wuppertal, 42119 Wuppertal, Germany
| | - Janusz Grzyb
- Institute for High-Frequency and Communication Technology, University of Wuppertal, 42119 Wuppertal, Germany
| | - Gaëtan MacGrogan
- Department of Pathology, Bergonié Institute, 33076 Bordeaux, France
| | - Thomas Zimmer
- Integration: from Material to Systems Laboratory, UMR CNRS 5218, University of Bordeaux, 33400 Talence, France
| | - Ullrich R. Pfeiffer
- Institute for High-Frequency and Communication Technology, University of Wuppertal, 42119 Wuppertal, Germany
| | - Jean-Paul Guillet
- Integration: from Material to Systems Laboratory, UMR CNRS 5218, University of Bordeaux, 33400 Talence, France
| | - Patrick Mounaix
- Integration: from Material to Systems Laboratory, UMR CNRS 5218, University of Bordeaux, 33400 Talence, France
| |
Collapse
|
29
|
Lee K, Jeoung K, Kim SH, Ji YB, Son H, Choi Y, Huh YM, Suh JS, Oh SJ. Measuring water contents in animal organ tissues using terahertz spectroscopic imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:1582-1589. [PMID: 29675303 PMCID: PMC5905907 DOI: 10.1364/boe.9.001582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/05/2018] [Accepted: 02/09/2018] [Indexed: 05/21/2023]
Abstract
We investigated the water contents in several organ tissues such as the liver, spleen, kidney, and brain tissue of rats using the terahertz spectroscopic imaging technique. The water contents of the tissues were determined by using a simple equation containing the absorption coefficients of fresh and lyophilized tissues and water. We compared the measured water contents with the difference in mass of tissues before and after lyophilization. All results showed a good match except for the kidney, which has several Bowman's capsules.
Collapse
Affiliation(s)
- Kyumin Lee
- Graduate Program for Nanomedical Science, Yonsei University, Seoul 03722, South Korea
| | - Kiyong Jeoung
- Graduate Program for Nanomedical Science, Yonsei University, Seoul 03722, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul 03722, South Korea
| | - Sang Hoon Kim
- Applied Electromagnetic Wave Research Center, Korea Electrotechnology Research Institute, Ansan 15588, South Korea
| | - Young-Bin Ji
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul 03722, South Korea
- Gimhae Biomedical Center, Gimhae Industry Promotion and Biomedical Foundation, Gimhae 50969, South Korea
| | - Hyeyoung Son
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, South Korea
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, South Korea
| | - Yuna Choi
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, South Korea
| | - Young-Min Huh
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul 03722, South Korea
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, South Korea
| | - Jin-Suck Suh
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul 03722, South Korea
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, South Korea
| | - Seung Jae Oh
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
30
|
Bowman T, Chavez T, Khan K, Wu J, Chakraborty A, Rajaram N, Bailey K, El-Shenawee M. Pulsed terahertz imaging of breast cancer in freshly excised murine tumors. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-13. [PMID: 29446263 PMCID: PMC5812433 DOI: 10.1117/1.jbo.23.2.026004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/23/2018] [Indexed: 05/19/2023]
Abstract
This paper investigates terahertz (THz) imaging and classification of freshly excised murine xenograft breast cancer tumors. These tumors are grown via injection of E0771 breast adenocarcinoma cells into the flank of mice maintained on high-fat diet. Within 1 h of excision, the tumor and adjacent tissues are imaged using a pulsed THz system in the reflection mode. The THz images are classified using a statistical Bayesian mixture model with unsupervised and supervised approaches. Correlation with digitized pathology images is conducted using classification images assigned by a modal class decision rule. The corresponding receiver operating characteristic curves are obtained based on the classification results. A total of 13 tumor samples obtained from 9 tumors are investigated. The results show good correlation of THz images with pathology results in all samples of cancer and fat tissues. For tumor samples of cancer, fat, and muscle tissues, THz images show reasonable correlation with pathology where the primary challenge lies in the overlapping dielectric properties of cancer and muscle tissues. The use of a supervised regression approach shows improvement in the classification images although not consistently in all tissue regions. Advancing THz imaging of breast tumors from mice and the development of accurate statistical models will ultimately progress the technique for the assessment of human breast tumor margins.
Collapse
Affiliation(s)
- Tyler Bowman
- University of Arkansas, Bell Engineering Center, Department of Electrical Engineering, Fayetteville, Arkansas, United States
| | - Tanny Chavez
- University of Arkansas, Bell Engineering Center, Department of Electrical Engineering, Fayetteville, Arkansas, United States
| | - Kamrul Khan
- University of Arkansas, Science and Engineering Building, Department of Mathematical Sciences, Fayetteville, Arkansas, United States
| | - Jingxian Wu
- University of Arkansas, Bell Engineering Center, Department of Electrical Engineering, Fayetteville, Arkansas, United States
| | - Avishek Chakraborty
- University of Arkansas, Science and Engineering Building, Department of Mathematical Sciences, Fayetteville, Arkansas, United States
| | - Narasimhan Rajaram
- University of Arkansas, Bell Engineering Center, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Keith Bailey
- Oklahoma State University, Oklahoma Animal Disease Diagnostic Laboratory, Stillwater, Oklahoma, United States
| | - Magda El-Shenawee
- University of Arkansas, Bell Engineering Center, Department of Electrical Engineering, Fayetteville, Arkansas, United States
| |
Collapse
|
31
|
He Y, Liu K, Au C, Sun Q, Parrott EPJ, PickWell-MacPherson E. Determination of terahertz permittivity of dehydrated biological samples. Phys Med Biol 2017; 62:8882-8893. [PMID: 28944763 DOI: 10.1088/1361-6560/aa8ebe] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A key step in transforming terahertz imaging to a practical medical imaging modality lies in understanding the interactions between terahertz (THz) waves and biological tissues. Most of the models in the literature use the permittivity of liquid water to simulate the THz-tissue interactions, but they often neglect contributions from the biological background such as proteins and lipids because dehydrated biological samples are experimentally difficult to prepare. In this work, we present a method to prepare thin and flat dehydrated samples which can be easily handled and measured in a transmission setup. Our results will provide fundamental parameters for modelling THz-tissue interactions.
Collapse
Affiliation(s)
- Yuezhi He
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | | | |
Collapse
|
32
|
Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol 2017; 34:810-824. [PMID: 27207226 DOI: 10.1016/j.tibtech.2016.04.008] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
Terahertz (THz=10(12)Hz) radiation has attracted wide attention for its unprecedented sensing ability and its noninvasive and nonionizing properties. Tremendous strides in THz instrumentation have prompted impressive breakthroughs in THz biomedical research. Here, we review the current state of THz spectroscopy and imaging in various biomedical applications ranging from biomolecules, including DNA/RNA, amino acids/peptides, proteins, and carbohydrates, to cells and tissues. We also address the potential biological effects of THz radiation during its biological applications and propose future prospects for this cutting-edge technology.
Collapse
|
33
|
Doradla P, Joseph C, Giles RH. Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives. World J Gastrointest Endosc 2017; 9:346-358. [PMID: 28874955 PMCID: PMC5565500 DOI: 10.4253/wjge.v9.i8.346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/08/2017] [Accepted: 07/14/2017] [Indexed: 02/05/2023] Open
Abstract
Terahertz (THz) imaging is progressing as a robust platform for myriad applications in the field of security, health, and material science. The THz regime, which comprises wavelengths spanning from microns to millimeters, is non-ionizing and has very low photon energy: Making it inherently safe for biological imaging. Colorectal cancer is one of the most common causes of death in the world, while the conventional screening and standard of care yet relies exclusively on the physician's experience. Researchers have been working on the development of a flexible THz endoscope, as a potential tool to aid in colorectal cancer screening. This involves building a single-channel THz endoscope, and profiling the THz response from colorectal tissue, and demonstrating endogenous contrast levels between normal and diseased tissue when imaging in reflection modality. The current level of contrast provided by the prototype THz endoscopic system represents a significant step towards clinical endoscopic application of THz technology for in-vivo colorectal cancer screening. The aim of this paper is to provide a short review of the recent advances in THz endoscopic technology and cancer imaging. In particular, the potential of single-channel THz endoscopic imaging for colonic cancer screening will be highlighted.
Collapse
|
34
|
Sun Q, He Y, Liu K, Fan S, Parrott EPJ, Pickwell-MacPherson E. Recent advances in terahertz technology for biomedical applications. Quant Imaging Med Surg 2017; 7:345-355. [PMID: 28812001 DOI: 10.21037/qims.2017.06.02] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Terahertz instrumentation has improved significantly in recent years such that THz imaging systems have become more affordable and easier to use. THz systems can now be operated by non-THz experts greatly facilitating research into many potential applications. Due to the non-ionising nature of THz light and its high sensitivity to soft tissues, there is an increasing interest in biomedical applications including both in vivo and ex vivo studies. Additionally, research continues into understanding the origin of contrast and how to interpret terahertz biomedical images. This short review highlights some of the recent work in these areas and suggests some future research directions.
Collapse
Affiliation(s)
- Qiushuo Sun
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China
| | - Yuezhi He
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China
| | - Kai Liu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China
| | - Shuting Fan
- School of Physics and Astrophysics (M013), The University of Western Australia Perth, WA 6009, Australia
| | - Edward P J Parrott
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China
| | - Emma Pickwell-MacPherson
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR, China
| |
Collapse
|
35
|
Deng M, Chen SZ, Yuan J, Chan Q, Zhou J, Wáng YXJ. Chemical Exchange Saturation Transfer (CEST) MR Technique for Liver Imaging at 3.0 Tesla: an Evaluation of Different Offset Number and an After-Meal and Over-Night-Fast Comparison. Mol Imaging Biol 2016; 18:274-82. [PMID: 26391991 DOI: 10.1007/s11307-015-0887-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE This study seeks to explore whether chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) can detect liver composition changes between after-meal and over-night-fast statuses. PROCEDURES Fifteen healthy volunteers were scanned on a 3.0-T human MRI scanner in the evening 1.5-2 h after dinner and in the morning after over-night (12-h) fasting. Among them, seven volunteers were scanned twice to assess the scan-rescan reproducibility. Images were acquired at offsets (n = 41, increment = 0.25 ppm) from -5 to 5 ppm using a turbo spin echo (TSE) sequence with a continuous rectangular saturation pulse. Amide proton transfer-weighted (APTw) and GlycoCEST signals were quantified with the asymmetric magnetization transfer ratio (MTRasym) at 3.5 ppm and the total MTRasym integrated from 0.5 to 1.5 ppm from the corrected Z-spectrum, respectively. To explore scan time reduction, CEST images were reconstructed using 31 offsets (with 20% time reduction) and 21 offsets (with 40% time reduction), respectively. RESULTS For reproducibility, GlycoCEST measurements in 41 offsets showed the smallest scan-rescan mean measurements variability, indicated by the lowest mean difference of -0.049% (95% limits of agreement, -0.209 to 0.111%); for APTw, the smallest mean difference was found to be 0.112% (95% limits of agreement, -0.698 to 0.921%) in 41 offsets. Compared with after-meal, both GlycoCEST measurement and APTw measurement under different offset number decreased after 12-h fasting. However, as the offsets number decreased (41 offsets vs. 31 offsets vs. 21 offsets), GlycoCEST map and APTw map became more heterogeneous and noisier. CONCLUSION Our results show that CEST liver imaging at 3.0 T has high sensitivity for fasting.
Collapse
Affiliation(s)
- Min Deng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Shu-Zhong Chen
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR
| | - Queenie Chan
- MR Clinical Science, Philips Healthcare Greater China, Shanghai, China
| | - Jinyuan Zhou
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Yì-Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR.
| |
Collapse
|
36
|
He Y, Ung BSY, Parrott EPJ, Ahuja AT, Pickwell-MacPherson E. Freeze-thaw hysteresis effects in terahertz imaging of biomedical tissues. BIOMEDICAL OPTICS EXPRESS 2016; 7:4711-4717. [PMID: 27896010 PMCID: PMC5119610 DOI: 10.1364/boe.7.004711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/16/2016] [Accepted: 10/16/2016] [Indexed: 05/20/2023]
Abstract
There have recently been several studies published involving terahertz (THz) imaging of frozen biomedical samples. In this paper, we investigate the effects of the freeze-thaw cycle on THz properties of porcine muscle and fat samples. For ordinary freezing, there was a significant change in the THz properties after thawing for muscle tissue but not for fat tissue. However, if snap-freezing was combined with fast-thawing instead of ordinary freezing and ordinary thawing, then the freeze-thaw hysteresis was removed.
Collapse
Affiliation(s)
- Yuezhi He
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Benjamin S.-Y. Ung
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Edward P. J. Parrott
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Anil T. Ahuja
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Emma Pickwell-MacPherson
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
37
|
Zhang M, Yeow JT. Nanotechnology-Based Terahertz Biological Sensing: A review of its current state and things to come. IEEE NANOTECHNOLOGY MAGAZINE 2016. [DOI: 10.1109/mnano.2016.2572244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Bowman T, El-Shenawee M, Campbell LK. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas. BIOMEDICAL OPTICS EXPRESS 2016; 7:3756-3783. [PMID: 27699136 PMCID: PMC5030048 DOI: 10.1364/boe.7.003756] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 05/04/2023]
Abstract
This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system's fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images.
Collapse
Affiliation(s)
- Tyler Bowman
- Department of Electrical Engineering, University of Arkansas, 3217 Bell Engineering Center, Fayetteville, AR 72701, USA
| | - Magda El-Shenawee
- Department of Electrical Engineering, University of Arkansas, 3217 Bell Engineering Center, Fayetteville, AR 72701, USA
| | - Lucas K. Campbell
- Northwest Arkansas Pathology Associates, P. A., 390 E. Longview St. Fayetteville, AR 72703, USA
| |
Collapse
|
39
|
Koon CM, Zhang X, Chen W, Chu ESH, San Lau CB, Wáng YXJ. Black blood T1rho MR imaging may diagnose early stage liver fibrosis: a proof-of-principle study with rat biliary duct ligation model. Quant Imaging Med Surg 2016; 6:353-363. [PMID: 27709071 DOI: 10.21037/qims.2016.08.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND To explore black blood T1rho (T1ρ) liver imaging and investigate the earliest stage when biliary duct ligation (BDL) induced liver fibrosis can be diagnosed. METHODS MR was performed at 3 Tesla. A T1ρ prepared 2D fast spin echo (FSE) sequence with acquisition of four spin lock times (TSLs: 1, 10, 30, and 50 msec) and spin-lock frequency of 500 Hz was applied. Inherent black blood effect of FSE and double inversion recovery (DIR) achieved blood signal suppression, and 3 axial sections per liver were obtained. Male Sprague-Dawley rats were scanned at baseline (n=32), and on day-3 (n=13), day-5 (n=11), day-7 (n=10), day-10 (n=4) respectively after BDL. Hematoxylin-eosin (HE) and picrosirius red staining liver histology was obtained at these time points. RESULTS The physiological liver parenchyma T1ρ was 38.38±1.53 msec (range, 36.05-41.53 msec). Liver T1ρ value elevated progressively after BDL. On day-10 after BDL all experimental animals can be separated from normal liver based on T1ρ measurement with lowest value being 42.82 msec. Day-7 and day-10 liver resembled METAVIR stage-F1/F2 fibrosis, and fibrous area counted for 0.22%±0.13% and 0.38%±0.44% of liver parenchyma area, respectively. CONCLUSIONS This study provides the first proof-of-principle that T1ρ might diagnose early stage liver fibrosis.
Collapse
Affiliation(s)
- Chi-Man Koon
- Institute of Chinese Medicine, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;; State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Xin Zhang
- Institute of Chinese Medicine, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;; State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Eagle Siu Hong Chu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;; State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yì-Xiáng J Wáng
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
40
|
Martin JP, Joseph CS, Giles RH. Continuous-wave circular polarization terahertz imaging. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:70502. [PMID: 27420650 DOI: 10.1117/1.jbo.21.7.070502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
Biomedical applications of terahertz (THz) radiation are appealing because THz radiation is nonionizing and has the demonstrated ability to detect intrinsic contrasts between cancerous and normal tissue. A linear polarization-sensitive detection technique for tumor margin delineation has already been demonstrated; however, utilization of a circular polarization-sensitive detection technique has yet to be explored at THz frequencies. A reflective, continuous-wave THz imaging system capable of illuminating a target sample at 584 GHz with either linearly or circularly polarized radiation, and capable of collecting both cross- and copolarized signals remitted from the target, is implemented. To demonstrate the system’s utility, a fresh ex vivo human skin tissue specimen containing nonmelanoma skin cancer was imaged. Both polarization-sensitive detection techniques showed contrast between tumor and normal skin tissue, although some differences in images were observed between the two techniques. Our results indicate that further investigation is required to explain the contrast mechanism, as well as to quantify the specificity and sensitivity of the circular polarization-sensitive detection technique.
Collapse
Affiliation(s)
- Jillian P Martin
- University of Massachusetts Lowell, Department of Physics and Applied Physics, 136 Olney Science Center, 1 University Avenue, Lowell, Massachusetts 01854, United StatesbBiomedical Terahertz Technology Center, 175 Cabot Street, Suite 114, Lowell, Massachus
| | - Cecil S Joseph
- University of Massachusetts Lowell, Department of Physics and Applied Physics, 136 Olney Science Center, 1 University Avenue, Lowell, Massachusetts 01854, United StatesbBiomedical Terahertz Technology Center, 175 Cabot Street, Suite 114, Lowell, Massachus
| | - Robert H Giles
- University of Massachusetts Lowell, Department of Physics and Applied Physics, 136 Olney Science Center, 1 University Avenue, Lowell, Massachusetts 01854, United StatesbBiomedical Terahertz Technology Center, 175 Cabot Street, Suite 114, Lowell, Massachus
| |
Collapse
|
41
|
Wahaia F, Kasalynas I, Venckevicius R, Seliuta D, Valusis G, Urbanowicz A, Molis G, Carneiro F, Carvalho Silva CD, Granja PL. Terahertz absorption and reflection imaging of carcinoma-affected colon tissues embedded in paraffin. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.11.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Truong BCQ, Tuan HD, Fitzgerald AJ, Wallace VP, Nguyen HT. Breast Cancer classification using extracted parameters from a terahertz dielectric model of human breast tissue. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:2804-7. [PMID: 26736874 DOI: 10.1109/embc.2015.7318974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Our previous study proposed a dielectric model for human breast tissue and provided initial analysis of classification potential of the eight model parameters and their multiparameter combinations with the support vector machine (SVM). A combination of three model parameters could achieve a leave-one-out cross validation accuracy of 93.2%. However, the SVM approach fails to exploit the combinations of more than three model parameters for classification improvement. Thus, the Bayesian neural network (BNN) method is employed to overcome this problem based on its advantages of handling our small data and high complexity of the multiparamter combinations. The BNN successfully classifies the data using the combinations of four model parameters with an accuracy, estimated by leave-one-out cross validation, of 97.3%. Overall performance assessed by leaveone-out and repeated random-subsampling cross validations for all examined combinations is also remarkably improved by BNN. The results indicate the advance of BNN as compared to SVM in utilising the model parameters for detecting tumour from normal breast tissue.
Collapse
|
43
|
Chemical exchange saturation transfer (CEST) MR technique for in-vivo liver imaging at 3.0 tesla. Eur Radiol 2015; 26:1792-800. [PMID: 26334509 DOI: 10.1007/s00330-015-3972-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate Chemical Exchange Saturation Transfer (CEST) MRI for liver imaging at 3.0-T. MATERIALS AND METHODS Images were acquired at offsets (n = 41, increment = 0.25 ppm) from -5 to 5 ppm using a TSE sequence with a continuous rectangular saturation pulse. Amide proton transfer-weighted (APTw) and GlycoCEST signals were quantified as the asymmetric magnetization transfer ratio (MTRasym) at 3.5 ppm and the total MTRasym integrated from 0.5 to 1.5 ppm, respectively, from the corrected Z-spectrum. Reproducibility was assessed for rats and humans. Eight rats were devoid of chow for 24 hours and scanned before and after fasting. Eleven rats were scanned before and after one-time CCl4 intoxication. RESULTS For reproducibility, rat liver APTw and GlycoCEST measurements had 95 % limits of agreement of -1.49 % to 1.28 % and -0.317 % to 0.345 %. Human liver APTw and GlycoCEST measurements had 95 % limits of agreement of -0.842 % to 0.899 % and -0.344 % to 0.164 %. After 24 hours, fasting rat liver APTw and GlycoCEST signals decreased from 2.38 ± 0.86 % to 0.67 ± 1.12 % and from 0.34 ± 0.26 % to -0.18 ± 0.37 % respectively (p < 0.05). After CCl4 intoxication rat liver APTw and GlycoCEST signals decreased from 2.46 ± 0.48 % to 1.10 ± 0.77 %, and from 0.34 ± 0.23 % to -0.16 ± 0.51 % respectively (p < 0.05). CONCLUSION CEST liver imaging at 3.0-T showed high sensitivity for fasting as well as CCl4 intoxication. KEY POINTS • CEST MRI of in-vivo liver was demonstrated at clinical 3 T field strength. • After 24-hour fasting, rat liver APTw and GlycoCEST signals decreased significantly. • After CCl4 intoxication both rat liver APTw and GlycoCEST signals decreased significantly. • Good scan-rescan reproducibility of liver CEST MRI was shown in healthy volunteers.
Collapse
|
44
|
Chen H, Ma S, Wu X, Yang W, Zhao T. Diagnose human colonic tissues by terahertz near-field imaging. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:036017. [PMID: 25815882 DOI: 10.1117/1.jbo.20.3.036017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Based on a terahertz (THz) pipe-based near-field imaging system, we demonstrate the capability of THz imaging to diagnose freshly surgically excised human colonic tissues. Through THz near-field scanning the absorbance of the colonic tissues, the acquired images can clearly distinguish cancerous tissues from healthy tissues fast and automatically without pathological hematoxylin and eosin stain diagnosis. A statistical study on 58 specimens (20 healthy tissues and 38 tissues with tumor) from 31 patients (mean age: 59 years; range: 46 to 79 years) shows that the corresponding diagnostic sensitivity and specificity on colonic tissues are both 100%. Due to its capability to perform quantitative analysis, our study indicates the potential of the THz pipe-based near-field imaging for future automation on human tumor pathological examinations.
Collapse
|
45
|
Terahertz in-line digital holography of human hepatocellular carcinoma tissue. Sci Rep 2015; 5:8445. [PMID: 25676705 PMCID: PMC4326957 DOI: 10.1038/srep08445] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/20/2015] [Indexed: 11/08/2022] Open
Abstract
Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.
Collapse
|
46
|
Zaytsev KI, Kudrin KG, Reshetov IV, Gavdush AA, Chernomyrdin NV, Karasik VE, Yurchenko SO. In vivospectroscopy of healthy skin and pathology in terahertz frequency range. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1742-6596/584/1/012023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Reid CB, Reese G, Gibson AP, Wallace VP. Terahertz time-domain spectroscopy of human blood. IEEE J Biomed Health Inform 2015; 17:774-8. [PMID: 25055304 DOI: 10.1109/jbhi.2013.2255306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the continuing development of terahertz technology to enable the determination of tissue pathologies in real-time during surgical procedures, it is important to distinguish the measured terahertz signal from biomaterials and fluids, such as blood, which may mask the signal from tissues of interest. In this paper, we present the frequency-dependent absorption coefficients, refractive indices, and Debye relaxation times of whole blood, red blood cells, plasma, and a thrombus.
Collapse
|
48
|
Lu PX, Huang H, Yuan J, Zhao F, Chen ZY, Zhang Q, Ahuja AT, Zhou BP, Wáng YXJ. Decreases in molecular diffusion, perfusion fraction and perfusion-related diffusion in fibrotic livers: a prospective clinical intravoxel incoherent motion MR imaging study. PLoS One 2014; 9:e113846. [PMID: 25436458 PMCID: PMC4250077 DOI: 10.1371/journal.pone.0113846] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/02/2014] [Indexed: 12/21/2022] Open
Abstract
Purpose This study was aimed to determine whether pure molecular-based diffusion coefficient (D) and perfusion-related diffusion parameters (perfusion fraction f, perfusion-related diffusion coefficient D*) differ in healthy livers and fibrotic livers through intra-voxel incoherent motion (IVIM) MR imaging. Material and Methods 17 healthy volunteers and 34 patients with histopathologically confirmed liver fibrosis patients (stage 1 = 14, stage 2 = 8, stage 3& 4 = 12, METAVIR grading) were included. Liver MR imaging was performed at 1.5-T. IVIM diffusion weighted imaging sequence was based on standard single-shot DW spin echo-planar imaging, with ten b values of 10, 20, 40, 60, 80, 100, 150, 200, 400, 800 sec/mm2 respectively. Pixel-wise realization and regions-of-interest based quantification of IVIM parameters were performed. Results D, f, and D* in healthy volunteer livers and patient livers were 1.096±0.155 vs 0.917±0.152 (10−3 mm2/s, p = 0.0015), 0.164±0.021 vs 0.123±0.029 (p<0.0001), and 13.085±2.943 vs 9.423±1.737 (10−3 mm2/s, p<0.0001) respectively, all significantly lower in fibrotic livers. As the fibrosis severity progressed, D, f, and D* values decreased, with a trend significant for f and D*. Conclusion Fibrotic liver is associated with lower pure molecular diffusion, lower perfusion volume fraction, and lower perfusion-related diffusion. The decrease of f and D* in the liver is significantly associated liver fibrosis severity.
Collapse
Affiliation(s)
- Pu-Xuan Lu
- Department of Radiology, The Shenzhen No. 3 People's Hospital, Guangdong Medical College, Shenzhen, China
| | - Hua Huang
- Department of Radiology, The Shenzhen No. 3 People's Hospital, Guangdong Medical College, Shenzhen, China
| | - Jing Yuan
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Feng Zhao
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Zhi-Yi Chen
- Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinwei Zhang
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Anil T. Ahuja
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Bo-Ping Zhou
- Department of Hepatology, The Shenzhen No. 3 People's Hospital, Guangdong Medical College, Shenzhen, China
| | - Yì-Xiáng J. Wáng
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
- * E-mail:
| |
Collapse
|
49
|
Ji YB, Kim SH, Jeong K, Choi Y, Son JH, Park DW, Noh SK, Jeon TI, Huh YM, Haam S, Lee SK, Oh SJ, Suh JS. Terahertz spectroscopic imaging and properties of gastrointestinal tract in a rat model. BIOMEDICAL OPTICS EXPRESS 2014; 5:4162-4170. [PMID: 25574429 PMCID: PMC4285596 DOI: 10.1364/boe.5.004162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 05/20/2023]
Abstract
We have investigated basic properties of normal gastrointestinal (GI) tract tissues, including glandular stomach (GS), fore stomach (FS), large intestine (LI), small intestine (SI), and esophagus (ESO), from a rat model using terahertz (THz) reflection imaging and spectroscopy. The THz images collected from stratified squamous epithelia (SSE) of FS and ESO show a lower peak-to-peak value compared to those from columnar epithelia (CE) of GS, LI, or SI because the SSE contains less water than CE. The refractive index and absorption coefficient of FS were less than those of GS or LI, both having values similar to those of water. Additionally, we report internal reflection THz signals from ESO, although we were unable to determine the exact interface for this internal reflection.
Collapse
Affiliation(s)
- Young Bin Ji
- Yonsei Institute of Convergence Technology, Yonsei University, Seoul 120-752,
South Korea
| | - Sang-Hoon Kim
- YUMS-KRIBB Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul 120-752,
South Korea
| | - Kiyoung Jeong
- Graduate Program for Nanomedical Science, Yonsei University, Seoul 120-749
South Korea
| | - Yuna Choi
- YUMS-KRIBB Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul 120-752,
South Korea
| | - Joo-Hiuk Son
- Department of Physics, University of Seoul, Seoul 130-743,
South Korea
| | - Dong Woo Park
- Divsion of Advanced Materials Engineering, Chonbuk National University, Jeonju 561-756,
South Korea
- Nano Materials Evaluation Center, Korea Research Institute of Standards and Science, Daejeon 305-340,
South Korea
| | - Sam Kyu Noh
- Nano Materials Evaluation Center, Korea Research Institute of Standards and Science, Daejeon 305-340,
South Korea
| | - Tae-In Jeon
- Division of Electrical and Electronics Engineering, Korea Maritime University, Busan 606-791,
South Korea
| | - Yong-Min Huh
- YUMS-KRIBB Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul 120-752,
South Korea
- Department of Radiology, Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 120-752,
South Korea
| | - Seungjoo Haam
- Yonsei Institute of Convergence Technology, Yonsei University, Seoul 120-752,
South Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749,
South Korea
| | - Sang Kil Lee
- Department of Medicine, College of Medicine, Yonsei University, Seoul 120-752,
South Korea
| | - Seung Jae Oh
- YUMS-KRIBB Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul 120-752,
South Korea
| | - Jin-Suck Suh
- YUMS-KRIBB Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul 120-752,
South Korea
- Department of Radiology, Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 120-752,
South Korea
| |
Collapse
|
50
|
Hou D, Li X, Cai J, Ma Y, Kang X, Huang P, Zhang G. Terahertz spectroscopic investigation of human gastric normal and tumor tissues. Phys Med Biol 2014; 59:5423-40. [PMID: 25164759 DOI: 10.1088/0031-9155/59/18/5423] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human dehydrated normal and cancerous gastric tissues were measured using transmission time-domain terahertz spectroscopy. Based on the obtained terahertz absorption spectra, the contrasts between the two kinds of tissue were investigated and techniques for automatic identification of cancerous tissue were studied. Distinctive differences were demonstrated in both the shape and amplitude of the absorption spectra between normal and tumor tissue. Additionally, some spectral features in the range of 0.2~0.5 THz and 1~1.5 THz were revealed for all cancerous gastric tissues. To systematically achieve the identification of gastric cancer, principal component analysis combined with t-test was used to extract valuable information indicating the best distinction between the two types. Two clustering approaches, K-means and support vector machine (SVM), were then performed to classify the processed terahertz data into normal and cancerous groups. SVM presented a satisfactory result with less false classification cases. The results of this study implicate the potential of the terahertz technique to detect gastric cancer. The applied data analysis methodology provides a suggestion for automatic discrimination of terahertz spectra in other applications.
Collapse
Affiliation(s)
- Dibo Hou
- Department of Control Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|