1
|
Li Y, Yuan K, Deng C, Tang H, Wang J, Dai X, Zhang B, Sun Z, Ren G, Zhang H, Wang G. Biliary stents for active materials and surface modification: Recent advances and future perspectives. Bioact Mater 2024; 42:587-612. [PMID: 39314863 PMCID: PMC11417150 DOI: 10.1016/j.bioactmat.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Demand for biliary stents has expanded with the increasing incidence of biliary disease. The implantation of plastic or self-expandable metal stents can be an effective treatment for biliary strictures. However, these stents are nondegradable and prone to restenosis. Surgical removal or replacement of the nondegradable stents is necessary in cases of disease resolution or restenosis. To overcome these shortcomings, improvements were made to the materials and surfaces used for the stents. First, this paper reviews the advantages and limitations of nondegradable stents. Second, emphasis is placed on biodegradable polymer and biodegradable metal stents, along with functional coatings. This also encompasses tissue engineering & 3D-printed stents were highlighted. Finally, the future perspectives of biliary stents, including pro-epithelialization coatings, multifunctional coated stents, biodegradable shape memory stents, and 4D bioprinting, were discussed.
Collapse
Affiliation(s)
- Yuechuan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Hui Tang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Jinxuan Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Bing Zhang
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ziru Sun
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Guiying Ren
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Wang W, Luan Z, Shu Z, Xu K, Wang T, Liu S, Wu X, Liu H, Ye S, Dan R, Zhao X, Yang S, Xing M, Fan C. Biosynthetic Plastics as Tunable Elastic and Visible Stent with Shape-Memory to Treat Biliary Stricture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303779. [PMID: 37552006 PMCID: PMC10582434 DOI: 10.1002/advs.202303779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 08/09/2023]
Abstract
Common biliary tract is ≈4 mm in diameter to deliver bile from liver to small intestine to help digestion. The abnormal narrowing leads to severe symptoms such as pain and nausea. Stents are an effective treatment. Compared with non-degradable stents which require repeated removal, biodegradable stents have the advantage of reducing secondary injury related to endoscopic operation and patient burden. However, current biodegradable materials may cause tissue hyperplasia and the treatment method does not target etiology of stricture. So recurrence rates after biodegradable stent implantation are still high. Here, a biodegradable helical stent fabricated from biosynthetic P(3HB-co-4HB) is reported. Tunable properties can be acquired through altering culture substrates. Stent shows shape memory in various solvents. The stent has an optimized design with helical structure and outer track. The self-expanding of helical structure and double drainage realized by outer track greatly improve drainage of bile. Importantly, stent-loading triamcinolone acetonide can inhibit proliferation of fibroblasts and reduce incidence of restricture. Therapeutic effect is also demonstrated in minipigs with biliary stricture. The results of minipig experiments show that biliary duct in treatment group is unobstructed and tissue hyperplasia is effectively inhibited.
Collapse
Affiliation(s)
- Wei Wang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Zhaohui Luan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Zhenzhen Shu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Kaige Xu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Tongchuan Wang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shuang Liu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Xiaozhuo Wu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Hangzong Liu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shaosong Ye
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Ruijue Dan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Xiaoyan Zhao
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shiming Yang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Office of Science and Technology of ChongqingNo. 2 Xingai roadChongqing, Yubei401147China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay LaboratoryChongqing400064China
| | - Malcolm Xing
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Chaoqiang Fan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Office of Science and Technology of ChongqingNo. 2 Xingai roadChongqing, Yubei401147China
| |
Collapse
|
3
|
Moutzoukis M, Argyriou K, Kapsoritakis A, Christodoulou D. Endoscopic luminal stenting: Current applications and future perspectives. World J Gastrointest Endosc 2023; 15:195-215. [PMID: 37138934 PMCID: PMC10150289 DOI: 10.4253/wjge.v15.i4.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Endoscopic luminal stenting (ELS) represents a minimally invasive option for the management of malignant obstruction along the gastrointestinal tract. Previous studies have shown that ELS can provide rapid relief of symptoms related to esophageal, gastric, small intestinal, colorectal, biliary, and pancreatic neoplastic strictures without compromising cancer patients’ overall safety. As a result, in both palliative and neoadjuvant settings, ELS has largely surpassed radiotherapy and surgery as a first-line treatment modality. Following the abovementioned success, the indications for ELS have gradually expanded. To date, ELS is widely used in clinical practice by well-trained endoscopists in managing a wide variety of diseases and complications, such as relieving non-neoplastic obstructions, sealing iatrogenic and non-iatrogenic perforations, closing fistulae and treating post-sphincterotomy bleeding. The abovementioned development would not have been achieved without corresponding advances and innovations in stent technology. However, the technological landscape changes rapidly, making clinicians’ adaptation to new technologies a real challenge. In our mini-review article, by systematically reviewing the relevant literature, we discuss current developments in ELS with regard to stent design, accessories, techniques, and applications, expanding the research basis that was set by previous studies and highlighting areas that need to be further investigated.
Collapse
Affiliation(s)
- Miltiadis Moutzoukis
- Department of Gastroenterology, University Hospital of Ioannina, Ioannina GR45333, Greece
| | - Konstantinos Argyriou
- Department of Gastroenterology, Medical School and University Hospital of Larissa, Larissa GR41334, Greece
| | - Andreas Kapsoritakis
- Department of Gastroenterology, Medical School and University Hospital of Larissa, Larissa GR41334, Greece
| | - Dimitrios Christodoulou
- Department of Gastroenterology, Medical School and University Hospital of Ioannina, Ioannina GR45500, Greece
| |
Collapse
|
4
|
Kim JH, Ha DH, Han ES, Choi Y, Koh J, Joo I, Kim JH, Cho DW, Han JK. Feasibility and safety of a novel 3D-printed biodegradable biliary stent in an in vivo porcine model: a preliminary study. Sci Rep 2022; 12:15875. [PMID: 36151222 PMCID: PMC9508112 DOI: 10.1038/s41598-022-19317-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
To assess the feasibility and safety of a novel 3D-printed biodegradable biliary stent using polycaprolactone (PCL) in an in vivo porcine model. In this animal study using domestic pigs, biodegradable radiopaque biliary stents made of polycaprolactone (PCL) and barium sulfate were produced using 3D printing and surgically inserted into the common bile duct (CBD) of pigs (stent group, n = 12). Another five pigs were allocated to the control group that only underwent resection and anastomosis of the CBD without stent insertion. To check the position and status of the stents and stent-related complications, follow-up computed tomography (CT) was performed every month. The pigs were sacrificed 1 or 3 months after surgery, and their excised CBD specimens were examined at both the macroscopic and microscopic levels. Three pigs (one in the stent group and two in the control group) died within one day after surgery and were excluded from further analysis; the remaining 11 in the stent group and 3 in the control group survived the scheduled follow-up period (1 month, 5 and 1; and 3 months, 6 and 2 in stent and control groups, respectively). In all pigs, no clinical symptoms or radiologic evidence of biliary complications was observed. In the stent group (n = 11), stent migration (n = 1 at 3 months; n = 2 at 1 month) and stent fracture (n = 3 at 2 months) were detected on CT scans. Macroscopic evaluation of the stent indicated no significant change at 1 month (n = 3) or fragmentation with discoloration at 3 months (n = 5). On microscopic examination of CBD specimens, the tissue inflammation score was significantly higher in the stent group than in the control group (mean ± standard deviation (SD), 5.63 ± 2.07 vs. 2.00 ± 1.73; P = 0.039) and thickness of fibrosis of the CBD wall was significantly higher than that of the control group (0.46 ± 0.12 mm vs. 0.21 ± 0.05 mm; P = 0.012). Despite mild bile duct inflammation and fibrosis, 3D-printed biodegradable biliary stents showed good feasibility and safety in porcine bile ducts, suggesting their potential for use in the prevention of postoperative biliary strictures.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital, 28, Yongon-dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Dong-Heon Ha
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eui Soo Han
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, 28, Yongon-dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, 28, Yongon-dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, 28, Yongon-dong, Chongno-gu, Seoul, 110-744, Republic of Korea.
| |
Collapse
|
5
|
Jang SI, Fang S, Nahm JH, Cho JH, Do MY, Lee SY, Jeong S, Lee DH, Lee DK. Preclinical evaluation of endoscopic placement of a steroid-eluting metal stent in an in vivo porcine benign biliary stricture model. Sci Rep 2022; 12:8864. [PMID: 35614115 PMCID: PMC9132970 DOI: 10.1038/s41598-022-12957-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
Treatment of benign biliary strictures (BBS) using fully covered self-expandable metal stents (FCSEMS) has a high success rate, but recurrence can occur. Corticosteroids may be useful based on their anti-fibrotic and anti-inflammatory effects. We investigated the safety and efficacy of corticosteroid-eluting FCSEMS in an animal model. BBSs were created by radiofrequency ablation in 12 mini-pigs. Four weeks later, FCSEMS coated with 0 mg (control), 15 mg (steroid 1 × group), or 30 mg (steroid 2 × group) triamcinolone were inserted endoscopically. The in vitro drug release assay revealed that the optimal stent had 15 mg of triamcinolone and a hydrophilic membrane. No transmural necrosis or perforation occurred in any animal. Fibrous wall thickness tended to decrease macroscopically and microscopically in a triamcinolone dose-dependent manner (control vs. steroid 2 × group: 773.1 vs. 468.5 µm, P = 0.037). Thickness also decreased over time in the steroid 2 × group (3 days vs. 4 weeks: 907.9 vs. 468.5 µm, P = 0.025). Blood parameters tended to improve after stent insertion. In a porcine BBS model, steroid-eluting FCSEMS showed potential as a safe and effective treatment modality to reduce fibrotic tissue. Studies are required to confirm their safety and efficacy in humans with refractory BBS.
Collapse
Affiliation(s)
- Sung Ill Jang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Sungsoon Fang
- Severance Biomedical Science Institute, BK21 Plus Project for Medical Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hae Nahm
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| | - Min Young Do
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Su Yeon Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Seok Jeong
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Don Haeng Lee
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
- Utah-Inha DDS & Advanced Therapeutics Research Center, Incheon, Republic of Korea
| | - Dong Ki Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
6
|
Choudhury S, Asthana S, Homer-Vanniasinkam S, Chatterjee K. Emerging Trends in Biliary Stents: A Materials and Manufacturing Perspective. Biomater Sci 2022; 10:3716-3729. [DOI: 10.1039/d2bm00234e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biliary stent technology has come a long way since its inception. There have been significant advancements in materials used, designs, and deployment strategies. Options have expanded from thermoplastic and metallic...
Collapse
|
7
|
Inchingolo R, Acquafredda F, Ferraro V, Laera L, Surico G, Surgo A, Fiorentino A, Marini S, de'Angelis N, Memeo R, Spiliopoulos S. Non-surgical treatment of hilar cholangiocarcinoma. World J Gastrointest Oncol 2021; 13:1696-1708. [PMID: 34853644 PMCID: PMC8603446 DOI: 10.4251/wjgo.v13.i11.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/30/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer of the biliary confluence also known as hilar cholangiocarcinoma (HC) or Klatskin tumor, is a rare type of neoplastic disease constituting approximately 40%-60% of intrahepatic malignancies, and 2% of all cancers. The prognosis is extremely poor and the majority of Klatskin tumors are deemed unresectable upon diagnosis. Most patients with unresectable bile duct cancer die within the first year after diagnosis, due to hepatic failure, and/or infectious complications secondary to biliary obstruction. Curative treatments include surgical resection and liver transplantation in highly selected patients. Nevertheless, very few patients are eligible for surgery or transplant at the time of diagnosis. For patients with unresectable HC, radiotherapy, chemotherapy, photodynamic therapy, and liver-directed minimally invasive procedures such as percutaneous image-guided ablation and intra-arterial chemoembolization are recommended treatment options. This review focuses on currently available treatment options for unresectable HC and discusses future perspectives that could optimize outcomes.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Interventional Radiology Unit, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70124, Italy
| | - Fabrizio Acquafredda
- Interventional Radiology Unit, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70124, Italy
| | - Valentina Ferraro
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Letizia Laera
- Department of Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Gianmarco Surico
- Department of Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Alba Fiorentino
- Department of Radiation Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Stefania Marini
- Department of Radiology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Nicola de'Angelis
- Unit of Minimally Invasive and Robotic Digestive Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Stavros Spiliopoulos
- 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Athens 12461, Greece
| |
Collapse
|
8
|
Tian L, Lu Z, Lei L, Yang N, Chen Z, Lu B, Jin Z, Shen Y, Guo S. Preparation, characterization and primary evaluation of trilayered biliary stent films for anti-cholangiocarcinoma and anti-biofilm formation. Int J Pharm 2021; 606:120869. [PMID: 34245845 DOI: 10.1016/j.ijpharm.2021.120869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
Excessive growth of tumor within biliary wall and formation of biofilm on inner surface of stent can cause restenosis or even obstruction after stent implantation. Therefore, it is important and valuable to develop a new biliary stent for anti-cholangiocarcinoma and anti-biofilm formation. Herein, we designed, prepared and primarily evaluated a new trilayered film for biliary stents consisting of one poly (lactic acid) (PLA) layer loaded with anti-tumor paclitaxel (PTX layer), one middle PLA isolation layer (isolation layer) and one PLA layer loaded with antimicrobial ofloxacin (OFLX layer). It is postulated that the PTX layer releases drug towards biliary wall with tumor, the OFLX layer releases drug towards lumen of bile duct and the isolation layer is used to separate from the PTX layer and the OFLX layer and facilitate drug release in unidirectional way. The prepared trilayered films were characterized in terms of morphology, microstructure, crystallinity and biodegradability. It was found that the films could effectively tune drug release by addition of different amounts of drug or PEG, release PTX and OFLX in opposite directions, effectively inhibit the proliferation of human cholangiocarcinoma RBE cells, the adherence of E. coli and S. aureus and the formation of biofilm in vitro. It is potential that the trilayered films can be used to fabricate a new biliary stent with a dual function of anti-cholangiocarcinoma and anti-biofilm formation.
Collapse
Affiliation(s)
- Liu Tian
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhanjun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai 200080, China
| | - Lei Lei
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ning Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoyang Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Beike Lu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhu Jin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
9
|
The Exploration of a Novel Biodegradable Drug-Eluting Biliary Stent: Preliminary Work. Cardiovasc Intervent Radiol 2021; 44:1633-1642. [PMID: 34240231 DOI: 10.1007/s00270-021-02892-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/04/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To explore the degradation, drug release, and mechanical properties of drug-incorporated films made of different ratios of poly(lactic-co-glycolic acid) (PLGA) and different amounts of paclitaxel (PTX), which may serve as the material platform for the manufacturing of biodegradable drug-eluting biliary stents. MATERIALS AND METHODS PLGA of different lactic acid/glycolic acid ratios (50/50, 70/30, and 80/20) and 0%, 10, 20, and 30% weight by weight (w/w) PTX was mixed to make PLGA films, which were then cut into small pieces for further testing. Films were immersed in phosphate-buffered saline (pH 7.4) for a maximum of 11 weeks. Samples were taken randomly at Day 2, 4, 6, 8, 10, 12, 14, and weekly thereafter until Week 11 to test tensile strength, weight loss, pH value of the soaking solution, and drug release. The morphology of films was observed using scanning electron microscope (SEM). RESULTS At Week 10 of degradation, PLGA 80/20 still withstood a tensile strength of 9.7 newton (N), while PLGA 50/50 and 70/30 cracked spontaneously since Day 4. At Week 11, weight loss of PLGA 50/50, 70/30, and 80/20 was 95.15, 82.32, and 16.17%, respectively; and the lowest pH value of soaking solution was 1.87, 1.95, and 6.58, respectively. Drug release of 10, 20, and 30% PTX groups was 3.52-4.48%, 1.90-2.26%, and 1.44-2.06%, respectively. SEM proved smooth films before degradation; however, after the tensile strength was lost, cracks could be seen. CONCLUSION The degradation rate of PLGA can be controlled by altering lactic acid/glycolic acid ratio. Overall, PLGA 50/50 and 70/30 degrade significantly faster than 80/20. PLGA can serve as an effective drug carrier for PTX while being the stent strut, and PTX can be slowly released as PLGA degrades.
Collapse
|
10
|
Arafat M, Song Y, Brewer K, Fouladian P, Parikh A, Albrecht H, Blencowe A, Garg S. Pharmaceutical Development of 5-Fluorouracil-Eluting Stents for the Potential Treatment of Gastrointestinal Cancers and Related Obstructions. Drug Des Devel Ther 2021; 15:1495-1507. [PMID: 33859473 PMCID: PMC8043784 DOI: 10.2147/dddt.s299401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Drug-eluting gastrointestinal (GI) stents are emerging as promising platforms for the treatment of GI cancers and provide the combined advantages of mechanical support to prevent lumen occlusion and as a reservoir for localized drug delivery to tumors. Therefore, in this work we present a detailed quality assurance study of 5-fluorouracil (5FU) drug-eluting stents (DESs) as potential candidates for the treatment of obstructive GI cancers. METHODS The 5FU DESs were fabricated via a simple two-step sequential dip-coating process of commercial GI self-expanding nitinol stents with a 5FU-loaded polyurethane basecoat and a drug-free protective poly(ethylene-co-vinyl acetate) topcoat. The drug loading, content uniformity and drug stability were determined using a validated high-performance liquid chromatography (HPLC) method, which is also recommended in the United States Pharmacopeia. In vitro drug release studies were performed in phosphate buffered saline to determine the drug releasing properties of the two 5FU-loaded stents. Gas chromatography (GC) and HPLC were employed to determine total residual tetrahydrofuran and N,N-dimethylformamide in the stents remaining from the manufacturing process. Sterilization of the stents was performed using gamma radiation and stability testing was carried out for 3 months. RESULTS The drug loading analysis revealed excellent uniformity in the distribution of 5FU between and within individual stents. Determination of drug stability in the biorelevant release media confirmed that 5FU remains stable over 100 d. In vitro drug release studies from the stents revealed sustained release of 5FU across two different time scales (161 and 30 d), and mathematical modeling of drug release profiles revealed a diffusion-controlled mechanism for the sustained 5FU release. GC and HPLC analysis revealed that the daily residual solvent leached from the stents was below the United States (US) Food and Drug Administration (FDA) guidelines, and therefore, unlikely to cause localized/systemic toxicities. Sterilization of the stents with gamma radiation and accelerated stability tests over a period of 3 months revealed no significant effect on the stability or in vitro release of 5FU. CONCLUSION Our results demonstrate that the 5FU DESs meet relevant quality standards and display favourable drug release characteristics for the potential treatment of GI cancers and related obstructions.
Collapse
Affiliation(s)
- Mohammad Arafat
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Kyle Brewer
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Paris Fouladian
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ankit Parikh
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Hugo Albrecht
- Drug Discovery and Development Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
11
|
Hamada T, Nakai Y, Isayama H, Koike K. Antireflux metal stent for biliary obstruction: Any benefits? Dig Endosc 2021; 33:310-320. [PMID: 32250476 DOI: 10.1111/den.13679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Endoscopic retrograde cholangiopancreatography with stent placement has been utilized as standard palliative management of distal malignant biliary obstruction (MBO). Compared to plastic stents, metal stents can provide longer-term relief of symptoms. When a large-bore metal stent is placed across the ampulla, patients are predisposed to the risk of cholangitis or stent dysfunction due to reflux of duodenal contents. To mitigate the risk of adverse events associated with the duodenobiliary reflux, efforts have been directed to development of antireflux metal stents (ARMSs). The antireflux property has been introduced through adding of an antireflux valve to the duodenal stent end. Evidence from clinical studies indicates that ARMSs may not only reduce the risk of ascending cholangitis during follow-up but also prolong stent patency time. However, the results of clinical studies testing ARMSs are inconsistent owing to heterogeneous designs of antireflux valves and stent bodies. Metal stents are increasingly indicated for benign biliary strictures and MBO in the setting of neoadjuvant chemotherapy, and therefore, research is warranted to evaluate ARMSs for those indications. Given that endoscopic ultrasound (EUS)-guided transmural biliary drainage has gained popularity, the optimal timing of placing an ARMS in relation to EUS-guided and percutaneous drainage should be investigated. Development and evaluation of ARMSs require an integrative approach utilizing phantom and animal models, measurements of stent mechanical properties, and in vivo functional study after stent placement. In this review article, we summarize updated evidence on ARMSs for MBO and discuss issues that should be addressed in future studies.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Departments of, Department of, Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yousuke Nakai
- Departments of, Department of, Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of, Endoscopy and Endoscopic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Isayama
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuhiko Koike
- Departments of, Department of, Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Development and In Vitro Evaluation of 5-Fluorouracil-Eluting Stents for the Treatment of Colorectal Cancer and Cancer-Related Obstruction. Pharmaceutics 2020; 13:pharmaceutics13010017. [PMID: 33374233 PMCID: PMC7823773 DOI: 10.3390/pharmaceutics13010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Self-expanding metal stents (SEMSs) are currently the gold standard for the localised management of malignant gastrointestinal (GI) stenosis and/or obstructions. Despite encouraging clinical success, in-stent restenosis caused by tumour growth is a significant challenge. Incorporating chemotherapeutic drugs into GI stents is an emerging strategy to provide localised and sustained release of drugs to intestinal malignant tissues to prevent tumour growth. Therefore, the aim of this work was to develop and evaluate a local GI stent-based delivery system that provides a controlled release of 5-fluorouracil (5FU) over a course of several weeks to months, for the treatment of colorectal cancer and cancer-related stenosis/obstructions. The 5FU-loaded GI stents were fabricated via sequential dip-coating of commercial GI stents with a drug-loaded polyurethane (PU) basecoat and a drug-free poly(ethylene-co-vinyl acetate) (PEVA) topcoat. For comparison, two types of commercial stents were investigated, including bare and silicone (Si) membrane-covered stents. The physicochemical properties of the 5FU-loaded stents were evaluated using photoacoustic Fourier-transform infrared (PA-FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and thermal analysis. In vitro release studies in biological medium revealed that the 5FU-loaded stents provided a sustained release of drug over the period studied (18 d), and cell viability, cell cycle distribution and apoptosis assays showed that the released 5FU had comparable anticancer activity against human colon cancer cells (HCT-116) to pure 5FU. This study demonstrates that dip-coating is a facile and reliable approach for fabricating drug-eluting stents (DESs) that are promising candidates for the treatment of GI obstructions and/or restenosis.
Collapse
|
13
|
Jha AK, Jha P, Jha SK, Keshari R. Plastic versus metal stents for inoperable gallbladder cancer with hilar biliary obstruction: the jury is still out. Ann Gastroenterol 2020; 34:12-19. [PMID: 33414616 PMCID: PMC7774665 DOI: 10.20524/aog.2020.0548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/04/2020] [Indexed: 12/09/2022] Open
Abstract
In unresectable malignant hilar obstruction, adequate biliary drainage can be achieved with endoscopic placement of plastic or metal stents. Stent patency and patient survival may differ, depending on the primary disease, disease progression and stent type. Metal and plastic stents were compared in patients with malignant hilar strictures in several studies, but these studies mainly included patients who had cholangiocarcinoma, without taking into consideration potential differences in the invasion properties of tumor cells, histological differentiation and the biological behavior of different tumors. Gallbladder cancer (GBC) is the most common malignancy of the biliary tract, especially in the Indian subcontinent and Latin America. About half the patients with GBC present with jaundice, which usually means the tumor is inoperable. Palliative endoscopic stenting remains the first-line treatment of unresectable GBC with biliary obstruction. Primary disease progression is faster in GBC compared to cholangiocarcinoma. There is a paucity of data on the selection of stents for inoperable GBC with hilar biliary obstruction. This review focuses on the published literature related to the selection of stents for unresectable GBC with hilar obstruction.
Collapse
Affiliation(s)
- Ashish Kumar Jha
- Department of Gastroenterology, Indira Gandhi Institute of Medical Sciences, Patna, India
| | - Praveen Jha
- Department of Gastroenterology, Indira Gandhi Institute of Medical Sciences, Patna, India
| | - Sharad Kumar Jha
- Department of Gastroenterology, Indira Gandhi Institute of Medical Sciences, Patna, India
| | - Ravi Keshari
- Department of Gastroenterology, Indira Gandhi Institute of Medical Sciences, Patna, India
| |
Collapse
|
14
|
Xiao JB, Weng JY, Hu YY, Deng GL, Wan XJ. Feasibility and efficacy evaluation of metallic biliary stents eluting gemcitabine and cisplatin for extrahepatic cholangiocarcinoma. World J Gastroenterol 2020; 26:4589-4606. [PMID: 32884219 PMCID: PMC7445865 DOI: 10.3748/wjg.v26.i31.4589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Effective endoscopic management is fundamental for the treatment of extrahepatic cholangiocarcinoma (ECC). However, current biliary stents that are widely used in clinical practice showed no antitumor effect. Drug-eluting stents (DESs) may achieve a combination of local chemotherapy and biliary drainage to prolong stent patency and improve prognosis.
AIM To develop novel DESs coated with gemcitabine (GEM) and cisplatin (CIS)-coloaded nanofilms that can maintain the continuous and long-term release of antitumor agents in the bile duct to inhibit tumor growth and reduce systemic toxicity.
METHODS Stents coated with different drug-eluting components were prepared by the mixed electrospinning method, with poly-L-lactide-caprolactone (PLCL) as the drug-loaded nanofiber membrane and GEM and/or CIS as the antitumor agents. Four different DESs were manufactured with four drug-loading ratios (5%, 10%, 15%, and 20%), including bare-loaded (PLCL-0), single-drug-loaded (PLCL-GEM and PLCL-CIS), and dual-drug-loaded (PLCL-GC) stents. The drug release property, antitumor activity, and biocompatibility were evaluated in vitro and in vivo to confirm the feasibility and efficacy of this novel DES for ECC.
RESULTS The in vitro drug release study showed the stable, continuous release of both GEM and CIS, which was sustained for over 30 d without an obvious initial burst, and a higher drug-loaded content induced a lower release rate. The drug-loading ratio of 10% was used for further experiments due to its ideal inhibitory efficiency and relatively low toxicity. All drug-loaded nanofilms effectively inhibited the growth of EGI-1 cells in vitro and the tumor xenografts of nude mice in vivo; in addition, the dual-loaded nanofilm (PLCL-GC) had a significantly better effect than the single-drug-loaded nanofilms (P < 0.05). No significant differences in the serological analysis (P > 0.05) or histopathological changes were observed between the single-loaded and drug-loaded nanofilms after stent placement in the normal porcine biliary tract.
CONCLUSION This novel PLCL-GEM and CIS-eluting stent maintains continuous, stable drug release locally and inhibits tumor growth effectively in vitro and in vivo. It can also be used safely in normal porcine bile ducts. We anticipate that it might be considered an alternative strategy for the palliative therapy of ECC patients.
Collapse
Affiliation(s)
- Jing-Bo Xiao
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
- Hospitalist and Internal Medicine Inpatient Department, Shanghai Jiahui International Hospital, Shanghai 200233, China
| | - Jun-Yong Weng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
| | - Yang-Yang Hu
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
| | - Gui-Long Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
| | - Xin-Jian Wan
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
15
|
Jang SI, Fang S, Baek YY, Lee DH, Na K, Lee SY, Lee DK. Local Delivery of Gemcitabine Inhibits Pancreatic and Cholangiocarcinoma Tumor Growth by Promoting Epidermal Growth Factor Receptor Degradation. Int J Mol Sci 2020; 21:ijms21051605. [PMID: 32111094 PMCID: PMC7084314 DOI: 10.3390/ijms21051605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Gemcitabine is clinically used to treat certain types of cancers, including pancreatic and biliary cancer. We investigated the signal transduction pathways underlying the local antitumor effects of gemcitabine-eluting membranes (GEMs) implanted in pancreatic/biliary tumor-bearing nude mice. Here, we report that GEMs increased the E3 ubiquitin ligase c-CBL protein level, leading to degradation of epidermal growth factor receptor (EGFR) in SCK and PANC-1 cells. GEMs decreased the RAS and PI3K protein levels, leading to a reduction in the protein levels of active forms of downstream signaling molecules, including PDK, AKT, and GSK3β. GEM reduced proliferation of cancer cells by upregulating cell cycle arrest proteins, particularly p53 and p21, and downregulating cyclin D1 and cyclin B. Moreover, GEMs reduced the levels of proangiogenic factors, including VEGF, VEGFR2, CD31, and HIF-1α, and inhibited tumor cell migration and invasion by inducing the expression of E-cadherin and reducing that of N-cadherin, snail, and vimentin. We demonstrated that local delivery of gemcitabine using GEM implants inhibited tumor cell growth by promoting c-CBL-mediated degradation of EGFR and inhibiting the proliferation, angiogenesis, and epithelial–mesenchymal transition of pancreatic/biliary tumors. Use of gemcitabine-eluting stents can improve stent patency by inhibiting the ingrowth of malignant biliary obstructions.
Collapse
Affiliation(s)
- Sung Ill Jang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (S.I.J.); (Y.-Y.B.); (S.Y.L.)
| | - Sungsoon Fang
- Severance Biomedical Science Institute, BK21 Plus Project for Medical Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Yi-Yong Baek
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (S.I.J.); (Y.-Y.B.); (S.Y.L.)
| | - Don Haeng Lee
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon 22212, Korea;
- Utah-Inha DDS & Advanced Therapeutics Research Center, Incheon 22212, Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si 14662, Korea;
| | - Su Yeon Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (S.I.J.); (Y.-Y.B.); (S.Y.L.)
| | - Dong Ki Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (S.I.J.); (Y.-Y.B.); (S.Y.L.)
- Correspondence: ; Tel.: +82-2-2019-3214; Fax: +82-2-3463-3882
| |
Collapse
|
16
|
Jang SI, Jeong S, Lee DH, Na K, Yang S, Lee DK. Safety Evaluation of Paclitaxel-Eluting Biliary Metal Stent with Sodium Caprate in Porcine Biliary Tract. Gut Liver 2020; 13:471-478. [PMID: 30970427 PMCID: PMC6622565 DOI: 10.5009/gnl18454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Metallic stents designed to relieve malignant biliary obstruction are susceptible to occlusive tumor ingrowth or overgrowth. In a previous report, we described metallic stents covered with paclitaxel-incorporated membrane (MSCPM-I, II) to prevent occlusion from tumor ingrowth via antitumor effect. This new generation paclitaxeleluting biliary stent is further endowed with sodium caprate (MSCPM-III) for enhanced drug delivery. The purpose of this study is to examine the safety of its drug delivery system in the porcine biliary tract. Methods MSCPM-III (10% [wt/vol] paclitaxel) and covered metal stents (CMSs) were endoscopically inserted in porcine bile ducts in vivo. Histologic biliary changes, levels of paclitaxel released, and various serum analytes (albumin, alkaline phosphate, aspartate transaminase, alanine transaminase, total protein, total bilirubin, and direct bilirubin) were assessed. Results Based on the intensity of reactive inflammation and fibrosis, changes in porcine biliary epithelium secondary to implanted MSCPM-III were deemed acceptable (i.e., safe). Histologic features in the MSCPM-III and CMS groups did not differ significantly. In a related serum analysis, paclitaxel release from MSCPM-III stents was below the limit of detection for 28 days. Biochemical analyses were also similar for the two groups, and no evidence of hepatic or renal toxicity was found in animals receiving MSCPM-III stents. Conclusions In a prototypic porcine trial, this newly devised metal biliary stent incorporating both paclitaxel and sodium caprate appears to be safe in the porcine bile duct.
Collapse
Affiliation(s)
- Sung Ill Jang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Jeong
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Seoul, Korea.,Utah-Inha DDS & Advanced Therapeutics Research Center, Incheon, Korea
| | - Don Haeng Lee
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Seoul, Korea.,Utah-Inha DDS & Advanced Therapeutics Research Center, Incheon, Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Korea
| | - Sugeun Yang
- World Class Smart Lab, Department of New Drug Development, Inha University College of Medicine, Incheon, Korea
| | - Dong Ki Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Jeong SJ, Park J. Endoscopic Management of Benign Colonic Obstruction and Pseudo-Obstruction. Clin Endosc 2019; 53:18-28. [PMID: 31645090 PMCID: PMC7003002 DOI: 10.5946/ce.2019.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
There are a variety of causes of intestinal obstruction, with the most common cause being malignant diseases; however, volvulus, inflammatory bowel disease or diverticulitis, radiation injury, ischemia, and pseudo-obstruction can also cause colonic obstruction. These are benign conditions; however, delayed diagnosis of acute intestinal obstruction owing to these causes can cause critical complications, such as perforation. Therefore, high levels of clinical suspicion and appropriate treatment are crucial. There are variable treatment options for colonic obstruction, and endoscopic treatment is known to be a less invasive and an effective option for such. In this article, the authors review the causes of benign colonic obstruction and pseudo-obstruction and the role of endoscopy in treating them.
Collapse
Affiliation(s)
- Su Jin Jeong
- Division of Gastroenterology, Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jongha Park
- Division of Gastroenterology, Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
18
|
Arafat M, Fouladian P, Blencowe A, Albrecht H, Song Y, Garg S. Drug-eluting non-vascular stents for localised drug targeting in obstructive gastrointestinal cancers. J Control Release 2019; 308:209-231. [DOI: 10.1016/j.jconrel.2019.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023]
|
19
|
Jang HH, Park SB, Hong JS, Lee HL, Song YH, Kim J, Jung YH, Kim C, Kim DM, Lee SE, Jeong YI, Kang DH. Piperlongumine-Eluting Gastrointestinal Stent Using Reactive Oxygen Species-Sensitive Nanofiber Mats for Inhibition of Cholangiocarcinoma Cells. NANOSCALE RESEARCH LETTERS 2019; 14:58. [PMID: 30778693 PMCID: PMC6379506 DOI: 10.1186/s11671-019-2887-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 01/31/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The aim of this study is to fabricate drug-eluting gastrointestinal (GI) stent using reactive oxygen species (ROS)-sensitive nanofiber mats for treatment of cholangiocarcinoma (CCA) cell. A ROS-producing agent, piperlongumine (PL)-incorporated nanofiber mats were investigated for drug-eluting stent (DES) application. METHODS Selenocystamine-conjugated methoxy poly(ethylene glycol) (MePEG) was conjugated with poly(L-lactide) (PLA) to produce block copolymer (LEse block copolymer). Various ratios of poly(ε-caprolactone) (PCL) and LEse block copolymer were dissolved in organic solvent with PL, and then nanofiber mats were fabricated by electro-spinning techniques. RESULTS The higher amount of LEse in the blend of PCL/LEse resulted in the formation of granules while PCL alone showed fine nanofiber structure. Nanofiber mats composed of PCL/LEse polymer blend showed ROS-sensitive drug release, i.e., PL release rate from nanofiber mats was accelerated in the presence of hydrogen peroxide (H2O2) while nanofiber mats of PCL alone have small changes in drug release rate, indicating that PL-incorporated nanofiber membranes have ROS responsiveness. PL itself and PL released from nanofiber mats showed almost similar anticancer activity against various CCA cells. Furthermore, PL released from nanofiber mats properly produced ROS generation and induced apoptosis of CCA cells as well as PL itself. In HuCC-T1 cell-bearing mice, PL-incorporated nanofiber mats showed improvement in anticancer activity. CONCLUSION PL-incorporated ROS-sensitive nanofiber mats were coated onto GI stent and showed improved anticancer activity with ROS responsiveness. We suggested PL-incorporated ROS-sensitive nanofiber mats as a promising candidate for local treatment of CCA cells.
Collapse
Affiliation(s)
- Hyung Ha Jang
- School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612 South Korea
| | - Su Bum Park
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Jeong Sup Hong
- Division of Animal Care, Yonam College, Cheonan, Chungnam 31005 South Korea
| | - Hye Lim Lee
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Yeon Hui Song
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Jungsoo Kim
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Yun Hye Jung
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Chan Kim
- Amotech Co. Ltd, Incheon, Gyeonggi-do South Korea
| | - Doo-Man Kim
- Department of Photonics Engineering, Chonnam National University, Gwangju, 61186 South Korea
| | - Sang Eun Lee
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Young-Il Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Dae Hwan Kang
- School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612 South Korea
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| |
Collapse
|
20
|
Wang T, Zou H, Liu YX, Zhang XW. Effects of Paclitaxel-conjugated N-Succinyl-Hydroxyethyl Chitosan Film for Proliferative Cholangitis in Rabbit Biliary Stricture Model. Chin Med J (Engl) 2018. [PMID: 29521293 PMCID: PMC5865316 DOI: 10.4103/0366-6999.226904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Paclitaxel (PTX) could inhibit the growth of fibroblasts, which occurs in proliferative cholangitis and leads to biliary stricture. However, its use has been limited due to poor bioavailability and local administration for short time. This study designed and synthesized a new PTX-conjugated chitosan film (N-succinyl-hydroxyethyl chitosan containing PTX [PTX-SHEC]) and evaluated its safety and efficiency using in vivo and in vitro experiments. Methods: The SHEC conjugated with PTX was confirmed by nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FT-IR) measurements. Drug releases in vitro and in vivo were determined using high-performance liquid chromatography. Cell viability in vitro was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Rabbit biliary stricture model was constructed. All rabbits randomly divided into five groups (n = 8 in each group): the sham-operated rabbits were used as control (Group A), Groups B received laparotomies and suture, Group C received laparotomies and covered SHEC suture without the PTX coating, Group D received laparotomies and covered PTX-SHEC suture, and Group E received laparotomies and 1000 μmol/L PTX administration. Liver function tests and residual dosage of PTX from each group were measured by enzyme-linked immunosorbent assay. Histological data and α-smooth muscle actin (SMA) immunohistochemical staining of common bile duct were examined. Results: NMR and FT-IR indicated that PTX was successfully introduced, based on the appearance of signals at 7.41–7.99 ppm, 1.50 ppm, and 1.03 ppm, due to the presence of aromatic protons, methylene protons, and methyl protons of PTX, respectively. No bile leak was observed. The PTX-conjugated film could slowly release PTX for 4 weeks (8.89 ± 0.03 μg at day 30). The in vitro cell viability test revealed significantly different levels of toxicity between films with and without PTX (111.7 ± 4.0% vs. 68.1 ± 6.0%, P < 0.001), whereas no statistically significant difference was observed among the three sets of PTX-contained films (67.7 ± 5.4%, 67.2 ± 3.4%, and 59.1 ± 6.0%, P > 0.05). Histological examinations revealed that after 28 days of implantment, Groups D and E (but not Group C) had less granulation tissue and glandular hyperplasia in the site of biliary duct injury than Group B. The pattern was more obvious in Group D than Group E. Less α-SMA-positive cells were found in tissue from Groups D and E. Comparing with Group E, the liver function was improved significantly in Group D, including total bilirubin (2.69 ± 1.03 μmol/L vs. 0.81 ± 0.54 μmol/L, P = 0.014), alanine aminotransferase (87.13 ± 17.51 U/L vs. 42.12 ± 15.76 U/L, P = 0.012), and alkaline phosphatase (60.61 ± 12.31 U/L vs. 40.59 ± 8.78 U/L, P < 0.001). Conclusions: PTX-SHEC film effectively inhibites the myofibroblast proliferation and extracellular matrix over-deposition during the healing process of biliary reconstruction. This original film might offer a new way for reducing the occurrence of the benign biliary stricture.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101; Graduate Division, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hao Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Yun-Xia Liu
- Basic Medical Division, Experiment Teaching Center, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiao-Wen Zhang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101; Graduate Division, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
21
|
Jang SI, Lee SJ, Jeong S, Lee DH, Kim MH, Yoon HJ, Lee DK. Efficacy of a Multiplex Paclitaxel Emission Stent Using a Pluronic ® Mixture Membrane versus a Covered Metal Stent in Malignant Biliary Obstruction: A Prospective Randomized Comparative Study. Gut Liver 2018; 11:567-573. [PMID: 28335102 PMCID: PMC5491093 DOI: 10.5009/gnl16428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022] Open
Abstract
Background/Aims A drug-eluting stent for unresectable malignant biliary obstruction was developed to increase stent patency by preventing tumor ingrowth. The safety and efficacy of a new generation of metallic stents covered with a paclitaxel-incorporated membrane using a Pluronic® mixture (MSCPM-II) were compared prospectively with those of covered metal stents (CMSs) in patients with malignant biliary obstructions. Methods This study was initially designed as a prospective randomized trial but was closed early because of a high incidence of early occlusion. Therefore, the data were analyzed using the intent-to-treat method. A total of 72 patients with unresectable distal malignant biliary obstructions were prospectively enrolled. Results The two groups did not differ significantly in basic characteristics and mean follow-up period (MSCPM-II 194 days vs CMS 277 days, p=0.063). Stent occlusion occurred in 14 patients (35%) who received MSCPM-II and in seven patients (21.9%) who received CMSs. Stent patency and survival time did not significantly differ between the two groups (p=0.355 and p=0.570). The complications were mild and resolved by conservative management in both groups. Conclusions There were no significant differences in stent patency or patient survival in MSCPM-II and CMS patients with malignant biliary obstructions.
Collapse
Affiliation(s)
- Sung Ill Jang
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.,Department of Medicine, The Graduate School of Yonsei University, Yonsei University College of Medicine, Seoul, Korea
| | - Se Joon Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Jeong
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Don Haeng Lee
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, Korea.,Utah-Inha Drug Delivery System & Advanced Therapeutics Research Center, Incheon, Korea
| | - Myung-Hwan Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hong Jin Yoon
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Ki Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Kwak TW, Lee HL, Song YH, Kim C, Kim J, Seo SJ, Jeong YI, Kang DH. Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of cholangiocarcinoma cells. Int J Nanomedicine 2017; 12:7669-7680. [PMID: 29089762 PMCID: PMC5655133 DOI: 10.2147/ijn.s141920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this study was to fabricate a vorinostat (Zolinza™)-eluting nanofiber membrane-coated gastrointestinal (GI) stent and to study its antitumor activity against cholangiocarcinoma (CCA) cells in vitro and in vivo. Methods Vorinostat and poly(DL-lactide-co-glycolide) dissolved in an organic solvent was sprayed onto a GI stent to make a nanofiber-coated stent using an electro-spinning machine. Intact vorinostat and vorinostat released from nanofibers was used to assess anticancer activity in vitro against various CCA cells. The antitumor activity of the vorinostat-eluting nanofiber membrane-coated stent was evaluated using HuCC-T1 bearing mice. Results A vorinostat-incorporated polymer nanofiber membrane was formed on the surface of the GI stent. Vorinostat was continuously released from the nanofiber membrane over 10 days, and its release rate was higher in cell culture media than in phosphate-buffered saline. Released vorinostat showed similar anticancer activity against various CCA cells in vitro compared to that of vorinostat. Like vorinostat, vorinostat released from nanofibers induced acetylation of histone H4 and inhibited histone deacetylases 1⋅3⋅4/5/7 expression in vitro and in vivo. Furthermore, vorinostat nanofibers showed a higher tumor growth inhibition rate in HuCC-T1 bearing mice than vorinostat injections. Conclusion Vorinostat-eluting nanofiber membranes showed significant antitumor activity against CCA cells in vitro and in vivo. We suggest the vorinostat nanofiber-coated stent may be a promising candidate for CCA treatment.
Collapse
Affiliation(s)
- Tae Won Kwak
- Medical Convergence Textile Center, Gyeongbuk, Republic of Korea
| | - Hye Lim Lee
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea
| | - Yeon Hui Song
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea
| | - Chan Kim
- Amogreentech Co. Ltd. Gyeonggi-do, Republic of Korea
| | - Jungsoo Kim
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea
| | - Sol-Ji Seo
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea
| | - Young-Il Jeong
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea
| | - Dae Hwan Kang
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, Republic of Korea
| |
Collapse
|
23
|
Shaikh M, Zhang H, Wang H, Guo X, Song Y, Kanwar JR, Garg S. In Vitro and In Vivo Assessment of Docetaxel Formulation Developed for Esophageal Stents. AAPS PharmSciTech 2017; 18:130-137. [PMID: 26895019 DOI: 10.1208/s12249-016-0501-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/08/2016] [Indexed: 12/13/2022] Open
Abstract
Esophageal cancer (EC) mostly affects the elderly population and is frequently diagnosed at an advanced stage. Self-expanding metal stents (SEMS) are the most popular mode of palliation, but they are associated with reocclusion caused by tumor growth. To overcome this problem, docetaxel (DTX)-loaded polyurethane formulations were prepared for stent application. The films were evaluated against the cancer cell lines, OE-19 and OE-21, and normal esophageal cell line Het-1A. The DTX and the formulations were evaluated in vitro for the cytotoxicity and in vivo in nude mice. It was found that DTX and the formulations have a weak activity against the EC cell lines and an even weaker activity against Het-1A cell line. Preliminary in vivo studies showed skin toxicity in nude mice necessitating modification of the formulation. Reevaluation in a mouse xenograft model resulted in toxicity at high dose formulations while the low dose formulation exhibited modest advantage over commercial IV formulation; however, there was no significant difference between the commercial IV and blank formulation. DTX combination with an anti-cancer agent having complementary mode of action and non-overlapping toxicity could yield better outcome in future.
Collapse
Affiliation(s)
- Mohsin Shaikh
- Centre for Pharmaceutical Innovation and Development (CPID), School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Huihui Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Hongyuan Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Xiuli Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Yunmei Song
- Centre for Pharmaceutical Innovation and Development (CPID), School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Faculty of Health, Centre for Molecular and Medical Research, Deakin University, Pigdons Road, Waurn Ponds, Geelong, Victoria, 3216, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development (CPID), School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
24
|
Lee JH, Cassani LS, Bhosale P, Ross WA. The endoscopist's role in the diagnosis and management of pancreatic cancer. Expert Rev Gastroenterol Hepatol 2016; 10:1027-39. [PMID: 27087265 DOI: 10.1080/17474124.2016.1176910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer remains one of the most lethal malignancies with little improvement in survival over the past several decades in spite of advances in imaging, risk factor identification, surgical technique and chemotherapy. This disappointing outcome is mainly due to failures to make an early diagnosis. In fact, the majority of the patients present with inoperable advanced stages of the disease. Though some of the new tumor markers are promising, we are still in search of the one that has a high sensitivity and accuracy, yet is inexpensive and easy to obtain. The paradigm of management has shifted from up-front surgery followed by adjuvant chemotherapy to neoadjuvant chemoradiation followed by surgery, especially for borderline resectable cancers and even for some resectable cancers. In this article, we will critically assess the limitations of tumor markers and review the advancements in endoscopic techniques in the management of pancreatic cancer.
Collapse
Affiliation(s)
- Jeffrey H Lee
- a Department of Gastroenterology, Hepatology, and Nutrition , MD Anderson Cancer Center , Houston , TX , USA
| | - Lisa S Cassani
- b Division of Digestive Diseases, Department of Medicine , Emory University School of Medicine , Atlanta , GA , USA
| | - Priya Bhosale
- c Department of Radiology , MD Anderson Cancer Center , Houston , TX , USA
| | - William A Ross
- a Department of Gastroenterology, Hepatology, and Nutrition , MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
25
|
Abstract
Many advances have been achieved in biliary stenting over the past 30 years. Endoscopic stent placement has become the primary management therapy to relieve obstruction in patients with benign or malignant biliary tract diseases. Compared with plastic stents, a self-expandable metallic stent (SEMS) has been used for management in patients with malignant strictures because of a larger lumen and longer stent patency. Recently, SEMS has been used for various benign biliary strictures and leaks. In this article, we briefly review the characteristics of SEMS as well as complications of stent placement. We review the current guidelines for managing malignant and benign biliary obstructions. Recent developments in biliary stenting are also discussed.
Collapse
Affiliation(s)
- Hyeong Seok Nam
- Department of Internal Medicine, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Dae Hwan Kang
- Department of Internal Medicine, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
26
|
Shatzel J, Kim J, Sampath K, Syed S, Saad J, Hussain ZH, Mody K, Pipas JM, Gordon S, Gardner T, Rothstein RI. Drug eluting biliary stents to decrease stent failure rates: A review of the literature. World J Gastrointest Endosc 2016; 8:77-85. [PMID: 26839648 PMCID: PMC4724033 DOI: 10.4253/wjge.v8.i2.77] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/11/2015] [Accepted: 10/28/2015] [Indexed: 02/05/2023] Open
Abstract
Biliary stenting is clinically effective in relieving both malignant and non-malignant obstructions. However, there are high failure rates associated with tumor ingrowth and epithelial overgrowth as well as internally from biofilm development and subsequent clogging. Within the last decade, the use of prophylactic drug eluting stents as a means to reduce stent failure has been investigated. In this review we provide an overview of the current research on drug eluting biliary stents. While there is limited human trial data regarding the clinical benefit of drug eluting biliary stents in preventing stent obstruction, recent research suggests promise regarding their safety and potential efficacy.
Collapse
|
27
|
Kim EJ, Kim YJ. Stents for colorectal obstruction: Past, present, and future. World J Gastroenterol 2016; 22:842-852. [PMID: 26811630 PMCID: PMC4716082 DOI: 10.3748/wjg.v22.i2.842] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/22/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Since the development of uncovered self-expanding metal stents (SEMS) in the 1990s, endoscopic stents have evolved dramatically. Application of new materials and new designs has expanded the indications for enteral SEMS. At present, enteral stents are considered the first-line modality for palliative care, and numerous types of enteral stents are under development for extended clinical usage, beyond a merely palliative purpose. Herein, we will discuss the current status and the future development of lower enteral stents.
Collapse
|
28
|
Shaikh M, Choudhury NR, Knott R, Garg S. Engineering Stent Based Delivery System for Esophageal Cancer Using Docetaxel. Mol Pharm 2015; 12:2305-17. [PMID: 25936529 DOI: 10.1021/mp500851u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Esophageal cancer patients are often diagnosed as "advanced" cases. These patients are subjected to palliative stenting using self-expanding metallic stents (SEMS) to maintain oral alimentation. Unfortunately, SEMS get reoccluded due to tumor growth, in and over the stent struts. To investigate potential solutions to this problem, docetaxel (DTX) delivery films were prepared using PurSil AL 20 (PUS), which can be used as a covering material for the SEMS. Drug-polymer miscibility and interactions were studied. Bilayer films were prepared by adhering the blank film to the DTX loaded film in order to maintain the unidirectional delivery to the esophagus. In vitro release and the local DTX delivery were studied using in vitro permeation experiments. It was found that DTX and PUS were physically and chemically compatible. The bilayer films exhibited sustained release (>30 days) and minimal DTX permeation through esophageal tissues in vitro. The rate-determining step for the DTX delivery was calculated. It was found that >0.9 fraction of rate control lies with the esophageal tissues, suggesting that DTX delivery can be sustained for longer periods compared to the in vitro release observed. Thus, the bilayer films can be developed as a localized sustained delivery system in combination with the stent.
Collapse
Affiliation(s)
- Mohsin Shaikh
- †Centre for Pharmaceutical Innovation and Development (CPID), School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Namita Roy Choudhury
- ‡Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Robert Knott
- §ANSTO, Locked Bag 2001, Kirrawee, New South Wales 2232, Australia
| | - Sanjay Garg
- †Centre for Pharmaceutical Innovation and Development (CPID), School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
29
|
Nitinol stents loaded with a high dose of antitumor 5-fluorouracil or paclitaxel: esophageal tissue responses in a porcine model. Gastrointest Endosc 2015; 82:153-160.e1. [PMID: 25936448 DOI: 10.1016/j.gie.2015.02.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/18/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND A poor prognosis associated with esophageal cancer leads to surgical resection not suitable for most patients. Nitinol stents loaded with 50% 5-fluorouracil (5-FU) or paclitaxel (PTX), functioning both as a stent and local chemotherapy, could provide a new therapy modality for these patients. OBJECTIVE To investigate esophageal tissue responses to nitinol stents loaded with 50% 5-FU or PTX implanted in the esophagus of healthy pigs. DESIGN Twenty-three healthy Bama mini-pigs were randomly divided into 4 groups for stent implantation: group A (PTX stent, n = 13), group B (5-FU stent, n = 8), group C (blank film-covered stent, n = 1), and group D (bare stent, n = 1). Tissue responses were observed by endoscopy or pathologic analyses, and 5-FU or PTX concentrations were measured in the esophagus at the stent implantation site at different time points. SETTING Animal laboratory. INTERVENTIONS Endoscopic placement of esophagus stent. MAIN OUTCOME MEASUREMENTS Endoscopic examination, histology, and drug concentration analysis. RESULTS In general, the esophageal tissue responses varied according to different parts of 5-FU or PTX stent (middle part [drug-containing part] and bare ends [drug-free part]). Severe tissue responses at the bare ends of the stent included inflammation, ulceration, and granulation. However, the tissue responses were greatly reduced in the middle part of the stent. The drug concentrations in the esophagus that had contact with the 5-FU stent or PTX stent were very high, especially for the first period after implantation, which did not cause obvious tissue damage. LIMITATION Some subjects had incomplete follow-up because of unexpected deaths and stent migration. CONCLUSION The nitinol stents loaded with 50% 5-FU or PTX did not cause severe esophageal tissue responses, although there was a large concentration of the drug in these tissues.
Collapse
|
30
|
Abstract
Endoscopic stenting is increasingly being used in the management of gastrointestinal luminal obstruction, and has become the current treatment of choice for the palliation of blockage caused by malignant or benign growths. A variety of stents have been developed to enhance the efficacy of the procedure, and improvements are ongoing. In this article, we review the history of, and recent advances in, gastrointestinal stenting. We describe the rationale behind the design as well as the resulting outcome for each stent type.
Collapse
Affiliation(s)
- Jin-Seok Park
- Digestive Disease Center, Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Seok Jeong
- Digestive Disease Center, Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea. ; National Center of Efficacy Evaluation for the Development of Health Products Targeting Digestive Disorders (NCEED), Incheon, Korea
| | - Don Haeng Lee
- Digestive Disease Center, Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea. ; National Center of Efficacy Evaluation for the Development of Health Products Targeting Digestive Disorders (NCEED), Incheon, Korea. ; Utah-Inha DDS & Advanced Therapeutics Research Center, Incheon, Korea
| |
Collapse
|
31
|
Stents with specialized functions: drug-eluting stents and stents with antireflux devices. GASTROINTESTINAL INTERVENTION 2015. [DOI: 10.1016/j.gii.2015.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Park JS, Jeong S, Lee DH. Recent Advances in Gastrointestinal Stent Development. Clin Endosc 2015; 48:209-15. [PMID: 26064820 PMCID: PMC4461664 DOI: 10.5946/ce.2015.48.3.209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/06/2015] [Indexed: 12/17/2022] Open
Abstract
Endoscopic stenting is increasingly being used in the management of gastrointestinal luminal obstruction, and has become the current treatment of choice for the palliation of blockage caused by malignant or benign growths. A variety of stents have been developed to enhance the efficacy of the procedure, and improvements are ongoing. In this article, we review the history of, and recent advances in, gastrointestinal stenting. We describe the rationale behind the design as well as the resulting outcome for each stent type.
Collapse
Affiliation(s)
- Jin-Seok Park
- Digestive Disease Center, Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Seok Jeong
- Digestive Disease Center, Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea. ; National Center of Efficacy Evaluation for the Development of Health Products Targeting Digestive Disorders (NCEED), Incheon, Korea
| | - Don Haeng Lee
- Digestive Disease Center, Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea. ; National Center of Efficacy Evaluation for the Development of Health Products Targeting Digestive Disorders (NCEED), Incheon, Korea. ; Utah-Inha DDS & Advanced Therapeutics Research Center, Incheon, Korea
| |
Collapse
|
33
|
Molecular mechanism of local drug delivery with Paclitaxel-eluting membranes in biliary and pancreatic cancer: new application for an old drug. Gastroenterol Res Pract 2015; 2015:568981. [PMID: 25983747 PMCID: PMC4423024 DOI: 10.1155/2015/568981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022] Open
Abstract
Implantation of self-expanding metal stents (SEMS) is palliation for patients suffering from inoperable malignant obstructions associated with biliary and pancreatic cancers. Chemotherapeutic agent-eluting stents have been developed because SEMS are susceptible to occlusion by tumor in-growth. We reported recently that paclitaxel-eluting SEMS provide enhanced local drug delivery in an animal model. However, little is known about the molecular mechanisms by which paclitaxel-eluting stents attenuate tumor growth. We investigated the signal transduction pathways underlying the antiproliferative effects of a paclitaxel-eluting membrane (PEM) implanted in pancreatic/cholangiocarcinoma tumor bearing nude mice. Molecular and cellular alterations were analyzed in the PEM-implanted pancreatic/cholangiocarcinoma xenograft tumors by Western blot, immunoprecipitation, and immunofluorescence. The quantities of paclitaxel released into the tumor and plasma were determined by liquid chromatography-tandem mass spectroscopy. Paclitaxel from the PEM and its diffusion into the tumor inhibited angiogenesis, which involved suppression of mammalian target of rapamycin (mTOR) through regulation of hypoxia inducible factor (HIF-1) and increased apoptosis. Moreover, implantation of the PEM inhibited tumor-stromal interaction-related expression of proteins such as CD44, SPARC, matrix metalloproteinase-2, and vimentin. Local delivery of paclitaxel from a PEM inhibited growth of pancreatic/cholangiocarcinoma tumors in nude mice by suppressing angiogenesis via the mTOR and inducing apoptosis signal pathway.
Collapse
|
34
|
Blero D, Huberty V, Devière J. Novel biliary self-expanding metal stents: indications and applications. Expert Rev Gastroenterol Hepatol 2015; 9:359-67. [PMID: 25231201 DOI: 10.1586/17474124.2015.960395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endoscopic insertion of a self-expanding metal stent (SEMS) through a malignant common bile duct stricture is the first line of palliation for malignant jaundice. Patency of these stents remains a major concern. SEMS dysfunction can result from tumor ingrowth, overgrowth and/or clogging. Initial SEMS modifications involved covering the central part of the stent in order to reduce ingrowth and ultimately increase patency. Fully covered stents became available shortly after reports of their use in human patients. The potential removability and radial strength of SEMS have led to evaluation of their use in new indications including benign biliary strictures, post sphincterotomy bleeding and perforation. Other aspects of development include the addition of features such as anti-reflux valves, drug elution and spontaneous biodegradability. These aspects and their clinical implications are reviewed and discussed.
Collapse
Affiliation(s)
- Daniel Blero
- CHU Charleroi et Vésale, ISPPC, Université Libre de Bruxelles, 1 boulevard Zoé Drion, 6000 Charleroi, Belgium
| | | | | |
Collapse
|
35
|
Liu J, Wang Z, Wu K, Li J, Chen W, Shen Y, Guo S. Paclitaxel or 5-fluorouracil/esophageal stent combinations as a novel approach for the treatment of esophageal cancer. Biomaterials 2015; 53:592-9. [PMID: 25890755 DOI: 10.1016/j.biomaterials.2015.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/31/2022]
Abstract
Currently, esophageal cancer is rarely curable, and herein, a paclitaxel or 5-fluorouracil/esophageal stent combination (PTX or 5-FU/stent) was used to provide a new approach to treat this cancer. The PTX or 5-FU/stent was prepared by covering a nitinol stent with a bilayered polymer film that consisted of a layer of 50% PTX or 5-FU and a layer of drug-free backing. These treatment modalities were evaluated in vivo after implantation into the porcine esophagus. The percentages of the drugs that permeated from the backing layer over a period of 95 days were very small (0.61% for 5-FU), and an overwhelming majority of the PTX and the 5-FU was released from the other side of the film. During the follow-up period (120 days), the drug/stent was always maintained in the porcine esophagus, and did not show any obvious systemic or local toxicities. In contrast, this treatment had an effect on the inhibition of tissue proliferation and ulceration. In addition, the drug concentrations were highest in the esophagus compared with in the heart, liver, spleen, lung, kidney and blood (81500.0 ± 9475.2 ng/g vs. 3.9 ± 0.3 ng/mL of PTX in the plasma at 13 days). The PTX/stent and the 5-FU/stent have a dual function as both a stent and a local drug delivery device, which provides a potential treatment modality with high efficacy and non systematic toxicity for esophageal cancer.
Collapse
Affiliation(s)
- Jieying Liu
- School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Keqin Wu
- School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jing Li
- School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Weiluan Chen
- School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
36
|
Aguilar LE, Unnithan AR, Amarjargal A, Tiwari AP, Hong ST, Park CH, Kim CS. Electrospun polyurethane/Eudragit ® L100-55 composite mats for the pH dependent release of paclitaxel on duodenal stent cover application. Int J Pharm 2014; 478:1-8. [PMID: 25445536 DOI: 10.1016/j.ijpharm.2014.10.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 01/27/2023]
Abstract
A nanofiber composite mat of PU and Eudragit(®) L100-55 was created using electrospinning process. The pH dependent release of paclitaxel was successfully done with the use of PU/EL100-55 nanocomposite mats as the controlling platform. The morphology of the nanofiber composites was surveyed using FESEM and ratios of the polymers affects the diameter of the nanofiber. Characterization of the nanofiber composite mat was done using FTIR, DSC-TGA method. The release rate of paclitaxel was determined and analyzed by in vitro drug release method. In order to mimic the condition of a human duodenum, the fibers were submersed on PBS of different pH levels (4.0, 6.0,) respectively, and then analyzed using high performance liquid chromatography (HPLC). Composite mats submersed in PBS with pH 4.0 showed lesser release profile compared to mats submersed in PBS with pH of 6.0. The composite mat has adequate mechanical properties and in vitro cell biocompatibility indicating that the material can be used for drug eluting stent cover application.
Collapse
Affiliation(s)
- Ludwig Erik Aguilar
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Afeesh Rajan Unnithan
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju City, Republic of Korea
| | - Altangerel Amarjargal
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea; Power Engineering School, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
| | - Arjun Prasad Tiwari
- Department of Microbiology and Genetics, Medical School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Seong Tshool Hong
- Department of Microbiology and Genetics, Medical School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju City, Republic of Korea; Eco-friendly Machine Parts Design Research Center, Chonbuk National University, Jeonju City, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju City, Republic of Korea; Eco-friendly Machine Parts Design Research Center, Chonbuk National University, Jeonju City, Republic of Korea.
| |
Collapse
|
37
|
Vanbiervliet G, Gonzalez JM, Barthet M. Endoscopy innovations. Gastrointest Endosc 2014; 80:380-3. [PMID: 25127939 DOI: 10.1016/j.gie.2014.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Geoffroy Vanbiervliet
- Faculty of Medicine, Aix-Marseille University, Marseille, France; Gastroenterology, University Hospital of Nice, Nice, France
| | - Jean-Michel Gonzalez
- Faculty of Medicine, Aix-Marseille University, Marseille, France; Gastroenterology, Public Assistance Hospitals of Marseille, Marseille, France
| | - Marc Barthet
- Faculty of Medicine, Aix-Marseille University, Marseille, France; Gastroenterology, Public Assistance Hospitals of Marseille, Marseille, France
| |
Collapse
|
38
|
Non-vascular drug eluting stents as localized controlled drug delivery platform: Preclinical and clinical experience. J Control Release 2013; 172:105-117. [DOI: 10.1016/j.jconrel.2013.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 01/10/2023]
|
39
|
Kwon CI, Ko KH, Hahm KB, Kang DH. Functional self-expandable metal stents in biliary obstruction. Clin Endosc 2013; 46:515-21. [PMID: 24143314 PMCID: PMC3797937 DOI: 10.5946/ce.2013.46.5.515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 12/20/2022] Open
Abstract
Biliary stents are widely used not only for palliative treatment of malignant biliary obstruction but also for benign biliary diseases. Each plastic stent or self-expandable metal stent (SEMS) has its own advantages, and a proper stent should be selected carefully for individual condition. To compensate and overcome several drawbacks of SEMS, functional self-expandable metal stent (FSEMS) has been developed with much progress so far. This article looks into the outcomes and defects of each stent type for benign biliary stricture and describes newly introduced FSEMSs according to their functional categories.
Collapse
Affiliation(s)
- Chang-Il Kwon
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | | | | | | |
Collapse
|
40
|
Abstract
Biliary stenting has evolved dramatically over the past 30 years. Advancements in stent design have led to prolonged patency and improved efficacy. However, biliary stenting is still affected by occlusion, migration, anatomical difficulties, and the need for repeat procedures. Multiple novel plastic biliary stent designs have recently been introduced with the primary goals of reduced migration and improved ease of placement. Self-expandable bioabsorbable stents are currently being investigated in animal models. Although not US Food and Drug Administration approved for benign disease, fully covered self-expandable metal stents are increasingly being used in a variety of benign biliary conditions. In malignant disease, developments are being made to improve ease of placement and stent patency for both hilar and distal biliary strictures. The purpose of this review is to describe recent developments and future directions of biliary stenting.
Collapse
Affiliation(s)
- Clark D Hair
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
41
|
|